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Figure 1: Given text description, our approach generates highly faithful and photorealistic videos.
Click the image to play the video clips. Best viewed with Adobe Acrobat Reader.

ABSTRACT

Significant advancements have been achieved in the realm of large-scale pre-
trained text-to-video Diffusion Models (VDMs). However, previous methods
either rely solely on pixel-based VDMs, which come with high computational
costs, or on latent-based VDMs, which often struggle with precise text-video
alignment. In this paper, we are the first to propose a hybrid model, dubbed as
MPL-Video , which marries pixel-based and latent-based VDMs for text-to-video
generation. Our model first uses pixel-based VDMs to produce a low-resolution
video of strong text-video correlation. After that, we propose a novel expert trans-
lation method that employs the latent-based VDMs to further upsample the low-
resolution video to high resolution. Compared to latent VDMs, MPL-Video can
produce high-quality videos of precise text-video alignment; Compared to pixel
VDMs, MPL-Video is much more efficient (GPU memory usage during inference
is 15G vs 72G). We also validate our model on standard video generation bench-
marks. Our code will be publicly available and more videos can be found here.

1 INTRODUCTION

Remarkable progress has been made in developing large-scale pre-trained text-to-Video Diffusion
Models (VDMs), including closed-source ones (e.g., Make-A-Video (Singer et al., 2022), Imagen
Video (Ho et al., 2022a), Video LDM (Blattmann et al., 2023a), Gen-2 (Esser et al., 2023)) and open-
sourced ones (e.g., VideoCrafter (He et al., 2022), ModelScopeT2V (Wang et al., 2023a). These
VDMs can be classified into two types: (1) Pixel-based VDMs that directly denoise pixel values,
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64 x 40

Latent-based VDM
 64 x 40
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A blue tiger in the grass in the sunset, surrounded by butterflies. “A wolf drinking coffee in a café.”

Pixel-based VDM
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Latent-based VDM
 64 x 40

Latent-based VDM
256 x 160

Figure 2: Text-Video alignment comparisons among pixel-based VDM at low resolution, latent-
based VDM at low resolution and latent-based at relatively high resolution.

including Make-A-Video (Singer et al., 2022), Imagen Video (Ho et al., 2022a), PYoCo (Ge et al.,
2023), and (2) Latent-based VDMs that manipulate the compacted latent space within a variational
autoencoder (VAE), like Video LDM (Blattmann et al., 2023a) and MagicVideo (Zhou et al., 2022).

However, both of them have pros and cons. Pixel-based VDMs can generate motion accurately
aligned with the textual prompt but typically demand expensive computational costs in terms of time
and GPU memory, especially when generating high-resolution videos. Latent-based VDMs are
more resource-efficient because they work in a reduced-dimension latent space. But it is challenging
for such small latent space (e.g., 8×5 for 64×40 videos) to cover rich yet necessary visual semantic
details as described by the textual prompt. Therefore, as shown in Fig. 2, the generated videos often
are not well-aligned with the textual prompts. On the other hand, if the generated videos are of
relatively high resolution (e.g., 256 × 160 videos), the latent model will focus more on spatial
appearance but may also ignore the text-video alignment.

To marry the strength and alleviate the weakness of pixel-based and latent-based VDMs, we intro-
duce MPL-Video, an efficient text-to-video model that generates videos of not only decent video-text
alignment but also high visual quality. Further, MPL-Video can be trained on large-scale datasets
with manageable computational costs. Specifically, we follow the conventional coarse-to-fine video
generation pipeline (Ho et al., 2022a; Blattmann et al., 2023a) which starts with a module to pro-
duce keyframes at a low resolution and a low frame rate. Then we employs a temporal interpolation
module and super-resolution module to increase temporal and spatial quality respectively.

