
Under review as a conference paper at ICLR 2021

REINFORCEMENT LEARNING WITH LATENT FLOW

Anonymous authors

Paper under double-blind review

ABSTRACT

Temporal information is essential to learning effective policies with Reinforcement
Learning (RL). However, current state-of-the-art RL algorithms either assume
that such information is given as part of the state space or, when learning from
pixels, use the simple heuristic of frame-stacking to implicitly capture temporal
information present in the image observations. This heuristic is in contrast to
the current paradigm in video classification architectures, which utilize explicit
encodings of temporal information through methods such as optical flow and
two-stream architectures to achieve state-of-the-art performance. Inspired by
leading video classification architectures, we introduce the Flow of Latents for
Reinforcement Learning (Flare), a network architecture for RL that explicitly
encodes temporal information through latent vector differences. We show that
Flare (i) recovers optimal performance in state-based RL without explicit access
to the state velocity, solely with positional state information, (ii) achieves state-of-
the-art performance on pixel-based continuous control tasks within the DeepMind
control benchmark suite, (iii) is the most sample efficient model-free pixel-based
RL algorithm on challenging environments in the DeepMind control suite such as
quadruped walk, hopper hop, finger turn hard, pendulum swing, and walker run,
outperforming the prior model-free state-of-the-art by 1.9⇥ and 1.5⇥ on the 500k
and 1M step benchmarks, respectively, and (iv), when augmented over rainbow
DQN, outperforms or matches the baseline on a diversity of challenging Atari
games at 50M time step benchmark.

1 INTRODUCTION

Reinforcement learning (RL) (Sutton & Barto, 1998) holds the promise of enabling artificial agents to
solve a diverse set of tasks in uncertain and unstructured environments. Recent developments in RL
with deep neural networks have led to tremendous advances in autonomous decision making. Notable
examples include classical board games (Silver et al., 2016; 2017), video games (Mnih et al., 2015;
Berner et al., 2019; Vinyals et al., 2019), and continuous control (Schulman et al., 2017; Lillicrap
et al., 2016; Rajeswaran et al., 2018). A large body of research has focused on the case where an
RL agent is equipped with a compact state representation. Such compact state representations are
typically available in simulation (Todorov et al., 2012; Tassa et al., 2018) or in laboratories equipped
with elaborate motion capture systems (OpenAI et al., 2018; Zhu et al., 2019; Lowrey et al., 2018).
However, state representations are seldom available in unstructured real-world settings like the home.
For RL agents to be truly autonomous and widely applicable, sample efficiency and the ability to act
using raw sensory observations like pixels is crucial. Motivated by this understanding, we study the
problem of efficient and effective deep RL from pixels.

A number of recent works have made progress towards closing the sample-efficiency and performance
gap between deep RL from states and pixels (Laskin et al., 2020b;a; Hafner et al., 2019a; Kostrikov
et al., 2020). An important component in this endeavor has been the extraction of high quality
visual features during the RL process. Laskin et al. (2020a) and Stooke et al. (2020) have shown
that features learned either explicitly with auxiliary losses (reconstruction or contrastive losses)
or implicitly (through data augmentation) are sufficiently informative to recover the agent’s pose
information. While existing methods can encode positional information from images, there has
been little attention devoted to extracting temporal information from a stream of images. As a
result, existing deep RL methods from pixels struggle to learn effective policies on more challenging
continuous control environments that deal with partial observability, sparse rewards, or those that
require precise manipulation.

1

Under review as a conference paper at ICLR 2021

5/

/DWHQW
'LIIHUHQFHV

W��

W��

W

B

B

/DWHQW
9HFWRUV

B 6XEWUDFWLRQ

Figure 1: Flow of Latents for Reinforcement
Learning (Flare) architecture. Input frames are
first encoded individually by the same encoder.
The resulting latent vectors are then concatenated
with their latent differences before being passed to
the downstream RL algorithm.

Current approaches in deep RL for learning tem-
poral features are largely heuristic in nature. A
commonly employed approach is to stack the
most recent frames as inputs to a convolutional
neural network (CNN). This can be viewed as
a form of early fusion (Karpathy et al., 2014),
where information from the recent time window
is combined immediately at the pixel level for in-
put to the CNN. In contrast, modern video recog-
nition systems use alternate architectures that
employ optical flow and late fusion (Simonyan
& Zisserman, 2014), where frames are processed
individually with CNN layers before fusion and
downstream processing. Such a late fusion ap-
proach is typically beneficial due to better per-
formance, fewer parameters, and the ability to
use multi-modal data (Jain et al., 2019; Chebotar
et al., 2017). However, it is not straightforward
how to port such architectures to RL. Comput-
ing optical flow in real-time for action selection can be computationally infeasible in applications with
fast control loops like robotics. In our experiments, we also find that a naive late fusion architecture
minus the optical flow yields poor results in RL settings (see Section 6.3). This observation is
consistent with recent findings in related domains like visual navigation (Walsman et al., 2019).

