
Fine-Tuning of Neural Network Approximate MPC
without Retraining via Bayesian Optimization

Henrik Hose1 Paul Brunzema1 Alexander von Rohr2 Alexander Gräfe1

Angela P. Schoellig2 Sebastian Trimpe1

1Institute for Data Science in Mechanical Engineering (DSME), RWTH Aachen, Germany
2Learning Systems and Robotics Lab (LSY) and Munich Institute for Robotics and Machine

Intelligence (MIRMI), TU Munich, Germany

Abstract: Approximate model-predictive control (AMPC) aims to imitate
an MPC’s behavior with a neural network, removing the need to solve an expen-
sive optimization problem at runtime. However, during deployment, the parame-
ters of the underlying MPC must usually be fine-tuned. This often renders AMPC
impractical due to the need to repeatedly generate a new dataset and retrain the
neural network. Recent work addresses this problem by adapting AMPC without
retraining using approximated sensitivities of the MPC’s optimization problem.
However, currently, this adaption must be done by hand, which is labor-intensive
and can be unintuitive for high-dimensional systems. To solve this issue, we pro-
pose using Bayesian optimization to tune the parameters of AMPC policies based
on experimental data. By combining model-based control with direct and local
learning, our approach achieves superior performance to nominal AMPC on hard-
ware, with minimal experimentation. This allows automatic and data-efficient
adaptation of AMPC to new system instances and fine-tuning to cost functions
that are difficult to implement in MPC. We demonstrate the proposed method in
hardware experiments for the swing-up maneuver fo a cartpole and yaw control
of an under-actuated balancing unicycle robot, a challenging control problem.

Keywords: Model Predictive Control, Bayesian Optimization, Imitation Learn-
ing, Neural Network Control

1 Introduction

Model-predictive control (MPC) is a modern optimization-based control method for nonlinear sys-
tems that provides theoretical guarantees for constraint satisfaction and stability [1]. MPC has
achieved remarkable results in practical robotics applications [2, 3, 4, 5, 6]. However, MPC requires
solving an optimization problem periodically at runtime, making real-world deployment unfeasible
for fast dynamical systems, even when dealing with mildly complicated dynamics, cost functions,
and constraints. Approximate MPC (AMPC) is one way to solve this challenge: A fast-to-evaluate
function approximator, typically a neural network (NN), is trained in an imitation-learning fashion
on a large dataset of samples from the MPC, i.e., a dataset of states and optimal actions (see [7] for a
recent survey on AMPC with NNs). Computing this large dataset can be done offline and in parallel
on large computation clusters, but it can easily take tens of thousands of core-hours, especially for
high-dimensional systems. This poses a problem when deploying AMPC in practice, as often mul-
tiple iterations over parameter values of the MPC in the model, cost functions, and constraint sets
are required to achieve the desired real-world control performance. For every parameter change, the
entire dataset must be regenerated. In our opinion, this is one of the reasons why applications of
AMPC in fast-moving dynamical and robotics systems are rare. In a recent paper [8], it is shown

Workshop on Safe and Robust Robot Learning for Operation in the Real World (SAFE-ROL) at CoRL 2024.

NN approx. optimal inputs: π̃MPC(s)

NN approx. sensitivities: π̃∇MPC(s)

Parameter-adaptive AMPC: πAMPC(s, θi)

×

Change in parameter: θi − θnom

+

System
s(k + 1) =
f(s(k), a(k))

a(k)

s(k)

Reward R(θi)

Bayesian opt.

s(k), a(k), k ∈ T

θi+1

Closed-loop hard-
ware experiment i

Fine-tuning

Figure 1: Automatic tuning of parameter-adaptive AMPC with Bayesian optimization (BO). Ap-
proximate nominal MPC inputs are linearly adapted by approximate sensitivities to deviations from
nominal parameters θ. Parameters are directly tuned with a few experiments using BO, maximizing
a closed-loop reward R on the real system.

that a second neural network approximating the gradients of the optimal actions with respect to pa-
rameters of the MPC problem (also known as sensitivities of the MPC optimization problem) can
be used to adapt an AMPC to changes in system parameters online – without recomputing large
datasets or training neural networks. However, the current approach requires the parameters to be
chosen by hand, making deployment of the AMPC to multiple system instances labour intensive.

Contribution. We use Bayesian optimization (BO) [9] to find optimal parameters for the recently
proposed parameter-adaptive AMPC [8] based on closed-loop experiments (Fig. 1) in a data-efficient
manner. The reward given to the BO reflects our true control objective and allows us to optimize
the AMPC in this direction. The true objective can be sparse in states and time, or binary such as
success or failure, which is difficult to implement in MPC. We show the effectiveness of our method
in two hardware experiments: a common cartpole system and yaw control of a balancing reaction
wheel unicycle robot (Fig. 2). The latter problem is linearly uncontrollable, making it a challenging
use case for nonlinear AMPC. On both systems, we achieve stabilization and disturbance rejec-
tion in the closed loop after only a handful of experiments. Automatic tuning is able to overcome
model mismatch between simulation and hardware with only 20 experiments to achieve desirable
performance. In summary, our contributions are as follows:

1. Automatic tuning of a parameter-adaptive AMPC to new system instances in a direct, data-
driven manner using BO, and without retraining neural networks.

