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Abstract
Federated learning (FL) enables institutions to
collaboratively train machine learning models by
aggregating local gradients without sharing sensi-
tive data. However, sharing gradients still poses
privacy risks, e.g., gradient inversion attacks. Ho-
momorphic encryption (HE) is commonly used in
FL to encrypt gradients at the data owner’s side,
enabling secure aggregation without decryption
on the server. Existing HE-based FL methods
are either fully encrypted or selectively encrypted:
the former ensures privacy but incurs high over-
head, while the latter improves efficiency by par-
tially encrypting gradients, leaving shared unen-
crypted gradients vulnerable. To enable efficient
and private FL, we propose DictPFL, a framework
that encrypts shared gradients while keeping most
gradients local without the need for sharing all,
while preserving the performance of global gra-
dient aggregation. DictPFL comprises two mod-
ules: Decompose-for-Partial-Encrypt (DePE) and
Prune-for-Minimum-Encrypt (PrME). In DePE,
we decompose pre-trained model weights into a
dictionary and a lookup table. Only the gradients
of the lookup table are encrypted and aggregated
securely while the dictionary remains fixed and
is not transmitted for aggregation. In PrME, we
aim to further minimize the encrypted parameters
with an encryption-aware pruning technique that
ensures a consistent pruning mask across clients
by leveraging the history of global gradients. Ex-
perimental results demonstrate that DictPFL sig-
nificantly reduces communication overhead by
402 to 748 times and speeds training by 28 to 65
times compared to fully encrypted method. It also
outperforms state-of-the-art selectively encrypted
gradient by lowering overhead by 51 to 155 times
and accelerating training by 4 to 19 times.

1. Introduction
Federated Learning (FL) (Shokri & Shmatikov, 2015) was
introduced to enable collaborative training of a shared ma-
chine learning model among different data owners (e.g.,

hospitals or banks), where model gradients (or weights),
rather than raw data, are shared to address privacy concerns.
However, even sharing gradients poses privacy risks, as
attackers could potentially exploit this information. For in-
stance, model inversion (or gradient inversion) attacks (Zhu
et al., 2019; Shi et al., 2023) have demonstrated the feasibil-
ity of reconstructing a client’s original training data from the
gradients shared by clients. In such scenarios, the server or
users with access to the server can act as potential attackers.

To protect the privacy of clients’ gradients during aggre-
gation and enable private FL, various privacy-preserving
primitives such as Differential Privacy (DP) (Truex et al.,
2019; 2020; Sun et al.), Secure Multiparty Computation
(MPC) (Bonawitz et al., 2017; So et al., 2022), and Ho-
momorphic Encryption (HE) (Zhang et al., 2020; Fang &
Qian, 2021; Jiang et al., 2021; Jin et al., 2023) have been
utilized. Among these methods, HE is especially appeal-
ing in cross-silo settings (Zhang et al., 2020; Fang & Qian,
2021; Jiang et al., 2021; Jin et al., 2023), as it provides non-
interactive privacy protection without the accuracy-privacy
tradeoff associated with DP and without requiring the as-
sumption of non-colluding servers, as in MPC. In HE-based
privacy-preserving federated learning, locally updated gradi-
ents are encrypted by clients before sharing with the server,
allowing the server to perform homomorphic aggregation
directly on ciphertexts. Despite its security benefits, HE
introduces significant overhead: ciphertext expansion in-
creases communication costs by 1 to 3 orders of magnitude,
while encryption, decryption, and homomorphic aggrega-
tion impose high computational costs (Zhang et al., 2020;
Jin et al., 2023).

To mitigate the above issues of HE-based FL, one direc-
tion is to reduce the number of encrypted gradients, as
fewer ciphertexts result in lower HE-related communication
and computation overheads. The state-of-the-art literature,
FedML-HE (Jin et al., 2023) as shown in Figure 1 (a), im-
plements a Select-and-Encrypt (SaE) strategy: clients pre-
calculate sensitivity scores for parameters, encrypting only
the gradients of top 10% sensitive parameter while transmit-
ting the remaining 90% less-sensitive parameters in plain-
text. However, unencrypted parameters still suffer from risk
exposure, e.g., Zhu et al. (2019) show that accessing 30%
of gradients enables training data reconstruction, leading
to privacy issues. Furthermore, its pre-calculated sensitiv-
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Figure 1. (a) Prior HE-based PPFL (Jin et al., 2023) encrypts only sensitive gradients. The less-sensitive weights are shared without
encryption, which may lead to privacy concerns. (b) In contrast, our DictPFL approach minimizes encryption while ensuring privacy
guarantees through the Decompose-for-Partial-Encrypt (DePE) and Prune-for-Minimum-Encrypt (PrME) strategies. DePE involves
decomposing gradients into a frozen dictionary and a trainable lookup table, with only the encrypted lookup table being shared for
aggregation. PrME further prunes the lookup table parameters on the client side to reduce encryption costs.

ity scores often are limited to capture dynamic sensitivity
during training, as parameter updates alter their privacy-
sensitivity. Thus, encrypting all gradients sent to the server
remains essential to prevent leakage.

