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Abstract

In this work, we rigorously investigate the robustness of graph neural fractional-
order differential equation (FDE) models. This framework extends beyond tradi-
tional graph neural ordinary differential equation (ODE) models by implementing
the time-fractional Caputo derivative. Utilizing fractional calculus allows our model
to consider long-term dependencies during the feature updating process, diverging
from the Markovian updates seen in traditional graph neural ODE models. The effi-
cacy of FDE models in surpassing ODE models has been confirmed in a different
submitted work, particularly in environments free from attacks or perturbations.
While traditional graph neural ODE models have been verified to possess a degree
of stability and resilience in the presence of adversarial attacks in existing literature,
the robustness of graph neural FDE models, especially under adversarial conditions,
remains largely unexplored. This paper undertakes a detailed assessment of the
robustness of graph neural FDE models. We establish a theoretical foundation out-
lining the robustness features of graph neural FDE models, highlighting that they
maintain more stringent output perturbation bounds in the face of input and func-
tional disturbances, relative to their integer-order counterparts. Through rigorous
experimental assessments, which include graph alteration scenarios and adversarial
attack contexts, we empirically validate the improved robustness of graph neural
FDE models against their conventional graph neural ODE counterparts.

1 Introduction

Graph Neural Networks (GNNs) have emerged as an influential tool capable of extracting meaningful
representations from intricate datasets, such as social networks [1] and molecular structures [2].
Despite their impressive capability, GNNs have been found susceptible to adversarial attacks [3–5],
with modifications or injections into the graph often causing significant degradation in performance.
In real-world scenarios, it is common for data to be perturbed during the training or testing phases
[6, 7], highlighting the importance of studying the robustness of GNNs. For instance, in financial
systems, fraudulent activities may introduce slight perturbations into transactional data, making it
paramount for the underlying models to remain robust against these adversarial changes. Similarly, in
social networks, misinformation or the presence of bots can skew the data, which can subsequently
impact the insights drawn from it. Therefore, the robustness of GNNs is not just a theoretical concern
but a practical necessity. Several defensive strategies have been established to counteract the damaging
implications of adversarial attacks on graph data. Approaches such as GARNET [8], GNN-Guard
[9], RGCN [10], and Pro-GNN [11] are grounded in preprocessing techniques that aim to remove
adversarial alterations to the structure before GNN training commences. Nonetheless, these methods
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often necessitate the exploration of graph structure properties, leading to higher computational costs.
Furthermore, these strategies are more suitably tailored to combat poisoning attacks.

Recent advances have witnessed a growing use of dynamical system theory in designing and under-
standing GNNs. Models like CGNN [12], GRAND [13], GRAND++ [14], GraphCON [15], and CDE
[16] employ neural ordinary differential equations (ODEs) to offer a dynamical system perspective
on graph node feature evolution. Typically, these dynamics can be described by:

dX(t)

dt
= F(W,X(t)). (1)

In this formulation, X(t) represents the evolving node features with X(0) as the initial input features,
while W is the graph’s adjacency matrix. The function, F , is specifically tailored for graph dynamics.
As a case in point, [13] deploys an attention-based aggregation mechanism akin to heat diffusion
on the graph. Building on this approach, [17] demonstrates the inherent robustness of the graph
diffusion process within GRAND. Motivated by the Beltrami diffusion equation [18], they introduced
a model based on the Beltrami flow (abbreviated as GraphBel) and designed for enhanced robustness,
particularly in the face of topological perturbations.

Recent studies have ventured into the intersection of GNNs and fractional calculus [19]. One promi-
nent example is the FRactional-Order graph Neural Dynamical network (FROND) framework [20].
Distinct from conventional GNNs grounded in ODEs, FROND leverages FDEs, with dynamics
represented as:

Dβ
t X(t) = F(W,X(t)), β ∈ (0, 1]. (2)

The function F(W,X(t)) maintains its form as in (1). The Caputo fractional derivative, denoted
by Dβ

t , infuses memory into the temporal dynamics (see Section 3.3 for more details). For β = 1,
the equation reverts to the familiar first-order dynamics as in (1). The distinction lies in the fact
that the conventional integer-order derivative measures the function’s instantaneous change rate,
concentrating on the proximate vicinity of the point. In contrast, the fractional-order derivative [21]
is influenced by the entire historical trajectory of the function, which substantially diverges from the
localized impact found in integer-order derivatives.

Incorporating a fractional derivative provides GNNs an avenue to mitigate the prevalent oversmooth-
ing problems by enabling algebraic convergence [20], different from the standard exponential con-
vergence. Further, with the integration of fractional dynamics, FROND can elevate performance on
graph-structured datasets. Given its modularity, FROND can effortlessly merge with existing graph
ODE frameworks, potentially increasing their effectiveness, especially with diverse β values, without
incorporating any additional training parameters to the underlying graph neural ODE models.
Critically, β acts as a proxy for the extent of memory in the feature dynamics: a value of β = 1
corresponds to Markovian dynamics, while β < 1 denotes non-Markovian dynamics. This nuance
is further visualized in Fig. 1, where a β < 1 signifies nontrivial skip connections across model
discretization timestamps.

Though FROND showcases proficiency in decoding complex graph data patterns, its robustness
against adversarial perturbations remains an area of exploration. By broadening the order of time
derivatives from integers to real numbers, fractional calculus can encapsulate more intricate dynamics
and data relationships, such as long-range memory effects, where the system’s current state is
influenced by its comprehensive history, not merely its recent states. This capability augments a
GNN’s ability to more accurately represent the generative processes underlying graph structures and
node features across layers, rendering them less susceptible to noise and perturbations. In this work,
we delve deeply into the ramifications of the fractional order parameter β on the robustness attributes
of graph neural FDEs. Our analysis suggests a monotonic relationship between the model’s Lipschitz
constant and the parameter β, with smaller β values indicating augmented robustness.

Our contributions can be encapsulated as follows:
• We investigate the robustness characteristics of FROND, providing a rigorous theoretical foundation.

Our findings highlight that in the presence of input perturbations or function disturbances, FROND
exhibit tighter output perturbation bounds relative to their integer-order counterparts.

• Through extensive experimental evaluations, including scenarios of graph modifications and
adversarial injection attacks, we empirically demonstrate the superior robustness of FROND in
contrast to conventional graph neural ODE models.
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Figure 1: Unlike Euler discretization in graph neural ODE models, FROND integrates connections to historical
times, enabling memory effects. The dark blue connections in FROND, absent in ODEs, have weights correlating
with µj,n(β), as outlined in (10).

2 Related work
2.1 Graph Neural ODEs
In the seminal work of [13], the authors ingeniously modeled information propagation akin to the
heat diffusion process of a substance. This novel perspective has provided profound insights into
the dynamics of graph-structured data. Extending this paradigm, the Beltrami diffusion model was
incorporated in [22] to enhance the rewiring mechanism within the graph structure. In a further
advancement, GRAND++ [14] introduced a source term into the heat diffusion process, focusing
on situations with low-labeling rates in graph deep learning. GraphCON [15] progressed dynamics
on graphs from the first-order heat diffusion equation to the second-order system of controlled
and damped oscillators, thereby mitigating the exploding and vanishing gradients problem in deep
GNNs. Recent contributions based on graph neural diffusion [23, 24, 16] have effectively dealt with
heterophily graphs. The paper [17] presented GraphBel, a diffusion process that has significantly
augmented the robustness of graph models.

