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Abstract

We investigate the optimal design of experimental studies that have pre-treatment
outcome data available. The average treatment effect is estimated as the difference
between the weighted average outcomes of the treated and control units. A number
of commonly used approaches fit this formulation, including the difference-in-
means estimator and a variety of synthetic-control techniques. We propose several
methods for choosing the set of treated units in conjunction with the weights.
Observing the NP-hardness of the problem, we introduce a mixed-integer pro-
gramming formulation which selects both the treatment and control sets and unit
weightings. We prove that these proposed approaches lead to qualitatively different
experimental units being selected for treatment. We use simulations based on pub-
licly available data from the US Bureau of Labor Statistics that show improvements
in terms of mean squared error and statistical power when compared to simple and
commonly used alternatives such as randomized trials.

1 Introduction

Randomized experiments have long been a staple of applied causal inference. In his seminal paper,
Rubin (1974) suggests that “given a choice between the data from a randomized experiment and an
equivalent nonrandomized study, one should choose the data from the experiment, especially in the
social sciences where much of the variability is often unassigned to particular causes.” Using the
language of Rubin’s potential-outcomes framework, randomization guarantees that the treatment
status is independent of the potential outcomes and that a simple and intuitive estimator that compares
the average outcomes of the treatment and control units is an unbiased estimator of the average
treatment effect (ATE). If both the treatment and control samples are sufficiently large, the hope is
that this difference-in-means estimate is close to the population mean of the treatment effect.
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Another crucial property of randomized experimental designs is their robustness to alternative
assumptions about the data generating process—a completely randomized experiment does not take
into account any features of the observed data. Perhaps not surprisingly, when the researchers are
willing to incorporate additional probabilistic assumptions in their design decisions, they can improve
on the statistical properties of the average treatment effect estimators (see, for example, Kasy, 2016).
These improvements, however, do not come for free and the performance of the estimators may suffer
if the incorporated assumptions are violated (Banerjee et al., 2020).

For these reasons randomized experiments are widely used in academic and clinical settings, as well
as industrial applications. However, not every practically important question can be easily answered
using an experiment on a large sample of experimental units. For instance, the evaluation of major
policies targeting large geographic areas has long been of interest in social and political sciences.
One of the traditional approaches is to compare the affected unit—such as a metropolitan area or
a state—to the average across a sample of carefully picked control units which are deemed to be
suitable comparisons (Card, 1990). A more recent alternative, called synthetic control, first introduced
by Abadie and Gardeazabal (2003) and later developed in Abadie et al. (2010) and Abadie et al.
(2015), compares the unit of interest to a weighted average of the units unaffected by the treatment,
where the weights are selected in a way that achieves a good fit on pre-treatment outcome variables
as well as potentially other observed covariates.

While originally developed by academics for evaluating the effects of policies, approaches similar to
the synthetic-control methodology have recently gained popularity in industry as well in cases when
applied researchers decide to run experiments targeting larger units often representing geographic
areas. This decision may be justified when more granular experiments are either unavailable (for
example, television advertising can only be targeted at the media-market level) or are unlikely to
capture the relevant effects due to interference or equilibrium concerns (Sobel, 2006; Rosenbaum,
2007; Hudgens and Halloran, 2008). For instance, a company like Uber may want to evaluate some
of the possible treatments at the market level rather than at the driver level if the treatment in question
is likely to affect the driver supply. Moreover, launching an experiment targeting even a single unit
may be so expensive that the researchers try to minimize the required number of treated units. Privacy
and fairness concerns may also make treatment assignment at a more granular level problematic.