The Select-and-Encrypt (SaE) strategy inevitably exposes
privacy risks due to shared unencrypted data, although
achieving fewer communication and faster training over
the previous fully encrypted methods. To address this chal-
lenge, we propose DictPFL as shown in Figure 1 (b), which
ensures that the shared parameters are fully encrypted to
guarantee privacy while mimizing the shared parameters by
two modules: Decompose-for-Partial-Encrypt (DePE) and
Prune-for-Minimum-Encrypt (PrME). DePE decomposes
the pre-trained model into a globally consistent dictionary,
which is identical across all clients, and a lookup table,
where each client trains independently. Only the encrypted
gradients of the lookup table are transmitted to the server
for aggregation, while the globally consistent dictionary
remains frozen and is never transmitted. PrME is further
proposed to minimize the encrypted lookup tables. Unlike
plaintext-level pruning techniques in FL (Aji & Heafield,
2017; Li et al., 2021; Bibikar et al., 2022), where clients of-
ten perform local-specific pruning and share pruned indices
for aligned aggregation on the server side, or where the
server directly prunes gradients, HE-based FL presents new
challenges for gradient pruning: encrypted gradients are dif-
ficult to align and prune during aggregation. Our proposed
PrME addresses this issue and ensures consistent pruning
across all clients without requiring encrypted pruning. This
is achieved by leveraging gradient history: instead of relying
on local gradient magnitudes, all clients prune their gradi-
ents based on a shared reference, thereby aligning pruning
indices across clients. Additionally, dynamic probabilities
are assigned to the pruned parameters, allowing for their

potential reintroduction in future rounds and mitigating the
negative effects of pruning. Since the pruned lookup tables
are significantly smaller than the full model weights, and
all transmissions are encrypted, this approach substantially
reduces the number of ciphertexts without compromising
privacy.

Extensive experiments demonstrate that DictPFL achieves
substantial performance improvements over the state-of-
the-art FedML-HE (Jin et al., 2023) across various tasks,
including (i) image recognition, (ii) text classification, and
(iii) text generation. Specifically, compared to private fully
encrypted frameworks (Roth et al., 2022), DictPFL reduces
communication overhead by 402 to 748 times and accel-
erates training by 28 to 65 times. It also outperforms the
selectively encryted method FedML-HE, by lowering over-
head by 51 to 155 times and speeding up training by 4 to 19
times.

2. Background and Motivation
2.1. Privacy-preserving Federated Learning

Federated learning enables collaborative training among
distributed clients without directly sharing datasets. In
this framework, the clients train their models locally and
send the gradients (or model updates) to a central server,
which aggregates these gradients using algorithms like Fe-
dAvg (McMahan et al., 2017) and FedSGD (Shokri &
Shmatikov, 2015). However, the direct exposure of local
gradients to the server poses severe privacy risks (Mothukuri
et al., 2021). For instance, with access to client’s local gra-
dients, the server can perform model inversion attacks (Zhu
et al., 2019; Hitaj et al., 2017; Shi et al., 2023) to reconstruct
the client’s dataset.
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Figure 2. Training time breakdown in plaintext, ciphertext and
FedML-HE (Jin et al., 2023) settings for a ViT model on GTSRB.

Several methods have been proposed to protect the gradi-
ents transmitted between clients and the server. One strategy
employs Differential Privacy (DP)(Truex et al., 2020; 2019;
Sun et al.) by injecting noise into the gradients before
sharing them. Although DP imposes minimal computa-
tional overhead, it inevitably degrades model performance
because of the added noise. Secure Multi-Party Compu-
tation (MPC) (Fereidooni et al., 2021), requires N ≥ 2
non-colluding servers to jointly aggregate client gradients
in a privacy-preserving way, where each server can only
access encrypted gradient shares, not the original values.
However, this reliance on multiple non-colluding servers
makes it unsuitable for single-server settings.

Another approach leverages Homomorphic Encryption (HE)
to encrypt gradients on the client side, enabling the server
to aggregate encrypted gradients without decryption. Prior
HE-based FL methods either use limited schemes like ad-
ditive homomorphic encryption (AHE) (Zhang et al., 2020;
Fang & Qian, 2021; Jiang et al., 2021), which lack support
for general aggregation, or employ computationally imprac-
tical fully homomorphic encryption (FHE) (Brakerski et al.,
2014; Cheon et al., 2017; Chillotti et al., 2020). While plat-
forms like IBM FL (IBM, 2022) and Nvidia Flare (Roth
et al., 2022) have explored the integration of FHE, they fail
to address its significant overheads. As shown in Figure 2,
HE operations dominate training time, and ciphertext size
substantially increases communication costs.

2.2. Efficient HE-based Federated Learning

Recently, many efforts have been made to improve the effi-
ciency of HE-based FL. These optimization strategies can
be broadly classified into two categories, i.e., encryption
scheme optimization and algorithmic optimization.

Quantization (Zhang et al., 2020; Xu et al., 2021; Han &
Yan, 2023) and Packing (Zhang et al., 2020; Aono et al.,
2017; Liu et al., 2019) are widely studied techniques within
the realm of encryption scheme optimization for HE-based
FL. Quantization reduces communication costs by convert-
ing high-precision gradients into low-precision values. On
the other hand, packing, also referred to as batching, fo-
cuses on consolidating multiple local gradients into a single
plaintext, significantly reducing the number of plaintexts
that need to be encrypted and sent.

Algorithmic optimization involves tailoring efficient strate-
gies based on the characteristics of the machine learning
model, and our DictPFL falls into this category. The state-
of-the-art work, FedML-HE (Jin et al., 2023) proposes to
selectively encrypt the gradients based on privacy-sensitive
scores, i.e., Select-and-Encrypt (SaE), as shown in Fig-
ure 1 (a). However, it suffers from several critical limitations.
First, privacy-sensitive scores are computed once before
training and remain static throughout the training process.
This static approach fails to account for how weight sensi-
tivity changes during training, because weights classified as
non-sensitive on the initialized model may later become crit-
ical for privacy protection. Most critically, it cannot ensure
complete privacy protection. Since only the gradients of
selected parameters are encrypted, the remaining gradients
are transmitted in plaintext, leading to inevitable informa-
tion leakage and making it impossible to guarantee privacy
protection regardless of which gradients are selected for
encryption. Additionally, as illustrated in Figure 2, although
FedML-HE substantially reduces the communication over-
head and HE operations (including aggregation, encryption,
and decryption) by a factor of ten when only the top 10% of
sensitive parameters are encrypted, these overheads induced
by ciphertexts are still primary bottlenecks in the training
process.