To overcome the above challenges, we develop Flow of Latents for Reinforcement Learning (Flare),
a new architecture for deep RL from pixels (Figure 1). Flare can be interpreted as a structured late
fusion architecture. Flare processes each frame individually to compute latent vectors, similar to
a standard late fusion approach (see Figure 1). Subsequently, temporal differences between the
latent feature vectors are computed and fused along with the latent vectors by concatenation for
downstream processing. By incorporating this structure of temporal difference in latent feature space,
we provide the learning agent with appropriate inductive bias. In experiments, we show that Flare (i)
recovers optimal performance in state-based RL without explicit access to the state velocity, solely
with positional state information, (ii) achieves state-of-the-art performance compared to model-free
methods on several challenging pixel-based continuous control tasks within the DeepMind control
benchmark suite, namely Quadruped Walk, Hopper Hop, Finger Turn-hard, Pendulum Swingup, and
Walker Run, and (iii) is the most sample efficient model-free pixel-based RL algorithm across these
tasks, outperforming the prior model-free state-of-the-art RAD by 1.9⇥ and 1.5⇥ on the 500k and
1M environment step benchmarks, respectively.

2 RELATED WORK

Pixel-Based RL The ability of an agent to autonomously learn control policies from visual inputs
can greatly expand the applicability of deep RL (Dosovitskiy et al., 2017; Savva et al., 2019). Prior
works have used CNNs to extend RL algorithms like PPO (Schulman et al., 2017), SAC (Haarnoja
et al., 2018), and Rainbow (Hessel et al., 2017) to pixel-based tasks. Such direct extensions have
typically required substantially larger number of environment interactions when compared to the
state-based environments. In order to improve sample efficiency, recent efforts have studied the
use of auxiliary tasks and loss functions (Yarats et al., 2019; Laskin et al., 2020b; Schwarzer et al.,
2020), data augmentation (Laskin et al., 2020a; Kostrikov et al., 2020), and latent space dynamics
modeling (Hafner et al., 2019b;a). Despite these advances, there is still a large gap between the
learning efficiency in state-based and pixel-based environments in a number of challenging benchmark
tasks. Our goal in this work is to identify where and how to improve pixel-based performance on this
set of challenging control environments.

Neural Network Architectures in RL The work of Mnih et al. (2015) combined Q-learning with
CNNs to achieve human level performance in Atari games. In this work, Mnih et al. (2015) con-
catenate the most recent 4 frames and use a convolutional neural network to output the Q values. In
2016, Mnih et al. (2016) proposed to use a shared CNN among frames to extract visual features and
aggregate the temporal information with LSTM. The same architectures have been adopted by most

2

Under review as a conference paper at ICLR 2021

works till date (Laskin et al., 2020b; Schwarzer et al., 2020; Kostrikov et al., 2020; Laskin et al.,
2020a). The development of new architectures to better capture temporal information in a stream of
images has received little attention in deep RL, and our work aims to fill this void. Perhaps closest
to our motivation is the work of Amiranashvili et al. (2018) who explicitly use optical flow as an
extra input to the RL policy. However, this approach requires additional information and supervision
signal to train the flow estimator, which could be unavailable or inaccurate in practice. In contrast,
our approach is a simple modification to existing deep RL architectures and does not require any
additional auxiliary tasks or supervision signals.

Two-Stream Video Classification In video classification tasks, such as activity recognition (Soomro
et al., 2012), there are a large body of works on how to utilize temporal information (Donahue et al.,
2015; Ji et al., 2012; Tran et al., 2015; Carreira & Zisserman, 2017; Wang et al., 2018; Feichtenhofer
et al., 2019). Of particular relevance is the two-stream architecture of Simonyan & Zisserman (2014),
where one CNN stream takes the usual RGB frames, while the other the optical flow computed
from the RGB values. The features from both streams are then late-fused to predict the activity
class. Simonyan & Zisserman (2014) found that the two-stream architecture yielded a significant
performance gain compared to the single RGB stream counterpart, indicating the explicit temporal
information carried by the flow plays an essential role in video understanding. Instead of directly
computing the optical flow, we propose to capture the motion information in latent space to avoid
computational overheads and potential flow approximation errors. Our approach also could focus on
domain-specific motions that might be overlooked in a generic optical flow representation.

3 BACKGROUND

Soft Actor Critic (SAC) (Haarnoja et al., 2018) is an off-policy actor-critic RL algorithm for
continuous control with an entropy maximization term augmented to its score function to encourage
exploration. SAC learns a policy network ⇡ (at|ot) and critic networks Q�1(ot, at) and Q�2(ot, at)
to estimate state-action values. The critic Q�i(ot, at) is optimized to minimize the (soft) Bellman
residual error:

LQ(�i) = E⌧⇠B

h�
Q�i(ot, at)� (rt + �V (ot+1))

�2i
, (1)

where r is the reward, � the discount factor, ⌧ = (ot, at,ot+1, rt) is a transition sampled from replay
buffer B, and V (ot+1) is the (soft) target value estimated by:

V (ot+1) =
⇣
min
i

Q�̄i
(ot+1, at+1)� ↵ log ⇡ (at+1|ot+1)]

⌘
, (2)

where ↵ is the entropy maximization coefficient. For stability, in eq. 2, Q�̄i
is the exponential moving

average of Q�i’s over training iterations. The policy ⇡ is trained to maximize the expected return
estimated by Q together with the entropy term

L⇡() = �Eat⇠⇡ [min
i

Q�i(ot, at)� ↵ log ⇡ (at|ot)], (3)

where ↵ is also a learnable parameter.