2. Fine-tuning of the parameter-adaptive AMPC to new reward functions that are difficult to
implement with classic MPC (e.g., due to sparsity).

3. Experimental validation on two unstable systems: a classic cartpole swing-up and stabi-
lization benchmark and yaw control of an underactuated reaction wheel unicycle robot.

A video of our experiments is available under https://youtu.be/R96QpD5iusI.

2 Related Work

The method developed herein draws on two active research areas in robot learning: approximating
MPC (i.e., imitation learning from MPC) and BO for controller tuning. We review related works in
each of these, highlighting how we combine the two in a new way.

Approximate MPC. AMPC is a technique that finds a fast-to-evaluate but approximate explicit rep-
resentation of a MPC through NN training [7]. Unlike other explicit representations, for example,
memory-intensive look-up tables [10, 11] or explicit MPC for linear systems [12, 13], AMPC is ap-
plicable to general, nonlinear systems and requires only small NNs [14, 15]. These networks can be
evaluated on small microcontrollers in milliseconds [8]. Nonetheless, very few publications [14, 15]
apply AMPC in real-world robotics tasks, which we attribute to a significant practical issue: Even
though the dataset synthesis is performed offline, it can take tens of thousands of CPU core hours.
Additional computation time is required for training the NN approximation. In classic AMPC, a

2

https://youtu.be/R96QpD5iusI

new dataset must be computed and a new NN trained for every tuning iteration. This is not practical
in many applications as system instances have slightly different physical parameters, for example,
masses, lengths, or friction parameters [16].

The first way to overcome this issue is to approximate a MPC that is robust against parameter un-
certainties [14], leading, however, to conservatism and requiring a-priori known uncertainty bounds.
Alternatively, a nominal AMPC can be used to warm-start an optimizer online in hopes to speed up
computations [17, 18]; this, however, is not always faster [19] and much slower than NN inference.

Hose et al. [8] recently introduced parameter-adaptive AMPC, described in detail in Sec. 3. It allows
adapting the output of an AMPC to changes in MPC parameters (e.g., parameters of the system
dynamics model or cost function) with a locally linear predictor based on approximated sensitivities
of the MPC’s optimization problem. Practical experiments indicate that this provides intuitive tuning
nobs that generalize an AMPC to system instances with quite different parameters. Further, the NNs
required in parameter-adaptive AMPC are small enough to be evaluated in milliseconds on common
microcontrollers that cost only a few dollars, making this method particularly appealing for real-
world applications at scale. However, the proposed method [8] relies on expert knowledge to tune
the parameters correctly to achieve desired performance. This manual approach can be cumbersome
for systems with many parameters or mass production. In this work, we showcase the efficiency of
BO in automatically tuning parameter-adaptive AMPC for systems with many parameters through
only a few hardware experiments. We demonstrate this on an eleven-dimensional tuning task for
yaw control of a unicycle robot, for which manual tuning as in [8] is infeasible.

Bayesian Optimization for MPC Tuning. BO is a sample-efficient black-box optimization method
that gained popularity for automatic controller tuning in recent years [20], for example, to tune the
cost matrices in LQR control [21], optimize gaits [22], or the controller of a quadcopter [23]. In the
context of classic MPC, BO has been used to optimize hyperparameters [24, 25, 26, 27]. BO can
also be used to tune the prediction model to optimize closed-loop performance [28, 29]. Crucially,
all aforementioned BO methods rely on solving MPC optimization problems online at control fre-
quency. We overcome this problem by leveraging parameter-adaptive AMPC, which allows us to
quickly obtain approximated optimal solutions through forward passes of the NNs and enables the
usage of low-cost hardware.

Local BO methods such as GIBO [30, 31] and TuRBO [32] can cope with the increasing complexity
of the optimization problem in higher dimensions. Such approaches have proven to be especially
useful in finding good optima in a data-efficient manner by restricting exploration to a local region.
As our approach focuses on fine-tuning the AMPC to the task at hand, we will resort to a local BO
method, specifically TuRBO [32], to find an optimal configuration of parameters that are then used
in the parameter-adaptive AMPC.

3 Fine-Tuning of Parameter-Adaptive AMPC with Bayesian Optimization

In this section, we first describe how to define a set of parameterized policies using parameter-
adaptive AMPC and, second, how to solve the policy search problem data-efficiently with BO.

We consider general, nonlinear, discrete-time dynamical systems

s(k + 1) = f(s(k), a(k)), s(0) = s0, (1)

where s are the states and a the actions. While we do not explicitly account for process and sensor
noise in (1), the later experiments naturally include such uncertainties. The system (1) is controlled
by an AMPC policy πθ parameterized with θ, i.e., a(k) = πθ(s(k)). Here, θ are parameters of
the MPC that is imitated and explained in detail in Sec. 3.1. The closed-loop system generates
trajectories {(s(k), a(k))}Tk=0 of length T that depend on the policy parameters θ. The novelty and
goal of this paper is to automatically fine-tune the AMPC policy πθ such that

πθ∗ = argmax
πθ∈ΠAMPC

R(θ), (2)

3

based on trajectories of the closed-loop system from hardware experiments. We do not assume any
properties of the reward R, for example, it can be sparse or non-Markovian.