2.3. Motivation

As illustrated in Figure 2, communication and computa-
tion overheads caused by ciphertexts becomes the main
bottleneck in HE-based federated learning. Although state-
of-the-art FedML-HE (Jin et al., 2023) attempts to improve
efficiency by selectively omitting encryption for partial pa-
rameters, it not only compromises privacy but also contin-
ues to struggle with significant HE-induced communica-
tion and computation overheads. To achieve higher effi-
ciency without sacrificing privacy, we focus on reducing
the total number of trainable parameters. Guided by this
principle, we propose DictPFL, which employs two strate-
gies: Decompose-for-Partial-Encrypt (DePE) (Section 4.1)
to decompose gradients and Prune-for-Minimum-Encrypt
(PrME) (Section 4.2) to prune the gradients of parameters
that exhibit minimal updates.

3. Preliminaries
3.1. System Overview: Federated Learning with HE

Same with FedML-HE (Jin et al., 2023), the workflow of
HE-based privacy-preserving federated learning begins with
clients utilizing a trusted key authority to generate a public-
secret HE key pair. During each training iteration: (1) clients
compute local gradients; (2) these gradients are encrypted
with the public key and transmitted to the server; (3) the
server aggregates the encrypted gradients; (4) the aggregated
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ciphertext is broadcast back to clients, who decrypt it using
their secret keys and update their local models with the
decrypted result.

3.2. Threat Model

We consider a semi-honest adversary A that may corrupt the
server, which is the same as the setting of FedML-HE (Jin
et al., 2023). While A follows the protocol, it attempts to
infer private information from benign participants. Security
guarantees ensure A learns no information from the data of
clients.

4. DictPFL
4.1. Decompose-for-Partial-Encrypt (DePE)

Overview. Model weight decomposition, representing a
weight matrix W as a linear combination of vectors from
a compact dictionary D and a sparse lookup table T , is a
proven strategy for parameter reduction in inference (Lou
et al., 2023; Bagherinezhad et al., 2017). The key insight lies
in reducing the inherent redundancy in weight parameters:
correlated parameters can be represented as sparse linear
combinations of a dictionary of vectors. We adapt this prin-
ciple to HE-based federated learning, where reducing the
dimensionality of trainable parameters, directly minimizes
the number of ciphertexts.

Constructing W with D and T . Figure 3 demonstrates
the construction of the weight matrix W ∈ Rn×m using a
dictionary D ∈ Rn×r and lookup table T ∈ Rr×m. Each
column vector W [:][i] of W is derived through a linear
combination of the r vectors in D, weighted by the corre-
sponding scalars in the i-th column of T , denoted T [:][i].
This process is formally expressed by:

W [:][i] =

r∑
k=0

D[:][k] · T [k][i] (1)

By reducing r, the dictionary size, we effectively decrease
the number of trainable parameters, thereby reducing the
communication overhead associated with ciphertexts.

0.2

0.5

0.3
0.3 +0.5+0.2× =

Dictionary 𝐷 Lookup Table 𝑇 Weights 𝑊

𝑛

𝑟 𝑚

𝑟

Aggregation

𝑛

𝑚

Figure 3. Representing the weight matrix W with dictionary D
and lookup table T . For instance, given r = 3, the i-th column of
T is [0.3, 0.2, 0.5], the i-th column of weights W is represented
by W [:][i] = 0.3 ·D[:][0] + 0.2 ·D[:][1] + 0.5 ·D[:][2].

Facorization of Dictionary and Lookup Tables. To en-
sure that the dictionary D contains critical and generaliz-

able weight vectors and remains constant across all clients,
DePE leverages the knowledge encapsulated in pre-trained
weights W0. We employ a truncated SVD factorization to
decompose W0, which has dimensions n×m, into a smaller
dictionary D and a lookup table T ′. Specifically, W0 is ap-
proximated as UrΣrV

⊤
r , where Ur, Σr, and V ⊤

r correspond
to the top-r singular values and vectors, thus reducing the
dimensionality to n× r for D and r ×m for T ′,

W0 ≈ UrΣrV
⊤
r (2)

D,T ′ = SV D(W0, r) = UrΣr, V
⊤
r (3)

DePE initializes D as UrΣr and T ′ as V ⊤
r according to

Equation 3. However, directly freezing D and training T ′

can lead to suboptimal performance due to the information
loss inherent in SVD truncation, particularly when r is much
smaller than m or n. To counteract this, we retain the pre-
trained weight W0 and initialize T by zeroing out T ′. This
strategy allows for the construction of W as W0+D·T , with
D remaining static and shared among all clients, while T is
updated locally and aggregated on the server. By selecting
a smaller r, we significantly reduce the communication
overhead for encrypted parameters, as encryption is only
required for the r ×m entries in T .

4.2. Prune-for-Minimum-Encrypt (PrME)

As DePE training progresses, there is a decline in the num-
ber of parameters with large gradients, as demonstrated
in Figure 4 (a). By the 50th training round, only a small
subset of parameters still exhibit gradients exceeding 10−5,
as shown in Figure 4 (b). Encrypting and transmitting all
gradients to the server for aggregation, including those of
parameters that no longer change significantly, introduces
unnecessary redundancy. By enabling clients to selectively
upload the substantial gradients, communication overhead
can be dramatically reduced.

