

# EXPLAINING CONCEPT SHIFT WITH INTERPRETABLE FEATURE ATTRIBUTION

000  
001  
002  
003  
004  
005  
006  
007  
008  
009  
010  
011  
012  
013  
014  
015  
016  
017  
018  
019  
020  
021  
022  
023  
024  
025  
026  
027  
028  
029  
030  
031  
032  
033  
034  
035  
036  
037  
038  
039  
040  
041  
042  
043  
044  
045  
046  
Anonymous authors

Paper under double-blind review

## ABSTRACT

Regardless the amount of data a machine learning (ML) model is trained on, there will inevitably be data that differs from their training set, lowering model performance. Concept shift occurs when the distribution of labels conditioned on the features changes, making even a well-tuned ML model to have learned a fundamentally incorrect representation. Identifying these shifted features provides unique insight into how one dataset differs from another, considering the difference may be across a scientifically relevant dimension, such as time, disease status, population, etc. In this paper, we propose SGShift, a model for detecting concept shift in tabular data and attributing reduced model performance to a sparse set of shifted features. We frame concept shift as a feature selection task to learn the features that can explain performance differences between models in the source and target domain. This framework enables SGShift to adapt powerful statistical tools such as generalized additive models, knockoffs, and absorption towards identifying these shifted features. We conduct extensive experiments in synthetic and real data across various ML models and find SGShift can identify shifted features with  $AUC > 0.9$ , much higher than baseline methods, requires few samples in the shifted domain, and is robust in complex cases of concept shift. Applying SGShift to 2 real world cases in healthcare and genetics yielded new feature-level explanations of concept shift, including respiratory failure's reduced impact on COVID-19 severity after Omicron and European-specific rare variants' impact on Lupus prevalence.

## 1 INTRODUCTION

Machine learning (ML) models are often trained on vast amounts of data, but will inevitably encounter test distributions that differ from the training set. Such distribution shift is one of the most common failure modes for ML in practice. When models do fail, model developers need to diagnose and correct the problem. In the simplest case, this may simply consist of gathering more data to retrain the model. However, in other cases, it may be necessary to fix issues in an underlying data pipeline, add new features to replace ones that have become uninformative, or undertake other more complex interventions. A necessary starting point for any such process is to understand what changed in the new dataset. Developing such understanding may even have scientific importance. For instance, a novel virus variant may emerge with new risk factors, lowering the performance of models that predict disease progression, or specific mutations in the genome could have differing relevance to disease between ancestries, weakening polygenic risk score models due to fundamentally different biology between populations (Duncan et al., 2019; Martin et al., 2019).

We propose methods for diagnosing distribution shift, focusing specifically on the case of *concept shift*, or when the conditional distribution of the label given the features,  $p(y|X)$ , differs between the source and target distribution. Concept shift represents the difficult case where the relationship between features and outcome has changed, as opposed to marginal shifts impacting only  $X$  or  $y$  by themselves. Indeed, (Liu et al.,

047 2024) document concept shift as the primary contributor to performance degradation across a wide range  
 048 of empirical examples of distribution shifts. In this setting, our goal is to understand how  $p(y|X)$  differs  
 049 between the source and target domains.

050 Understanding distribution shift has been the subject of increasing interest. However, existing methods mostly  
 051 operate relative to a structure for the data which is prespecified by the analyst, for example a known causal  
 052 graph (Zhang et al., 2023; Subbaswamy et al., 2021), fixed decomposition of the variables (Singh et al.,  
 053 2024), or particular assumed models for distribution shift in which out-of-distribution performance can be  
 054 identified using only unlabeled data Chen et al. (2022). Methods that do not impose such structural conditions  
 055 largely repurpose other tools to explain distribution shift as a secondary objective. For example Mougan et al.  
 056 (2023) propose to look for changes in model explanations, while Liu et al. (2023) fit a decision tree to explain  
 057 differences in predictions from source and target domain models as part of a larger empirical investigation.