Synthetic control and similar approaches may be attractive as estimation procedures in those cases,
but they fail to address the equally if not more important aspect of the optimal choice of experimental
units (see, for example, Rubin et al., 2008). We attempt to narrow this gap in the current paper. We
consider a panel-data setting in which the researcher observes the outcome metric of interest for a
number of units in a number of time periods and has to decide: (i) which units to experiment on and
(ii) how to estimate the treatment effects after collecting the outcome data in the experimental time
periods. The main difference between this setting compared to a typical synthetic-control study is
that the treated units are not fixed, but rather chosen by the researcher. Proving that the underlying
optimization problem is NP-hard, we rule out the possibility of designing polynomial-time algorithms
for the problem under P 6=NP. Therefore, we formulate this combined design-and-analysis problem
as a mixed-integer program (MIP). Depending on the particular estimands of interest, we propose
one of the several formulations and discuss their advantages and drawbacks. We motivate the choice
of the optimization objectives and discuss the selection of experimental units each of the objectives
leads to. The MIP formulation allows for an easy inclusion of additional constraints as long as those
are linear. For instance, it is easy to restrict the overall number of treated units, exclude specific units
from treatment, or enforce a budget constraint if there is a varying cost to treat different units.

Using publicly available state-level unemployment data from the US Bureau of Labor Statistics,
we compare the proposed methodology to a randomized design that utilizes either the conventional
difference-in-means estimator or the synthetic-control approach. We estimate the average as well
as individual state-level treatment effects in a simulated experiment and find that our approach
substantially reduces the root mean squared error (RMSE) of the estimates. We show that our
MIP-based design-and-analysis procedures consistently outperform the more traditional baselines
regardless of whether the treatment effects are homogeneous or heterogeneous and whether the
number of units selected for treatment is small or large relative to the total number of units in the
sample. We also suggest a permutation-based inference procedure that follows Chernozhukov et al.
(2021). We verify in our simulations that this procedure leads to correct test sizes and improved
statistical power for testing the sharp null hypothesis of zero treatment affects across all treated units,
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when used in conjunction with the proposed estimators. We provide theoretical guarantees—albeit
under rather strong assumptions—which ensure that the proposed tests have proper sizes.

To our knowledge, this is one of the first papers to study experimental design in the context of
synthetic control and adjacent estimation techniques. Doudchenko et al. (2019) consider the case
when the underlying effects are homogeneous and only a single unit can be treated; they suggest
searching for the unit that delivers the highest statistical power when testing the hypothesis of zero
treatment effect with an artificially applied treatment. In an independent work, Abadie and Zhao
(2021) also consider optimal design in settings where synthetic-control estimators are used for
estimation. However, there are a few important aspects that differentiate the current paper from theirs.
First, Abadie and Zhao (2021) use both pre-treatment unit-level covariates as well as the outcomes
from some—but not necessarily all—of the pre-treatment periods whereas we focus exclusively on
the outcome variable and utilize all of the pre-treatment outcome data. As a result, the inference
procedure proposed by Abadie and Zhao (2021) does not apply to our approach. Second, we discuss
formal hardness results. Finally—and, perhaps, most importantly—Abadie and Zhao (2021) choose
an objective function that fixes a priori the target average treatment effect, as either the population
average treatment effect or a weighted version thereof. In contrast, the objective function we use
focuses on the average treatment effect only for the units we choose for the treatment, making the
target estimand stochastic, but potentially easier to estimate and requiring different assumptions.

The rest of the paper is organized as follows. Section 2 introduces the setting and the proposed
estimation approaches. Section 3 introduces the mixed-integer formulation of the suggested estimators.
Section 4 presents some of the theoretical unit-selection results and the intuition behind them.
Section 5 reports the empirical results obtained through simulations. Section 6 discusses some of
the practical consideration that should accompany applied work that uses the proposed methodology.
Section 7 concludes and outlines the directions of future research.

2 Setting

Let the researcher observe the outcome metric of interest, Y , for N units during T time periods,
such that the observed data can be represented as an N × T matrix of values Yit. At time t = T the
researcher decides—based on the data observed up until that point—which units should be treated
and assigns a binary treatment described by variables Di ∈ {0, 1}, i = 1, . . . , N . The outcomes
are then observed for an additional S − T time periods t = T + 1, . . . , S and the treatment-effect
estimates are constructed. Each unit i = 1, . . . , N in each time period t = T + 1, . . . , S is associated
with two potential outcomes (Yit(0), Yit(1)) which are considered random. The potential outcome
Yit(0) is realized if Di = 0 and Yit(1) is realized if Di = 1 so that the observed outcome is
Yit = Yit(Di) = Yit(0)(1−Di) + Yit(1)Di.