D
en

si
ty

Gradients

Large gradients Small gradients

(a) Evolution of Gradients Magnitude (b) Change in Gradients Distribution

Training Round

50th Round

1e5

1st Round

Figure 4. (a) As training progresses, parameters that initially have
large gradients may gradually transition to having smaller gradi-
ents. (b) Concurrently, the number of parameters with substantial
gradients decreases significantly.

Existing gradients pruning methods in plaintext federated
learning involve clients independently pruning their small-
est local gradients before transmission to the server for

4



220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

DictPFL: Efficient and Private Federated Learning on Encrypted Gradients

aggregate. Since clients possess different local gradients,
they may prune parameters at different positions, neces-
sitating the sharing of pruning indices with the server to
ensure proper aggregation. However, implementing such
methods to HE-based federated learning presents two funda-
mental challenges. First, encrypted indices force the server
to perform non-linear operations (e.g., comparing encrypted
indices to match) alongside linear operations (e.g., aggre-
gation), a hybrid workflow that incurs prohibitive computa-
tional overhead (Zhang et al., 2024b). Second, the SIMD
batching mechanism, which packs multiple plaintext gradi-
ents into several slots of a single ciphertext, renders index-
specific operations infeasible. Since HE aggregation occurs
slot-wise, gradients occupying the same slot across clients
are combined automatically, regardless of their indices.

Figure 5 illustrates the challenges of pruned HE aggregation.
Consider a scenario where client A encrypts and uploads
gradients from positions 1 and 3, while client B encrypts and
uploads gradients from positions 1 and 4. The server cannot
perform correct aggregation because the ciphertext slots are
misaligned, and the encryption prevents any coordination or
realignment of the gradients. To ensure consistent gradient
pruning accross clients, they require an identical metric
for determining which gradients to prune. The optimal
approach would involve clients pruning their local gradients
based on current round global gradients. However, clients
cannot access the current round global gradients until after
sharing their complete local gradients with the server for
aggregation. This creates a dilemma: clients cannot prune
independently as it leads to inconsistencies, nor can they
rely on global gradients to coordinate pruning.

1 2 3 4

1 2 3 4 1 4

1 3

1 4

1 3

                        
                     

                        
                     

Clients
Local gradients

Server

B

A

Pruned local gradients Encrypted local gradients

Misaligned

SIMD

SIMD

Figure 5. An example of failed aggregation due to different loca-
tions pruned by client A and client B.

Temporal Inactivity Pruning (TIP). To resolve this
dilemma, clients require a shared pruning metric indepen-
dent of the current round’s global gradients. A straightfor-
ward solution is to base pruning decisions on the last round’s
global gradients, which are identical across clients and ac-
cessible before aggregation. Specifically, clients prune local
gradients corresponding to parameters with the smallest
s% magnitudes from the prior global gradients. However,
parameters showing minimal activity in one round may ex-
perience significant updates in subsequent rounds, leading
to unintended removal if pruning decisions rely exclusively
on last round gradients. For instance, as illustrated in Fig-

ure 6 (b), the parameter with a small gradient magnitude in
an earlier round may be pruned, despite its gradient resur-
gence in later rounds, as indicated in Figure 6 (a).

To mitigate the influence of transient fluctuations and re-
tain critical gradients, we introduce a temporal windowing
strategy that leverages the information from the previous
τ consecutive rounds. Clients identify parameters whose
gradients fall within the smallest s% across all τ rounds
(pruning patience). Formally, the pruning mask for parame-
ter wi at round t is defined as:

Mi,t =

{
0 if

∑τ
k=1 1 (|δwi,t−k| < θs,t−k) = τ

1 otherwise
(4)

Here, Mi,t = 0 indicates pruning the local gradient of wi,
while Mi,t = 1 retains its local gradient for aggregation.
The δwi,t−k denotes the global gradient of parameter wi at
round t− k, and 1 is the indicator function. The threshold
θs,t−k dynamically adapts as the (100-s)-th percentile of
|δwi,t−k|. As shown in Figure 6 (c), the pruning is post-
poned to a later round when gradients exhibit more stable
behavior, thereby preserving gradients that regain signifi-
cance after initially being considered for pruning.

Holistic Reactivation Correction (HRC). Although TIP
reduces communication overhead whlie preventing prema-
ture pruning by chance, it still has an inherent limitation:
once a parameter is pruned, its local gradients no longer
participate in aggregation. Consequently, its global gradient
magnitudes remain zero in subsequent rounds, effectively
excluding it permanently. This irreversible pruning can hin-
der training convergence, as parameters with substantial
gradients in later rounds may no longer be updated. For
example, in Figure 6 (a), the example parameter may have
siginificant gradients magnitude even after the 100th round.

To mitigate the performance loss caused by irreversible
pruning, we propose a dynamic reactivation scheme, Holis-
tic Reactivation Correction (HRC). Instead of permanently
excluding pruned parameters, HRC assigns each pruned
parameter wi a reactivation probability pi, which is dynami-
cally adjusted based on its aggregated global gradients δwi,t

after reactivation:

pi[t+ 1] =

{
pi[t]× β if |δwi,t| < θs,t

min (pi[t]/β, 1) otherwise
(5)

Here, β is a decay factor less than 1. When a pruned param-
eter is reactivated, the client uploads its accumulated local
gradients since the pruning round for aggregation and gets
the current round’s global gradients δwi,t. This approach
preserves small gradients that, while individually minor, can
meaningfully accumulate over time, rather than discarding

5
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Figure 6. Evolution of a parameter’s global gradients under different pruning strategies. Green background indicates the parameter is
pruned (excluded from aggregation), while gray background indicates the opposite. Larger green areas reflect more overhead reduction.
Closer alignment of gradient trends with the baseline (a) signifies preserved convergence performance.

these gradients, maintaining them locally for future aggre-
gation helps convergence. If |δwi,t| < θs,t, indicating that
the parameter’s cumulative global gradients remain small
even after reactivation, the reactivation probability pi de-
creases, discouraging further reactivation. Conversely, if
|δwi,t| ≥ θs,t, pi increases, encouraging the update of this
parameter to rejoin aggregation. This adaptive mechanism
mitigates information loss from premature pruning by flexi-
bly adjusting the likelihood of reactivation. Although HRC
introduces some uncertainty, consistency across clients can
be easily maintained by preserving a shared random seed
for the pruning mask.

