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Abstract

Functional magnetic resonance imaging (fMRI) data, particularly functional con-1

nectivity matrices, are crucial for studying brain disorders like Autism Spectrum2

Disorder (ASD). However, data scarcity often limits the performance of diagnostic3

models. We address this challenge by leveraging generative diffusion models for4

data augmentation. We introduce a novel transformer-based latent diffusion model,5

the Hierarchical Clustering Connective Diffusion Unit (HC-CDU), designed to6

synthesize realistic fMRI functional connectivity matrices. Our models effectively7

generate high-fidelity connectivity patterns, demonstrating an improvement of up to8

3.61% in MAE reduction. In classification tasks on the ABIDE-I dataset, HC-CDU9

with ×1 augmentation demonstrated significant improvement, with AUC enhancing10

by up to 4.29% over baseline, showcasing enhanced discriminative power.11

1 Background12

Autism spectrum disorder (ASD) is a complex neurodevelopmental condition affecting commu-13

nication, social interactions and behaviors (1). ASD diagnosis traditionally relies on clinical and14

behavioral assessments (2). Functional magnetic resonance imaging (fMRI) has emerged as an15

indispensable tool, offering insights into neural mechanisms underlying ASD via blood oxygen16

level-dependent (BOLD) signal analysis (3).17

Machine learning has enabled numerous automated diagnostic frameworks based on functional18

connectivity analysis (6; 7). However, optimal performance requires large datasets. Collecting19

high-quality fMRI data is expensive, time-consuming and requires specialized equipment, leading to20

data scarcity that hampers ML model performance and generalizability.21

fMRI data augmentation has explored traditional approaches such as adding Gaussian noise (8) or22

sliding windows on ROI signals (9). Sophisticated methods using Variational AutoEncoders (VAE)23

(10) and Generative Adversarial Networks (GAN) (11; 12) synthesize data but suffer from "posterior24

collapse" or "mode collapse" problems. Diffusion models (13; 14; 15) have emerged as powerful25

alternatives, demonstrating remarkable ability to generate high-quality medical imaging data.26

2 Methods27

The proposed HC-CDU is a transformer-based latent diffusion model enhanced by hierarchical28

clustering, as illustrated in Figure 1. For comparison, we also evaluate a non-hierarchical variant29

(CDU), which omits the hierarchical conditioning module. HC-CDU generates diverse and realistic30

fMRI functional connectivity matrices through three main components.31
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2.1 Latent Connectivity Autoencoder32

We adopt a Variational Quantized Autoencoder (VQ-VAE) to encode and discretize functional33

connectivity matrices into a structured latent space (16). The architecture consists of an encoder34

that maps a functional connectivity matrix F ∈ RV×V (where V is the number of ROIs) to a latent35

representation ζenc. Implemented as a CNN with convolutional layers and residual blocks, it projects36

F into a feature space of dimension Dlat × Hlat × Wlat. Each row of F represents one ROI’s37

correlation with all others.38

A vector quantization module discretizes the latent features, mitigating posterior collapse issues. A39

codebook K ∈ RC×Dlat with C learnable vectors maps each latent feature zenc,i ∈ ζenc to its closest40

codebook entry:41

zquant,i = κj , wherej = argmin
k

∥zenc,i − κk∥2 (1)

A decoder reconstructs the connectivity matrix F ′ ∈ RV×V from ζquant using deconvolutional layers.42

The latent autoencoder is trained by minimizing:43

LV AE = Lrecons + LV Q + Lcomm (2)

2.2 Conditional Diffusion Transformer with Hierarchical Conditioning44

After training the latent connectivity autoencoder, learned latent representations ζenc serve as inputs45

to a conditional diffusion transformer, trained as a noise prediction network ηψ. In HC-CDU,46

this model is conditioned on the subject’s diagnostic state c, diffusion timestep k, and multi-scale47

hierarchical cluster embeddings derived via an integrated Hierarchical Clustering module, which48

performs two-level clustering to extract representations capturing functional brain organization at49

multiple scales.50

The forward diffusion process progressively adds Gaussian noise to an initial latent representation ζ051

over K time steps:52

q(ζk | ζ0) = N (ζk;
√
αkζ0, (1− αk)I) (3)

where αk is a scaling factor dependent on time step k.53

The inverse diffusion process systematically denoises ζk to recover ζ0 through a transformer-based54

noise prediction network. The architecture utilizes transformer blocks that predict noise present55

in ζk. To incorporate conditioning information (timestep k, class label), we employ adaptive layer56

normalization (adaLN):57

adaLN(ζk, k, Ccond) = γ(k,Ccond) ·
ζk −mean(ζk)

std(ζk)
+ β(k,Ccond) (4)