2.2 Adversarial Attacks and Defenses on Graphs
A plethora of research has consistently underscored the vulnerability of graph deep learning models
to adversarial perturbations. Essentially, even inconspicuous alterations to the input data can misdirect
a graph neural network into producing fallacious predictions. Adversarial attacks on GNNs typically
fall into two categories based on the method of perturbation: Graph Modification Attacks (GMA)
and Graph Injection Attacks (GIA). GMA involves manipulating the topology of a graph, primarily
by adding or removing edges [25–29]. This category also encompasses perturbations to node features
[5, 30, 28, 31, 32]. In contrast, Graph Injection Attacks (GIA) permit adversaries to incorporate
malicious nodes into the original graph [33–38]. GIA is a stronger form of attack on graph data [38]
as it introduces both structural and feature perturbations to the graph.

The defensive strategies employed in GNNs can be broadly categorized into pre-processing
methods and the design of robust architectures. Methods such as GNN-GUARD [9], Pro-GNN
[11],GARNET[8] and GCN-SVD [39] focus on cleansing or pruning the graph, with the aim of
maintaining the integrity of the original adjacency matrix, thereby mitigating perturbations. On
another front, methods like RGCN [10] and Soft-Median-GCN [40] are tailored to enhance the
inherent architecture of GNNs, making them more resilient to feature perturbations. Distinctly, our
approach diverges from these conventional defense mechanisms. Instead of proposing an entirely
new defensive technique, our focus is on bolstering the robustness of existing graph neural ODE
models by seamlessly integrating the principles of FROND, without introducing any additional
training parameters to the backbone graph neural ODE models.

3 Preliminaries
3.1 Notation
Let us consider a graph G = (V,W), in which V = 1, . . . , N represents a set of N nodes. The N×N
matrix W := (Wij) has elements Wij indicating the edge weight between the i-th and j-th feature
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vectors with Wij = Wji. The node features at any given time t can be denoted by X(t) ∈ R|V|×N ,
where N corresponds to the dimension of the node feature. In this matrix, the feature vector for the
i-th vertex in V at time t can be represented as the i-th row of X(t), indicated by x⊺i (t).

3.2 Graph Neural ODE Models
The existing body of literature presents a variety of graph dynamical models. Most of these models
[13, 17, 22] take inspiration from transport processes like the heat equation with different diffusivities
D to tailor their functionalities. Notably, the GraphCON model [15] conceptualizes graph nodes as
coupled oscillators, assimilating the ensuing dynamics.
GRAND [13] incorporates the following dynamical system for graph learning:

∂X(t)

∂t
= div(D(X(t), t)⊙∇X(t)) = (A(X(t))− I)X(t). (3)

The initial condition X(0) is provided by the graph input features. Here, ⊙ represents the element-
wise product, and D is a diagonal matrix of size |E| × |E| with elements diag(a(xi(t),xj(t), t)).
The function a(·) serves as a similarity measure for vertex pairs. As such, the diffusion equation can
be reframed as (3), where A(X(t)) = (a (xi(t),xj(t))) constitutes a learnable attention matrix to
depict the graph structure. I is the identity matrix.
By extending the concepts of Beltrami flow [18, 17], the stable graph neural ODE model GraphBel is
formulated as:

dX(t)

dt
= (AS(X(t))⊙BS(X(t))−Ψ(X(t)))X(t), (4)

where ⊙ represents element-wise multiplication. Both AS(·) and BS(·) serve distinct purposes: the
former acts as a learnable attention function, while the latter operates as a normalized vector map.
Ψ(X(t)) is a diagonal matrix where Ψ(xi,xj) =

∑
xj
(AS ⊙BS)(xi,xj).

Using a graph coupled dynamical system, GraphCON [41] is given by
∂Y(t)

∂t
= σ(Fθ(X(t), t))− γX(t)− αY(t),

∂X(t)

∂t
= Y(t), (5)

where Fθ(·) is a learnable 1-neighborhood coupling function, σ denotes an activation function, γ and
α are adjustable parameters.

Remark 1. By leveraging the numerical solvers introduced in [42], one can efficiently solve (3), (4),
and (5) where the initial X(0) represents the input features. This yields the terminal node embeddings,
denoted as X(T ), at time T . Subsequently, X(T ) can be utilized for downstream tasks such as node
classification or link prediction.

3.3 Fractional-order Differential Equation (FDE)
Within the FDE framework, the fractional time derivative is typically characterized using the Caputo
derivative [43], a prevalent choice for modeling real-world phenomena [19]. It is expressed as:

Dβ
t f =

1

Γ(n− β)

∫ t

0

(t− τ)n−β−1 dnf

dτn
dτ, β > 0 (6)

where β is the fractional order, n is the smallest integer greater than β, Γ is the gamma function, f
is a scalar function defined over the interval [0, b], and dnf

dτn is the standard n-th order derivative. A
distinguishing trait of the Caputo derivative is its capability to incorporate memory effects. This is
underscored by observing that the fractional derivative at time t in (6) aggregates historical states
spanning the interval 0 ≤ τ ≤ t. For the special case where β = 1, the definition collapses to the
standard first-order derivative as Dβ

t f = df
dτ . For a vector-valued function, the fractional derivative

is defined component-wise for each dimension, similar to the first-order derivative. Thus, while our
discussion centers on scalar functions in Sections 3.3 and 3.4, its extension to vector-valued functions
is straightforward. A more detailed, self-contained exposition of the Caputo derivative can be found
in the supplementary material.

A crucial concept in fractional calculus and its applications is the Mittag-Leffler function Eβ(z)
[19]. This function has been recognized as the natural extension of the exponential function to the
fractional domain, allowing the modeling of more complex phenomena. It is an integral part of the
solutions to many fractional differential equations, thereby playing a significant role in the analysis
and applications of such systems. Specifically, as per [19][Theorem 4.3], given y(t) := En

(
λtβ
)
,
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x ≥ 0, then

Dβ
t y(t) = λy(t). (7)

We present the formal definition of the Mittag-Leffler function below:
Definition 1 (Mittag-Leffler function). Let β > 0. The function Eβ defined by

Eβ(z) :=

∞∑
j=0

zj

Γ(jβ + 1)
, (8)

whenever the series converges, is called the Mittag-Leffler function of order β.

This extension of the exponential function becomes more evident when considering the case β = 1,
reducing the Mittag-Leffler function to the familiar exponential function:

E1(z) =

∞∑
j=0

zj

Γ(j + 1)
=

∞∑
j=0

zj

j!
= exp(z). (9)

It is also well-established that exp(z) acts as the eigenfunction of ODEs; specifically, exp(λt) solves
(7) for β = 1.