5. Experimental Methodology
Datasets. We conduct experiments on three image classifica-
tion tasks: CIFAR-10 (Krizhevsky et al.), GTSRB (Houben
et al.), and Diabetic Retinopathy (Gulshan et al.), as well
as AG’s News (Zhang et al.) for sentence classification and
MetaMathQA (Yu et al., 2023) for text generation. The ex-
periments are performed under varying levels of data hetero-
geneity and with client numbers. We generate homogeneous
data splits by randomly assigning training examples to in-
dividual clients without replacement. For heterogeneous
settings, we simulate the data heterogeneity by sampling
the label ratios from a Dirichlet distribution with a sym-
metric parameter, following the (Hsu et al., 2019). In both
settings, each client holds the same number of samples,
following (Kim et al., 2024).

Models. We perform DictPFL on multiple prevalent
transformer-based models including, ViT (Dosovitskiy,
2020) designed for image recognition, BERT (Kenton &
Toutanova, 2019), and TinyLlama (Zhang et al., 2024a) for
natural language processing.

Baselines. We compare DictPFL with three baselines:
FedHE-Full (Roth et al., 2022), which trains the whole
model and encrypts all gradients; FedHE-Top2, fine-tuning
only the last two layers; and FedHE-ML (Jin et al., 2023),
which encrypts a subset of gradients (10% unless specified
otherwise) while leaving the rest in plaintext.

Evaluation Metrics. We assess the efficacy of our pro-
posed DictPFL by comparing its communication overhead,
training time, and model accuracy against existing methods.

For privacy evaluation, we compare DictPFL with FedML-
HE (Jin et al., 2023) in terms of potential privacy leaks. We
utilize recovered image scores derived from 1 − LPIPS,
where the Learned Perceptual Image Patch Similarity
(LPIPS) (Huang et al., 2021) measures discrepancies be-
tween reconstructed and original images. Therefore, higher
scores indicate greater similarity and consequently, higher
privacy risks.

Hyperparameters. Unless otherwise specified, we set the
dictionary size r to 4, the pruning ratio s% to 70%, the
pruning patience τ to 3, and the reactivation probability
scaler β to 0.2. Detailed analysis of these hyperparameters
are provided in Section 6.2.

HE Implementation. We adopt the CKKS homomorphic
encryption scheme with bootstrapping (Cheon et al., 2017;
2019; 2018), implemented via OpenFHE (Badawi et al.,
2022). We configure parameters for 128-bit security (see
Appendix A.1) and leverage SIMD (Smart & Vercauteren,
2014) for parallelized ciphertext operations. Data encod-
ing follows (Crockett, 2020). Experiments were conducted
on an AMD Ryzen Threadripper PRO 3955WX processor
(2.2GHz) with 125GB of memory.

6. Results
6.1. Main Results

Comparison with Existing Works. To demonstrate
DictPFL’s effectiveness, we compare it with other HE-based
FL frameworks on the CIFAR-10, Diabetic Retinopathy,
and GTSRB datasets using the ViT-16 model. Figure 7 illus-
trates a holistic comparison. Notably, DictPFL significantly
and consistently reduces communication overheads com-
pared to the baselines without sacrificing accuracy. Specifi-
cally, FedHE-Full has the highest communication demand.
FedHE-Top2, which fine-tunes only the last two layers,
shows reduced overhead but underperforms, because freez-
ing most layers limits learning capacity, particularly on
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Figure 7. Efficiency comparison of different federated frameworks, in terms of accuracy versus communication overhead on three datasets
using the ViT model. Higher efficiency is indicated by higher accuracy for the same communication or achieving the same accuracy with
less communication, as shown by lines closer to the upper left corner. Communication is quantified by the total amount of data exchanged,
including plaintexts and ciphertexts, during the training iterations.

datasets that diverge from those used in pre-training. For
instance, it achieves only 58.9% accuracy on GTSRB versus
DictPFL’s 95.27%.

DictPFL achieves a 98.3% average reduction in communica-
tion overhead compared to the state-of-the-art FedML-HE
(encrypt 10%), while maintaining the same level of accuracy.
Although FedML-HE also reduces communication costs, it
does so at the expense of privacy by exposing part of gradi-
ents in plaintext. DictPFL, on the other hand, fully preserves
privacy. This is further demonstrated in Figure 8 (a), which
highlights the vulnerability of FedML-HE to state-of-the-art
gradient inversion attacks (Wen et al., 2022).
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Figure 8. (a) Gradient inversion attack against FedML-HE and
DictPFL. The communication ratio is the communication overhead
relative to encrypting the full-size model gradients in FedHE-
Full. (b) Comparison of communication overhead of DictPFL and
baselines on models of different sizes.

In addition to ViT, we evaluate several other models, as
shown in Figure 8 (b). The results show that DictPFL con-
sistently outperforms the baselines across models of dif-
ferent scales. Compared with the fully encrypted baseline
FedHE-Full, DictPFL reduces communication by 402 to
748 times and accelerates training by 28 to 65 times. It also
outperforms the selectively encrypted baseline FedML-HE
by lowering overhead by 51 to 155 times and speeding up
training by 4 to 19 times.