058 We introduce SGShift, a new method directly designed for diagnosing distribution shift. SGShift offers robust  
 059 statistical performance, particularly with limited target-domain samples and without requiring prespecified  
 060 causal structure. Just as sparsity is an effective principle for learning predictive models in many settings due to  
 061 sparse mechanism shift (Schölkopf et al., 2021), we hypothesize that the *update* to  $p(y|X)$  between the source  
 062 and target domains may often be sparse (a fact that we empirically verify in several application domains).  
 063 In this case, a useful explanation of concept shift is to identify a small set of features that drive the change  
 064 between the two distributions, which could e.g. be the subject of potential modeling fixes. SGShift frames  
 065 this problem as learning an update to a source distribution’s predictive model using a minimal set of features  
 066 to recover the performance loss in the target distribution. We show how this formulation allows simple,  
 067 principled, and easily implemented diagnoses of distribution shift, without requiring any prior knowledge,  
 068 causal information, or parametric priors regarding the dataset.

069 We benchmark SGShift against several baselines on semi-synthetic datasets with known feature shifts,  
 070 observing greatly superior performance at identifying concept shifted features (referred to as shifted features  
 071 throughout). We then apply SGShift to two real-data settings and recover real-world concept shifts consistent  
 072 with findings from medical and biological literature, such as respiratory failure’s reduced impact on COVID-  
 073 19 severity after Omicron and European-specific rare variants’ impact on Lupus prevalence. Together, these  
 074 findings provide evidence that SGShift can recover accurate and interpretable descriptions of distribution  
 075 shift across a wide range of settings.

## 076

### 077 1.1 ADDITIONAL RELATED WORK

078 **Covariate shift.** Much of the existing work on distribution shift has focused on detecting or correcting shifts  
 079 in the marginal feature distribution,  $P(X)$ , e.g. covariate shift with the assumption that  $P(y|X)$  remains  
 080 unchanged. For instance, (Kulinski et al., 2020) introduce statistical tests to identify which variables have  
 081 shifted between source and target domains, while (Kulinski & Inouye, 2023) propose explaining observed  
 082 shifts via a learned transportation map between the source and target distributions, not distinguishing between  
 083 features and labels.  $P(X)$  shift can be identified by methods like two-sample tests (Jang et al., 2022) or  
 084 classifiers (Lipton et al., 2018) and corrected by techniques such as importance sampling (Sugiyama et al.,  
 085 2007). Cai et al. (2023) further use these ideas to correct covariate shift by regarding the unexplained residual  
 086 as a shift in  $P(y|X)$ , although they don’t correct or explain the concept shift. Although these methods can  
 087 be effective for addressing covariate shift, they often do not delve into potential shifts in the conditional  
 088 distribution. Explaining shifts in  $P(y|X)$  typically involves performing feature-by-feature analyses of the  
 089 conditional distribution  $P(y|X_i)$  (Guidotti et al., 2018). However, such univariate assessments risk detecting  
 090 spurious shifts due to unadjusted confounding in the presence of collinearity among predictors (Raskutti  
 091 et al., 2010). Kulinski & Inouye (2023) consider an unsupervised setting where the goal is to identify a set of  
 092 features whose distribution differs (e.g., sensors that have been compromised by an adversary), as opposed to  
 093 identifying features whose relationship with a supervised label has changed.

094 **Conditional distribution shift.** Recent efforts have begun to tackle shifts in the conditional distribution  
 095  $P(y|X)$  more directly. For example, (Zhang et al., 2023) consider changes in a causal parent set as a whole,  
 096 relying on known causal structures. (Mougan et al., 2023) propose a model-agnostic “explanation shift  
 097 detector” that applies SHAP (Shapley additive explanations) to a source-trained model and covariates in  
 098 both source and target domains, without including the outcomes in the target domain. They then use a  
 099 two-sample test on the feature-attribution distributions from SHAP to detect whether the model’s decision  
 100 logic has changed because of the changing of  $P(X)$  across domains. Despite its effectiveness in signaling  
 101 shifts, this approach does not pinpoint which features are driving the changes in  $P(y|X)$ . (Singh et al., 2024)  
 102 decompose the domain loss gap into predefined marginal and conditional segments, then allocate feature-level  
 103 contributions, while (Singh et al., 2025) automatically discover subgroups within the data for which to produce  
 104 feature-level explanations. (Subbaswamy et al., 2021) stress tests a source model before distribution shift,  
 105 requiring a prespecified set of shifting variables. (Chen et al., 2022) focus on estimation of performance shift  
 106 on an unlabeled dataset, but this require restrictive assumptions for identifiability, particularly that non-shifted  
 107 features have no shifts at all when conditioned on the shifted features and label between datasets. WhyShift  
 108 (Liu et al., 2023) compares two independently trained models - one from each domain - and analyze their  
 109 difference to locate regions of covariate space with the largest predictive discrepancy. SGShift differs in  
 110 that we aim to explicitly identify what the features contributing to conditional distribution shift are without  
 111 requiring any prior knowledge of the dataset.