3.4 Numerical Solvers for FROND
Differing from works by [44–46] on FROND with integer β = 1, our research navigates through
FDEs with non-integer β. We present the fractional Adams–Bashforth–Moulton method, elucidating
time’s role as a continuous layer index and revealing memory dependence emerging as dense or skip
connections, owing to the non-local nature of fractional derivatives (refer to Fig. 1).
Basic predictor. Referencing [47], we first employ a preliminary numerical solver called “predictor”
through time discretisation tj = jh, where the discretisation parameter h is a small positive value:

XP(tn) =

⌈β⌉−1∑
j=0

tjn
j!
X(k)(0) +

1

Γ(β)

n−1∑
j=0

µj,n(β)F(W,X(tj)), (10)

with coefficients µj,n(β) outlined in [47][eq.17]. For β = 1, this method reduces to the Euler solver
[44], where µj,n ≡ h, resulting in XP(tn) = XP(tn−1) + hF(W,X(tn−1)).

4 Methodology
In this section, we analyze the output boundary of (11) under specific perturbations, leveraging the
properties of the Mittag-Leffler function to illustrate the subdued alterations in the FDE output due to
input disturbances. We present three theorems emphasizing the inherent resilience of the FROND
paradigm:

• Theorem 1 [19] establishes the stability of the FROND model under small perturbations in the
initial conditions of the FDE, which in our case, correspond to input feature changes.

• Theorem 2 [19] extends the discussion of robustness to include perturbations in the function
that governs the system’s dynamics. In the context of graph learning, such perturbations can be
viewed as changes in the topology of the graph, which can occur due to the addition, deletion, or
modification of edges.

• Finally, Theorem 3 provides important insights into how the choice of the fractional order β can
influence the system’s robustness, suggesting a pathway to further enhance FROND’s resilience to
perturbations.

Together, these results provide a strong theoretical basis for the robustness of FROND, setting the
stage for its deployment in various practical applications.

4.1 Graph Fractional-order Differential Equations
Building upon the foundation of FDEs, recall that FROND incorporates the Caputo fractional-order
time derivative into the model for feature evolution:

Dβ
t X(t) = F(W,X(t)), X(0) = X0, 0 < β ≤ 1. (11)

In (11), Dβ
t X(t) denotes the fractional derivative of state X(t) concerning feature evolution time t,

where β ∈ (0, 1]. This derivative instills memory effects and non-local interactions, enhancing the
model’s interpretative capacity. F(W,X(t)) models the interaction between the weight matrix W
and the state X(t) at time t. The model initializes at X(0) = X0 and concludes at X(T ) at time T .
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One intrinsic characteristic of FROND is the long-memory property from fractional derivative. This
property encapsulates the system’s ability to “remember” its historical states over extended periods.
This inherent memory effect contributes significantly to the robustness of the system, particularly
when faced with perturbations. In contexts where disturbances or noise may influence the system, the
extended memory of FROND can act as a buffer, absorbing and integrating these disturbances over
time, thereby reducing their immediate impact. This attribute directly ties the long-memory feature to
the enhanced robustness against perturbations, making FROND especially valuable in applications
requiring stability against external disruptions.

4.2 Robustness of FROND under Perturbation
In this subsection, we delve into a theoretical analysis of model output perturbations. We begin by
highlighting two central theorems from [19], which provide bounds on output perturbations, grounded
in the properties of the Mittag-Leffler function. Following this, we analyze the bound outlined in
Theorem 3, shedding light on the notion that a smaller β contributes to enhanced robustness of the
model, particularly when faced with perturbations in input node features and graph topology.

Theorem 1. [19, Theorem 6.20] Let X(t) be the solution of the initial value problem (11), and let
X̃(t) be the solution of the initial value problem

Dβ
t X̃(t) = F(W, X̃(t)), X̃(0) = X̃0, (12)

where ε := ∥X0 − X̃0∥. Then, if ε is sufficiently small, there exists some h > 0 such that both the
functions X and X̃ are defined on [0, h], and

sup
0≤t≤h

∥X(t)− X̃(t)∥ = εEβ(Lh
β) (13)

where L is the Lipschitz constant of F .

Remark 2. Theorem 1 underlines the stability of the FDE (11), demonstrating that for small
perturbations in the input feature, the discrepancy between the solutions of the original and perturbed
FDE systems is bounded. In the context of our FROND model, this means that minor perturbations in
the input features cause only limited changes in the model’s output, thus contributing to the robustness
of the model against feature noise.

Theorem 2. [19, Theorem 6.21] Let X(t) be the solution of the initial value problem (11), and let
X̃(t) be the solution of the initial value problem

Dβ
t X̃(t) = F̃(W̃, X̃(t)), X̃(0) = X0 (14)

Moreover, let ε := ∥F(W,X(t))− F̃(W̃, X̃(t))∥. Then, if ε is sufficiently small, there exists some
h > 0 such that both the functions F̃ and F are defined on [0, h], and

sup
0≤t≤h

∥X(t)− X̃(t)∥ = εEβ(Lh
β), (15)

where L is the Lipschitz constant of F .

Remark 3. Theorem 2 affirms the robustness of fractional differential equations to perturbations in
the function that defines the system dynamics. In the setting of FROND, this relates to the model’s
resilience against changes in the graph structure, thereby reinforcing the model’s reliability when
dealing with dynamic graph data or when the graph’s structure is subject to uncertainty. These
perturbations can be interpreted as topological changes in the graph structure, such as edge additions,
deletions, or modifications.

Theorem 3. Let f(β) = Eβ(LT
β). For any ϵ > 0, if T is sufficiently large and L < 1, f(β) is

monotonically increasing on the interval [ϵ, 1].

Remark 4. See the supplementary material for the proof. Together with Theorems 1 and 2, Theorem 3
shows that the fractional order β of the FROND plays a crucial role in the model’s robustness. With
an appropriately chosen β, the model can reduce the discrepancy between the clean and perturbed
states, thereby improving the robustness. Particularly, a smaller β is associated with a smaller
discrepancy, signifying enhanced robustness of FROND against perturbations. Please refer to Fig. 3
for an illustration. The monotonicity suggests that a larger β culminates in a larger Lipschitz constant
for the FROND solution at time T . Consequently, with a larger β, one can anticipate a larger
perturbed output at time T when subjected to the same input/graph topology perturbations.
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Figure 2: Plot of the Mittag-Leffler function Eβ(LT
β) against β with T = 10. Distinctively, for

varying L, it displays monotonic increase over interval [ϵ, 1].

4.3 Algorithms
Our proposed approach enhances the robustness of integer-order graph neural diffusion models by
introducing fractional-order derivatives into the model framework. Specifically, we extend three
prominent graph neural diffusion models, GRAND, GraphBel, and GraphCON through this method.

We upgrade the GRAND framework with a fractional-order derivative, resulting in the Fractional-
GRAND (F-GRAND) model. The F-GRAND formulation is as follows:

Dβ
t X(t) = (A(X(t))− I)X(t). (16)

Following a similar approach, the GraphBel model is modified to incorporate a fractional-order
derivative, resulting in the Fractional-GraphBel (F-GraphBel) model. This model is expressed as:

Dβ
t X(t) = (AS(X(t))⊙BS(X(t))−Ψ(X(t)))X(t). (17)

Additionally, we introduce the Fractional-GraphCON (F-GraphCON) model, described by the follow-
ing equations:

Dβ
t Y(t) = σ(Fθ(X(t), t))− γX(t)− αY(t), Dβ

t X(t) = Y(t). (18)
The order β of these fractional derivatives serves as a hyperparameter, introducing a new layer of
flexibility to these models. This flexibility allows for adaptation to specific data characteristics, further
enhancing the robustness of the learning process.