Reinforcement Learning with Augmented Data (RAD) (Laskin et al., 2020a) is a recently proposed
training technique. In short, RAD pre-processes raw pixel observations by applying random data
augmentations, such as random translation and cropping, for RL training. As simple as it is, RAD
has taken many existing RL algorithms, including SAC, to the next level. For example, on many
DMControl (Tassa et al., 2018) benchmarks, while vanilla pixel-based SAC performs poorly, RAD-
SAC—i.e. applying data augmentation to pixel-based SAC—achieves state-of-the-art results both
in sample efficiency and final performance. In this work, we refer RAD to RAD-SAC and the
augmentation used is random translation.

Rainbow DQN is an extension of the Nature Deep Q Network (DQN) (Mnih et al., 2015), which
combines multiple follow-up improvements of DQN to a single algorithm (Hessel et al., 2017). In
summary, DQN (Mnih et al., 2015) is an off-policy RL algorithm that leverages deep neural networks
(DNN) to estimate the Q value directly from the pixel space. The follow-up works Rainbow DQN
bring together to enhance the original DQN include double Q learning (Hasselt, 2010), prioritized
experience replay (Schaul et al., 2015), dueling network (Wang et al., 2016), noisy network (Fortunato
et al., 2017), distributional RL (Bellemare et al., 2017) and multi-step returns (Sutton & Barto, 1998).

3

Under review as a conference paper at ICLR 2021

Rainbow DQN is one of the state-of-the-art RL algorithms on the Atari 2600 benchmark (Bellemare
et al., 2013). We thus adopt an official implementation of Rainbow (Quan & Ostrovski, 2020) as our
baseline to directly augment Flare on top.

4 MOTIVATION

Environment Step
Full-state SAC Flare Position-only SAC

Figure 2: (i) full-state SAC (blue) where input contains both pose and temporal information; (ii)
position-only SAC (green) with only pose information as input; (iii) Flare applied to the state space
(orange) with pose information and velocity approximations through pose offsets as input. While
full-state SAC efficiently learns the optimal policy, position-only SAC recovers suboptimal policies
and fails learning at all in some cases. Meanwhile, the fusion of approximated velocities in Flare is
able to recover the optimal policy nearly as efficiently as the full state SAC in most cases. Results are
averaged over 3 seeds with standard deviation.

Environment Step
Recurrent Stack SACFlare

Figure 3: We compare Flare to 2 SAC variants: i) Stack SAC (green) receives consecutive positional
states (st, st�1, st�2, st�3) as input, whereas positional-only SAC receives (st) and Flare receives
(st, �t) where �t = (st � st�1, st�1 � st�2, st�2 � st�3). ii) Recurrent SAC (blue) uses recurrent
layers to process a series of states. Despite of the implicit access to temporal information between
consecutive states, Stack SAC and Recurrent perform significantly worse than Flare on most environ-
ments, highlighting the benefit of explicit fusion of temporal information. Results are averaged over
three seeds.

We motivate our method by investigating the importance of temporal information in state-based RL.
Our investigation utilizes five diverse DMControl (Tassa et al., 2018) tasks. The full state for these
environments includes both the agent’s pose information, such as the joints’ positions and angles, as
well as temporal information, such as the joints’ translational and angular velocities. We train two
variants with SAC—one variant where the agent receives the full state as input (full-state SAC), and
the other with the temporal information masked out, i.e. the agent only receives the pose information
as its input (position-only SAC). The resulting learning curves are in Figure 2. While the full-state
SAC learns the optimal policy quickly, the position-only SAC learns much sub-optimal policies,
which often fail entirely. It is therefore clearly shown that effective policies cannot be learned from
positional information alone, and that temporal information is crucial for efficient learning.

While full-state SAC can receive velocity information from internal sensors in simulation, in the more
general case such as learning from pixels, such information is often not readily available. For this
reason, we investigate whether we can explicitly approximate temporal information as the difference
between two consecutive states. If the input is the positional state, then this positional difference
roughly approximates the agent’s velocity. Given poses spt , s

p
t�1, s

p
t�2, s

p
t�3 at time t, t�1, t�2, t�3,

we compute the positional offset �t=(st � st�1, st�1 � st�2, st�2 � st�3), and provide the fused
vector (st, �t) to the SAC agent. This procedure precisely describes the state-based version of Flare.
Results shown in Figure 2 demonstrate that state-based Flare significantly outperforms the position-
only SAC. Furthermore, state-based Flare achieves optimal asymptotic performance, and its learning

4

Under review as a conference paper at ICLR 2021

(ot, ot�1, ot�2)

ot

ot�1

ot�2

ot

ot�1

ot�2

zt

zt�1

zt�2

�t

�t�1

/DWHQW
'LIIHUHQFHV

B

B

/DWHQW
9HFWRUV

B 6XEWUDFWLRQ

�D��)UDPH�VWDFNLQJ�KHXULVWLF �E��,QGLYLGXDO�IUDPH�HQFRGLQJ �E��)ORZ�RI�/DWHQWV�IRU�5/��)ODUH�

��

Q�

��

Q�

��

Q�

�t�k = zt�k � zt�2k

Fusion by 
Concatenation

(b) Individual frame encoding(a) Frame stacking heuristic (c) Flow of Latents for RL (Flare)

Figure 4: Flow of Latents for Reinforcement Learning (Flare). In panel (a) we show the architecture
for the frame stacking heuristic, in (b) we show an alternative to the frame stacking hueristic by
encoding each image individually, and in (c) we show the Flare architecture which encodes images
individually, computes the feature differences, and fuses the differences together with the latents.

efficiency is comparable to full-state SAC in most environments. Given that the position-only SAC
(which utilizes st alone) has only partial information compared to Flare that utilizes (st, �t), we also
investigate a variant where we provide consecutive positions (st, st�1, st�2, st�3) to the SAC agent.
We call this variant Stack SAC, since it is identical to the frame-stack heuristic used in pixel-based
RL. Results in Figure 3 show that Flare still significantly outperforms the Stack SAC. It suggests that
the well-structured inductive bias in the form of temporal-position fusion is essential for efficient
learning.