## 112 2 PRELIMINARIES AND PROBLEM FORMULATION

114 **ML prediction tasks.** We consider standard ML tasks, such as classification, regression, etc. Given features  
 115  $X \in \mathcal{X} \subseteq \mathbb{R}^p$ , the goal is to predict associated labels  $y \in \mathcal{Y}$ . Let  $h(\cdot)$  denote an ML model applicable to this  
 116 task. Given this model’s predictions  $h(X)$  and true labels  $y$ , the performance can be quantified by a loss  
 117  $\ell(\hat{y}, y)$ . This can be any loss, such as 0-1 loss in classification or MSE in regression.

118 **Conditional distribution shift.** ML models are typically trained on one set of data, and then applied to  
 119 another. This training and inference data often come from different distributions, referred to as source and  
 120 target domains. We consider the particular case of *conditional distribution shift*, where the probability of  
 121 observing  $y$  given the same  $X$  differs between source and target domains. Formally, let  $P_S$  and  $P_T$  denote  
 122 the probability density/mass function of the source and target domains, respectively. Conditional distribution  
 123 shift occurs when  $P_S(y | X) \neq P_T(y | X)$ .

124 **Problem formulation.** We consider the problem of identifying the set of features that cause conditional  
 125 distribution shift. Suppose we observe i.i.d. samples  $(X_i^{(S)}, y_i^{(S)})_{i=1}^{n_S} \sim P_S$  and  $(X_i^{(T)}, y_i^{(T)})_{i=1}^{n_T} \sim P_T$ ,  
 126 where  $n_S$  and  $n_T$  are the number of samples in source and target domain. A source model  $h_S(\cdot)$  is trained  
 127 and applied to the target domain. A shift happens such that  $P_T(y | X) \neq P_S(y | X)$  for at least one feature  
 128 in  $X$ , thus  $h_S(\cdot)$  underperforms when applied to  $T$ . Our goal is to identify the smallest set of shifted features  
 129  $A \subseteq X$  on which the change depends. Formally, consider the difference between the conditional expectation  
 130 functions,

$$131 \quad \Delta(X) = d'(\mathbb{E}_S[y|X], \mathbb{E}_T[y|X]).$$

132 for some difference metric  $d'$ . In some cases, we may also choose to model  $\Delta$  on a transformed scale, e.g., the  
 133 logit scale for a binary response, in which case we will take  $\Delta(X) = g(\mathbb{E}_S[y|X]) - g(\mathbb{E}_T[y|X])$  for some  
 134 link function  $g$ . Our hypothesis is that for many realistic distribution shifts,  $\Delta$  will be (approximately) sparse,  
 135 i.e., depending on only a small number of inputs in  $X$ . Let  $A \subseteq X$  denote this support set. For example,  
 136 this may be the case if specific nodes in a causal process generating the data are intervened on, as is the  
 137 premise for several previous models of distribution shift (Chen et al., 2022) as well as the concept of sparse  
 138 mechanism shift in causal representation learning (Schölkopf et al., 2021). Our goal is to recover the support  
 139 set  $A$  to serve as an explanation of the shift. In practice, we may not expect that sparsity is exactly satisfied,

141 so we look for a  $\Delta$  that solves  
 142

$$143 \min_{\hat{\Delta}} d(\Delta(X), \hat{\Delta}(X)) \quad \text{s.t. } \hat{\Delta} \text{ is } k\text{-sparse}$$

145 for some distance function  $d$ .  $k$ -sparse denotes that  $\Delta$  is constant with respect to all but  $k$  inputs, and we  
 146 search across a range of values of  $k$  to identify a level of sparsity at which  $\Delta$  is well-approximated.