Table 1: Node classification accuracy (%) under modification, poisoning, non-targeted attack
(Metattack) in transductive learning. The best and the second-best result for each criterion are
highlighted in red and blue respectively.

Dataset Ptb Rate(%) F-GRAND GRAND F-GraphBel GraphBel F-GraphCON GraphCON GAT GCN RGCN GCN-SVD

Cora

0 81.25±0.89 82.24±1.82 79.05±0.73 80.28±0.87 80.91±0.54 83.10±0.79 83.97±0.65 83.50±0.44 83.09±0.44 80.63±0.45
5 78.84±0.57 78.97±0.49 76.10±0.74 77.70±0.66 77.80±0.44 77.90±1.14 80.44±0.74 76.55±0.79 77.42±0.39 78.39±0.54
10 76.61±0.68 75.02±1.25 74.03±0.47 74.30±0.88 74.63±1.42 72.53±1.08 70.39±1.28 70.39±1.28 72.22±0.38 71.47±0.83
15 73.42±0.97 71.43±1.09 73.01±0.75 72.14±0.69 73.01±0.78 69.83±0.68 65.10±0.71 65.10±0.71 66.82±0.39 66.69±1.18
20 69.27±2.10 60.53±1.99 69.35±1.23 65.41±0.99 69.23±1.35 57.28±1.62 59.56±2.72 59.56±2.72 59.27±0.37 58.94±1.13
25 64.47±1.83 55.26±2.14 67.63±0.93 62.31±1.13 65.27±1.33 53.17±1.52 47.53±1.96 47.53±1.96 50.51±0.78 52.06±1.19

Citeseer

0 71.37±1.34 71.50±1.10 68.90±1.15 69.46±1.15 71.49±0.71 70.48±1.18 73.26±0.83 71.96±0.55 71.20±0 83 70.65±0.32
5 71.47±0.96 71.04±1.15 68.36±0.93 68.45±1.02 70.77±1.15 69.75±1.63 72.89±0.83 70.88±0.62 70.50±0.43 68.84±0.72
10 69.76±0.71 68.88±0.60 67.22±1.52 66.72±1.31 69.54±0.82 67.40±1.78 70.63±0.48 67.55±0.89 67.71±0.30 68.87±0.62
15 67.94±1.42 66.35±1.37 63.56±1.95 63.63±1.67 67.37±0.87 65.78±1.97 69.02±1.09 64.52±1.11 65.69±0.37 63.26±0.96
20 64.18±0.93 58.71±1.42 63.38±0.96 58.90±0.84 66.52±0.68 56.79±1.46 61.04±1.52 62.03±3.49 62.49±1.22 58.55±1.09
25 65.46±1.12 60.15±1.37 64.60±0.48 61.24±1.28 66.72±1.12 57.30±1.38 61.85±1.12 56.94±2.09 55.35±0.66 57.18±1.87

Pubmed

0 87.28±0.23 85.06±0.26 86.34±0.15 84.02±0.26 87.12±0.21 84.65±0.13 83.73±0.40 87.19±0.09 86.16±0.18 83.44±0.21
5 87.05±0.17 84.11±0.30 86.17±0.12 83.91±0.26 86.72±0.23 83.06±0.22 78.00±0.44 83.09±0.13 81.08±0.20 83.41±0.15
10 86.74±0.23 84.24±0.18 86.01±0.18 84.62±0.26 86.64±0.20 82.25±0.12 74.93±0.38 81.21±0.09 77.51±0.27 83.27±0.21
15 86.51±0.14 83.74±0.34 85.92±0.13 84.83±0.20 86.40±0.14 81.26±0.33 71.13±0.51 78.66±0.12 73.91±0.25 83.10±0.18
20 86.50±0.12 83.58±0.20 85.73±0.18 84.89±0.45 86.32±0.12 81.58±0.41 68.21±0.96 77.35±0.19 71.18±0.31 83.01±0.22
25 86.47±0.15 83.66±0.25 86.11±0.30 85.07±0.15 86.15±0.26 80.75±0.32 65.41±0.77 75.50±0.17 67.95±0.15 82.72±0.18

5 Experiments
To empirically validate the robustness of FROND, we carry out a series of experiments where
real-world graphs are subjected to various attack methods. The objective of these experiments
is to showcase that FROND, even in the face of such adversarial perturbations, maintains stable
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Table 2: Node classification accuracy (%) on graph injection, evasion, non-targeted attack in
inductive learning. The best and the second-best result for each criterion are highlighted in red and
blue respectively.

Dataset Attack F-GRAND GRAND F-GraphBel GraphBel F-GraphCON GraphCON GAT GraphSAGE GCN

Cora

clean 86.44±0.31 85.87±0.59 77.55±0.79 79.07±0.46 82.42±0.89 83.10±0.63 86.37±0.56 81.73±0.62 85.09±0.26
PGD 56.38±6.39 36.80±1.86 69.50±2.83 63.93±3.88 56.70±4.36 48.38±2.44 38.82±2.48 42.10±0.55 40.11±0.70

TDGIA 54.88±6.72 40.0±3.52 56.94±1.82 53.22±2.95 54.24±2.54 46.43±2.82 32.76±3.30 41.36±0.95 40.43±1.76
MetaGIA 53.36±5.31 37.89±1.56 71.98±1.32 66.74±3.23 63.97±2.09 52.21±2.71 42.23±4.19 47.23±0.73 42.52±0.90

Citeseer

clean 71.91±0.43 72.52±0.73 71.09±0.30 74.75±0.28 73.50±0.43 72.07±0.93 73.10±0.39 72.68±0.58 74.48±0.66
PGD 61.26±1.23 42.20±2.77 60.78±2.37 47.73±5.87 54.47±1.0 37.71±7.0 35.12±12.44 33.38±0.58 30.49±0.80

TDGIA 50.74±1.20 30.02±1.33 65.52±0.55 47.88±1.83 54.71±1.69 30.93±3.00 28.64±4.05 29.05±1.45 28.88±2.07
MetaGIA 55.50±1.72 30.42±1.87 60.85±1.88 39.13±1.19 48.82±3.27 29.09±2.01 30.17±2.71 32.95±0.66 32.74±1.00

Computers

clean 92.61±0.20 92.53±0.34 88.02±0.24 88.12±0.33 91.86±0.38 91.30±0.20 91.42±0.22 92.33±0.31 91.83±0.25
PGD 89.90±1.33 70.45±11.03 87.60±0.33 87.38±0.37 91.36±0.74 81.28±7.99 38.82±5.53 39.54±1.49 33.43±0.21

TDGIA 84.71±1.52 65.45±14.30 87.81±0.28 87.67±0.40 90.45±0.71 68.70±15.67 42.04±9.01 41.38±1.52 39.83±3.15
MetaGIA 87.50±3.17 70.01±9.32 87.37±0.23 87.77±0.22 90.51±0.88 82.43±8.42 41.86±8.33 46.27±2.20 34.03±0.36