We structure the rest of this section as follows: Sec. 3.1 describes the parameterized MPC problem,
which πθ imitates. Then, Sec. 3.2 defines the search space ΠAMPC in problem (2) as a parameter-
adaptive AMPC [8] that keeps the parameterization in θ intact. Finally, in Sec. 3.3, we fine-tune θ
using local BO to find the optimal parameters for the AMPC, such that πθ∗ is a solution to (2).

3.1 Parameterized Model-Predictive Control

We formulate the following nonlinear MPC problem [1] depending on parameters θ ∈ Θ

a∗θ = argmin
a

∑N
κ=0ℓθ(κ, s(κ|k), a(κ|k))

s.t. s(0|k) = s(k), s(κ+ 1|k) = f̃θ(s(κ|k), a(κ|k)),
s(κ|k) ∈ Xθ(κ), a(κ|k) ∈ Uθ(κ) ∀κ = 0 . . . N,

(3)

where ℓθ is a cost function, and Xθ(κ) and Uθ(κ) are the state and input constraints. The loss
function, constraint sets, and MPC’s dynamics model f̃θ may depend on the parameter vector θ.

In classic MPC, (3) is solved repeatedly at every time k and the first element of the optimal predicted
action sequence applied to the system. Thus, the optimization problem (3) implicitly defines a
mapping from states to actions, which we call the policy πMPC(s(k), θ) = a∗θ(0|k). The gradient of
this policy with respect to the parameters at a specific state, ∂

∂θπMPC(s(k), θ)|θnom , also known as
sensitives, can be computed by commonly used NLP solvers along with a∗ [33, 34, 24, 35].

3.2 Parameter-Adaptive AMPC

This section briefly summarizes the AMPC control strategy with sensitivities from [8]. It makes
it possible to locally adjust a neural network approximation of (3) to parameters around nomi-
nal parameters θnom. To this end, parameter-adaptive AMPC combines two NNs to a single pol-
icy. First, a neural network is trained to imitate the nominal policy πMPC using a large dataset
Dnom = {(sj , πMPC(sj , θnom))}. This yields the approximate nominal policy π̃MPC. Second, when
computing the dataset Dnom we also compute the sensitives which are collected in the dataset
D∇MPC = {(sj , ∂

∂θπMPC(sj , θ)|θnom
)}. We train a neural network to approximate the sensitives

as π̃∇AMPC. The approximate sensitivities can be used as linear predictor around θnom to adapt the
optimal action given a change in the parameters θ. Thus, the parameter-adaptive AMPC policy is

πAMPC(s, θ) = π̃MPC(s) + π̃∇MPC(s)(θ − θnom). (4)

We define the policy search problem in (2) over the set of policies induced by parameter-adaptive
AMPC and indexed by θ as ΠAMPC = {πθ : s 7→ πAMPC(s, θ)}. In the next section, we use BO to
automatically find the optimal parameters for a given reward function.

3.3 Task-Specific Fine-Tuning with Bayesian Optimization

We formalize the tuning problem (2) within the policy set ΠAMPC as a black-box optimization problem

θ∗ = argmax
θ∈Θ

R(θ). (5)

Thus, the search over policies in (2) reduces to finding optimal parameters θ∗. Importantly, the
reward function R and the MPC cost function ℓ do not need to coincide. We can tune an existing
AMPC policy for new systems as well as fine-tune to specific tasks. We use BO to solve the black-
box optimization problem (5). This will allow us to formulate a high-level reward function that
might not be practical for classic MPC and then automatically tune the sensitives to optimally solve
the problem at hand. In BO, a probabilistic model of the reward function R, here a Gaussian process
(GP), and an acquisition function determine the next parameters θi to evaluate at iteration i. At
each iteration, we conduct closed-loop experiments and collect noisy evaluations of the reward as

4

(a) Cartpole

yaw control

(b) Wheelbot (side view)

rot. 90°

rot. 90°

rot. 90°

1 2

34

(c) Wheelbot (top view)

Figure 2: Hardware systems used for evaluation: cartpole and reaction wheel unicycle robot. The
cartpole is a classic control benchmark system on which we perform swing-up and stabilization. The
Wheelbot is a reaction wheel unicycle robot on which we demonstrate balancing and yaw control.
A video of our experiments is available under https://youtu.be/R96QpD5iusI.

Ri = R(θi) + ϵi with ϵi ∼ N (0, σ2) to sequentially build a data set Dtune = {(θi, Ri)}Ki=1 that
is informative about the optimal policy. Here, K is the number of experiments. The noise with
variance σ2 might come from different initial states si(0) or disturbances during the experiments.
For details on BO we refer to Garnett [9], in the context of controller tuning to Paulson et al. [20].

We choose TuRBO [32] as our BO method to locally fine-tune the initial solution of the given task.
We fully utilize the local idea of TuRBO by only considering one trust region that shrinks over time
and collapses to the locally optimal solution. Note that through this local approach we do not rely
on explicit parameter bounds Θ as the bound of the local trust region is inferred based on the length
scales of the covariance function of the GP (cf. [32, Sec. 2]).