In these modules, prior studies typically employ either pixel-based or latent-based VDMs across
all modules. While purely pixel-based VDMs tend to have heavy computational costs, exclusively
latent-based VDMs can result in poor text-video alignment and motion inconsistencies. In contrast,
we combine them into MPL-Video as shown in Fig. 3. To accomplish this, we employ pixel-based
VDMs for the keyframe module and the temporal interpolation module at a low resolution, produc-
ing key frames of precise text-video alignment and natural motion with low computational cost. Re-
garding super-resolution, we find that latent-based VDMs, despite their inaccurate text-video align-
ment, can be re-purposed to translate low-resolution video to high-resolution video, while maintain-
ing the original appearance and the accurate text-video alignment of low-resolution video. Inspired
by this finding, for the first time, we propose a novel two-stage super-resolution module that first
employs pixel-based VDMs to upsample the video from 64 × 40 to 256 × 160 and then design a
novel expert translation module based on latent-based VDMs to further upsample it to 572 × 320
with low computation cost.

In summary, our paper makes the following key contributions:

• Upon examining pixel and latent VDMs, we discovered that: 1) pixel VDMs excel in gen-
erating low-resolution videos with more natural motion and superior text-video synchro-
nization compared to latent VDMs; 2) when using the low-resolution video as an initial
guide, conventional latent VDMs can effectively function as super-resolution tools by sim-
ple expert translation, refining spatial clarity and creating high-quality videos with greater
efficiency than pixel VDMs.
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Figure 3: Overview of MPL-Video. Pixel-based VDMs produce videos of lower resolution with
better text-video alignment, while latent-based VDMs upscale these low-resolution videos from
pixel-based VDMs to then create high-resolution videos with low computation cost.

• We are the first to integrate the strengths of both pixel and latent VDMs, resulting into a
novel video generation model that can produce high-resolution videos of precise text-video
alignment at low computational cost (15G GPU memory during inference).

• Our approach achieves state-of-the-art performance on standard benchmarks including
UCF-101 and MSR-VTT.

2 PREVIOUS WORK

Text-to-image generation. (Reed et al., 2016) stands as one of the initial methods that adapts
the unconditional Generative Adversarial Network (GAN) introduced by (Goodfellow et al., 2014)
for text-to-image (T2I) generation. Later versions of GANs delve into progressive generation, as
seen in (Zhang et al., 2017) and (Hong et al., 2018). Meanwhile, works like (Xu et al., 2018)
and (Zhang et al., 2021) seek to improve text-image alignment. Recently, diffusion models have
contributed prominently to advancements in text-driven photorealistic and compositional image
synthesis (Ramesh et al., 2022; Saharia et al., 2022). For attaining high-resolution imagery, two
prevalent strategies emerge. One integrates cascaded super-resolution mechanisms within the RGB
domain (Nichol et al., 2021; Ho et al., 2022b; Saharia et al., 2022; Ramesh et al., 2022). In contrast,
the other harnesses decoders to delve into latent spaces (Rombach et al., 2022; Gu et al., 2022).
Owing to the emergence of robust text-to-image diffusion models, we are able to utilize them as
solid initialization of text to video models.

Text-to-video generation. Past research has utilized a range of generative models, including
GANs (Vondrick et al., 2016; Saito et al., 2017; Tulyakov et al., 2018; Tian et al., 2021; Shen et al.,
2023), Autoregressive models (Srivastava et al., 2015; Yan et al., 2021; Le Moing et al., 2021; Ge
et al., 2022; Hong et al., 2022), and implicit neural representations (Skorokhodov et al., 2021; Yu
et al., 2021). Inspired by the notable success of the diffusion model in image synthesis, several recent
studies have ventured into applying diffusion models for both conditional and unconditional video
synthesis (Voleti et al., 2022; Harvey et al., 2022; Zhou et al., 2022; Wu et al., 2022b; Blattmann
et al., 2023b; Khachatryan et al., 2023; Höppe et al., 2022; Voleti et al., 2022; Yang et al., 2022;
Nikankin et al., 2022; Luo et al., 2023; An et al., 2023; Wang et al., 2023b). Several studies have
investigated the hierarchical structure, encompassing separate keyframes, interpolation, and super-
resolution modules for high-fidelity video generation. Magicvideo (Zhou et al., 2022) and Video
LDM (Blattmann et al., 2023a) ground their models on latent-based VDMs. On the other hand,
PYoCo (Ge et al., 2023), Make-A-Video (Singer et al., 2022), Imagen Video (Ho et al., 2022a)
and NUWA-XL (Yin et al., 2023) anchor their models on pixel-based VDMs. Contrary to these
approaches, our method seamlessly integrates both pixel-based and latent-based VDMs.