147 The problem is potentially challenging because  $\Delta$  is the difference between two regression functions over  
 148 different data distributions. For any given training point  $X$ , we see either a label  $y$  from distribution  $S$  or  
 149 distribution  $T$ , but never both. Accordingly, it is not possible to directly apply existing methods for sparse  
 150 regression. The most directly related work, the WhyShift framework introduced by (Liu et al., 2023) for  
 151 diagnosing concept shift, takes a plugin approach. A plugin strategy first fits models on the two separately  
 152 datasets to approximate  $\mathbb{E}_S[y|X]$  and  $\mathbb{E}_T[y|X]$ . Second, it fits a second model regressing some difference  
 153 metric of  $\hat{\mathbb{E}}_S[y|X]$  and  $\hat{\mathbb{E}}_T[y|X]$  on  $X$  to summarize the structure in  $\Delta$ . However, this plugin approach risks  
 154 an accumulation of errors, particularly when we are interested in recovering structure related to sparsity: given  
 155 noisy approximations to the two conditional expectations, the difference between  $\hat{\mathbb{E}}_S[y|X]$  and  $\hat{\mathbb{E}}_T[y|X]$  will  
 156 not necessarily display the same sparsity pattern as  $\Delta$  (as we observe experimentally). It is also potentially  
 157 challenging when we have limited target-domain data, since separately fitting  $\mathbb{E}_T[y|X]$  may be especially  
 158 difficult in this setting.

159  
 160 **3 METHOD**  
 161

162 Our method, SGShift, circumvents these difficulties by reformulating the above problem in a way that allows  
 163 existing sparse regression methods to be applied in a black-box fashion. Instead of first fitting separate  
 164 models for  $\mathbb{E}_S[y|X]$  and  $\mathbb{E}_T[y|X]$  and then finally using them to fit  $\Delta$ , SGShift starts with just a source-  
 165 distribution model  $h_S(X)$ . We then find a sparse *correction* term such that the corrected model has maximum  
 166 target-distribution performance. Formally, SGShift solves

$$167 \min_{\hat{\Delta}} \mathbb{E}_T[\ell(h_S(X) + \hat{\Delta}(X), y)] \quad \text{s.t. } \hat{\Delta} \text{ is } k\text{-sparse}$$

168 This recipe has two advantages. First, it can be instantiated with any sparse regression method, taking the  
 169 source-distribution model  $h_S(X)$  as a fixed “constant” term that is applied to each sample. Second, we can  
 170 separately control the complexity of the model used for the source vs correction term: when source-domain  
 171 data is abundant,  $h$  may be relatively complex, but under the common challenge of limited target-domain data,  
 172 we can use a simpler model for  $\hat{\Delta}$ . In this work, we instantiate SGShift using  $\ell_1$  regularization for sparsity  
 173 and knockoffs for false discovery control, as these are widely used, easy to implement, and tend to perform  
 174 robustly in practice. We show that SGShift directly inherits the theoretical guarantees of these methods for  
 175 recovery of the support set, despite the fact that the outcome we are attempting to recover the sparsity pattern  
 176 for is never directly observed. However, other sparse regression methods can be applied out-of-the-box to fit  
 177 the characteristics of specific data distributions.

178  
 179 **3.1 SGSHIFT: INSTANTIATION WITH  $\ell_1$  REGULARIZATION**

180 Our suggested implementation of SGShift uses a generalized additive model (GAM) with  $\ell_1$  regularization to  
 181 model the correction term. Specifically, we model

$$182 g(\mathbb{E}_T[y | X]) = h_S(X) + \phi(X)^\top \delta \tag{1}$$

183 where  $g$  is a link function,  $\phi(X)$  is a set of basis functions chosen by the user (by default,  $\phi(X) = X$ ),  $\delta$  is a  
 184 vector of coefficients for the correction term. The GAM link function  $g$  allows the user to model sparsity

188 on, e.g., the logits scale when  $y$  is binary, which may be more natural than the probability scale. In order to  
 189 control the sparsity level of  $\delta$ , SGShift imposes  $\ell_1$  regularization and solve  
 190

$$191 \hat{\delta} = \arg \min_{\delta \in \mathbb{R}^K} \left\{ L(\delta) + \lambda \|\delta\|_1 \right\} \quad L(\delta) := \ell(h_S(X_T) + \phi(X_T)^\top \delta, y_T) \quad (2)$$

193 where  $\ell$  here is the negative log-likelihood for the generalized additive model and  $\lambda$  is a regularization  
 194 parameter which we vary to obtain solutions of a range of sparsity levels.  
 195