4 Implementation on Benchmark Systems

We implement and evaluate parameter-adaptive AMPC and tuning with BO on two benchmark sys-
tems: a cartpole and a reaction wheel unicycle robot (Fig. 2). We chose both systems because they
exhibit strong nonlinear dynamics, are unstable, and require fast feedback control, making them
predestined for AMPC. Further, we implement the parameter-adaptive AMPC (i.e., neural network
controller inference) on the onboard embedded CPUs1,2. The CPUs are not powerful enough to
solve the implicit MPC optimization problem in real-time. While the NN controllers run on em-
bedded CPUs, we conveniently use the TuRBO BoTorch implementation [36] on a laptop. Our full
implementation will be publicly available upon acceptance.

4.1 Cartpole Swing-Up and Stabilization

The cartpole system is a standard benchmark in control [37]. We use a single policy to control
the swing-up and stabilization of the pole in the upwards-facing position without violating the con-
straints on the rail. The AMPC implementation closely resembles the publicly available code used
in [8]. Therefore, we only elaborate on details relevant to the fine-tuning with BO.

The cartpole’s state consists of cart position, pendulum angle, and their derivatives, thus scartpole ∈ R4

with voltage applied to the cart’s motor as action acartpole ∈ R. The dynamics function used in the
MPC optimization problem is parametrized by θcartpole = [madd,M,C1, C2, C3] ∈ R5, where madd is
the mass atop the rod, M is the mass of the cart, and C are friction and motor constants.

Reward for Fine-Tuning. The task of the pendulum is to perform a swing-up as fast as pos-
sible and stabilize afterwards around the upright position with the cart at the center of the rail

1The cartpole has a STM32G474 ARM Cortex-M4 CPU running at 170MHz
2The Wheelbot has a Raspberry Pi CM4 with BCM2711 quad-core Cortex-A72 CPU running at 1.5GHz

5

https://youtu.be/R96QpD5iusI

for a total of 20 s. We formalize this in the following sparse reward function: Rcartpole(θ) =
1
T tup −

wpos

T−tup

∑T
k=tup

spos(k)
2, where tup is the number of time steps that the pendulum has suc-

cessfully remained in the upright position, i.e., the angle remains within [−15◦, 15◦]. If no swing-up
is achieved or constraints are violated (|spos| > s̄pos), the reward is set to 0. All weighting factors are
in Appendix A. Implementing such an objective would be difficult in classic MPC.

4.2 Balancing and Yaw Control on a Reaction Wheel Unicycle Robot

The Wheelbot is a symmetric, balancing, reaction wheel unicycle robot [38] with two wheels: one
driving wheel and an orthogonal reaction wheel. The robot can directly control its pitch and roll
angles by applying torques to its wheels. However, the robot does not have a third “turntable”
actuator to control its yaw directly. Classic linear control methods fail at controlling the yaw angle
for this class of robots [39, 40, 41]. However, a nonlinear MPC, as in this paper, can use the reaction
wheel’s nonlinear gyroscopic effects to steer the robot’s orientation.

MPC Implementation. The robot’s state can be described by minimal coordinates consisting of roll,
pitch, and yaw orientation, and both wheel encoder values, and all of their derivatives [38], there-
fore swheelbot ∈ R10. The actions are the torques applied by the motors to both wheels, awheelbot ∈ R2.
The robot’s continuous-time, nonlinear dynamics in implicit form are described in detail in [42].
The dynamics are parametrized by θwheelbot = [mB,mW,R, IB, IW,R, rW,R, lWB, µ], where m denotes
masses, I ∈ R3 diagonals of mass moment of inertia matrices, r the effective wheel radius, l the
distance between the wheels’ rotation axis, and µ ∈ R2 friction parameters of the wheel-to-ground
contact, and indices W and R the driving and reaction wheels, and B the robots main body. Due
to symmetries, the number of free parameters is θwheelbot ∈ R11. We implement a nonlinear MPC
with quadratic cost, a horizon lookahead of 1.2 s discretized with 20ms steps using the implicit in-
tegrators from [43], and appropriate action, state, and terminal constraints. The MPC optimization
problem is formulated in CasADi [44] with sensitivities by [45], and solved with IPOPT [46].

Neural Network Approximation. The dataset that we synthesize contains 3.5 million random
samples of states and optimal actions. Computation of the dataset takes 86 thousand core hours3.
We use fully connected feedforward NNs with 100 neurons per layer, a mixture of tangent hyperbolic
and rectified linear activations, and 4 layers and 8 layers for approximating inputs and sensitivities.
We implement the NN inference in C++ with Eigen on the Wheelbot’s onboard CPU2. Inference on
both NNs takes less than 300 µs; thus, we can evaluate the AMPC at a control frequency of 200Hz.

Reward for Fine-Tuning. The objective of the Wheelbot is to control its yaw to a sequence of 4
setpoints with 90◦ step responses while balancing in place. Every episode takes 22 s. We chose
a sparse reward for fine-tuning that only considers the error in yaw, roll, and pitch angles syrp and
driving wheel angle swheel as Rwheelbot(θ) = − 1

T

∑T
k=0 w⊤

yrp
(syrp(k) − syrp,ref(k))

2 + wwheelswheel(k)
2,

where w are appropriate weights, to let the robot reorient in place effectively. A failed experiment
in which the robot crashes yields a reward of −1. This is two times smaller than the worst reward
achieved without a crash.