A recurrent structure is an alternative approach to process temporal information. We implement
an SAC variant with recurrent modules (Recurrent SAC) and compare it with Flare. Specifically,
we pass a sequence of poses spt , s

p
t�1, s

p
t�2, s

p
t�3 through an LSTM cell. The number of the LSTM

hidden units h is set to be the same as the dimension of �t in Flare. The trainable parameters of the
LSTM cell are updated to minimize the critic loss. Recurrent SAC is more complex to implement
and requires longer wall-clock training time, but performs worse than Flare as shown in Figure 3.

Our findings from the state experiments in Figure 2 and Figure 3 suggest that (i) temporal information
is crucial to learning effective policies in RL and (ii) approximating temporal information in the
absence of sensors that provide explicit measurements is sufficient in most cases. When learning
from pixels, it is common to assume the absence of specialized sensors for reading out temporal
information. We therefore hypothesize that explicit fusion of temporal information approximated
directly from pixel-level inputs can improve the efficiency of learning control policies.

5 REINFORCEMENT LEARNING WITH LATENT FLOW

To date, frame stacking is the most common way of pre-processing pixel-based input to convey
temporal information for RL algorithms. This heuristic, introduced by Mnih et al. (2015), has been
largely untouched since its inception and is used in most state-of-the-art RL architectures. However,
our observations from the experiments run on state input in Section 4 suggest an alternative to the
frame stacking heuristic through the explicit inclusion of temporal information as part of the input.
To learn effective control policies from pixels, we seek a general approach to explicitly incorporate
temporal information that can be coupled to any base RL algorithm with minimal modification. To
this end, we propose the Flow of Latents for Reinforcement Learning (Flare) architecture. Our
proposed method calculates differences between the latent encodings of individual frames and fuses
the feature differences and latent embeddings before passing them as input to the base RL algorithm,
as shown in Figure 4. We demonstrate Flare on top of 2 state-of-the-art model-free off-policy RL
baselines, RAD-SAC (Laskin et al., 2020a) and Rainbow DQN (Hessel et al., 2017), though any RL
algorithm can be used in principle.

5

Under review as a conference paper at ICLR 2021

Task Flare (500K) RAD (500K) Flare (1M) RAD (1M)
Quadruped Walk 296± 139 206± 112 488± 221 322± 229

Pendulum Swingup 242± 152 79± 73 809± 31 520± 321
Hopper Hop 90± 55 40± 41 217± 59 211± 27

Finger Turn hard 282± 67 137± 98 661± 315 249± 98
Walker Run 426± 33 547± 48 556± 93 628± 39

Table 1: Evaluation on 5 benchmark tasks around 500K and 1M environment steps. We evaluate over 5 seeds,
each of 10 trajectories and show the mean ± standard deviation across runs.

Flare (50M) Rainbow (50M) Flare (50M) Rainbow (50M)
Assault 9466±1928 10123±2061 Breakout 330±10 321±34
Freeway 34±0 34±0 Krull 8423±173 8030±717

Montezuma 400±0 0±0 Seaquest 8362±1180 4521±3554
Up n Down 44055±12746 24568±2216 Tutankham 240±7 148±16

Table 2: Evaluation on 8 benchmark Atari games at 50M training steps over 3 seeds.

5.1 LATENT FLOW

In computer vision, the most common approach to explicitly inject temporal information of a video
sequence is to compute dense optical flow between consecutive frames (Simonyan & Zisserman,
2014). Then the RGB and the optical flow inputs are individually fed into two streams of encoders
and the features from both streams are fused in the later stage of the network. However, two-stream
architectures with optical flow are not directly applicable to RL. The main issue is that the computation
of optical flow is slow: during inference, it is often prohibitively expensive to compute in real-time
for applications with fast control loops like robotics; during training, optical flow calculation adds
significant overhead to the wallclock training time in online learning settings like RL. While video
architectures can utilize a memory bank, such that optical flow need only be pre-computed once for
the entire dataset, RL training is done dynamically and on the fly, and computing optical flow at each
step is therefore costly.

Algorithm 1: Pixel-based Flare Inference
Given ⇡ , fCNN;
for each environment step t do

zj=fCNN(oj), j=t�k, .., t;
�j=zj�zj�1, j=t�k+1, .., t;
zt=(zt�k+1, · · ·, zt, �t�k+1, · · ·, �t);
at⇠⇡ (at|zt);
ot+1⇠p(ot+1|at,ot = (ot, ot�1..ot�k));

end

To address this challenge and motivated by ex-
periments in Section 4, we propose an alterna-
tive architecture that is similar in spirit to the
two-stream networks for video classification.
Rather than computing optical flow directly, we
approximate temporal information in the latent
space. Instead of encoding a stack of frames
at once, we use a frame-wise CNN to encode
each individual frame. Then we compute the
differences between the latent encodings of con-
secutive frames, which we refer to as latent flow.
Finally, the latent features and the latent flow

are fused together through concatenation before getting passed to the downstream RL algorithm. We
call the proposed architecture as Flow of Latents for Reinforcement Learning (Flare).