3 MPL-Video

3.1 PRELIMINARIES

Denoising Diffusion Probabilistic Models (DDPMs). DDPMs, as detailed in (Ho et al., 2020), rep-
resent generative frameworks designed to reproduce a consistent forward Markov chain x1, . . . , xT .
Considering a data distribution x0 ∼ q(x0), the Markov transition q(xt|xt−1) is conceptualized as
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a Gaussian distribution, characterized by a variance βt ∈ (0, 1). Formally, this is defined as:

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI), t = 1, . . . , T. (1)

Applying the principles of Bayes and the Markov characteristic, it’s feasible to derive the conditional
probabilities q(xt|x0) and q(xt−1|xt, x0), represented as:

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I), t = 1, . . . , T, (2)

q(xt−1|xt, x0) = N (xt−1; µ̃t(xt, x0), β̃tI), t = 1, . . . , T, (3)

where αt = 1 − βt, ᾱt =
∏t

s=1 αs, β̃t = 1−ᾱt−1

1−ᾱt
βt, µ̃t(xt, x0) =

√
ᾱtβt

1−ᾱt
x0 +

√
αt(1−ᾱt−1)

1−ᾱt
xt.

In order to synthesize the chain x1, . . . , xT , DDPMs utilize a reverse approach, characterized by a
prior p(xT ) = N (xT ; 0, I) and Gaussian transitions. This relation is:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)), t = T, . . . , 1. (4)

The model’s adaptable parameters θ are optimized to ensure the synthesized reverse sequence aligns
with the forward sequence.

In their essence, DDPMs adhere to the variational inference strategy, focusing on enhancing the
variational lower bound of the negative log-likelihood. Given the KL divergence among Gaussian
distributions, this approach is practical. In practice, this framework resembles a series of weight-
shared denoising autoencoders ϵθ(xt, t), trained to render a cleaner version of their respective input
xt. This is succinctly represented by: Ex,ϵ∼N (0,1),t

[
∥ϵ− ϵθ(xt, t)∥22

]
.

UNet architecture for text to image model. The UNet model is introduced by (Spr, 2015) for
biomedical image segmentation. Popular UNet for text-to-image diffusion model usually contains
multiple down, middle, and up blocks. Each block consists of a resent2D layer, a self-attention
layer, and a cross-attention layer. Text condition c is inserted into to cross-attention layer as keys
and values. For a text-guided Diffusion Model, with the text embedding c the objective is given by:

Ex,ϵ∼N (0,1),t,c

[
∥ϵ− ϵθ(xt, t, c)∥22

]
. (5)

3.2 TURN IMAGE UNET TO VIDEO

We incorporate the spatial weights from a robust text-to-image model. To endow the model with
temporal understanding and produce coherent frames, we integrate temporal layers within each UNet
block. Specifically, after every Resnet2D block, we introduce a temporal convolution layer consist-
ing of four 1D convolutions across the temporal dimension. Additionally, following each self and
cross-attention layer, we implement a temporal attention layer to facilitate dynamic temporal data
assimilation. Specifically, a frame-wise input video x ∈ RN×C×H×W , where C is the number of
channels, H and W are the spatial latent dimensions, and N is the number of frames. The spatial
layers regard the video as a batch of independent images (by transposing the temporal axis into the
batch dimension), and for each temporal layer, the video is reshaped back to temporal dimensions.

3.3 PIXEL-BASED KEYFRAME GENERATION MODEL

Given a text input, we initially produce a sequence of keyframes using a pixel-based Video UNet at
a very low spatial and temporal resolution. This approach results in improved text-to-video align-
ment. The reason for this enhancement is that we do not require the keyframe modules to prioritize
appearance clarity or temporal consistency. As a result, the keyframe modules pays more attention
to the text guidance. The training objective for the keyframe modules is following Eq. 5.

