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Abstract

Speech Act Classification, which consists on
determining the communicative intent of an ut-
terance, has been investigated widely over the
past few years as a standalone task due to the
tremendous growth of NLP-based systems and
Al chat assistants such as ChatGPT. It aims to
classify an utterance with respect to the func-
tion it serves in a dialogue, i.e. the act the
speaker is performing. In this paper, we fo-
cus on building a dialogue act classifier using
the Meeting Recorder Dialogue Act Corpus
(MRDA). We approach the problem as a se-
quence labeling task by using a recurrent neu-
ral networks model bidirectional LSTM (BiL-
STM) with different embedding models. we
add also a context-aware self-attention prop-
erty and compare results with baseline perfor-
mance in literature. We notice an increase
in model accuracy using the BERT encoding
model with self-attention and context-aware
mechanism.

1 Introduction

Dialogue act (DA) classification is an important
task in natural language processing that involves
identifying the intended purpose or function of
an utterance in a conversation. The task involves
categorizing the different types of communicative
acts that people perform during a conversation,
such as making a statement, asking a question, ex-
pressing an opinion, or making a request’.

Dialog act (DA) classification is a fundamental
task in natural language processing that enables a
conversational agent to understand the user’s in-
tent and generate an appropriate response. By
identifying the type of speech act being performed
in a given utterance (e.g., question, statement, re-
quest), the agent can tailor its response to better
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meet the user’s needs. This is particularly im-
portant in spoken dialog systems (Dinkar* et al.,
2020), where the goal is to create an engaging and
effective conversation between the user and the
agent.

Without the ability to classify DAs, the agent
would not be able to effectively condition (Modi
et al., 2020; Jalalzai* et al., 2020) its response
based on the user’s intent. For example, if a user
asks a question but the agent responds with a state-
ment, the conversation may quickly become con-
fusing or frustrating for the user. However, by cor-
rectly identifying the user’s DA and generating an
appropriate response, the agent can create a more
natural and effective dialogue.

Overall, DA classification plays a critical role in
the development of conversational agents. By ac-
curately identifying and understanding the user’s
intent, these systems can generate more appropri-
ate and effective responses, leading to better user
experiences and increased engagement.

DA classification is approached either as a se-
quence labeling task or a text classification prob-
lem. Deep learning models were widely used
for DA (Lee and Dernoncourt, 2016),(Li and Wu,
2016). However, machine learning models such
as logistic regression or naive bayes have also
been used and showed an acceptable performance.
(Lendvai and 2, 2007).

2 Related Work

There are two main classes of approaches which
have been used in DA classification. the first con-
siders the problem as a classification task where
each utterance is classified in isolation. (Lee and
Dernoncourt, 2016) have used CNN with 84.6%
accuracy and (Lendvai and 2, 2007) have used
Naive Bayes with 82% accuracy. The second
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Speaker Utterance DA label
A Okay. Other
A Um, what did you do this

weekend? Question
B Well, uh, pretty much spent

most of my time in the yard.  Statement
B [Throat Clearing] Non Verbal
A Uh-Hubh. Backchannel
A What do you have planned

for your yard? Question
B Well, we're in the process

of, revitalizing it. Statement

Figure 1: A snippet of a conversation sample from the
MRDA Corpus. Each utterance has a corresponding
dialogue act label.

approaches the problem as a sequence labeling
task learning dependencies from previous utter-
ances (Li and Wu, 2016). The most used mod-
els for this task are recurrent neural networks and
more precisely BiILSTMs along with an embed-
ding model. A research team in IBM India has
built a hierarchical recurrent neural network us-
ing BiLSTM as a base unit and the conditional
random field (CRF) as the top layer to classify
each utterance into its corresponding dialogue act
and achieved 90.9% of model accuracy (IBM Re-
search, 2017) . Others have also tried to in-
crease BiLSTM performance by integrating the
context using Attention or self-attention mecha-
nisms. (Tetreault, 2017). Scientists had also been
interested in understanding different speech fea-
tures such as fillers which carry valuable informa-
tion about the speaker’s level of confidence, hesi-
tation, or uncertainty (Tanvi Dinkar, 2020). Oth-
ers had worked on the switching languages in the
same conversation issue as there is a growing in-
terest in understanding dialogue in a multilingual
fashion (Emile Chapuis, 2021).