While Flare is a broadly applicable technique, for clarity of exposition, we select RAD as the base
algorithm to elaborate the execution of Flare. We also use RAD later on in our experiments as the
comparative baseline (Section 6). The RAD architecture, shown in Figure 4a, stacks multiple data
augmented frames observed in the pixel space and encodes them altogether through an CNN. This
can be viewed as a form of early fusion (Karpathy et al., 2014). Another preprocessing option is
to encode each frame individually through a shared frame-wise encoder and perform late fusion of
the resulting latent features, as shown in Figure 4b. However, we find that simply concatenating
the latent features results in inferior performance when compared to the frame stacking heuristic,
which we further elaborate in Section 6.3. We conjecture that pixel-level frame stacking benefits from
leveraging both the CNN and the fully connected layers to process temporal information, whereas
latent-level stacking does not propagate temporal information back through the CNN encoder. Based
on this conjecture, we explicitly compute the latent flow �t = zt � zt�1 while detaching the zt�1

gradients when computing �t. We fuse the latent flow �t with the latent embedding zt, and pass
the fused input to the actor and critic networks as shown in Figure 4c. We provide pseudocode that
illustrates how to do inference with Flare in Algorithm 1; during training, the encodings of latent
features and latent flow are done in the same way except with augmented observations.

6

Under review as a conference paper at ICLR 2021

4XDGUXSHG�:DON +RSSHU�+RS 3HQGXOXP�6ZLQJXS :DONHU�5XQ)LQJHU�7XUQ�+DUG

Figure 5: We choose the following environments for our main experiments – (i) quadruped walk,
which requires coordination of multiple joints, (ii) hopper hop, which requires hopping while
maintaining balance, (iii) pendulum swingup, an environment with sparse rewards, (iv) walker run,
which requires the agent to maintain balance at high speeds, and (v) finger turn hard, which requires
precise manipulation of a rotating object. These environments are deemed challenging because prior
state-of-the-art model-free pixel-based methods (Laskin et al., 2020b; Kostrikov et al., 2020; Laskin
et al., 2020a) either fail to reach the asymptotic performance of state SAC or learn less efficiently.

6 EXPERIMENTS

Ep
is

od
e

Re
tu

rn

Environment Step
RAD Flare State-SAC

Figure 6: We compare the performance of Flare to RAD, a state-of-the-art algorithm and the base
algorithm used in Flare, on five challenging environments. Pendulum Swingup are trained over 1.5e6
and the rest 2.5e6. We see that Flare substantially outperforms RAD on a majority (3 out of the 5) of
environments, while being competitive in the remaining. While not closing the gap between pixel and
state-based performance entirely, Flare is closer to state-based performance than prior methods, and
is the state-of-the-art pixel-based model-free algorithm on most of these challenging environments.
Results are averaged over 5 random seeds with standard deviation (shaded regions).

Rainbow DQN Flare

Figure 7: We compare Rainbow DQN and Flare on 8 Atari games over 50M training steps. Flare
substantially enhances a majority (5 out of 8) of the games over the baseline Rainbow DQN while
matching the rest. Results are averaged over 3 random seeds with standard deviation (shaded regions).

7

Under review as a conference paper at ICLR 2021

Pe
nd

ul
um

, S
w

in
gu

p
Ep

iso
de

 R
et

ur
n

Q
ua

dr
up

ed
, W

al
k

RAD

latent flow
(Flare)

pixel flow

Environment Step

frame stack
(RAD)

latent stack + flow
(Flare)

latent stack only

2 frames

3 frames

5 frames

(a) pixel flow ablation (b) latent stacking ablation (c) frame count ablation

Figure 8: We perform three ablation studies. (a) pixel flow ablation: we compare Flare to a variant
where the differences are computed directly in pixel space (pixel flow) and find that latent flow is
more stable and achieves better performance. (b) Latent stack ablation: in this experiment, we fuse
the latent vectors without the temporal approximation. We find that this method performs significantly
worse than Flare, and on quadruped fails entirely, suggesting that fusing explicit temporal information
is crucial. (c) Frames count ablation: We test whether adding more frames increases performance for
Flare. We find that including additional input frames either does not change or degrades performance.

We first introduce the 5 core challenging continuous control tasks from DMControl suite (Tassa
et al., 2018) that our experiments focus on. Next we present the main experimental results, where we
show that Flare achieves substantial performance gains over the base algorithm RAD (Laskin et al.,
2020a). Finally, we conduct a series of ablation studies to stress test the design choices of the Flare
architecture.