Why we choose pixel diffusion over latent diffusion here? Latent diffusion employs an encoder
to transform the original input x into a latent space. This results in a reduced spatial dimension, for
example, H/8,W/8, while concentrating the semantics and appearance into this latent domain. For
generating keyframes, our objective is to have a smaller spatial dimension, like 64×40. If we opt for
latent diffusion, this spatial dimension would shrink further, perhaps to around 8 × 5, which might
not be sufficient to retain ample spatial semantics and appearance within the compacted latent space.
On the other hand, pixel diffusion operates directly in the pixel domain, keeping the original spatial
dimension intact. This ensures that necessary semantics and appearance information are preserved.
For the following low resolution stages, we all utilize pixel-based VDMs for the same reason.
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Figure 4: 3D UNet and input of the UNet of interpolation and super-resolution modules. (a) shows
that how we insert temporal modules into 2D UNet. (b) explains the input for interpolation and first
super-resolution UNet.

3.4 TEMPORAL INTERPOLATION MODEL

To enhance the temporal resolution of videos we produce, we suggest a pixel-based temporal in-
terpolation diffusion module. This method iteratively interpolates between the frames produced by
our keyframe modules. The pixel interpolation approach is built upon our keyframe modules, with
all parameters fine-tuned during the training process. We employ the masking-conditioning mech-
anism, as highlighted in (Blattmann et al., 2023a), where the target frames for interpolation are
masked. In addition to the original pixel channels C, as shown in Fig. 4 we integrate 4 supplemen-
tary channels into the U-Net’s input: 3 channels are dedicated to the RGB masked video input, while
a binary channel identifies the masked frames. As depicted in the accompanying figure, during a
specific noise timestep, we interpolate three frames between two consecutive keyframes, denoted
as xi

t and xi+1
t . For the added 3 channels, values of zit and zi+1

t remain true to the original pixel
values, while the interpolated frames are set to zero. For the final mask channel, the mask values
mi and mi+1 are set to 1, signifying that both the initial and concluding frames are available, with
all others set to 0. In conclusion, we merge these components based on the channel dimension and
input them into the U-Net. For zit and zi+1

t , we implement noise conditioning augmentation. Such
augmentation is pivotal in cascaded diffusion models for class-conditional generation, as observed
by (Ho et al., 2022a), and also in text-to-image models as noted by (He et al., 2022). Specifically,
this method aids in the simultaneous training of diverse models in the cascade. It minimizes the vul-
nerability to domain disparities between the output from one cascade phase and the training inputs
of the following phase. Let the interpolated video frames be represented by x, ∈ R4N×C×H×W .
Based on Eq. 5, we can formulate the updated objective as:

Ex,,z,m,ϵ∼N (0,1),t,c

[
∥ϵ− ϵθ([x

,
t, z,m], t, c)∥22

]
. (6)

3.5 SUPER-RESOLUTION AT LOW SPATIAL RESOLUTION

To improve the spatial quality of the videos, we introduce a pixel super-resolution approach uti-
lizing the video UNet. For this enhanced spatial resolution, we also incorporate three additional
channels, which are populated using a bilinear upscaled low-resolution video clip, denoted as
x,,
u ∈ R4N×C×4H×4W through bilinear upsampling. In line with the approach of(Ho et al., 2022c),

we employ Gaussian noise augmentation to the upscaled low resolution video condition during its
training phase, introducing a random signal-to-noise ratio. The model is also provided with this
sampled ratio. During the sampling process, we opt for a consistent signal-to-noise ratio, like 1 or
2. This ensures minimal augmentation, assisting in the elimination of artifacts from the prior phase,
yet retaining a significant portion of the structure.

Given that the spatial resolution remains at an upscaled version throughout the diffusion process,
it’s challenging to upscale all the interpolated frames, denoted as x

′ ∈ R4N×C×H×W , to x
′′ ∈
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R4N×C×4H×4W simultaneously on a standard GPU with 24G memory. Consequently, we must
divide the frames into four smaller segments and upscale each one individually.

However, the continuity between various segments is compromised. To rectify this, as depicted in
the Fig. 4, we take the upscaled last frame of one segment to complete the three supplementary
channels of the initial frame in the following segment.