3 Problem Framing

In this paper, we build a DA classifier using
different techniques for sequence labeling found
in literature.  We then compare them based
on each model accuracy with baseline model
performance. Before describing the used models
in detail, the sequence labeling problem can be
modeled as set D of N conversations where
D = (C4,C? ..,CN) with (Y1, Y2 .. YY)
the corresponding target. Each conversa-
tion C! itself is a sequence of R; utterances
Ct = (ul,uz, --qui) with Y? = (yl,yg, ...,yRi)
the corresponding target.

This means that for each utterance u; in each
conversation , we have a corresponding target
label y;. Each utterance w; in return is itself
a sequence of S; words stringed together, ie.,
u; = (w1, w2, ..., ws; ).

The overall architecture of our model involves
four main components : (1) encoding information
within the utterances using GloVe (Jeffrey Pen-
nington and Manning, 2014), Keras or BERT (De-
vlin, 2019) embedding; (2) a word-level Hierar-
chical Recurrent Encoder using BiLSTM instead
of a linear transformation (IBM Research, 2017);
(3) a context-based and attention feature concate-
nating word representation into utterances repre-
sentations; (4) a conversation-level including a
Softmax function in final layer for classification.
We provide a schema of those blocs below for a
detailed description.

4 Data

We train and assess our models on the Meeting
Recorder Dialogue Act Corpus (MRDA) (Ang and
Shriberg, 2005). It contains 72 hours of naturally
occurring multi-party meetings that were first con-
verted into 75 word level conversations, and then
hand annotated with 11 general Tags/labels and 39
specific tags. In this work and for the sake of sim-
plicity, we use the basic annotation which contains
5 classes : Statements, Questions, Floorgrabber,
Backchannel, Disruption.
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Figure 2: Basic tags distribution in MRDA cor-
pus. Statements(S); Questions(Q); Floorgrabber(F);

Backchannel(B); Disruption(D).

The Data seems to be balanced. In a natural con-
versation, statements are more frequently occur-
ring than questions or backchannels. The use of
accuracy as an evaluation metric is legit.



Model Acc(%)
Hierachical BILSTM-CRF (IBM Research, 2017) | 90.9
LSTM-softmax (Khanpour and Nielsen, 2016) 86.8
CNN (Lee and Dernoncourt, 2016) 84.6
Naiive Bayes (Lendvai and 2, 2007) 82.0
BiLSTM + Attention+ Context (Tetreault, 2017) 87.7

Table 1: Literature review of model performance in related work papers.

S Experiments Protocol

In this section, we describe the modeling pro-
tocol deployed in the notebook code. We use
five different ways to build the DA classifier.
(A) GloVe Embedding + BiLSTM; (B) Keras
Embedding + BiLSTM; (C) Keras Embedding +
BiLSTM + self-attention; (D) Keras Embedding
+ BILSTM + self-attention, context-awareness;
(E') BERT Embedding + BiLSTM + Attention +
Context-awareness.

In each case, we either use a different embed-
ding or add context and attention mechanisms to
the BiLSTM in order to achieve the highest accu-
racy.

5.1 Utterance level encoding

For each word in an utterance, we use different
word embeddings such as GloVe (Jeffrey Pen-
nington and Manning, 2014) or BERT (Devlin,
2019). The word embedding is then followed
by a BiLSTM layer that serves as input to the
utterance-level context-aware self-attention mech-
anism which learns the final utterance representa-
tion.

5.2 Context-awareness self-attention
encoding

We use the previous hidden state from the last
layer, which we will explain in the next section,
to provide the context of the conversations. This is
combined with the hidden states of all the words
in an utterance using a self-attentive encoder (Lin
and al, 2021), which computes a 2D representa-
tion of each utterance. The output is then fed to
a linear layer and concatenated with the previous
utterance output®.

5.3 Lastlayer

To incorporate context dependence of the previous
utterance, we feed outputs of the previous step into
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Figure 3: General modeling architecture

a self-attention encoder and then we use the Soft-
max activation function for DA classification. The
use of the Softmax has several advantages and was
mainly based on its ability to handle multiclass
classification problems and provide probabilistic
output, which can be useful for decision-making
in conversational systems.