Recall that, given a setting where a single unit i = N has received the treatment in a single time
period t = T + 1 = S, the synthetic-control literature (Abadie et al., 2010, among others) suggests
constructing a counterfactual estimate for unit N as a weighted average of the other units’ observed
outcomes: ŶN,T+1(0) =

∑N−1
i=1 wiYi,T+1. In the previous equation, the wi’s are weights learned

from the data observed during the pre-treatment periods t = 1, 2, . . . , T , often by minimizing∑T
t=1(YNt −

∑N−1
i=1 wiYit)

2 under some constraints on the weights. Assuming that the treatment
effect, τN , for this unit is additive, it can then be estimated as τ̂N = YN,T+1 − ŶN,T+1(0).

We now consider a more general setting where K units have received the treatment, with outcomes
given by

Yit(0) = µit + εit and Yit = Yit(0) +Diτi

with homoscedastic noise εit that has mean zero and variance σ2 and additive treatment effects τi. In
order to estimate the treatment effect in this more general setting, we can apply a separate synthetic
control method to each treated unit i, learning an appropriate set of weights {wi

j} for each treated unit
i individually: Ŷi,T+1(0) =

∑
j : Dj=0 w

i
jYj,T+1. The treatment effect for unit i is then estimated as

τ̂i = Yi,T+1 − Ŷi,T+1(0).
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Rather than considering each weight-fitting optimization problem separately, we can express the
(conditional) mean squared error (MSE) of the resulting estimator of the treatment effect as:

E
[
(τ̂i − τi)2 ∣∣{Dj , w

i
j}Nj=1

]
=

µi,T+1 −
∑

j : Dj=0

wi
jµj,T+1

2

+ σ2

1 +
∑

j : Dj=0

(wi
j)

2

 .

A proof is included in the supplementary materials. The synthetic-control literature often operates
in settings where the treated units are given. Here, we allow the experimenter to select which
units should receive the treatment. The mean-squared-error formula above leads us to consider the
following optimization problem over the weights {wi

j}Ni,j=1 and the treatment variables {Di}Ni=1

under some appropriate constraints on the weights {wi
j}Ni,j=1. The objective below can be seen as the

empirical analog of the right-hand side of the population equation above in the pre-treatment period
averaged across time and across the treated units.

min
{Di,{wi

j}Nj=1}Ni=1

1

KT

N∑
i=1

T∑
t=1

Di

Yit − N∑
j=1

wi
j(1−Dj)Yjt

2

+
σ2

K

N∑
i=1

N∑
j=1

Di

(
wi

j

)2
(per-unit)

Note that we can safely sum across all units, not just the control ones, in the second term since the
optimal values wi

j for units j with Dj = 1 will be equal to zero in an optimal solution.

In essence, this optimization problem attempts to minimize the discrepancy between the pre-treatment
outcomes of the units chosen for treatment and the weighted averages of the outcomes of the units
left as controls. At the same time, due to the second term, the objective attempts to balance the unit
weights themselves.

The term σ2 is unlikely to be known to the researcher and should be chosen based on the observed
data. One possible way is to set it equal to the sample variance of the observed outcomes. We further
discuss the selection of the penalty parameter in Section 6. Penalizing the weights is not uncommon
in the synthetic-control literature. For example, Doudchenko and Imbens (2016) use the elastic-net
penalty on the weights and Abadie and L’Hour (2021) introduce a lasso-style penalty in which the
nonnegative weight, wi

j , is multiplied by the squared distance between the vectors of the covariates
used for matching the units. This way, depending on the magnitude of the penalty hyperparameter,
they can balance between the synthetic-control fit and the nearest-neighbor fit that puts all the weight
on unit j closest to i in terms of the observed covariates.

In many applications, the researcher may be interested in estimating some weighted average of the
unit-level treatment effects on the treated units. Rather than considering each treated unit separately
and then computing the weighted average of the estimated individual treatment effects, practitioners
may wish to construct a synthetic-control-type estimate for the weighed average of the treated units
directly.