Pubmed

clean 88.39±0.47 88.44±0.34 89.51±0.12 88.18±1.89 90.30±0.11 88.09±0.32 87.41±1.73 88.71±0.37 88.46±0.20
PGD 59.62±11.66 44.61±2.78 82.09±0.83 67.81±12.23 51.16±6.04 45.85±1.97 48.94±12.99 44.62±6.49 39.03±0.10

TDGIA 54.31±2.38 46.26±1.32 82.72±0.47 68.66±10.64 55.50±4.03 45.57±2.02 47.56±3.11 47.61±0.91 42.64±1.41
MetaGIA 61.62±9.05 44.07±2.11 79.16±0.87 64.64±9.70 52.03±5.53 45.81±2.81 44.75±2.53 42.39±0.53 40.42±0.17

performance in downstream tasks, without the need for any additional preprocessing steps to handle
the perturbed data. For a comprehensive and fair evaluation, we perform two distinct evaluations: a
poisoning Graph Modification Attack (GMA), where training occurs directly on the perturbed graph;
and an evasion attack for Graph Injection Attack (GIA), taking place during the inference phase.

The core aim of this paper is to explore the robustness provided by the graph neural FDE model,
asserting that fractional methods are inherently more robust than their integer-order dynamic system
GNN counterparts. Thus, our comparisons mainly target foundational integer-order graph neural ODE
models, minimally incorporating non-ODE-based models like GCN [48], GAT [49], and GraphSAGE
[50]. Notably, fractional-order GNNs can also merge with other defense techniques such as adversarial
training and preprocessing strategies, discussed further in the supplementary material.

5.1 GMA
Our experimental setup involves the execution of graph modification adversarial attacks employing
the Metattack method [30]. Within the Metattack paradigm, the graph’s adjacency matrix is perceived
not just as a static structure but as a malleable hyperparameter. This perspective allows for attack
optimization through meta-gradients to effectively address the inherent bilevel problem. For the sake
of ensuring a consistent and unbiased comparative landscape, our experiments strictly conform to
the attack parameters as outlined in the paper [11]. To achieve a comprehensive evaluation, we vary
the perturbation rate, representing the proportion of edge modifications. We source the perturbed
graph data from the comprehensive DeepRobust library [51]. The perturbation rate is adjusted in
consistent increments of 5%, starting from an untouched graph (0%) and extending up to significant
alterations at 25%. This approach provides insights into the effects and resilience of our model across
a spectrum of adversarial conditions.
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Figure 3: The impact of β on the robust accuracy.

5.2 GIA
As elucidated in [38], GIA presents a considerably potent challenge to GNNs because of its ability
to introduce new nodes and establish new edges within the original graph. Executing a GIA entails
a two-step process: the injection of nodes and the subsequent update of features. During the node
injection phase, new edges are established for the inserted nodes, driven by either gradient data or
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heuristic methods. Drawing inspiration from the methods proposed in [38], we have incorporated three
distinct GIA techniques: PGD-GIA, TDGIA, and MetaGIA. The PGD-GIA method predominantly
relies on a randomized approach for node injection. Once these nodes are in place, their features are
meticulously curated using the Projected Gradient Descent (PGD) algorithm [52]. The Topological
Deficiency Graph Injection Attack (TDGIA) [35] exploits inherent topological weaknesses in graph
structures. This approach harnesses these vulnerabilities to guide edge creation, optimizing a specific
loss function to devise suitable features. MetaGIA [38], however, presents a more comprehensive
approach. By considering both the adjacency matrix and node features as hyperparameters awaiting
optimization, it champions an iterative strategy. This strategy continually refines the adjacency matrix
and node features, leaning heavily on gradient information to guide these refinements.

We conduct inductive learning for GIA in line with the data partitioning approach of the GRB
framework [53], allocating 60% for training, 10% for validation, and 20% for testing purposes. To
maintain a balanced attack landscape, we pre-process the data using methods from [53], which
involve excluding the 5% of nodes with the lowest degrees (more susceptible to attacks) and the 5%
with the highest degrees (more resistant to attacks).

5.3 Results

Table 1 presents the results of GMA for transductive learning. As can be observed from the table,
our proposed fractional-order methods outperform the original GRAND, GraphBel, and GraphCON
in terms of robustness accuracy. These results validate and resonate with our theoretical findings,
as discussed in Theorem 3. Notably, these empirical observations underscore the capability of the
FROND paradigm in enhancing a system’s resilience, particularly when faced with input perturbations.
The GIA results are presented in Table 2. We note that the fractional-order approach significantly
improves post-attack accuracy relative to its integer-order graph neural ODE counterparts. Among
these neural ODE models, [17] demonstrated that GraphBel possesses superior robustness, which is
further amplified by our fractional-order differential technique.

5.4 Ablation Study

5.4.1 Influence of β

We assess the robustness accuracy of our fractional-order method across varying β values. The
findings are depicted in Fig. 3. A discernible trend emerges: as β increases, the accuracy under the
three GIA methods diminishes. This observation aligns with our theoretical insights presented in
Theorem 3.

5.4.2 Model Complexity

A comparison of inference times between our models and the baseline models is presented in Table 3.
The results indicate that fractional-based models have similar inference times to graph neural ODE
models. Notably, fractional-based models maintain the same training parameters as integer ODE
models, avoiding any extra parameters. These findings highlight the efficiency and flexibility of our
approach.

Table 3: Inference time of models on the Cora dataset: integral time T = 10 and step size of 1.

Model F-GRAND GRAND F-GraphBel GraphBel F-GraphCON GraphCON

Inf. Time(s) 18.74 16.40 64.90 78.51 21.33 18.27

6 Conclusion
In this paper, we have undertaken a comprehensive exploration of robustness against adversarial
attacks within the framework of the graph neural FDE model, leading to substantial insights. Our in-
vestigation has yielded significant revelations, notably demonstrating the heightened robustness of the
graph neural FDE model when compared to existing graph neural ODE models. Moreover, our work
has contributed theoretical clarity, shedding light on the underlying reasons behind the heightened
robustness of the graph neural FDE models in contrast to the graph neural ODE counterparts.
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This supplementary material complements the main body of our paper, providing additional details
and supporting evidence for the assertions made therein. The structure of this document is as follows:

1. A comprehensive background on fractional calculus is detailed in Appendix A.

2. An expanded discussion on related work is provided in Appendix B.

3. Details of the fractional differential equation (FDE) solver used in our paper can be found in
Appendix C.

4. Theoretical results from the main paper are rigorously proven in Appendix D.

5. Additional experiments, ablation studies, and dataset specifics are elaborated in Appendix E.

A Review of Caputo Fractional Calculus

We appreciate the need for a more accessible explanation of the Caputo time-fractional derivative
and its derivation, as the mathematical intricacies may be challenging for some readers in the GNN
community. To address this, we are providing a more comprehensive background in this section.