3.6 SUPER-RESOLUTION AT HIGH SPATIAL RESOLUTION

Through our empirical observations, we discern that a latent-based VDM can be effectively utilized
for enhanced super-resolution with high fidelity. Specifically, we design a distinct latent-based VDM
that is tailored for high-caliber, high-resolution data. We then apply a noising-denoising procedure,
as outlined by SDEdit (Meng et al., 2021), to the samples from the preliminary phase. As pointed
out by (Balaji et al., 2022), various diffusion steps assume distinct roles during the generation pro-
cess. For instance, the initial diffusion steps, such as from 1000 to 900, primarily concentrate on
recovering the overall spatial structure, while subsequent steps delve into finer details. Given our
success in securing well-structured low-resolution videos, we suggest adapting the latent VDM to
specialize in high-resolution detail refinement. More precisely, we train a UNet for only the 0 to 900
timesteps (with 1000 being the maximum) instead of the typical full range of 0 to 1000, directing
the model to be an expert emphasizing high-resolution nuances. This strategic adjustment signifi-
cantly enhances the end video quality, namely expert translation. During the inference process, we
use bilinear upsampling on the videos from the prior stage and then encode these videos into the
latent space. Subsequently, we carry out diffusion and denoising directly in this latent space using
the latent-based VDM model, while maintaining the same text input. This results in the final video,
denoted as x

′′′ ∈ R4N×C×16H×16W .

Why we choose latent-based VDM over pixel-based VDM here? Pixel-based VDMs work di-
rectly within the pixel domain, preserving the original spatial dimensions. Handling high-resolution
videos this way can be computationally expensive. In contrast, latent-based VDMs compress videos
into a latent space (for example, downscaled by a factor of 8), which results in a reduced computa-
tional burden. Thus, we opt for the latent-based VDMs in this context.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

For the generation of pixel-based keyframes, we utilized DeepFloyd1 as our pre-trained Text-to-
Image model for initialization, producing videos of dimensions 8×64×40×3(N×H×W ×3). In
our interpolation model, we initialize the weights using the keyframes generation model and produce
videos with dimensions of 29×64×40×3. For our initial model, we employ DeepFloyd’s SR model
for spatial weight initialization, yielding videos of size 29 × 256 × 160. In the subsequent super-
resolution model, we modify the ModelScope text-to-video model and use our proposed expert
translation to generate videos of 29× 576× 320.

The dataset we used for training is WebVid-10M (Bain et al., 2021). Training and hyperparameter-
details can be found in appendix Table 5.

Table 1: Zero-shot text-to-video generation on UCF-101. Our approach achieves competitive results
in both inception score and FVD metrics.

Method IS (↑) FVD (↓)
CogVideo (Hong et al., 2022) (English) 25.27 701.59
Make-A-Video (Singer et al., 2022) 33.00 367.23
MagicVideo (Zhou et al., 2022) - 655.00
Video LDM (Blattmann et al., 2023a) 33.45 550.61
VideoFactory (Wang et al., 2023b) - 410.00
MPL-Video (ours) 35.42 394.46

1https://github.com/deep-floyd/IF
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Table 2: Quantitative comparison with state-of-the-art models on MSR-VTT. Our approach achieves
the state-of-the-art performance.

Models FID-vid (↓) FVD (↓) CLIPSIM (↑)
NÜWA (Wu et al., 2022a) 47.68 - 0.2439

CogVideo (Chinese) (Hong et al., 2022) 24.78 - 0.2614
CogVideo (English) (Hong et al., 2022) 23.59 1294 0.2631

MagicVideo (Zhou et al., 2022) - 1290 -
Video LDM (Blattmann et al., 2023a) - - 0.2929
Make-A-Video (Singer et al., 2022) 13.17 - 0.3049

ModelScopeT2V (Wang et al., 2023a) 11.09 550 0.2930
MPL-Video (ours) 13.08 538 0.3076

Table 3: Human evaluation on state-of-the-art open-sourced text-to-video models.

Video Quality Text-Video alignment Motion Fidelity
Ours vs. ModelScope 62%vs.38% 63%vs.37% 63%vs.37%

Ours vs. ZeroSope 62%vs.38% 58%vs.42% 59%vs.41%

4.2 QUANTITATIVE RESULTS

UCF-101 Experiment. For our preliminary evaluations, we employ IS and FVD metrics. UCF-
101 stands out as a categorized video dataset curated for action recognition tasks. When extracting
samples from the text-to-video model, following PYoCo (Ge et al., 2023), we formulate a series
of prompts corresponding to each class name, serving as the conditional input. This step becomes
essential for class names like jump rope, which aren’t intrinsically descriptive. We generate 20 video
samples per prompt to determine the IS metric. For FVD evaluation, we adhere to methodologies
presented in prior studies (Le Moing et al., 2021; Tian et al., 2021) and produce 2,048 videos.