The noise prediction network is trained by minimizing the L1 loss between predicted and true noise:58

Ldiffusion = Eζ0,η,k[∥ηk − ηψ(ζk, k, Ccond)∥2] (5)

New functional connectivity matrices are generated by integrating the trained VQ-VAE and condi-59

tional diffusion transformer, modulated by hierarchical cluster embeddings. Starting from initial noise60

and target class label, the model iteratively denoises via reverse diffusion process, with hierarchical61

conditioning applied at each step.62

3 Experiments and Results63

Dataset: We developed and evaluated our methodology using resting-state fMRI data from the64

ABIDE-I dataset (17), with 505 ASD and 530 controls. The brain was segmented into 200 ROIs using65

the CC200 atlas (18). We adopted a stratified 5-fold cross-validation strategy with approximately66

60% training, 20% validation, and 20% testing data.67

Implementation: VQ-VAE trained 800 epochs (batch size 64, learning rate 3e-4, commitment cost68

0.25). Architecture: 128 internal channels, 2 residual blocks, embedding dim 16, codebook size69

768. Diffusion models trained 600 epochs (batch size 4, learning rate 3e-4, 100 timesteps, L1 loss).70
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Figure 1: The comprehensive HC-CDU pipeline includes: (1) Data preprocessing to extract ROI
signals and compute functional connectivity matrices; (2) a Latent Connectivity Autoencoder (VQ-
VAE) that encodes inputs into structured latent space; and (3) a Conditional Diffusion Transformer
that generates novel latent representations, guided by hierarchical clustering to capture multi-scale
brain network structures.

Table 1: 5-Fold Cross-Validation Performance
Fold No Augmentation HC-CDU x1 HC-CDU x4 CDU x1 CDU x4

Acc AUC Sen Spe Acc AUC Sen Spe Acc AUC Sen Spe Acc AUC Sen Spe Acc AUC Sen Spe
1 69.57 74.19 73.58 65.35 71.50 78.48 76.42 66.34 67.15 75.39 79.25 54.46 69.08 76.66 72.64 65.35 64.25 72.86 77.36 50.50
2 68.12 76.78 70.75 65.35 70.05 79.28 71.70 68.32 69.08 75.55 73.58 64.36 69.08 76.81 67.92 70.30 65.22 73.21 77.36 52.48
3 67.63 72.70 64.15 71.29 67.63 73.68 66.98 68.32 59.90 66.91 79.25 39.60 66.18 73.70 66.98 65.35 59.42 66.97 40.59 77.36
4 70.53 76.26 71.70 69.31 61.35 69.48 64.15 58.42 62.32 66.58 72.64 51.49 62.32 69.88 67.92 56.44 60.39 66.77 79.25 40.59
5 66.18 74.39 67.92 64.36 67.63 75.68 70.75 64.36 66.67 75.74 69.81 63.37 66.67 74.38 70.75 62.38 66.18 74.25 81.13 50.50

Table 2: Mean Absolute Error Assessment for Generated Functional Connectivity Matrices

Scenario MAE (Mean ± Std)
Real Data Baseline 0.194 ± 0.001
HC-CDU x1 0.187 ± 0.003
HC-CDU x4 0.187 ± 0.003
CDU x1 0.177 ± 0.001
CDU x4 0.178 ± 0.001

Transformer: hidden size 128, depth 14, 8 heads. HC-CDU used 20 and 8 clusters with temperature71

0.5. SVM classifier with RBF kernel for evaluation.72

HC-CDU ×1 (Table 1) achieved balanced improvements. Fold 1: 78.48% AUC (+4.29% over73

baseline). Average: 67.63% accuracy, 75.32% AUC. CDU ×1: 74.29% AUC, 66.67% accuracy.74

Higher augmentation (×4) reduced performance but increased sensitivity. All models (Table 2)75

achieved lower MAE than baseline, confirming high-fidelity synthetic data generation.76

4 Conclusion77

We introduced HC-CDU, a hierarchical clustering-enhanced diffusion model for fMRI connectivity78

augmentation in ASD diagnosis. Moderate synthetic data augmentation significantly improves79

diagnostic performance while maintaining data fidelity. Hierarchical clustering provides benefits over80

non-hierarchical approaches, establishing a framework for addressing data scarcity in psychiatric81

neuroimaging research.82

5 Broader Impact83

Potential negative impacts include privacy concerns from synthetic data generation, bias amplification,84

and over-dependence on automated tools. We emphasize careful validation and human oversight.85
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