6.1 ENVIRONMENTS AND EVALUATION METRICS

The DeepMind Control Suite (DMControl) (Tassa et al., 2018), based on MuJoCo (Todorov et al.,
2012), is a commonly used benchmark for continuous control from pixels. Prior works such as
DrQ (Kostrikov et al., 2020) and RAD (Laskin et al., 2020a) have made substantial progress on
this benchmark and closed the gap between state-based and pixel-based efficiency on the simpler
environments in the suite, such as Reacher Easy, Ball-in-cup Catch, Finger Spin, Walker Walk,
Cheetah Run, Cartpole Swingup. However, current pixel-based RL algorithms struggle to learn
optimal policies efficiently in more challenging environments that feature partial observability, sparse
rewards, or precise manipulation. In this work, we study more challenging tasks from the suite
to better showcase the efficacy of our proposed method. The 5 environments, listed in Figure 5,
include Walker Run (requires maintaining balance with speed), Quadruped Walk (partially observable
agent morphology), Hopper Hop (locomotion with sparse rewards), Finger Turn-hard (precise
manipulation), and Pendulum Swingup (torque control with sparse rewards). For evaluation, we
benchmark performance at 500K and 1M environment steps and compare against RAD.

The Atari 2600 Games (Bellemare et al., 2013) is another highly popular RL benchmark. Recent
efforts have let to a range of highly successful algorithms (Espeholt et al., 2018; Hessel et al., 2017;
Kapturowski et al., 2018; Hafner et al., 2019a; Badia et al., 2020) to solve Atari games directly from
pixel space. A representative state-of-the-art is Rainbow DQN (see Section 3). We adopt the official
Rainbow DQN implementation (Quan & Ostrovski, 2020) as our baseline. Then we simply modify
the model architecture to incorporate Flare while retaining all the other default settings, including
hyperparameters and preprocessing. To ensure comparable model capacity, the Flare network halves
the number of convolutional channels and adds a bottleneck FC layer to reduce latent dimension
before entering the Q head (code in the Supplementary Materials). We evaluate on a diverse subset of
Atari games at 50M training steps, namely Assault, Breakout, Freeway, Krull, Montezuma Revenge,
Seaquest, Up n Down and Tutankham, to assess the effectiveness of Flare.

8

Under review as a conference paper at ICLR 2021

6.2 MAIN RESULTS

DMControl: Our main experimental results on the five DMControl tasks are presented in Figure 6 and
Table 1. We find that Flare outperforms RAD in terms of both final performance and sample efficiency
for majority (3 out of 5) of the environments, while being competitive on the remaining environments.
Specifically, Flare attains similar asymptotic performance to state-based RL on Pendulum Swingup,
Hopper Hop, and Finger Turn-hard. For Quadruped Walk, a particularly challenging environment
due to its large action space and partial observability, Flare learns much more efficiently than RAD
and achieves a higher final score. Moreover, Flare outperforms RAD in terms of sample efficiency on
all of the core tasks except for Walker Run as shown in Figure 6. The 500k and 1M environment
step evaluations in Table 1 show that, on average, Flare achieves 1.9⇥ and 1.5⇥ higher scores than
RAD at the 500k step and the 1M step benchmarks, respectively. Though our investigation primarily
focuses on these 5 challenging environments, we also show in Appendix A.1 that Flare matches the
state-of-the-art on the 6 simpler environments.

Atari: The results on the 8 Atari games are in Figure 7 and Table 3. Again, we observe substantial
performance gain from Flare on the majority of the games while being equally competitive to the
baseline Rainbow DQN on the remaining games. In Appendix A.2, we also show that Flare performs
competitively when comparing against other DQN variants at 50M training steps.

6.3 ABLATION STUDIES

We ablate a number of components of the Flare architecture on the Quadruped Walk and Pendulum
Swingup environments to stress test the Flare architecture. The results shown in Figure 8 aim to
answer the following questions:

Q1: Do we need latent flow or is computing pixel differences sufficient? While Flare proposes a
late fusion of latent differences with the latent embeddings, a simpler approach is an early fusion
of pixel differences with the pixel input, which we call pixel flow. We compare Flare to pixel flow
in Figure 8 (left) and find that, while pixel flow outperforms RAD, it is significantly less efficient
and less stable than Flare, particularly on Quadruped Walk. This ablation suggests that late fusion
temporal information after encoding the image is preferable to early fusion.

Q2: Are the gains coming from latent flow or individual frame-wise encoding? Next, we address the
potential concern that the performance gain of Flare stems from the frame-wise ConvNet architectural
modification instead of the fusion of latent flow. Concretely, we follow the exact architecture and
training as Flare, but instead of concatenating the latent flow, we concatenate each frame’s latent
after the convolution encoders directly as described in Figure 4 (b). This ablation is similar in
spirit to the state-based experiments in Figure 3. The learning curves in Figure 8 (center) show that
individual frame-wise encoding is not the source of increased performance. While on par with RAD
on Pendulum Swingup, on Quadruped Walk frame-wise encoding performs worse. Flare’s improved
performance over RAD is therefore most likely a result of the explicit fusion of latent flow.

Q3: How does the input frame count affect performance? Lastly, we compare stacking 2, 3, and 5
frames in Flare in Figure 8 (right). We find that changing the number of stacked frames does not
significantly impact the locomotion task, quadruped walk, but Pendulum Swingup tends to be more
sensitive to this hyperparameter. Interestingly, the optimal number of frames for Pendulum Swingup
is 2, and more frames can in fact degrade Flare’s performance, indicating that the immediate position
and velocity information is the most critical to learn effective policies on this task. We hypothesize
that Flare trains more slowly with increased frame count on Pendulum Swingup due to the presence
of unnecessary information that the actor and critic networks need to learn to ignore.