5 Experimental Results

In this section, we present the results from simulation and hardware experiments on automatically
tuning the parameter-adaptive AMPC with BO for the two systems presented in Sec. 4. The sim-
ulations’ primary goal is to evaluate our method’s generalizability. In the hardware experiments,
we aim to demonstrate that our method is capable of running in real-world conditions, on low-cost
hardware, and can learn efficiently within a feasible amount of time. Our software implementation
will be publicly available upon acceptance.

3computed in parallel on Intel Xeon 8468 Sapphire Rapids CPUs at 3.8GHz

6

0 5 10 15

0

0.8

Episode

R
ew

ar
d
R

Bayesian optim.
initial parameters
Sobol sampling

(a) Cartpole

0 5 10 15

-0.1

-0.03

Episode

R
ew

ar
d
R

Bayesian optim.
initial parameters
Sobol sampling

(b) Wheelbot

Figure 3: Average, minimum, and maximum reward improvement on 100 random, simulated sys-
tems stabilized by the same parameter-adaptive AMPC (no retraining of neural networks). Using
Bayesian optimization (blue) reliably improves performance with a sparse closed-loop objective
given a rough initial guess. We include a pseudo-random baseline for comparison (brown).

5.1 Results in Simulation Experiments

For the simulations, we generate 100 system instances with randomly sampled parameters for cart-
pole and Wheelbot. We then perform local fine-tuning starting from the nominal parameter values as
initial conditions. We use the same neural networks for all system instances, thus no retraining takes
place. In all experiments, we add quasi-random Sobol sampling within reasonable bounds around
the nominal parameters as the baseline. Sobol sampling is more sophisticated than grid search or
random sampling and represents an engineering approach for finding good-performing parameters,
providing a benchmark against which we can compare the sample efficiency of our method.

Fig. 3 shows the results of our simulations for cartpole and Wheelbot. In both examples, the same
neural network controller is able to stabilize a broad range of random systems, i.e., the minimum
and average reward indicates that the parameter-adaptive AMPC generalizes across instances of the
same system with different parameters. BO consistently improves over the initial parameters. The
Sobol sampling baseline also finds at least stabilizing parameters but requires more trials.

5.2 Results in Hardware Experiments

We deploy our method on the hardware systems shown in Fig. 2 to demonstrate that the proposed
method can tune AMPC controllers without retraining, thus compensating for inevitable mismatch
between nominal model (used for the MPC) and real hardware. The actual system parameters for
both systems differ from the nominal ones used in the MPC, which necessitates parameter-adaptive
AMPC. In our experiments, we initialize BO with parameters that successfully complete the task,
i.e., the cartpole can perform a swing-up and the Wheelbot stabilizes and controls the yaw orien-
tation. In practical applications, the engineer would typically have good intuition about nominal
parameters through direct measurements or average values from other system instances. If such a
good initial guess is not available, a set of random trials could also be used to initialize learning.

The hardware results are summarized in Fig. 4. Compared to the initial guess, BO improves within
20 experiments (10-15 min of hardware interaction), which is consistent across multiple random
seeds. Qualitatively, for the pendulum, optimized parameters reduce the time required for the swing-
up and drive the cart to the center of the rail during stabilization instead of oscillating around the
center as depicted in Fig 4 (b, top). On the reaction wheel unicycle robot, we can observe in Fig 4 (b,
bottom) that the optimized policy reduces oscillations of the driving wheel (i.e., less driving back
and forth during maneuvers) and minimizes the overshoots during the yaw step response. This
improvement in qualitative performance for both systems is also clearly visible in the video of our
experiments under https://youtu.be/R96QpD5iusI.

7

https://youtu.be/R96QpD5iusI

C
ar

tp
ol

e

0 5 10 15

0

0.8

R
ew

ar
d
R

0

π

A
ng

[r
ad

]

optimized
initial
reference

0 5 10 15 20

-0.4

0

0.4

C
ar

t[
m

]

W
he

el
bo

t

0 5 10 15

-0.2

-0.1

Episode

R
ew

ar
d
R

Bayesian optim.
initial guess
Sobol sampling

(a) Objective improvement

- π2

0

π
2

Y
aw

[r
ad

]

0 5 10 15 20

- π2

0

π
2

Time [s]

W
he

el
[r

ad
]- π2

0

π
2

Y
aw

[r
ad

]

0 5 10 15 20

- π2

0

π
2

Time [s]

W
he

el
[r

ad
]

(b) Exemplary trajectories

Figure 4: Results in hardware experiments. Bayesian optimization (blue) tunes the AMPC to sat-
isfactory performance in 20 hardware experiments (“Episodes”). For comparison, we include a
pseudo-random baseline (brown). Improvement from initial (red) to the optimized policy (blue) is
illustrated with closed-loop trajectories: on the cartpole, shorter swing-up and zero cart position
(top right); on the Wheelbot, reduced yaw overshoot and driving wheel action (bottom right).