### 196 3.2 SGSHIFT-A: REFINED FITTING CONSIDERING SOURCE MODEL MISSPECIFICATION

198 Prioritizing shifted features relies on an existing model trained on the source dataset. However, it may be that  
 199 this model does not represent the data well due to difficulties in model fitting. To avoid source model misfit  
 200 biasing the selection of shifted features, we incorporate an additional absorption term to nullify this effect.  
 201 The main absorption idea is that the error from fitting occurs in both domains, while the conditional shift  
 202 occurs only in the target domain. We solve:

$$204 \hat{(\omega, \delta)} = \arg \min_{\omega, \delta \in \mathbb{R}^K} \left\{ \ell \left( \underbrace{\begin{bmatrix} h_S(X_S) \\ h_S(X_T) \end{bmatrix}}_{\text{offset}} + \underbrace{\begin{bmatrix} \phi_S^\top & \mathbf{0} \\ \phi_T^\top & \phi_T^\top \end{bmatrix}}_{\text{absorption}} \begin{bmatrix} \omega \\ \delta \end{bmatrix}, \begin{bmatrix} y_S \\ y_T \end{bmatrix} \right) + \lambda_\omega \|\omega\|_1 + \lambda_\delta \|\delta\|_1 \right\} \quad (3)$$

208 where  $\phi_S$  and  $\phi_T$  refer to the values of basis functions in source and target domains,  $\omega \in \mathbb{R}^K$  acts on both  
 209 domains and  $\delta \in \mathbb{R}^K$  is in the target domain only. We induce hierarchical regularization  $\lambda_\omega < \lambda_\delta$  to penalize  
 210 the inference of shift more heavily than model misspecification to be conservative in identifying shifted  
 211 features.

### 213 3.3 SGSHIFT-K: EXPLICIT FALSE DISCOVERY CONTROL WITH KNOCKOFFS

215 While  $\ell_1$  regularization enables recovery of a sparse correction vector  $\delta$ , we may wish for principled  
 216 guarantees that limit the false discovery of features that did not in fact shift. For this purpose, we adapt the  
 217 knockoffs framework (Candes et al., 2018). Knockoffs generate synthetic features that mimic the correlation  
 218 structure of the real data to limit false discoveries. Following (Candes et al., 2018), we construct a Model-X  
 219 knockoff matrix  $\tilde{X} = [\tilde{X}^{(1)}, \dots, \tilde{X}^{(p)}] \in \mathbb{R}^{n \times p}$  and apply SGShift’s variable selection procedure to the  
 220 basis-transformed design matrix  $[\phi \ \tilde{\phi}] = [\phi(X) \ \phi(\tilde{X})] \in \mathbb{R}^{n \times 2K}$ . We then form a combined coefficient  
 221 vector  $\delta' = \begin{bmatrix} \delta \\ \tilde{\delta} \end{bmatrix} \in \mathbb{R}^{2K}$  where  $\delta$  corresponds to original basis functions and  $\tilde{\delta}$  to their knockoffs. The details  
 222 of the construction and selection with knockoffs is in Appendix C. Unlike classical knockoff regression,  
 223 however, our model is applied not to the raw features but to the *additive correction term* on top of the  
 224 predictive model trained on source domain  $\hat{f}(X_T)$ . Concretely, we treat  $\hat{f}(X_T)$  as a fixed offset and fit the  
 225 residual correction using both original and knockoff basis functions. The optimization problem becomes:

$$228 \hat{\delta}' = \arg \min_{\delta' \in \mathbb{R}^{2K}} \left\{ \ell \left( h_S(X_T) + [\phi_T \ \tilde{\phi}_T]^\top \delta', y_T \right) + \lambda \|\delta'\|_1 \right\}. \quad (4)$$

230 We then apply the standard derandomized knockoffs procedure for feature selection (Ren et al., 2023), which  
 231 effectively uses the knockoff features – that are known to be “fake” – to set a threshold for inclusion in  
 232 the returned set. Notably, the objective of SGShift-K is shifted feature selection only with the generation  
 233 of knockoff copies, while SGShift and SGShift-A can do simultaneous feature selection and target model  
 234 correcting from the trained source model.