A.1 Caputo Fractional Derivative and Its Compatibility of Integer-order Derivative

The Caputo fractional derivative of a function f(t) over an interval [0, b], of a general positive order
β ∈ (0,∞), is defined as follows:

Dβ
t f(t) =

1

Γ(⌈β⌉ − β)

∫ t

0

(t− τ)⌈β⌉−β−1f (⌈β⌉)(τ)dτ, (19)

Here, ⌈β⌉ is the smallest integer greater than or equal to β, Γ(·) symbolizes the gamma function,
and f (⌈β⌉)(τ) signifies the ⌈β⌉-order derivative of f . Within this definition, it is presumed that
f (⌈β⌉) ∈ L1[0, b], i.e., f (⌈β⌉) is Lebesgue integrable, to ensure the well-defined nature of Dβ

t f(t) as
per (19) [55]. When addressing a vector-valued function, the Caputo fractional derivative is defined
on a component-by-component basis for each dimension, similar to the integer-order derivative. For
ease of exposition, we explicitly handle the scalar case here, although all following results can be
generalized to vector-valued functions. The Laplace transform for a general order β ∈ (0,∞) is
presented in Theorem 7.1 [55] as:

LDβ
t f(s) = sβLf(s)−

⌈β⌉∑
k=1

sβ−kf (k−1)(0). (20)

where we assume that Lf exists on [s0,∞) for some s0 ∈ R. In contrast, for the integer-order
derivative f (β) when β is a positive integer, we also have the formulation (20), with the only
difference being the range of β. Therefore, as β approaches some integer, the Laplace transform of
the Caputo fractional derivative converges to the Laplace transform of the traditional integer-order
derivative. As a result, we can conclude that the Caputo fractional derivative operator generalizes the
traditional integer-order derivative since their Laplace transforms coincide when β takes an integer
value. Furthermore, the inverse Laplace transform indicates the uniquely determined Dβ

t = f (β) (in
the sense of almost everywhere [56]).

Under specific reasonable conditions, we can directly present this generalization as follows. We
suppose f (⌈β⌉)(t) (19) is continuously differentiable. In this context, integration by parts can be
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utilized to demonstrate that

Dβ
t f(t) =

1

Γ(⌈β⌉ − β)

(
−
[
f (⌈β⌉)(τ)

(t− τ)⌈β⌉−β

⌈β⌉ − β

] ∣∣∣∣t
0

+

∫ t

0

f (⌈β⌉+1)(τ)
(t− τ)⌈β⌉−β

⌈β⌉ − β
dτ

)

=
t⌈β⌉−βf (⌈β⌉)(0)

Γ(⌈β⌉ − β + 1)
+

1

Γ(⌈β⌉ − β + 1)

×
∫ t

0

(t− τ)⌈β⌉−βf (⌈β⌉+1)(τ)dτ

(21)

When β → ⌈β⌉, we get the following

lim
β→⌈β⌉

Dβ
t f(t) = f (⌈β⌉)(0) +

∫ t

0

f (⌈β⌉+1)(τ)dτ

= f (⌈β⌉)(0) + f (⌈β⌉)(t)− f (⌈β⌉)(0)

= f (⌈β⌉)(t)

(22)

In parallel to the integer-order derivative, given certain conditions ([55][Lemma 3.13]), the Caputo
fractional derivative possesses the semigroup property as illustrated in [55][Lemma 3.13]:

Dε
tD

n
t f = Dn+ε

t f. (23)
The Caputo fractional derivative also exhibits linearity, but does not adhere to the same Leibniz
and chain rules as its integer counterpart. As such properties are not utilized in our work, we refer
interested readers to [55][Theorem 3.17 and Remark 3.5.]. We believe the above explanation facilitates
understanding the relation between the Caputo derivative and its generalization of the integer-order
derivative.

A.2 Caputo Fractional Differential Equations

In this section, we first discuss the initial conditions for fractional differential equations (FDEs)
under the Caputo definition. Following this, we present the precise conditions for the existence and
uniqueness of the solution to the FDEs. As we will see, these conditions closely align with those of
ordinary differential equations, conditions which are widely assumed by all graph neural ODE works
such as the recent contributions like GRAND [13], GraphCON [41], and GraphBel [17]. In short, all
these graph neural ODE works can be seamlessly extended to fractional dynamics.

We first give the Caputo fractional taylor expansion: [55][Theorem 3.8.] Assume that n ≥ 0,m = ⌈n⌉,
and f has absolutely continuous (m− 1)-st derivative. Then

f(t) =

m−1∑
k=0

Dk
t f(0)

k!
tk + JnDn

t f(t). (24)

Note the order in Dk
t here is still an integer. If we compare it with the classical integer-order Taylor

expansion, it becomes evident that the Caputo derivative closely resembles the classical integer-order
derivative in terms of Taylor expansion. This fact will influence the initial conditions for differential
equations, as introduced in the following.

Assume that e is a given function with the property that e = Dβ
t g, and then the solution of the Caputo

differential equation is the form

Dβ
t f = g (25)

is given by

f(x) = e(x) +

⌈β⌉∑
j=1

cj(x− a)⌈β⌉−j (26)

15



once more, with c∗j as arbitrary constants. Thus, to obtain a unique solution, it is most logical to

prescribe the values of integer order derivatives f(0), D1
t f(0), . . . , D

⌈β⌉−1
t f(0) in the Caputo setting,

mirroring the traditional ordinary differential equation.

Next, we delve into a general Caputo fractional differential equation, presented as follows:

Dβ
t y(t) = g(t, y(t)) (27)

conjoined with suitable initial conditions. As hinted in (25) and (26), the initial conditions take the
form:

Dk
t y(0) = y

(k)
0 , k = 0, 1, . . . , ⌈β⌉ − 1. (28)

Caputo existence and uniqueness theorem: [55][Theorem 6.8] Let y(0)0 , . . . , y
(m−1)
0 ∈ R and

h∗ > 0. Define the set G := [0, h∗]× R and let the function g : G → R be continuous and fulfill a
Lipschitz condition with respect to the second variable, i.e.

|g (x, y1)− g (x, y2)| ≤ L |y1 − y2| (29)
with some constant L > 0 independent of x, y1, and y2. Then there uniquely exists function
y ∈ C [0, h∗] solving the initial value problem (27) and (28).

For a point of reference, we also provide the well-known Picard–Lindelöf uniqueness theorem for
ordinary differential equations.
Picard–Lindelöf theorem: [57, 58] Let D ⊆ R× Rn be a closed rectangle with (t0, y0) ∈ intD,
the interior of D. Let g : D → Rn be a function that is continuous in t and Lipschitz continuous in y.
Then, there exists some ε > 0 such that the initial value problem

y′(t) = g(t, y(t)), y (t0) = y0.

has a unique solution y(t) on the interval [t0, t0 + ε].

This allows us to draw parallels between the existence and uniqueness theorem of the Caputo
fractional differential equation and its integer-order ordinary differential equation equivalent. We
also remind readers that standard neural networks, as compositions of linear maps and pointwise
non-linear activation functions with bounded derivatives (such as fully-connected and convolutional
networks), satisfy global Lipschitz continuity with respect to the input. For attention neural networks,
which are compositions of softmax and matrix multiplication, we observe local Lipschitz continuity.
To see this, suppose v = softmax(u) ∈ Rn×1. Then

∂v

∂u
= diag(v)− vv⊤

=


v1 (1− v1) −v1v2 . . . −v1vn
−v2v1 v2 (1− v2) . . . −v2vn

...
...

. . .
...