7 CONCLUSION

We propose Flare, an architecture for RL that explicitly encode temporal information by computing
flow in the latent space. In experiments, we show that in the state space, Flare can recover the optimal
performance with only state positions and no access to the state velocities. In the pixel space, Flare
improves upon the state-of-the-art model-free RL algorithms on the majority of selected tasks in the
DMControl and Atari suites, while matching in the remaining. Integrating Flare with model-based
RL is a potential direction for future works.

9

Under review as a conference paper at ICLR 2021

REFERENCES

Artemij Amiranashvili, Alexey Dosovitskiy, Vladlen Koltun, and Thomas Brox. Motion perception
in reinforcement learning with dynamic objects. In Conference on Robot Learning, pp. 156–168.
PMLR, 2018.

Adrià Puigdomènech Badia, Bilal Piot, Steven Kapturowski, Pablo Sprechmann, Alex Vitvitskyi,
Daniel Guo, and Charles Blundell. Agent57: Outperforming the atari human benchmark. In
International Conference on Machine Learning, 2020.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environ-
ment: An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:
253–279, 2013.

Marc G Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforcement
learning. arXiv preprint arXiv:1707.06887, 2017.

Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemyslaw Debiak, Christy
Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, et al. Dota 2 with large scale
deep reinforcement learning. arXiv preprint arXiv:1912.06680, 2019.

Joao Carreira and Andrew Zisserman. Quo vadis, action recognition? a new model and the kinetics
dataset. In proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.
6299–6308, 2017.

Yevgen Chebotar, Mrinal Kalakrishnan, Ali Yahya, Adrian Li, S. Schaal, and S. Levine. Path integral
guided policy search. 2017 IEEE International Conference on Robotics and Automation (ICRA),
pp. 3381–3388, 2017.

Jeffrey Donahue, Lisa Anne Hendricks, Sergio Guadarrama, Marcus Rohrbach, Subhashini Venu-
gopalan, Kate Saenko, and Trevor Darrell. Long-term recurrent convolutional networks for visual
recognition and description. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 2625–2634, 2015.

Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen Koltun. Carla: An
open urban driving simulator. arXiv preprint arXiv:1711.03938, 2017.

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Volodymir Mnih, Tom Ward, Yotam
Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. Impala: Scalable distributed deep-rl with
importance weighted actor-learner architectures. arXiv preprint arXiv:1802.01561, 2018.

Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, and Kaiming He. Slowfast networks for
video recognition. In Proceedings of the IEEE international conference on computer vision, pp.
6202–6211, 2019.

Meire Fortunato, Mohammad Gheshlaghi Azar, Bilal Piot, Jacob Menick, Ian Osband, Alex Graves,
Vlad Mnih, Remi Munos, Demis Hassabis, Olivier Pietquin, et al. Noisy networks for exploration.
arXiv preprint arXiv:1706.10295, 2017.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maxi-
mum entropy deep reinforcement learning with a stochastic actor. arXiv preprint arXiv:1801.01290,
2018.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learning
behaviors by latent imagination. arXiv preprint arXiv:1912.01603, 2019a.

Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James
Davidson. Learning latent dynamics for planning from pixels. In International Conference on
Machine Learning, pp. 2555–2565. PMLR, 2019b.

Hado Hasselt. Double q-learning. Advances in neural information processing systems, 23:2613–2621,
2010.

10

Under review as a conference paper at ICLR 2021

Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney, Dan
Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow: Combining improvements in
deep reinforcement learning. arXiv preprint arXiv:1710.02298, 2017.

Divye Jain, Andrew Li, Shivam Singhal, Aravind Rajeswaran, Vikash Kumar, and Emanuel Todorov.
Learning Deep Visuomotor Policies for Dexterous Hand Manipulation. In International Conference
on Robotics and Automation (ICRA), 2019.

Shuiwang Ji, Wei Xu, Ming Yang, and Kai Yu. 3d convolutional neural networks for human action
recognition. IEEE transactions on pattern analysis and machine intelligence, 35(1):221–231,
2012.

Steven Kapturowski, Georg Ostrovski, John Quan, Remi Munos, and Will Dabney. Recurrent
experience replay in distributed reinforcement learning. In International conference on learning
representations, 2018.

A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-Fei. Large-scale video
classification with convolutional neural networks. In 2014 IEEE Conference on Computer Vision
and Pattern Recognition, pp. 1725–1732, 2014.

Ilya Kostrikov, Denis Yarats, and Rob Fergus. Image augmentation is all you need: Regularizing
deep reinforcement learning from pixels. arXiv preprint arXiv:2004.13649, 2020.

Michael Laskin, Kimin Lee, Adam Stooke, Lerrel Pinto, Pieter Abbeel, and Aravind Srinivas.
Reinforcement learning with augmented data. arXiv preprint arXiv:2004.14990, 2020a.

Michael Laskin, Aravind Srinivas, and Pieter Abbeel. Curl: Contrastive unsupervised representations
for reinforcement learning. Proceedings of the 37th International Conference on Machine Learning,
Vienna, Austria, PMLR 119, 2020b. arXiv:2004.04136.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In ICLR,
2016.

Kendall Lowrey, Svetoslav Kolev, Jeremy Dao, Aravind Rajeswaran, and Emanuel Todorov. Rein-
forcement learning for non-prehensile manipulation: Transfer from simulation to physical system.
In IEEE SIMPAR, 2018.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. Nature, 518(7540):529–533, 2015.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In International conference on machine learning, pp. 1928–1937, 2016.