235 3.4 THEORETICAL GUARANTEES  
236

237 We show that when the model in Equation 1 is well-specified, SGShift has desirable theoretical guarantees on  
238 recovery of the true shift coefficients  $\delta$  under proper choice of the regularization parameter  $\lambda$ . Importantly,  
239 this only requires imposing assumptions on the form of the between-distribution difference  $\Delta$ , rather than on  
240 the complete regression function  $\mathbb{E}_T[y|X]$ , which is allowed to be nonparametric (as opposed to the standard  
241 Lasso setting). In particular, we obtain the following:

242 **Theorem 3.1** (Convergence Guarantee for  $\delta$  from SGShift (with Equation 2)). *Assume  $\delta^* \in \mathbb{R}^K$  be the true  
243 parameter with support  $A \subseteq [K]$ ,  $|A| = a$ ,  $\phi(X)$  be sub-Gaussian. Suppose (1) Loss function  $L$  satisfies  
244 Restricted Strong Convexity (RSC, justification in Appendix A) (2) Subgradient Bound:  $\|\nabla L(\delta^*)\|_\infty \lesssim \lambda$ . (3)  
245 Regularization Parameter:  $n_T \lambda = \lambda' \asymp \sqrt{\log K/n_T}$ . Then, with probability approaching 1, the estimation  
246 error  $\hat{\delta} - \delta^*$  satisfies  $\|\hat{\delta} - \delta^*\|_2^2 \lesssim \frac{a \log K}{n_T}$ .*

247 The proof is in Appendix B. Here,  $\lesssim$  means asymptotically bounded above up to a constant factor, and  $\asymp$   
248 means asymptotically the same order up to constant factors.

249 Further, the use of knockoffs in the second stage allows us to prove stronger guarantees on the probability  
250 that any feature is false included in the selected set.

251 **Theorem 3.2** (Stability Selection Control). *Let  $A^c = \{k : \delta_k^* = 0\}$  denote the set of features with zero  
252 coefficient in the true data distribution and  $B$  the number of knockoff samples.*

253 **(PFER Control)** *Assume for each  $k \in A^c$ ,  $P(k \in \hat{A}^{[b]}) \leq \alpha$  uniformly over  $b$ , where  $\alpha$  is the per-iteration  
254 false selection probability controlled via  $\tau$  and  $\hat{A}^{[b]}$  is the estimated  $A$  for  $b$ th knockoff repeat, and  $\hat{A}(\pi)$  is  
255 the selection across all repeats under stability threshold  $\pi$ . For any stability threshold  $\pi > \alpha$ :*

$$256 \mathbb{E} \left[ |\hat{A}(\pi) \cap A^c| \right] \leq |A^c| \exp(-2B(\pi - \alpha)^2).$$

257 **(FDR Control)** *Assume each  $\hat{A}^{[b]}$  satisfies  $\mathbb{E} \left[ \frac{|\hat{A}^{[b]} \cap A^c|}{|\hat{A}^{[b]}| \vee 1} \right] \leq q$  (FDR control at level  $q$  via  $\tau$ ) as per Theorem  
258 3.1 in (Candes et al., 2018). Then:*

$$259 \text{FDR}(\hat{A}(\pi)) \leq \frac{q}{1 - (1 - \pi)^B}.$$

260 Theorem 3.2 guarantees both per family error rate (PFER) and false discovery rate (FDR) control under  
261 proper parameter selection. The proof is in Appendix D. We also provide a discussion of parameter selection  
262 for FDR control for SGShift in Appendix E.

## 263 4 EXPERIMENTS

264 **Evaluation setup** We evaluate our method on three real-world healthcare datasets (details in Appendix F)  
265 exhibiting natural distribution shifts, 30-day Diabetes Readmission (Strack et al., 2014) split by ER admission,  
266 COVID-19 Hospitalizations (of Us Research Program Investigators, 2019) split by pre and post-Omicron, and  
267 SUPPORT2 Hospital Expenses (Connors et al., 1995) split by death in hospital. For each of these 3 naturally  
268 shifted datasets, we construct semi-synthetic simulations, consistent with previous work (Singh et al., 2025;  
269 Zhang et al., 2023). We fit a “generator” model to the real labels in source domain, relabeling the source  
270 data, then simulate the target dataset’s labels with an induced conditional shift by perturbing  $g(E[y|X])$  based  
271 on selected input features. A “base” model is then trained from the relabeled source domain. We vary base  
272 and generator models to be each combination of decision tree, logistic/linear regression, gradient boosting,  
273 and support-vector machines, for a total of 16 settings in each dataset and 48 total settings. We consider 4