−vnv1 −vnv2 . . . vn (1− vn)


For bounded input, we always have a bounded Jacobian. All the graph neural ODE works, such
as recent contributions like GRAND [13], GraphCON [41], and GraphBel [17], safely assume the
uniqueness of the solution to ODEs.

B More Discussion of Related Work: Fractional Calculus and Deep Learning

In this section, we further discussion the applications of fractional calculus, with a particular emphasis
on its implications in deep learning.

Recently, fractional calculus has garnered significant attention due to its myriad applications spanning
diverse areas. Key domains where fractional calculus has demonstrated potential include numerical
analysis [59], viscoelastic materials [60], population dynamics [61], control theory [62], signal
processing [63], financial mathematics [64], and especially in characterizing porous and fractal
systems [65–67]. Within these arenas, fractional-order differential equations have emerged as an
enhanced alternative to their integer-ordered counterparts, serving as a robust mathematical tool
for various system analyses [68]. For instance, fractional calculus has been pivotal in diffusion
process studies, elucidating phenomena from protein diffusion in cellular structures [69] to complex
biological processes [67].
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In the landscape of deep learning, [70] introduced an innovative approach for GNN parameter
optimization via fractional derivatives. This deviates significantly from the traditional use of integer-
order derivatives in optimization algorithms such as SGD or Adam [71]. However, the crux of their
approach is fundamentally different from ours. While they focus on leveraging fractional derivatives
for gradient optimization, our emphasis is on the fractional-derivative evolution of node embeddings.
In another vein, [72] draws from fractional calculus, specifically the L1 approximation of the Captou
fractional derivative, to design a densely connected neural network. This design seeks to effectively
manage non-smooth data and counter the vanishing gradient problem. Though our work orbits the
same realm, our novelty lies in infusing fractional calculus into Graph ODE models, concentrating on
the utility of fractional derivatives for evolving node embeddings, and highlighting its affinity with
non-Markovian dynamic processes.

From the vantage of physics-informed machine learning, there exists a research trajectory dedicated
to the formulation of neural networks anchored in physical principles, specifically tailored for solving
fractional PDEs. A trailblazing contribution in this sphere is the Fractional Physics Informed Neural
Networks (fPINNs) [73]. Subsequent explorations, including [74, 75], have expanded in this trajectory.
It’s pivotal to underline that these endeavors are distinctly different from our proposed methodology.

C Numerical Solvers for FDEs

In this section, we present further details about how to solve FDEs using the fractional
Adams–Bashforth–Moulton method solvers from [47]. The predictor yPk+1 is expressed as:

yPk+1 =

⌈β⌉−1∑
j=0

tjk+1

j!
y
(j)
0 +

1

Γ(β)

k∑
j=0

bj,k+1f(tj , yj). (30)

Here, k represents the current iteration or time step index in the discretization process. h is the step
size or time interval between successive approximations with tj = hj and ⌈·⌉ represents the ceiling
function, when 0 < β ≤ 1, we have ⌈β⌉ = 1. The coefficients bj,k+1 are defined as follows:

bj,k+1 =
hβ

β

(
(k + 1− j)β − (k − j)β

)
, (31)

Leveraging this prediction, a corrector term can be formulated to enhance the solver’s numerical
accuracy. This can be viewed as the fractional counterpart of the traditional one-step Adams–Moulton
method. However, we do not employ this additional corrector term in our paper. We reserve the
examination of the corrector solution and its impact on FROND for future work.

D Proof

In this section, we prove Theorem 3. For clarity, we restate the theorem for the reader’s reference.

Theorem 4. Let f(β) = Eβ(LT
β). For any ε > 0, we have that when T is large enough and L < 1,

f(β) is monotonically increasing on the interval [ε, 1].

Proof. First, we cite the equation from [62, eq.(140)]:

Eβ,α(z) =
1

β
z(1−α)/β exp

(
z1/β

)
−

p∑
k=1

z−k

Γ(α− βk)

+
1

2πβizp

∫
γ(1,φ)

exp
(
ζ1/β

)
ζ(1−α)/β+pdζ, (| arg(z)| ≤ µ, |z| > 1).

(32)

Here Eβ,α(z) denotes the generalized two-parameter Mittag-Leffler function, defined as Eβ,α(z) :=∑∞
k=0

zk

Γ(βk+α) . Its connection to the one-parameter Mittag-Leffler function, as given in Definition 1,
is captured by Eβ(z) = Eβ,1(z). Note that z ∈ C lies in the complex plane. The integral contour
γ(1, φ) is detailed in [62, Figure 1.4, Sec 1.1.6]. The parameter µ is selected such that πβ

2 <

µ < min{π, πβ}, while and φ is chosen to satisfy πβ
2 < µ < φ ≤ min{π, πβ}. For a thorough

understanding of this integral contour, we direct readers to the aforementioned reference.
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For α = 1 and 0 < β ≤ 1, we have that for any positive integer p,

Eβ(z) = Eβ,1(z) =
1

β
exp

(
z1/β

)
−

p∑
k=1

z−k

Γ(1− βk)

+
1

2πβizp

∫
γ(1,φ)

exp
(
ζ1/β

)
ζpdζ (|z| > 1).

(33)

Substitute z = LT β , we have

Eβ(LT
β) =

1

β
exp

(
L1/βT

)
−

p∑
k=1

(LT β)−k

Γ(1− βk)

+
1

2πβi (L (T β))
p

∫
γ(1,φ)

exp
(
ζ1/β

)
ζpdζ (|z| > 1). (34)

first term: For the first term 1
β exp

(
L1/βT

)
, the derivative with respect to β is

w(β) = −exp(L1/βT )

β2
− exp(L1/βT )L1/βT log(L)

β3
= −exp(L1/βT )

β3

(
β + L1/βT log(L)

)
We have that when T sufficiently large, β + L1/βT log(L) would be negative due to L < 1. So the
full first term is positive. We can prove that for any constant M > 0, we have w(β) > M when T is
large enough:

w(β) > −exp(L1/βT )
(
1 + L1/βT log(L)

)
,

where the right-hand side is unbounded when T → ∞.
second term: For p = 1, it is clear that (LTβ)−1

Γ(1−β) is increasing.
third term: Let us first deal with the integral in (33)

Ip(z) =
1

2πβizp

∫
γ(1,φ)

exp
(
ζ1/β

)
ζpdζ

for large |z| and | arg(z)| ≤ µ. For large |z| and | arg(z)| ≤ µ we have
min

ζ∈γ(1,φ)
|ζ − z| = |z| sin(φ− µ),

and therefore for large |z| and | arg(z)| ≤ µ we have

|Ip(z)| ≤
|z|−1−p

2πβ sin(φ− µ)

∫
γ(1,φ)

∣∣∣exp(ζ1/β)∣∣∣ |ζp| dζ.
The integral on the right-hand side converges, because for ζ such that arg(ζ) = ±φ and |ζ| ≥ 1 the
following holds: ∣∣∣exp(ζ1/β)∣∣∣ = exp

(
|ζ|1/β cos

(
φ

β

))
(35)

where cos(φ/β) < 0 due to the chosen of φ. We have that the integration is bounded and Ip(z) is
bounded.