OpenAI, Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafał Józefowicz, Bob McGrew,
Jakub Pachocki, Arthur Petron, Matthias Plappert, Glenn Powell, Alex Ray, Jonas Schneider,
Szymon Sidor, Josh Tobin, Peter Welinder, Lilian Weng, and Wojciech Zaremba. Learning
dexterous in-hand manipulation. CoRR, abs/1808.00177, 2018.

John Quan and Georg Ostrovski. DQN Zoo: Reference implementations of DQN-based agents, 2020.
URL http://github.com/deepmind/dqn_zoo.

Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John Schulman, Emanuel
Todorov, and Sergey Levine. Learning Complex Dexterous Manipulation with Deep Reinforcement
Learning and Demonstrations. In Proceedings of Robotics: Science and Systems (RSS), 2018.

Manolis Savva, Abhishek Kadian, Oleksandr Maksymets, Yili Zhao, Erik Wijmans, Bhavana Jain,
Julian Straub, Jia Liu, Vladlen Koltun, Jitendra Malik, et al. Habitat: A platform for embodied ai
research. In Proceedings of the IEEE International Conference on Computer Vision, pp. 9339–9347,
2019.

11

http://github.com/deepmind/dqn_zoo

Under review as a conference paper at ICLR 2021

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay. arXiv
preprint arXiv:1511.05952, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Max Schwarzer, Ankesh Anand, Rishab Goel, R Devon Hjelm, Aaron Courville, and Philip Bachman.
Data-efficient reinforcement learning with momentum predictive representations. arXiv preprint
arXiv:2007.05929, 2020.

David Silver, Aja Huang, Christopher J. Maddison, Arthur Guez, Laurent Sifre, George van den
Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander
Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap,
Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game
of go with deep neural networks and tree search. Nature, 529:484–503, 2016. URL http:
//www.nature.com/nature/journal/v529/n7587/full/nature16961.html.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy Lillicrap, Fan
Hui, Laurent Sifre, George Driessche, Thore Graepel, and Demis Hassabis. Mastering the game of
go without human knowledge. Nature, 550:354–359, 10 2017. doi: 10.1038/nature24270.

Karen Simonyan and Andrew Zisserman. Two-stream convolutional networks for action recognition
in videos. In Advances in neural information processing systems, pp. 568–576, 2014.

Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. Ucf101: A dataset of 101 human actions
classes from videos in the wild. arXiv preprint arXiv:1212.0402, 2012.

Adam Stooke, Kimin Lee, Pieter Abbeel, and Michael Laskin. Decoupling representation learning
from reinforcement learning, 2020.

Richard Sutton and Andrew Barto. Reinforcement Learning: An Introduction. MIT Press, 1998.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Budden,
Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite. arXiv preprint
arXiv:1801.00690, 2018.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In IROS, 2012.

Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani, and Manohar Paluri. Learning spa-
tiotemporal features with 3d convolutional networks. In Proceedings of the IEEE international
conference on computer vision, pp. 4489–4497, 2015.

Oriol Vinyals, Igor Babuschkin, Wojciech M. Czarnecki, Michaël Mathieu, Andrew Dudzik, Junyoung
Chung, David H. Choi, Richard Powell, Timo Ewalds, Petko Georgiev, Junhyuk Oh, Dan Horgan,
Manuel Kroiss, Ivo Danihelka, Aja Huang, Laurent Sifre, Trevor Cai, John P. Agapiou, Max
Jaderberg, Alexander S. Vezhnevets, Rémi Leblond, Tobias Pohlen, Valentin Dalibard, David
Budden, Yury Sulsky, James Molloy, Tom L. Paine, Caglar Gulcehre, Ziyu Wang, Tobias Pfaff,
Yuhuai Wu, Roman Ring, Dani Yogatama, Dario Wünsch, Katrina McKinney, Oliver Smith, Tom
Schaul, Timothy Lillicrap, Koray Kavukcuoglu, Demis Hassabis, Chris Apps, and David Silver.
Grandmaster level in starcraft ii using multi-agent reinforcement learning. Nature, 575(7782):
350–354, 2019. doi: 10.1038/s41586-019-1724-z. URL https://doi.org/10.1038/
s41586-019-1724-z.

Aaron Walsman, Yonatan Bisk, Saadia Gabriel, Dipendra Misra, Yoav Artzi, Yejin Choi, and Dieter
Fox. Early Fusion for Goal Directed Robotic Vision. In International Conference on Intelligent
Robots and Systems (IROS), 2019.

Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaiming He. Non-local neural networks. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 7794–7803,
2018.

12

http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html
http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html
https://doi.org/10.1038/s41586-019-1724-z
https://doi.org/10.1038/s41586-019-1724-z

Under review as a conference paper at ICLR 2021

Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Hasselt, Marc Lanctot, and Nando Freitas. Dueling
network architectures for deep reinforcement learning. In International conference on machine
learning, pp. 1995–2003, 2016.

Denis Yarats, Amy Zhang, Ilya Kostrikov, Brandon Amos, Joelle Pineau, and Rob Fergus. Im-
proving sample efficiency in model-free reinforcement learning from images. arXiv preprint
arXiv:1910.01741, 2019.

H. Zhu, A. Gupta, A. Rajeswaran, S. Levine, and V. Kumar. Dexterous manipulation with deep
reinforcement learning: Efficient, general, and low-cost. 2019 International Conference on
Robotics and Automation (ICRA), pp. 3651–3657, 2019.

13