Breakdown Analysis. In Figure 9, we break down the train-
ing time for various HE-based FL frameworks under both
LAN and WAN settings. In FedHE-Full, where all gradi-

ents are encrypted, communication and ciphertext-related
operations (encryption, decryption, and aggregation) domi-
nate the training time. FedHE-Top2 reduces communication
and ciphertext-related operations by fine-tuning the last two
layers, but this comes at the cost of reduced accuracy, achiev-
ing only 58.9%. On the contrary, our proposed DePE and
PrME techniques significantly reduce the number cipher-
texts, resulting in a total training time that is 1 to 2 orders
of magnitude lower than other baselines while maintaining
a comparable level of accuracy.
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Figure 9. Training time breakdown of ViT on GTSRB.

6.2. Ablation Study

In this section, we explore the design space of DictPFL
and study the impact of various settings on its performance.
Unless otherwise specified, all experiments are conducted
using the Diabetic Retinopathy dataset within a 3-client
homogeneous setting within 10 rounds.

Hyperparameters of DePE. The dictionary size is a crucial
hyperparameter in our DePE. A larger dictionary captures
more comprehensive representations of gradients, enhancing
accuracy but increasing overheads. As evidenced in Table 1,
even a small dictionary with r = 4 achieves commendable
training performance, e.g., an accuracy of 81.99%, close to
the 82.74% achieved by FedHE-Full. This efficacy stems
from the dictionary’s ability to retain essential information
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corresponding to the largest singular values.

Table 1. The results of DictPFL under different dictionary sizes r.
r Accuracy (%) ↑ Comm. (GB) ↓ Time (min) ↓
2 74.26±0.5 0.046 6.11±0.1

4 81.99±0.4 0.088 6.23±0.1

8 82.67±0.2 0.160 6.42±0.2

16 82.71±0.2 0.332 7.27±0.1

Hyperparameters of PrME. In our Prune-for-Minimum-
Encrypt (PrME), we explore the impact of varying the prun-
ing ratio s% and pruning patience τ . A higher s% results in
more minor gradients being pruned, whereas a lower value
preserves them. As shown in Figure 10, without PrME
(prune 0%), training converges rapidly within 10 rounds,
but each round incurs the highest communication cost. Prun-
ing 70% drastically reduces communication overhead but
significantly impacts accuracy. By contrast, pruning 20%
preserves accuracy but results in far less communication
reduction compared to the 70% pruning scenario. Notably,
with our HRC reactivation scheme, immaturely pruned gra-
dients in earlier rounds can be selectively reintroduced in
later rounds. This enables the model to achieve accuracy
similar to the 20% pruning scenario while achieving the
communication efficiency of the 70% pruning ratio.
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Figure 10. Ablation on pruning ratio under τ = 3 and β = 0.2.

Table 2 studies different pruning patience τ . Higher τ values
delay the pruning of gradients, reducing accuracy degrada-
tion but limiting the communication reduction. Notably,
setting τ = 3 already results in small accuracy loss. This
resilience can be attributed to our HRC, which mitigates
the impact on accuracy by reintroducing pruned gradients,
effectively correcting errors over time.

Table 2. Various pruning patiences under s% = 70% and β = 0.2.
τ Accuracy (%) ↑ Comm. (GB) ↓ Time (min) ↓
1 80.55±0.6 0.001 6.26±0.1

3 82.29±0.3 0.003 6.36±0.1

5 82.67±0.2 0.160 6.42±0.2

10 82.77±0.3 0.474 6.92±0.1

Table 5 in Appendix B.1 showcases that our PrME works
well under different reactivation probability scaler β.

Different Number of Clients. We assess the performance
of DictPFL in environments with varying numbers of clients.
The findings, presented in Table 3, demonstrate that DictPFL
performs effectively and consistently across settings with
different client counts.

Table 3. The results of DictPFL under client numbers.
Clients Accuracy (%) ↑ Comm. (GB) ↓ Time (min) ↓

3 82.67±0.2 0.160 6.42±0.2

5 82.64±0.1 0.092 3.70±0.1

10 81.94±0.4 0.046 1.85±0.1

20 81.82±0.4 0.041 0.93±0.2

Different Heterigious Level. Unsurprisingly, DictPFL per-
forms better in homogeneous settings than in heterogeneous
settings. As the table 4 shows, we evaluated DictPFL in vari-
ous heterogeneous settings under different Dirichlet distribu-
tions from 0.3 to 0.9 and compared it with a homogeneous
setting. The results indicate that DictPFL’s performance
remains stable across different heterogeneous dataset splits.
Specifically, a smaller α (more heterogeneous) requires
more communication size and training time to achieve com-
parable accuracy to a larger α (less heterogeneous).

Table 4. The results under different heterogeneous settings.
α Accuracy (%) ↑ Comm. (GB) ↓ Time (min) ↓

0.3 79.62±0.4 0.103 6.22±0.2

0.6 80.28±0.2 0.145 6.44±0.1

0.9 82.06±0.3 0.151 6.45±0.2

∞ 82.67±0.2 0.160 6.42±0.2

6.3. Other Experiments

The results for text tasks, including classification and gener-
ation tasks are in Appendix B.2. DictPFL outperforms all
the baselines on language tasks.