Consider a set of treatment assignments {Di}Ni=1 and weights {wi}Ni=1 on outcomes at time T + 1,
and assume that we wish to estimate the weighted average treatment effect on the treated (wATET),
τ =

∑
i : Di=1 wiτi =

∑N
i=1Diwiτi, as a difference in weighted means: τ̂ =

∑
i : Di=1 wiYi,T+1−∑

i : Di=0 wiYi,T+1. Then, under the same outcomes model as presented above, the (conditional)
mean squared error of the difference-in-(weighted)-means estimator is

E
[
(τ̂ − τ)

2 ∣∣{Di, wi}Ni=1

]
=

( ∑
i : Di=1

wiµi,T+1 −
∑

i : Di=0

wiµi,T+1

)2

+ σ2
N∑
i=1

w2
i .

As before, our setting allows the experimenter to optimally select which units should receive the
treatment as well as which particular weighting scheme should be used. This is especially appropriate
when the treatment effects are homogeneous and τi = τ for all i = 1, . . . , N . In that case, any
weighted average of the unit-level treatment effects is equal to τ and the weights can be chosen in a
way that minimizes the mean squared error.
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The population equation above suggests solving the following optimization problem on the weights
{wi}Ni=1 and the treatment variables {Di}Ni=1 based on the data observed in periods t = 1, . . . , T :

min
{Di,wi}Ni=1

1

T

T∑
t=1

( ∑
i : Di=1

wiYit −
∑

i : Di=0

wiYit

)2

+ σ2
N∑
i=1

w2
i . (two-way global)

So far, we have not considered specific constraints on the weights, {wi}Ni=1. If σ2 > 0, wi = 0 for
all i = 1, . . . , N is the unique optimal solution to the two-way global problem above if the weights
are not constrained in any way. In order to avoid this clearly undesirable solution, we assume that
the weights {wi}Ni=1 are normalized:

∑
i : Di=1 wi =

∑
i : Di=0 wi = 1. While not strictly required,

another reasonable set of constraints motivated by estimating a proper weighted average is requiring
all weights to be nonnegative, wi ≥ 0 for all i = 1, . . . , N .

Similar constraints can be imposed in the context of the per-unit problem: wi
j ≥ 0 for all i, j =

1, . . . , N and
∑

j : Dj=0 w
i
j = 1 for all i = 1, . . . , N such that Di = 1.

Finally, the weights on the treated units may be fixed if a specific weighted average—for example, a
simple average with equal weighting—needs to be estimated. This constraint is particularly justified
when the treatment effects are heterogeneous and different weighting schemes lead to different
estimands. For that reason, we formulate another variation of the global problem:

min
{Di,wi}Ni=1

1

T

T∑
t=1

( ∑
i : Di=1

wiYit −
∑

i : Di=0

wiYit

)2

+ σ2
N∑
i=1

w2
i (one-way global)

subject to an additional set of constraint that require wi = wj for all i, j = 1, . . . , N such that
Di = Dj = 1.

It is possible to obtain other design-and-estimation approaches as special cases of these problems—
something that we utilize later in the paper. For instance, the standard difference-in-means approach
under randomized design can be viewed as the special case of the one-way global problem with the
treatment indicators, Di, set randomly and the weights on the control units restricted to be equal,
wi = wj for all i, j = 1, . . . , N such that Di = Dj = 0. Likewise, the synthetic-control estimator
can be viewed as the per-unit problem with the treatment indicators set according to the experimental
design of choice—for example, randomly.

3 Mixed-integer formulation

The three optimization problems introduced in the first part of Section 2: the per-unit, the two-way
global, and the one-way global problems can all be formulated as mixed-integer programs. We now
describe the specific optimization problems we use in the empirical section of the paper.

The per-unit problem is formulated as:

min
{Di,{wi

j}Nj=1}Ni=1

1

KT

N∑
i=1

T∑
t=1

Di

Yit − N∑
j=1

wi
j(1−Dj)Yjt

2

+
λ

K

N∑
i=1

N∑
j=1

Di

(
wi

j

)2
s.t. wi

j ≥ 0, Di ∈ {0, 1} for i, j = 1, . . . , N,

N∑
i=1

Di = K,

N∑
i=1

wi
j(1−Dj) = 1 for i = 1, . . . , N such that Di = 1.