5.4 hyperparameter tuning

The training process is performed in mini-batches
of a maximum batch-size of 32 example and each
utterance was padded to a maximum length of 100.
We used L2 regularization of 1le — 3. The word
vectors were initialized with the 300-dimensional.
Dropout was applied to the embedding obtained
from the output of each encoder. The learning rate
is set by default by the keras library. Early stop-
ping is also used on the validation set with a pa-
tience of 3 epochs. We use the adam optimizer
with the loss function set to categorical cross en-
tropy. The validation metric is the accuracy. We
did not use any specific method to optimize the
number of layers or neurons in each layer. They



were set arbitrarily.

6 Results

Based on the hyperparameters tuning discussed ..
in the previous section, we compare the approach

composed of BERT embedding, BiLSTM, self-
attention and context-awarness with four other

approaches. We observe a remarkable increase in «»

accuracy as shown in table 2.

Note that in this project, we did not reinvent the -
wheel. All these models already exist. We have ™

simply tried different settings and combinations to
achieve the best model accuracy, as in ChatGPT.
Nothing new or disruptive but only well arranged
according to Yunn LeCan.

Figure 4: Accuracy comparison: 1 : (IBM Research,
2017); 2 : (Khanpour and Nielsen, 2016); 3:(Lee and
Dernoncourt, 2016); 4 : (Lendvai and 2, 2007); 5 :
(Tetreault, 2017); E : 2

We used then methods referenced in table 1
as baseline models. Notice that our model is
performing as nearly as (Tetreault, 2017) because
they are the same. However, based on the data
processing techniques , the embedding models
and the choice of hyperparameters, the accuracy
obtained may differ.

As we can see in figure 4, our approach’s
accuracy performance (E) is lower than the
one of the Hierachical BiLSTM-CRF model
(IBM Research, 2017) which incorporates also
the self-attention context-awarness mechanism.
This is due to the use of CRF layer which enables
to model as well dependencies among labels,
aside the dependencies among utterances which
has already been captured by the bidirectional
encoders.

Figure 9: Evolution of the cross entropy loss and model
accuracy both on train and validation data over number
of epochs.

To mitigate the problem of computational re-
sources, we used the ENSAE SSP cloud service
with GPU access. As shown in figure 9, our
model’s accuracy and loss converged after few
epochs with a fixed batch-size of 32.

7 Discussion and Conclusion

The BERT embedding (Devlin, 2019) has shown
good performance compared to other models.
We used the same architecture across all our
approaches to make the fairest possible compar-
ison. Our goal was to find the best recipe and
combination to achieve the best model accuracy.

The proposed architecture effectively captures
long-term dependencies between words within an
utterance as well as across different utterances,
enabling the generation of vector representations
for each utterance in a conversation. The efficacy
of capturing dependencies, whether at the word-
level or at the utterance-level, is highly dependent
on the data encoding and the encoding model’s
ability to capture relevant dependency features.
This is reflected in the varying levels of accuracy
observed across the different implemented ap-
proaches.

Our work can be extended by including the
CRF based classifier to model the dependencies
between the Dialog Act labels and the utterance
representations (IBM Research, 2017) and evalu-
ate the models on other datasets as SWDA.




Modeling approaches Acc
GloVe embedding + BILSTM (A) 54%
Keras embedding + BiLSTM (B) 77%
Keras embedding + BILSTM + Attention (C') 78%
Keras embedding + BiLSTM + Attention + Context (D) | 78%
BERT embedding + BiLSTM + Attention + Context (E) | 88%

Table 2: DA classifier accuracy of modelling approaches

In the context of dialog systems, DA classifi-
cation is a crucial task that enables the system to
understand the user’s intention and provide an ap-
propriate response. Many approaches have been
proposed to solve the DA classification task, rang-
ing from traditional machine learning algorithms
to deep learning models such as neural networks.
These models vary in their architecture, training
methods, and input representation.

As the field of natural language processing
continues to evolve, researchers are exploring
new ways to improve the performance of DA
classification models. One such approach is the
incorporation of multimodal data (Garcia* et al.,
2019; Colombo et al., 2021), such as images or
video, to supplement the textual data used in clas-
sification. Adding multimodal data can provide
additional context that can help disambiguate user
intent and improve model accuracy.

As sentiment analysis (Witon* et al., 2018;
Colombo* et al., 2019) can be used for a variety of
applications, we can consider, in further work, in-
corporating emotion detection in the previous im-
plemented models as a next step in trying to bet-
ter understand the context of the conversations and
the speakers themselves.
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