From the data presented in Table 1, it’s evident that MPL-Video’s zero-shot capabilities outperform
or are on par with other methods. This underscores MPL-Video’s superior ability to generalize
effectively, even in specialized domains. It’s noteworthy that our keyframes, interpolation, and
initial super-resolution models are solely trained on the publicly available WebVid-10M dataset, in
contrast to the Make-A-Video models, which are trained on other data.

MSR-VTT Experiment. The MSR-VTT dataset (Xu et al., 2016) test subset comprises 2, 990
videos, accompanied by 59, 794 captions. Every video in this set maintains a uniform resolution of
320 × 240. We carry out our evaluations under a zero-shot setting, given that MPL-Video has not
been trained on the MSR-VTT collection. In this analysis, MPL-Video is compared with state-of-
the-art models, on performance metrics including FID-vid (Heusel et al., 2017), FVD (Unterthiner
et al., 2018), and CLIPSIM (Wu et al., 2021). For FID-vid and FVD assessments, we randomly select
2,048 videos from the MSR-VTT testing division. CLIPSIM evaluations utilize all the captions
from this test subset, following the approach (Singer et al., 2022). All generated videos consistently
uphold a resolution of 256× 256.

Table 2 shows that, MPL-Video achieves the best FVD performance (with a score of 538). This
suggests a remarkable visual congruence between our generated videos and the original content.
Moreover, our model secures a notable CLIPSIM score of 0.3076, emphasizing the semantic co-
herence between the generated videos and their corresponding prompts. It is noteworthy that our
CLIPSIM score surpasses that of Make-A-Video (Singer et al., 2022), despite the latter having the
benefit of using additional training data beyond WebVid-10M.

Human evaluation. We gather an evaluation set comprising 120 prompts that encompass camera
control, natural scenery, food, animals, people, and imaginative content. The survey is conducted on
Amazon Mechanical Turk. Following Make a Video (Singer et al., 2022), we assess video quality,
the accuracy of text-video alignment and motion fidelity. In evaluating video quality, we present
two videos in a random sequence and inquire from annotators which one possesses superior quality.
When considering text-video alignment, we display the accompanying text and prompt annotators to
determine which video aligns better with the given text, advising them to overlook quality concerns.
For motion fidelity, we let annotators to determine which video has the most natural notion. As
shown in Table 3, our method achieves the best human preferences on all evaluation parts.
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Ours

“A blue tiger in the grass in the sunset, surrounded by butterflies.”
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“Toad practicing karate.”
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“A panda taking a selfie.”

“A musk ox grazing on beautiful wildflowers.”

Make-A-Video

Ours

Figure 5: Qualitative comparison with existing video generative models. Words in red highlight the
misalignment between text and video in other open-source approaches (i.e., ModelScope and Ze-
roScope), whereas our method maintains proper alignment. Videos from closed-source approaches
(i.e., Imagen Video and Make-A-Video) are obtained from their websites.
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w/ expert
translation

w/o expert
translation

“A married couple embraces in front of a burning house.”

Figure 6: Qualitative comparison for our expert translation. With expert translation, the visual
quality is significantly improved.

Table 4: Comparisons of different combinations of pixel-based and latent-based VDMs in terms of
text-video similarity and memory usage during inference.

Low resolution stage High resolution stage CLIPSIM Max memory FVD Text-Video Alignment Visual Quality
latent-based latent-based 0.2934 15GB 584 23% 38%
latent-based pixel-based – 72GB – – –
pixel-based pixel-based – 72GB – – –
pixel-based latent-based 0.3072 15GB 542 77% 62%

4.3 QUALITATIVE RESULTS

As depicted in Fig. 5, our approach exhibits superior text-video alignment and visual fidelity com-
pared to the recently open-sourced ModelScope (Wang et al., 2023a) and ZeroScope2. Additionally,
our method matches or even surpasses the visual quality of the current state-of-the-art methods,
including Imagen Video and Make-A-Video.