The two-way global problem can be formulated as:

min
{Di,wi}Ni=1

1

T

T∑
t=1

(
N∑
i=1

wiDiYit −
N∑
i=1

wi(1−Di)Yit

)2

+ λ

N∑
i=1

w2
i

s.t. wi ≥ 0, Di ∈ {0, 1} for i = 1, . . . , N,

N∑
i=1

Di = K,

N∑
i=1

wiDi = 1,

N∑
i=1

wi(1−Di) = 1
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and the one-way global problem is simply the two-way global problem with an additional set of
constraints: wi = wj for all i, j = 1, . . . , N such that Di = Dj = 1.

All three problems require additional auxiliary variables representing the products of the weights
and the treatment indicators as well as additional constraints in order to have a representation with
a quadratic objective and only linear constraints so that they can be easier to solve by one of the
academic or commercial MIP solvers.2 See the supplementary materials for the exact formulations.

The term λ that is used in all three objectives is a nonnegative penalty factor. Its selection is discussed
in Section 6.

Note that the global versions of the problem can be solved without the constraint on the number
of treated units,

∑N
i=1Di = K, but the per-unit problem requires it—without the constraint the

per-unit problem will tend to select fewer treatment units unless the objective is divided by
∑N

i=1Di

which introduces a nonlinearity. See the supplementary materials where we introduce an alternative
formulation that allows to circumvent this by imposing an additional quadratic constraint.

4 Design

The three optimization problems introduced in Section 2—the one-way and two-way global and
the per-unit problems—tend to select certain treatment units in terms of their location within the
distribution of the observed outcome data. In this section we illustrate that behavior using a simple
example motivated by the objectives from Section 2. To simplify the analysis, we let T = 1 and
denote ai = Yi1. We also do not restrict the unit weights to be nonnegative to allow for simpler
closed form solutions.3 Specifically, we consider the following per-unit problem:

min
{Di,{wi

j}Nj=1}Ni=1

1

K

N∑
i=1

Di

ai − N∑
j=1

wi
j(1−Dj)aj

2

+
σ2

K

N∑
i=1

N∑
j=1

Di(w
i
j)

2

s.t Di ∈ {0, 1} for i, j = 1, . . . , N,

N∑
i=1

Di = K,

N∑
j=1

wi
j(1−Dj) = 1 for i = 1, . . . , N.

A similarly simplified two-way global problem can be written as:

min
{Di,wi}Ni=1

(
N∑
i=1

wiDiai −
N∑
i=1

wi(1−Di)ai

)2

+ σ2
N∑
i=1

w2
i

s.t Di ∈ {0, 1} for i, j = 1, . . . , N,

N∑
i=1

Di = K,

N∑
i=1

wiDi = 1,

N∑
i=1

wi(1−Di) = 1.

This becomes a one-way global problem if we impose an additional set of constraints requiring that
wi = 1/K for all i = 1, . . . , N such that Di = 1. When the unit weights are optimized (see the
supplementary materials for the derivation), the optimal values of the objectives can be written in
closed-form as functions of the set of treated units, I .
Theorem 1. Let I denote the set of treated units and Ī = {1, . . . , N}\I denote the set of control units.
Let aI =

∑
i∈I ai/|I| be the average outcome within the treatment group, V 2

I =
∑

i∈I(ai − aI)2 a
quantity proportional to the sample variance of the outcomes within the treatment group, and the
corresponding quantities for set Ī defined similarly. After the unit weights are optimized away, the
per-unit objective can be written as:

Jper-unit(I) = σ2

(
1

N −K
+

(aI − aĪ)2 +K−1V 2
I

σ2 + V 2
Ī

)
,

2We use SCIP (Gamrath et al., 2020) when generating the empirical results in Sections 4 and 5.
3In some cases the nonnegativity constraint will not be binding, while in other cases the optimal weights

without the constraint may actually turn out to be negative. This implies that only a subset of all units will have
strictly positive weights in the optimal constrained solution.
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the two-way global objective can be written as:

J2-way(I) = σ2

(
1

K
+

1

N −K
+

(aI − aĪ)2

σ2 + V 2
I + V 2

Ī

)
,

and the one-way global objective can be written as:

J1-way(I) = σ2

(
1

K
+

1

N −K
+

(aI − aĪ)2

σ2 + V 2
Ī

)
.