282 scenarios in each setting, sparse shift, where a small set of features are shifted, dense shift, where >60% of  
 283 the features are shifted, global shift, where all features shift slightly, with a few shifting greater than others,  
 284 and interaction shifts, occurring in the interaction space. All features to shift are selected randomly. We  
 285 additionally consider high dimensional, highly correlated, and low signal-to-noise simulation settings. In  
 286 feature selection tasks, we primarily use SGShift-K with knockoffs, and in model performance recovery  
 287 we use naive SGShift and SGShift-A with absorption. SGShift’s feature ranking is obtained by varying the  
 288 penalty parameter from 0.0001 to 100 to measure AUC and recall. Full preprocessing details and replication  
 289 code is in the appendix.

290 **Baselines** We consider 3 baseline models which also use both features and labels in source and target  
 291 domain to identify shifted features. **Diff**, a method we construct where we simply compute the outcome  
 292 discrepancies of two “base models” separately trained on source and target data, and apply sparse regression  
 293 on held-out samples and the base models’ outcome probability differences to identify features contributing  
 294 to the shifts. **WhyShift** (Liu et al., 2023) uses two “base models” separately trained on source and target  
 295 domains and computes model outcome probability discrepancies, then trains a non-linear decision tree on  
 296 these discrepancies to detect regions (paths in the tree) responsible for conditional shifts. We extract the  
 297 features from any path in the learned tree with feature importance  $> 0$  and consider them as the shifted  
 298 features. **SHAP**, a Shapley value-based method we adapt from (Mougan et al., 2023) such that we can find  
 299 individual features that differ between datasets. SHAP trains “base models” separately on source and target  
 300 data, computes the Shapley value of each feature, and ranks the largest absolute differences between models.

#### 301 302 303 4.1 BENCHMARKING

304  
 305 **Accuracy in identifying shifted features.** First, we examine the case of sparse shifts, in line with SGShift’s  
 306 sparsity assumption. 5 features are perturbed in each dataset between domains, while the rest remains fixed.  
 307 Table 1 shows evaluation of SGShift in detecting shifted features in these simulations, measured in AUC at  
 308 detecting true shifted features (a binary 0/1 label). Across model settings and datasets, SGShift achieves the  
 309 strongest performance compared to baselines Diff, WhyShift and SHAP, with AUC typically greater than 0.9,  
 310 0.1-0.2 higher than the nearest baseline. Despite the presence of model mismatch, SGShift still attains high  
 311 performance in the mismatched setting, on average only 0.02 AUC below the matched setting.

312 We next examine the case of dense concept shift, violating SGShift’s sparsity assumption. 25/33, 25/30, and  
 313 40/64 features are perturbed in each simulation setting of Diabetes readmission, COVID-19, and SUPPORT2  
 314 respectively. Table 1 shows evaluation results. Despite the assumption of sparsity, SGShift still attains AUC  
 315 greater than 0.8 and 0.9. This is in contrast to baseline methods, whose performance may reduce substantially,  
 316 such as all methods in the Diabetes dataset, each with AUC around 0.6, down from around around 0.75  
 317 previously. SGShift is robust towards dense shift and does not over-emphasize a few features when many  
 318 may be shifted. While perhaps counterintuitive given the sparsity assumption, SGShift likely performs well  
 319 as it effectively acts a a regularized feature-ranking procedure, and can still capture most of the signal even  
 320 when most shift coefficients are nonzero. Ablations confirming the utility of SGShift-K over naive SGShift  
 321 and SGShift-A are in Appendix H.

322 Next, we vary the sample size available in the target domain, simulating an online learning setting where data  
 323 is gradually streaming in. Results for COVID-19 are reported in Figure 1. SGShift is able to identify over  
 324 half the shifting features given only 100 samples, and over 85% given 500 samples. This indicates SGShift is  
 325 indeed an effective diagnostic tool, not requiring many samples for identifying features or correcting models.  
 326 Similar results are reported for Diabetes and COVID-19 in Appendix I.