7. Conclusion
In this work, we present DictPFL, a novel framework for
efficient HE-based FL. By decomposing model weights
into a static dictionary and a trainable lookup table through
Decompose-for-Partial-Encrypt (DePE), and further opti-
mizing with Prune-for-Minimum-Encrypt (PrME), DictPFL
significantly reduces encrypted gradient transmission with-
out compromising privacy. Compared to the fully encrypted
method, DictPFL lowers communication overhead by 402 to
748 times and speeds training by 28 to 65 times. It also out-
performs selectively encrypted FedML-HE, reducing over-
head by 51 to 155 times and accelerating training by 4 to 19
times, while preserving model performance and eliminating
privacy risks from partial plaintext gradient transmission.
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Impact Statement
The paper introduces DictFPL, a method designed to reduce
the computational and communication overheads associated
with protecting federated learning shared weights using ho-
momorphic encryption. This approach enhances privacy
protections without compromising accuracy, making it a
more feasible solution for large-scale, real-world applica-
tions. By ensuring that sensitive weights remains private,
DictFPL can accelerate the adoption of federated learning
across industries such as healthcare, finance, and beyond,
while fostering trust in AI systems and promoting global
data privacy.
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Möllering, H., Nguyen, T. D., Rieger, P., Sadeghi, A.-
R., Schneider, T., Yalame, H., et al. Safelearn: Secure
aggregation for private federated learning. In 2021 IEEE
Security and Privacy Workshops (SPW), pp. 56–62. IEEE,
2021.

9

https://eprint.iacr.org/2022/915
https://eprint.iacr.org/2022/915
https://eprint.iacr.org/2022/915


495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

DictPFL: Efficient and Private Federated Learning on Encrypted Gradients

Gulshan, V., Peng, L., Coram, M., Stumpe, M. C., Wu,
D., Narayanaswamy, A., Venugopalan, S., Widner, K.,
Madams, T., Cuadros, J., et al. Development and valida-
tion of a deep learning algorithm for detection of diabetic
retinopathy in retinal fundus photographs. jama, 316(22):
2402–2410.

Han, J. and Yan, L. Adaptive batch homomorphic encryp-
tion for joint federated learning in cross-device scenarios.
IEEE Internet of Things Journal, 2023.

Hitaj, B., Ateniese, G., and Perez-Cruz, F. Deep models
under the gan: information leakage from collaborative
deep learning. In Proceedings of the 2017 ACM SIGSAC
conference on computer and communications security,
pp. 603–618, 2017.

Houben, S., Stallkamp, J., Salmen, J., Schlipsing, M., and
Igel, C. Detection of traffic signs in real-world images:
The German Traffic Sign Detection Benchmark. In Inter-
national Joint Conference on Neural Networks, number
1288.

Hsu, T.-M. H., Qi, H., and Brown, M. Measuring the effects
of non-identical data distribution for federated visual clas-
sification. arXiv preprint arXiv:1909.06335, 2019.

Huang, Y., Gupta, S., Song, Z., Li, K., and Arora, S. Evalu-
ating gradient inversion attacks and defenses in federated
learning. Advances in neural information processing
systems, 34:7232–7241, 2021.

IBM. Ibmfl crypto. GitHub repository,
2022. URL https://github.com/IBM/
federated-learning-lib/blob/main/
Notebooks/crypto_fhe_pytorch/pytorch_
classifier_aggregator.ipynb. Accessed:
2023-01-25.

Jiang, Z., Wang, W., and Liu, Y. Flashe: Additively sym-
metric homomorphic encryption for cross-silo federated
learning. arXiv preprint arXiv:2109.00675, 2021.

Jin, W., Yao, Y., Han, S., Joe-Wong, C., Ravi, S.,
Avestimehr, S., and He, C. Fedml-he: An efficient
homomorphic-encryption-based privacy-preserving fed-
erated learning system. arXiv preprint arXiv:2303.10837,
2023.

Kenton, J. D. M.-W. C. and Toutanova, L. K. Bert: Pre-
training of deep bidirectional transformers for language
understanding. In Proceedings of naacL-HLT, volume 1,
pp. 2. Minneapolis, Minnesota, 2019.

Kim, G., Kim, J., and Han, B. Communication-efficient
federated learning with accelerated client gradient. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 12385–12394, 2024.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images.

Li, A., Sun, J., Zeng, X., Zhang, M., Li, H., and Chen,
Y. Fedmask: Joint computation and communication-
efficient personalized federated learning via heteroge-
neous masking. In Proceedings of the 19th ACM Confer-
ence on Embedded Networked Sensor Systems, pp. 42–55,
2021.

Liu, C., Chakraborty, S., and Verma, D. Secure model
fusion for distributed learning using partial homomorphic
encryption. Policy-Based Autonomic Data Governance,
pp. 154–179, 2019.

Lou, Q., Santriaji, M., Yudha, A. W. B., Xue, J., and Solihin,
Y. vfhe: Verifiable fully homomorphic encryption with
blind hash. arXiv preprint arXiv:2303.08886, 2023.

McMahan, B., Moore, E., Ramage, D., Hampson, S., and
y Arcas, B. A. Communication-efficient learning of deep
networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273–1282. PMLR, 2017.

Mothukuri, V., Parizi, R. M., Pouriyeh, S., Huang, Y., De-
hghantanha, A., and Srivastava, G. A survey on security
and privacy of federated learning. Future Generation
Computer Systems, 115:619–640, 2021.

Roth, H. R., Cheng, Y., Wen, Y., Yang, I., Xu, Z., Hsieh,
Y.-T., Kersten, K., Harouni, A., Zhao, C., Lu, K., et al.
Nvidia flare: Federated learning from simulation to real-
world. arXiv preprint arXiv:2210.13291, 2022.

Shi, S., Wang, N., Xiao, Y., Zhang, C., Shi, Y., Hou, Y. T.,
and Lou, W. Scale-mia: A scalable model inversion
attack against secure federated learning via latent space
reconstruction. arXiv preprint arXiv:2311.05808, 2023.

Shokri, R. and Shmatikov, V. Privacy-preserving deep learn-
ing. In Proceedings of the 22nd ACM SIGSAC conference
on computer and communications security, pp. 1310–
1321, 2015.

Smart, N. P. and Vercauteren, F. Fully homomorphic simd
operations. Designs, codes and cryptography, 71:57–81,
2014.