It is evident from the objectives that all problems aim to select units in such a way that averages
of the observed outcomes for the treatment and control groups are similar—the squared difference
between the average outcomes within each group appears in the numerators of all three objectives.
The problems differ in terms of how they approach the sample variances of the two groups. The
per-unit problem maximizes the sample variance of the control units while minimizing that of the
treated units—the term V 2

Ī
appears in the denominator while the term V 2

I appears in the numerator.
The intuition for the latter is that the per-unit objective tries to simultaneously model each treated unit
with a combination of control units, while keeping weight variance small, so it is best to keep treated
units as homogeneous as possible. The two-way problem attempts to maximize both (taking into
account that they are, of course, interdependent), the sample variances of the outcomes of the control
and treated groups—both quantities appear in the denominator. The one-way problem maximizes
the sample variance of the outcomes of the control units only, as the weights for the treated units are
fixed—only the term V 2

Ī
appears in the denominator.

To illustrate the same patterns visually, we solve a per-unit problem and a two-way global problem for
a simulated dataset withN = 25 units, T = 2 pre-treatment periods and the outcomes Yit drawn from
a standard normal distribution independently across i and t. This allows 2-d plotting of the units in the
space of observed pre-treatment outcomes (Yi1, Yi2). We select either K = 3 or K = 25− 3 = 22

treated units and we use λ =
∑N

i=1(Yi1 − Yi2)2/(4N) (which is the average two-period sample
variance across all units). Figure 1 shows the units selected by each of the problems.

The results align with the intuition presented using the simple model with T = 1 above. Specifically,
the per-unit problem maximizes the spread of the control units which is particularly apparent from
the plot corresponding to K = 22 while keeping the treatment units as close to each other as possible
(see the plot for K = 3). Since the control and the treatment units have symmetric roles in the
two-way global objective, the three treatment units selected by the problem when K = 3 are the
same as the three control units selected when K = 22. The control and treatment groups have similar
average outcomes and both groups are relatively spread out.

5 Empirical results

To evaluate the performance of the methods proposed in Section 2 we compare several design-and-
estimation procedures: (i) the per-unit problem, (ii) the two-way global problem, (iii) the one-way
global problem, (iv) the per-unit problem with randomly chosen treatment units, and (v) the standard
randomized experiment which randomly assigns the treatment and estimates the average treatment
effect on the treated as the difference in means between the two groups. It is important to note
that approach (iv) is equivalent to using the synthetic-control method4 for each randomly chosen
treatment unit separately and then either averaging the unit-level treatment effect estimates or using
the individual estimates directly. Taking this into account, comparing (i) to (iv) amounts to evaluating
the role of optimal design in a synthetic-control study, while comparing (iv) to (v) evaluates the
synthetic-control approach relative to the difference-in-means estimator.

To run a number of simulated experiments, we take publicly available data from the US Bureau of
Labor Statistics (BLS) which contain unemployment rates of 50 states in 40 consecutive months.5 We
run 500 simulations such that each simulation utilizes a 10-by-10 matrix sampled from the original

4The only difference compared to the traditional synthetic-control methodology used, for example, in Abadie
et al. (2010) is that no additional covariates are used and the weights are obtained using the outcome data
alone—the approach similar to the one taken in, for instance, Doudchenko and Imbens (2016).

5The data are available from the BLS website, but the specific dataset we use is taken from https://
github.com/synth-inference/synthdid/blob/master/experiments/bdm/data/urate_cps.csv.
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Yi1

Yi2

(a) per-unit problem, K = 3

Yi1

Yi2

(b) per-unit problem, K = 22

Yi1

Yi2

(c) two-way global problem, K = 3

Yi1

Yi2

(d) two-way global problem, K = 22

Note: The units are plotted in the space of observed pre-treatment outcome data, (Yi1, Yi2); ‘o’ denote the
selected control units and ‘+’ denote the selected treatment units.