6 Conclusion

In this paper, we proposed a method for automatically fine-tuning an AMPC. This substantially
reduces the need for iteratively synthesizing datasets and retraining NN controllers, which is a ma-
jor drawback of classic AMPC in practice. With our method, a single NN controller imitating
a nominal MPC is sufficient, while the proposed automatic tuning adapts the AMPC to the ac-
tual hardware. We achieve this by fine-tuning parameter-adaptive AMPCs [8] to optimal task- and
hardware-specific performance with local BO from only a few hardware experiments. We demon-
strate the effectiveness of our method on two challenging, nonlinear, and unstable control tasks in
simulation and hardware experiments: a cartpole swing-up and balancing task, and a reaction wheel
unicycle robot balancing and yaw control task. In both setups, the neural network controller runs
on embedded processors and is evaluated within milliseconds, which would not be possible with the
classic optimization-based MPC we imitate. BO consistently improves the initial parameters within
20 hardware interactions on both tasks.

Limitations. We see three main limitations of the proposed method. First, the used AMPC scheme
can only adapt to parameter changes within a local region around the nominal parameters as it relies
on the sensitivities of the MPC problem. However, we empirically show, that they are sufficient
to locally adapt policies and – to some extent – transfer to different instances from the same class
of systems. However, the sensitivities may not be accurate enough for vastly different systems or
control objectives to achieve satisfactory performance. Second, we only evaluated our method on
a small and medium-sized system, which is good empirical indication that the method scales well.
However, it is unclear, how to scale the AMPC synthesis to very high dimensional states (i.e., en-
vironments with hundreds of states or end-to-end learning from image data). Lastly, the proposed
method considers time-invariant parameters. This might be an oversimplification in applications
where parameters change over time, for example, due to wear and tear. In future work, we will tackle
this last issue by investigating the usage of time-varying or event-triggered BO schemes [47, 48].

8

Acknowledgments

We thank Johanna Menn for providing coffee in the time of greatest need and the reviewers for their
comments on the manuscript. This work is funded in part by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) – RTG 2236/2 (UnRAVeL) and DFG priority program 1914
(grant TR 1433/1-2). Simulations were performed with computing resources granted by RWTH
Aachen University under project rwth1570.

References
[1] J. B. Rawlings, D. Q. Mayne, and M. Diehl. Model predictive control: theory, computation,

and design. Nob Hill Publishing Madison, WI, 2017.

[2] C. J. Ostafew, A. P. Schoellig, and T. D. Barfoot. Learning-based nonlinear model predictive
control to improve vision-based mobile robot path-tracking in challenging outdoor environ-
ments. In 2014 IEEE International Conference on Robotics and Automation (ICRA), pages
4029–4036. IEEE, 2014.

[3] A. Liniger, A. Domahidi, and M. Morari. Optimization-based autonomous racing of 1:43 scale
rc cars. Optimal Control Applications and Methods, 36(5):628–647, 2015.

[4] G. Williams, P. Drews, B. Goldfain, J. M. Rehg, and E. A. Theodorou. Aggressive driving with
model predictive path integral control. In 2016 IEEE International Conference on Robotics and
Automation (ICRA), pages 1433–1440. IEEE, 2016.

[5] G. Bledt and S. Kim. Extracting legged locomotion heuristics with regularized predictive
control. In 2020 IEEE International Conference on Robotics and Automation (ICRA), pages
406–412. IEEE, 2020.

[6] Y. Song, A. Romero, M. Müller, V. Koltun, and D. Scaramuzza. Reaching the limit in au-
tonomous racing: Optimal control versus reinforcement learning. Science Robotics, 8(82):
eadg1462, 2023.

[7] C. Gonzalez, H. Asadi, L. Kooijman, and C. P. Lim. Neural networks for fast optimisation in
model predictive control: A review. arXiv preprint arXiv:2309.02668, 2023.

[8] H. Hose, A. Gräfe, and S. Trimpe. Parameter-adaptive approximate MPC: Tuning neural-
network controllers without retraining. In 6th Conference on Learning for Dynamics and
Control (accepted). PMLR, 2024.

[9] R. Garnett. Bayesian Optimization. Cambridge University Press, 2023.

[10] F. A. Bayer, F. D. Brunner, M. Lazar, M. Wijnand, and F. Allgöwer. A tube-based approach to
nonlinear explicit MPC. In 55th Conference on Decision and Control (CDC). IEEE, 2016.

[11] P. Florence, C. Lynch, A. Zeng, O. A. Ramirez, A. Wahid, L. Downs, A. Wong, J. Lee, I. Mor-
datch, and J. Tompson. Implicit behavioral cloning. In Proceedings of the 5th Conference on
Robot Learning, 2022.

[12] A. Bemporad, M. Morari, V. Dua, and E. N. Pistikopoulos. The explicit linear quadratic regu-
lator for constrained systems. Automatica, 2002.

[13] A. Alessio and A. Bemporad. A survey on explicit model predictive control. Nonlinear Model
Predictive Control: towards New Challenging Applications, 2009.

[14] J. Nubert, J. Köhler, V. Berenz, F. Allgöwer, and S. Trimpe. Safe and fast tracking on a robot
manipulator: robust MPC and neural network control. IEEE Robotics and Automation Letters,
2020.

9

[15] J. Carius, F. Farshidian, and M. Hutter. MPC-Net: A first principles guided policy search.
IEEE Robotics and Automation Letters, 2020.