So, J., He, C., Yang, C.-S., Li, S., Yu, Q., E Ali, R., Guler,
B., and Avestimehr, S. Lightsecagg: a lightweight and
versatile design for secure aggregation in federated learn-
ing. Proceedings of Machine Learning and Systems, 4:
694–720, 2022.

Sun, Y., Li, Z., Li, Y., and Ding, B. Improving lora in
privacy-preserving federated learning. In The Twelfth
International Conference on Learning Representations.

10

https://github.com/IBM/federated-learning-lib/blob/main/Notebooks/crypto_fhe_pytorch/pytorch_classifier_aggregator.ipynb
https://github.com/IBM/federated-learning-lib/blob/main/Notebooks/crypto_fhe_pytorch/pytorch_classifier_aggregator.ipynb
https://github.com/IBM/federated-learning-lib/blob/main/Notebooks/crypto_fhe_pytorch/pytorch_classifier_aggregator.ipynb
https://github.com/IBM/federated-learning-lib/blob/main/Notebooks/crypto_fhe_pytorch/pytorch_classifier_aggregator.ipynb


550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

DictPFL: Efficient and Private Federated Learning on Encrypted Gradients

Truex, S., Baracaldo, N., Anwar, A., Steinke, T., Ludwig,
H., Zhang, R., and Zhou, Y. A hybrid approach to privacy-
preserving federated learning. In Proceedings of the 12th
ACM workshop on artificial intelligence and security, pp.
1–11, 2019.

Truex, S., Liu, L., Chow, K.-H., Gursoy, M. E., and Wei,
W. Ldp-fed: Federated learning with local differential
privacy. In Proceedings of the third ACM international
workshop on edge systems, analytics and networking, pp.
61–66, 2020.

Wen, Y., Geiping, J. A., Fowl, L., Goldblum, M., and Gold-
stein, T. Fishing for user data in large-batch federated
learning via gradient magnification. In International Con-
ference on Machine Learning, pp. 23668–23684. PMLR,
2022.

Xu, W., Fan, H., Li, K., and Yang, K. Efficient batch
homomorphic encryption for vertically federated xgboost.
arXiv preprint arXiv:2112.04261, 2021.

Yu, L., Jiang, W., Shi, H., Yu, J., Liu, Z., Zhang, Y., Kwok,
J. T., Li, Z., Weller, A., and Liu, W. Metamath: Boot-
strap your own mathematical questions for large language
models. arXiv preprint arXiv:2309.12284, 2023.

Zhang, C., Li, S., Xia, J., Wang, W., Yan, F., and Liu,
Y. {BatchCrypt}: Efficient homomorphic encryption for
{Cross-Silo} federated learning. In 2020 USENIX annual
technical conference (USENIX ATC 20), pp. 493–506,
2020.

Zhang, P., Zeng, G., Wang, T., and Lu, W. Tinyllama: An
open-source small language model, 2024a.

Zhang, X., Zhao, J., and LeCun, Y. Character-level convolu-
tional networks for text classification. Advances in neural
information processing systems, 28.

Zhang, Y., Chen, X., and Lou, Q. Hebridge: Connecting
arithmetic and logic operations in fv-style he schemes. In
Proceedings of the 12th Workshop on Encrypted Comput-
ing & Applied Homomorphic Cryptography, pp. 23–35,
2024b.

Zhu, L., Liu, Z., and Han, S. Deep leakage from gradients.
Advances in neural information processing systems, 32,
2019.

11



605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

DictPFL: Efficient and Private Federated Learning on Encrypted Gradients

A. Experimental Setup
A.1. HE Parameters

We configure the CKKS scheme with a cyclotomic ring dimension N = 216, ciphertext modulus of 1555 bits, and
multiplicative depth L = 12 to ensure 128-bit security under the Homomorphic Encryption Standard (Albrecht et al., 2021).
Each ciphertext contains N/2 = 32,768 slots for parallelized SIMD operations.

B. More Experiments
B.1. Different reactivation probability scale β

Table 5 studies different reactivation probability scalers β. The result showcase the our PrME works well under different β.

Table 5. Ablation study on β under s% = 70% and τ = 3.
β Accuracy (%) ↑ Comm. (GB) ↓ Time (min) ↓

0.2 82.29±0.3 0.003 6.36±0.1

0.5 82.37±0.3 0.007 6.36±0.1

0.8 82.55±0.2 0.031 6.39±0.2

B.2. Performance on NLP tasks.

Table 6 shows that DictPFL significantly improves efficiency in both sentence classification and generation (instruction
tuning) tasks. For the generation task, we train on the MetaMathQA (Yu et al., 2023) dataset and evaluate on GSM8K (Cobbe
et al., 2021), focusing on mathematical reasoning. These gains are especially pronounced in larger models, where DictPFL
reduces training time by 99.4% percent for TinyLlama and 96.1% percent for BERT. This improvement stems from the high
cost of ciphertext operations in larger models, making DictPFL’s optimizations more impactful.

Table 6. Comparison with baselines on TinyLlama and BERT.
Methods Acc. (%) ↑ Comm. ↓ Time ↓

TinyLlama-
MetaMathQA

FedHE-Full 45.86 30.0 TB 214.2 h
FedHE-FT 6.92 2.4 TB 17.9 h
FedML-HE 45.86 3.0 TB 22.6 h
DictPFL (ours) 45.93 0.3 TB 1.3 h

BERT-
AgNews

FedHE-Full 91.38 137.2 GB 342.6 m
FedHE-FT 90.05 17.5 GB 47.9 m
FedML-HE 91.38 13.7 GB 32.8 m
DictPFL (ours) 91.24 4.8 GB 13.4 m
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