Figure 1: Units selected by the two-way global and per-unit problems.

50-by-40 dataset. Specifically, we randomly select 10 units and the first time period. The remaining
9 time periods are the consecutive months that follow. In each simulation we treat K units (equal
to 3 in one set of simulations and 7 in another) which are chosen based on the data in the first 7
periods—or chosen randomly in cases (iv) and (v)—and the treatment is applied in the last 3 of the
10 periods. We either assign each treated unit the additive treatment effect of 0.05 (the homogeneous
treatment case) or assume that the treatment effects increase linearly from 0 to 0.1 from the first unit
in the (randomly selected) 10-by-10 matrix to the last one (the heterogeneous treatment case). This
implies that the true value of the ATET changes depending on the identity of the units selected for
treatment. However, the (overall) ATE remains 0.05.

We estimate the average treatment effect on the treated as well as the unit-level treatment effects.
Only the per-unit problem, (i), and the synthetic control, (iv), allow for nontrivial estimation of
heterogeneous treatment effects while the remaining approaches estimate all unit-level effects as
being equal to the estimate of the average treatment effect on the treated.

We then compare approaches (i)–(v) in terms of the root-mean-square error (RMSE), where the
squared differences between the true values of the treatment effects and the respective estimates
are computed for each treatment period (and each treatment unit in case of the unit-level effects)
and averaged. The square roots of these quantities are the RMSE’s in question. Table 1 reports the
RMSE’s averaged across all simulations.

The specific improvements in terms of the RMSE over the baselines (iv) and (v)—the randomized
synthetic control and the randomized difference-in-means—depend on the data and the true treatment
effects. The main takeaways, however, are more general. The per-unit problem consistently outper-
forms the other methods when the underlying treatment effects are heterogeneous. For homogeneous
treatment effects the difference between the per-unit and the global problems either vanishes, or the
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Table 1: Root-mean-square errors of the average and unit-level treatment effect estimates

Homogeneous treatment

K = 3 K = 7

ATET RMSE Unit-level RMSE ATET RMSE Unit-level RMSE

(i) Per-unit 8.5 13.9 8.3 16.0
(ii) Two-way global 8.4 8.4 8.4 8.4

(iii) One-way global 8.5 8.5 8.5 8.5

(iv) Synthetic control 9.7 15.9 10.3 19.0
(random treat.)

(v) Diff-in-means 12.1 12.1 11.5 11.5
(random treat.)

Heterogeneous treatment

K = 3 K = 7

ATET RMSE Unit-level RMSE ATET RMSE Unit-level RMSE

(i) Per-unit 8.5 13.9 8.3 16.0
(ii) Two-way global 8.6 27.6 8.9 32.5

(iii) One-way global 8.5 27.6 8.5 32.5

(iv) Synthetic control 9.7 15.9 10.3 19.0
(random treat.)

(v) Diff-in-means 12.1 29.7 11.5 33.6
(random treat.)

Note: The reported RMSE’s are multiplied by 103 for readability. The values in bold are the lowest in the
respective columns and correspond to the methods that perform best.

two-way approach starts outperforming the alternatives since any weighting scheme leads to the
same value of the ATET. Moreover, in the homogeneous treatment case the global problems always
outperform the baselines when estimating the average treatment effect on the treated.