[16] S. Adhau, S. Patil, D. Ingole, and D. Sonawane. Embedded implementation of deep learning-
based linear model predictive control. In Sixth Indian control conference (ICC), 2019.

[17] M. Klaučo, M. Kalúz, and M. Kvasnica. Machine learning-based warm starting of active
set methods in embedded model predictive control. Engineering Applications of Artificial
Intelligence, 2019.

[18] S. W. Chen, T. Wang, N. Atanasov, V. Kumar, and M. Morari. Large scale model predictive
control with neural networks and primal active sets. Automatica, 2022.

[19] Y. Vaupel, N. C. Hamacher, A. Caspari, A. Mhamdi, I. G. Kevrekidis, and A. Mitsos. Acceler-
ating nonlinear model predictive control through machine learning. Journal of process control,
2020.

[20] J. A. Paulson, F. Sorourifar, and A. Mesbah. A tutorial on derivative-free policy learning
methods for interpretable controller representations. In 2023 American Control Conference
(ACC), pages 1295–1306, 2023.

[21] A. Marco, P. Hennig, J. Bohg, S. Schaal, and S. Trimpe. Automatic LQR tuning based on
Gaussian process global optimization. In 2016 IEEE international conference on robotics and
automation (ICRA), pages 270–277. IEEE, 2016.

[22] R. Calandra, A. Seyfarth, J. Peters, and M. P. Deisenroth. Bayesian optimization for learning
gaits under uncertainty: An experimental comparison on a dynamic bipedal walker. Annals of
Mathematics and Artificial Intelligence, 76:5–23, 2016.

[23] F. Berkenkamp, A. P. Schoellig, and A. Krause. Safe controller optimization for quadrotors
with gaussian processes. In 2016 IEEE international conference on robotics and automation
(ICRA), pages 491–496. IEEE, 2016.

[24] O. Andersson, M. Wzorek, P. Rudol, and P. Doherty. Model-predictive control with stochastic
collision avoidance using Bayesian policy optimization. In 2016 IEEE International Confer-
ence on Robotics and Automation (ICRA), pages 4597–4604. IEEE, 2016.

[25] R. Guzman, R. Oliveira, and F. Ramos. Heteroscedastic Bayesian optimisation for stochastic
model predictive control. IEEE Robotics and Automation Letters, 6(1):56–63, 2020.

[26] A. Gharib, D. Stenger, R. Ritschel, and R. Voßwinkel. Multi-objective optimization of a path-
following MPC for vehicle guidance: A Bayesian optimization approach. In 2021 European
Control Conference (ECC), pages 2197–2204. IEEE, 2021.

[27] R. Guzman, R. Oliveira, and F. Ramos. Bayesian optimisation for robust model predictive
control under model parameter uncertainty. In 2022 International Conference on Robotics and
Automation (ICRA), pages 5539–5545. IEEE, 2022.

[28] D. Piga, M. Forgione, S. Formentin, and A. Bemporad. Performance-oriented model learning
for data-driven MPC design. IEEE control systems letters, 3(3):577–582, 2019.

[29] F. Sorourifar, G. Makrygirgos, A. Mesbah, and J. A. Paulson. A data-driven automatic
tuning method for MPC under uncertainty using constrained Bayesian optimization. IFAC-
PapersOnLine, 54(3):243–250, 2021.

[30] S. Müller, A. von Rohr, and S. Trimpe. Local policy search with Bayesian optimization.
Advances in Neural Information Processing Systems, 34:20708–20720, 2021.

[31] K. Wu, K. Kim, R. Garnett, and J. Gardner. The behavior and convergence of local Bayesian
optimization. Advances in Neural Information Processing Systems, 36, 2024.

10

[32] D. Eriksson, M. Pearce, J. Gardner, R. D. Turner, and M. Poloczek. Scalable global optimiza-
tion via local Bayesian optimization. Advances in neural information processing systems, 32,
2019.

[33] A. V. Fiacco. Sensitivity analysis for nonlinear programming using penalty methods. Mathe-
matical programming, 10(1):287–311, 1976.

[34] W. E. Hart, C. D. Laird, J.-P. Watson, D. L. Woodruff, G. A. Hackebeil, B. L. Nicholson, J. D.
Siirola, et al. Pyomo-optimization modeling in python, volume 67. Springer, 2017.

[35] H. Pirnay, R. López-Negrete, and L. T. Biegler. Optimal sensitivity based on ipopt. Mathemat-
ical Programming Computation, 4:307–331, 2012.

[36] M. Balandat, B. Karrer, D. R. Jiang, S. Daulton, B. Letham, A. G. Wilson, and E. Bakshy.
BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization. In Advances in
Neural Information Processing Systems 33, 2020.

[37] O. Boubaker. The inverted pendulum benchmark in nonlinear control theory: a survey. Inter-
national Journal of Advanced Robotic Systems, 10(5):233, 2013.

[38] A. R. Geist, J. Fiene, N. Tashiro, Z. Jia, and S. Trimpe. The Wheelbot: A jumping reaction
wheel unicycle. IEEE Robotics and Automation Letters, 7(4):9683–9690, 2022.

[39] J. Lee, S. Han, and J. Lee. Decoupled dynamic control for pitch and roll axes of the unicycle
robot. IEEE Transactions on Industrial Electronics, 60(9):3814–3822, 2012.