Given the function:

f(β) =
1

2πβi (L (T β))
p

∫
γ(1,φ)

exp
(
ζ1/β

)
ζpdζ,

we are going to take the derivative with respect to β. Let’s separate the function into three parts:

1. g(β) = 1
2πβi(L(Tβ))p

2. h(ζ, β) = exp
(
ζ1/β

)
3. j(ζ) = ζp
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And we have f(β) = g(β) ·
∫
γ(1,φ)

h(ζ, β) · j(ζ)dζ Now the derivative df(β)/dβ will be:

df(β)

dβ
= g′(β) ·

∫
γ(1,φ)

h(ζ, β) · j(ζ)dζ + g(β) ·
∫
γ(1,φ)

h′(ζ, β) · j(ζ)dζ

Let’s find the derivatives g′(β) and h′(ζ, β) : For g′(β), we use the chain rule:

g′(β) = −
(
LT β

)−p
(1 + βp log(T ))

β22πi

For h′(ζ, β), we also use the chain rule:

h′(ζ, β) = − ln(ζ)

β2
exp

(
ζ1/β

)
ζ1/β

So the final formula for df(β)/dβ is:
df(β)

dβ
= −1 + βp log(T )

2πiβ2(LT β)p
·
∫
γ(1,φ)

exp
(
ζ1/β

)
ζpdζ

+
1

2πiβ (L (T β))
p ·
∫
γ(1,φ)

[
− ln(ζ)

β2
exp

(
ζ1/β

)
ζ1/β

]
ζpdζ

We now turn to the case when p = 1 and get the following:
df(β)

dβ
= −1 + β log(T )

2πiβ2(LT β)
·
∫
γ(1,φ)

exp
(
ζ1/β

)
ζdζ

+
1

2πiβ3(LT β)
·
∫
γ(1,φ)

[
− ln(ζ) exp

(
ζ1/β

)
ζ1/β

]
ζdζ

For both integrations, it is bounded according to (35). Next we see that |df(β)dβ | is uniformly converge

to 0 w.r.t. T over the interval [ε, 1], i.e. for any δ > 0, we have |df(β)dβ | ≤ δ over the interval [ε, 1]
when T is sufficiently large.

The proof is now complete if we combine the three terms to conclude the derivative of Eβ(LT
β)

w.r.t. β is positive over [ε, 1] for large enough T .

E Experimets

E.1 Datasets

The statistics of the datasets used in our experiments are presented in Table 4. The attack budgets for
the GIA, as shown in Table 2, are detailed in Table 5. We adhered to the attack budgets specified in
the paper [38] for GIA.

Dataset # Nodes # Edges # Features # Classes

Cora 2708 5429 1433 7

Citeseer 3327 4732 3703 6

PubMed 19717 44338 500 3

Computers 13,752 245,861 767 10
Table 4: Dataset Statistics

E.2 White-box attack

White-box attacks, which directly target the model, are stronger than the black-box attacks used in
Table 2. To demonstrate that our graph neural FDE model can consistently improve the robustness
of graph neural ODE models, we also conducted white-box GIA. The results are presented in
Table 6. Although the accuracy under white-box GIA is lower than under black-box GIA, our graph
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Dataset max # Nodes max # Edges

Cora 60 20

Citeseer 90 10

PubMed 200 100

Computers 300 150
Table 5: Attack budget for GIA

neural FDE models still outperform the graph neural ODE models. This observation aligns with our
theoretical findings presented in Section 4 of our main paper. Our graph neural FDE models indeed
enhance the robustness of neural ODE models under both black-box and white-box scenarios.

Dataset Attack F-GRAND F-GRAND F-GraphBel GraphBel F-GraphCON GraphCON

Computers
clean 90.0±0.05 92.78±0.13 88.36±1.05 90.14±0.27 89.99±0.28 91.70±0.25
PGD 75.29±1.17 16.44±0.11 86.35±0.10 67.04±1.28 71.64±2.33 13.11±4.73

TDGIA 71.99±0.73 15.10±0.76 86.21±0.21 53.75±2.84 66.35±1.94 4.33±4.21

Table 6: Node classification accuracy (%) on graph injection, evasion, non-targeted, white-box
attack in inductive learning.

E.3 Adversarial training

Adversarial training (AT), as demonstrated in the paper [76], is an effective strategy for mitigating
attacks. It entails the incorporation of perturbations or noise during the training process to bolster
the robustness of the model. This approach serves as a general framework that can be applied to any
model. In this work, we employ the Projected Gradient Descent (PGD) adversarial training method
(AT-PGD), as outlined in [76], to train our graph neural FDE models and enhance their robustness.

The results of AT are presented in Table 7. It is evident that AT-PGD significantly improves the
robustness of our neural FDE models. These findings demonstrate that our neural FDE models can be
effectively combined with other defense mechanisms.

E.4 Pre-processing methods

As mentioned in our main paper, several methods [9], [11], [8] employ preprocessing techniques to
prune or rewire the graph structure, thereby removing malicious edges or nodes. In this work, we
integrate our graph neural FDE models with GNNGUARD [9] to further enhance their performance.
GNNGUARD identifies suspicious nodes or edges and refines the edge weights to mitigate the
influence of these suspicious edges.

We introduce the models F-GraphCON-GUARD and GraphCON-GUARD by incorporating the
GNNGUARD preprocessing techniques into the graph neural FDE model and neural ODE model,
respectively. The results after adversarial attacks are presented in Table 8. As can be observed,
GNNGUARD enhances the robust accuracy in both cases. However, our F-GraphCON-GUARD
performs better, as the base F-GraphCON model already exhibits superior robustness compared
to GraphCON. This demonstrates that our neural FDE model can be seamlessly integrated with
preprocessing methods to further improve robustness.
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Dataset Attack F-GRAND-AT F-GraphBel-AT F-GraphCON-AT

Citeseer

clean 72.0±0.31 71.37±0.80 65.99±0.16
PGD 71.16±0.84 71.25±0.24 65.93±0.10

TDGIA 71.26±0.73 70.01±0.65 64.94±0.26
MetaGIA 71.58±0.63 70.95±0.85 65.73±0.42

Table 7: Node classification accuracy (%) on graph injection, evasion, non-targeted, black-box
attack in inductive learning.

Dataset Attack F-GraphCON-GUARD F-GraphCON GraphCON-GUARD GraphCON

Citeseer

clean 71.22±0.61 73.50±0.34 71.93±0.82 72.07±0.93
PGD 62.28±1.86 54.47±1.0 46.52±3.37 37.71±7.0

TDGIA 63.36±1.34 54.71±1.69 51.52±1.71 30.93±3.0
MetaGIA 59.73±2.26 48.82±3.27 51.70±3.40 29.09±2.01

Pubmed

clean 90.06±0.07 90.30±0.11 89.60±0.17 88.09±0.32
PGD 83.39±3.38 51.16±6.04 63.55±2.19 45.85±1.97

TDGIA 73.20±1.44 55.50±4.03 51.73±2.94 45.57±2.02
MetaGIA 79.97±5.01 52.03±5.53 62.44±3.71 45.81±2.81

Table 8: Node classification accuracy (%) on graph injection, evasion, non-targeted attack in
inductive learning.
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