For the particular simulations we run, the one-way and two-way global objectives provide improve-
ments over the baselines that vary from 12% to 31% in the homogeneous treatment case and from
11% to 30% in the heterogeneous treatment case when estimating the average treatment effect on
the treated. The per-unit approach, (i), performs well across the board while being particularly
effective when estimating the unit-level effects in the heterogeneous treatment case and providing
an improvement of over 13% relative to the synthetic control approach, (iv), when the number of
treated units is small and 16% when the number of treated units is large. It is not surprising that the
per-unit problem provides a smaller improvement over the synthetic control when K = 3 because in
that case the donor pool of units that are used for comparison with the treated units is large relative
to the overall number of units and the probability that we will not be able to find a good synthetic
comparison is relatively low. The situation is different when we only have 3 control units that are
used for constructing synthetic outcomes for the remaining 7 treatment units. Section 4 provides an
additional discussion of the optimal design when the number of treatment units changes. Neither is
surprising that the per-unit approach performs poorly relative to the global problems and even the
randomized difference-in-means estimator (but not the synthetic control) when estimating unit-level
effects in the homogeneous treatment case. Since all treatment effects are the same, it is more
efficient to pool all the data together and estimate the constant effect on the full sample rather than
estimating the same quantity for each unit individually. What is important though, is the robustness
of the per-unit approach which provides similar performance in the case of either homogeneous or
heterogeneous treatment effects while the global problems and the randomized difference-in-means
perform poorly when estimating unit-level effects in the heterogeneous treatment case.
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6 Practice

There are a number of practical considerations that need to be addressed when using the proposed
design and analysis approaches.

Formulating the mixed-integer programs. Both the per-unit problem and the global problems
can be formulated as mixed-integer programs with quadratic objectives and linear constraints. As
discussed in Section 2, the per-unit problem requires either an additional linear constraint that fixes
the number of treated units, K, or an additional quadratic constraint that allows optimizing over the
number of treated units. In addition to that, the per-unit problem uses more variables that need to
be optimized since sets of weights vary across treatment units allowing separate estimation of every
unit-level treatment effect. This implies that the per-unit problem is generally harder to solve and is
only tractable for a smaller number of experimental units, N , compared to the global problems.

Choosing the penalty factor. The penalty factor, λ, used by all of the optimization problems can
be chosen using cross-validation. Specifically, the pre-treatment time periods can be split into the
consecutive training and validation time periods and the value of λ can be chosen by minimizing the
RMSE over the validation period in a simulated experiment that is similar to the one we conduct
in Section 5. An alternative approach motivated by the setting in Section 2 uses an estimate of the
variance of the outcome variable. For example, the approach we take in Sections 4 and 5 computes
the sample variances for every unit i across pre-treatment time periods t = 1, . . . , T and then uses
the average of those quantities across all units as the penalty factor, λ.

Quantifying the uncertainty. Most applied settings require evaluating the uncertainty in the
obtained estimates of the treatment effects. We suggest the permutation-based approach for testing
the sharp null hypothesis of zero treatment effects across all treated units proposed by Chernozhukov
et al. (2021). See the supplementary materials for the detailed description of the proposed inference
procedure as well as a theoretical result that guarantees its validity—albeit under rather strong
assumptions—and the power curves constructed using a simulated setting similar to that from
Section 5. When the proposed procedure is used in conjunction with the per-unit or global problems
it provides the correct (or conservative) test sizes and improves the power relative to the synthetic-
control and difference-in-means approaches.

Computational complexity. Solving the global and the per-unit problems in their mixed-integer
formulations becomes computationally burdensome as the total number of units increases, especially
if the exact optimal solutions are required. In our simulations we were able to solve problems for
N = 50 units—which is a meaningful threshold corresponding to the number of states, a typical
experimental unit in synthetic-control-type studies—on a single machine within hours. However,
we prove that the underlying optimization problem is NP-hard (by providing a reduction to the
partitioning problem; for the exact proof see the supplementary materials), and therefore exact
solutions to substantially larger problems are unlikely.

7 Conclusion

In this paper we evaluate the role of optimal experimental design in panel-data settings where
traditionally the average treatment effect on the treated might be estimated using randomized design
and the difference-in-means estimator. We propose several design-and-analysis procedures that
can be solved as mixed-integer programs. Our empirical evaluations show that these procedures
lead to a substantial improvement in terms of the root-mean-square error relative to the randomized
difference-in-means as well as the randomized synthetic-control approaches.

We discuss the roles that underlying assumptions about the nature of the treatment effects, the
estimands of interest, and the computational considerations play when deciding which approach
should be used. We propose a permutation-based inference procedure that is shown to deliver
the correct test sizes in simulations. We also discuss practical considerations when applying this
methodology as well as its current limitations.
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