[40] G. P. Neves and B. A. Angélico. A discrete lqr applied to a self-balancing reaction wheel
unicycle: Modeling, construction and control. In 2021 American control conference (ACC),
pages 777–782. IEEE, 2021.

[41] M. A. Rosyidi, E. H. Binugroho, S. E. R. Charel, R. S. Dewanto, and D. Pramadihanto. Speed
and balancing control for unicycle robot. In 2016 International Electronics Symposium (IES),
pages 19–24. IEEE, 2016.

[42] Y. Daud, A. Al Mamun, and J.-X. Xu. Dynamic modeling and characteristics analysis of
lateral-pendulum unicycle robot. Robotica, 35(3):537–568, 2017.

[43] J. Frey, J. De Schutter, and M. Diehl. Fast integrators with sensitivity propagation for use in
casadi. In 2023 European Control Conference (ECC), pages 1–6. IEEE, 2023.

[44] J. A. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl. Casadi: a software frame-
work for nonlinear optimization and optimal control. Mathematical Programming Computa-
tion, 11:1–36, 2019.

[45] J. A. Andersson and J. B. Rawlings. Sensitivity analysis for nonlinear programming in casadi.
IFAC-PapersOnLine, 51(20):331–336, 2018.

[46] A. Wächter and L. T. Biegler. On the implementation of an interior-point filter line-search
algorithm for large-scale nonlinear programming. Mathematical programming, 106:25–57,
2006.

[47] I. Bogunovic, J. Scarlett, and V. Cevher. Time-varying Gaussian process bandit optimization.
In Artificial Intelligence and Statistics, pages 314–323. PMLR, 2016.

[48] P. Brunzema, A. von Rohr, F. Solowjow, and S. Trimpe. Event-triggered time-varying Bayesian
optimization. arXiv preprint arXiv:2208.10790, 2022.

11

Appendix for “Fine-Tuning of Neural Network Approximate
MPC without Retraining via Bayesian Optimization”

Following is the appendix for the paper of Fine-Tuning of Neural Network Approximate MPC with-
out Retraining via Bayesian Optimization. This includes:

Sec. A: An overview of hyperparameters used for Bayesian optimization in hardware and
software experiments

Sec. B: The parameter bounds from which the random systems where synthesized

A Bayesian Optimization Hyperparameters

In the following, we list all the hyperparameters for the reward functions of the cartpole and Wheel-
bot, as well as the hyperparameters for TuRBO [32], to reproduce the results in Sec. 5. We will only
list the hyperparameters from TuRBO that differ from the default values used in the corresponding
paper as well as in the TuRBO implementation in BoTorch [36].

Table 1: Hyperparameters of the cartpole and Wheelbot experiments.

Cartpole Hyperparameter s̄pos wpos TuRBO Linitial

Value 0.39m 5
0.39 m

−2 0.4

Wheelbot Hyperparameter wyrp wwheel TuRBO τfail

Value [1, 0.001, 0.01]⊤ 0.1 3

Number of Simulation Experiments. Fig. 3 results are for cartpole and Wheelbot simulations
with 100 random systems each. The parameter bounds for this are listed in Appendix B.

Number of Hardware Experiments. Fig. 4 results on cartpole and Wheelbot are for 5 random
seeds for TuRBO and 5 random seeds for Sobol sampling each.

B Parameter Bounds

Below are the parameter bounds used to synthesize random systems around the nominal parameters
for the simulation results in Sec. 5 for both cartpole and the Wheelbot.

Table 2: Parameter bounds around nominal parameters θnomfor cartpole.
Parameter madd M C1 C2 C3

Upper bound 0.016 kg 0.4 kg 2N sm−1 0.4NV−1 0.008Nms rad−1

Lower bound −0.016 kg −0.4 kg −2N sm−1 −0.4NV−1 −0.008Nms rad−1

Table 3: Parameter bounds around nominal parameters θnom for Wheelbot.
Parameter mB mW,R IB,{x,y,z} IW,R,{y,z}

Upper bound 0.1 kg 0.05 kg 100 · 10−6 kgm2 20 · 10−6 kgm2

Lower bound −0.1 kg −0.05 kg −100 · 10−6 kgm2 −20 · 10−6 kgm2

Table 4: Parameter bounds around nominal parameters θnom for Wheelbot (continued) .
Parameter IW,R{x} rW,R lWB µ1 µ2

Upper bound 50 · 10−6 kgm2 0.005m 0.005m 0.01 50
Lower bound −50 · 10−6 kgm2 −0.005m −0.005m −0.01 −50

12

	Introduction
	Related Work
	Fine-Tuning of Parameter-Adaptive AMPC with Bayesian Optimization
	Parameterized Model-Predictive Control
	Parameter-Adaptive AMPC
	Task-Specific Fine-Tuning with Bayesian Optimization

	Implementation on Benchmark Systems
	Cartpole Swing-Up and Stabilization
	Balancing and Yaw Control on a Reaction Wheel Unicycle Robot

	Experimental Results
	Results in Simulation Experiments
	Results in Hardware Experiments

	Conclusion
	Bayesian Optimization Hyperparameters
	Parameter Bounds