4.4 ABLATION STUDIES.

Impact of different combinations of pixel-based and latent-based VDMs. To assess the integra-
tion method of pixel and latent-based VDMs, we conduct several ablations. For fair comparison, we
employe the T5 encoder (Raffel et al., 2020) for text embedding in all low-resolution stages and the
CLIP text encoder (Radford et al., 2021) for high-resolution stages. As indicated in Tab. 4, utiliz-
ing pixel-based VDMs in the low-resolution stage and latent diffusion for high-resolution upscaling
results in the highest CLIP score with reduced computational expenses. On the other hand, imple-
menting pixel-based VDMs during the high-resolution upscaling stage demands significant compu-
tational resources. These findings reinforce our proposition that combining pixel-based VDMs in the
low-resolution phase and latent-based VDMs in the high-resolution phase can enhance text-video
alignment and visual quality while minimizing computational costs.

Impact of expert translation of latent-based VDM as super-resolution model. We provide visual
comparison between models with and without expert translation. As elaborated in Section 3.6, “with
expert translation” refers to training the latent-based VDMs using timesteps 0-900 (with a maximum
timestep of 1000), while “w/o expert translation” involves standard training with timesteps 0-1000.
As evident in Fig. 6, the model with expert translation produces videos of superior visual quality,
exhibiting fewer artifacts and capturing more intricate details.

5 CONCLUSION

We introduce MPL-Video, an innovative model that marries the strengths of pixel and latent based
VDMS. Our approach employs pixel-based VDMs for initial video generation, ensuring precise
text-video alignment and motion portrayal, and then uses latent-based VDMs for super-resolution,
transitioning from a lower to a higher resolution efficiently. This combined strategy offers high-
quality text-to-video outputs while optimizing computational costs.

2https://huggingface.co/cerspense/zeroscope-v2-576w
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6 ETHICS STATEMENT

Our pretrained T2I model, Deep-IF, is trained using web data, and our models utilize WebVid-10M.
Given this, there’s a potential for our method to not only learn but also amplify societal biases, which
could include inappropriate or NSFW content. To address this, we can integrate the CLIP model to
detect NSFW content and filter out such instances.

7 REPRODUCIBILITY STATEMENT

We take the following steps to guarantee reproducibility: (1) Our codes, along with model weights,
will be public available. (2) The training and hyperparameter details can be found in appendix
Table 5.
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A APPENDIX

A.1 DISCUSSION AND LIMITATIONS.

The present method allows for the creation of videos lasting 4 seconds with one scene. The capabil-
ity to produce extended videos that encompass multiple scenes and events, portraying more intricate
narratives, remains a topic for future exploration. Furthermore, the absence of established bench-
marks for large-scale generative models poses challenges in comparing different works and tracking
advancements. Our ongoing efforts are directed towards enhancing benchmarks for these generative
models.

Table 5: Hyperparameters for our all models presented.

Hyperparameter Keyframe Module Interpolation Module First Superresolution Second Superresolution

Space pixel pixel pixel latent
fps 2 8 8 8
Channels 320 320 128 320
Depth 4 4 5 4
Channel multiplier 1,2, 4,4 1,2,4,4 1,2,4,6,6 1,2,4,4
Head channels 64 64 64 64

Training
Parameterization ε ε v ε
# train steps 120K 40K 40K 120K
Learning rate 10−4 10−4 10−4 10−4

Batch size per GPU 1 2 1 1
# GPUs 48 16 16 24
GPU-type A100-40GB A100-40GB A100-40GB A100-40GB
pdrop 0.1 0.1 0.1 0.1

Diffusion Setup
Diffusion steps 1000 1000 1000 1000
Noise schedule Linear Linear Linear Linear
β0 10−4 10−4 10−4 0.0015
βT 0.02 0.02 0.02 0.0195

Sampling Parameters
Sampler DPM++ DPM++ DPM++ DDIM
Steps 75 50 125 40
η 1.0 1.0 1.0 1.0

A.2 TRAINING AND HYPERPARAMETER DETAILS.

We list details of our models in Table 5.

A.3 MORE VIDEO RESULTS.

For the convenience, we include more video results on an anonymous webpage https://
anonymous-iclr-1864.github.io/
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