327 Results of global, interaction, high dimensional, highly correlated, and noisy shifts are available in the  
 328 Appendix J, K, L, M, P, respectively.

| Sparse simulations          |                 |                 |                 |                                   | Dense simulations |                 |                 |                                   |
|-----------------------------|-----------------|-----------------|-----------------|-----------------------------------|-------------------|-----------------|-----------------|-----------------------------------|
| Model Match                 | Diff            | WhyShift        | SHAP            | SGShift-K                         | Diff              | WhyShift        | SHAP            | SGShift-K                         |
| <b>Diabetes Readmission</b> |                 |                 |                 |                                   |                   |                 |                 |                                   |
| Matched                     | $0.64 \pm 0.09$ | $0.73 \pm 0.08$ | $0.77 \pm 0.12$ | <b><math>0.90 \pm 0.01</math></b> | $0.54 \pm 0.09$   | $0.52 \pm 0.08$ | $0.64 \pm 0.12$ | <b><math>0.86 \pm 0.01</math></b> |
| Mismatched                  | $0.69 \pm 0.06$ | $0.72 \pm 0.04$ | $0.76 \pm 0.04$ | <b><math>0.86 \pm 0.04</math></b> | $0.58 \pm 0.06$   | $0.57 \pm 0.04$ | $0.60 \pm 0.04$ | <b><math>0.82 \pm 0.04</math></b> |
| <b>COVID-19</b>             |                 |                 |                 |                                   |                   |                 |                 |                                   |
| Matched                     | $0.78 \pm 0.05$ | $0.76 \pm 0.06$ | $0.81 \pm 0.10$ | <b><math>0.99 \pm 0.02</math></b> | $0.79 \pm 0.05$   | $0.65 \pm 0.06$ | $0.86 \pm 0.10$ | <b><math>0.95 \pm 0.02</math></b> |
| Mismatched                  | $0.77 \pm 0.03$ | $0.71 \pm 0.05$ | $0.77 \pm 0.03$ | <b><math>0.97 \pm 0.03</math></b> | $0.78 \pm 0.03$   | $0.74 \pm 0.05$ | $0.78 \pm 0.03$ | <b><math>0.93 \pm 0.03</math></b> |
| <b>SUPPORT2</b>             |                 |                 |                 |                                   |                   |                 |                 |                                   |
| Matched                     | $0.83 \pm 0.05$ | $0.67 \pm 0.06$ | $0.82 \pm 0.09$ | <b><math>0.96 \pm 0.01</math></b> | $0.62 \pm 0.05$   | $0.56 \pm 0.06$ | $0.62 \pm 0.09$ | <b><math>0.92 \pm 0.01</math></b> |
| Mismatched                  | $0.80 \pm 0.03$ | $0.67 \pm 0.03$ | $0.76 \pm 0.05$ | <b><math>0.95 \pm 0.01</math></b> | $0.73 \pm 0.03$   | $0.60 \pm 0.03$ | $0.70 \pm 0.05$ | <b><math>0.92 \pm 0.01</math></b> |

Table 1: **Performance in identifying shifted features.** AUC of detecting the true set of shifted features in sparse (left) and dense (right) semi-synthetic simulations. Matched refers to when generator and base model are the same, mismatched when they differ. Results are aggregated across the 4 matched and 12 mismatched settings. 95% confidence intervals are evaluated across configurations.



Figure 1: **Performance across sample sizes.** Sample size is varied from 50 to 1000. 95% CI's are shown across 16 simulation settings. Recall is measured at fixed FPR 5%.

## 4.2 REAL DATA

**Real-world sparse concept shift.** We verify the sparsity of true concept shift in Figure 2A. Across datasets and model configurations, SGShift is able to learn updates to the source model that recover 90% of the performance loss in the target domain, requiring less than 1/3 of the total features, and in some cases as little as one feature. As an illustrative example, we show how SGShift recovers performance for a gradient boosting model in the COVID-19 dataset in Figure 2B. With only 1 feature, the performance loss can be completely recovered. Furthermore, adding additional features beyond what is needed may even reduce performance. These results indicate that true concept shift can indeed often be explained by a subset of features shifting. We additionally perform diagnostics to ensure these shifts are not the result of covariate shift in Appendix N. We further analyze another 87 cases of real world concept shift and find that 78 of these can have model

376 performance completely recovered with less than 30% of the features in Appendix O, indicating sparsity is  
 377 indeed common in concept shift. Results of additional model configurations and datasets are in the Appendix.  
 378



394 **Figure 2: Sparsity in real world concept shift.** A) How many features SGShift required to learn an update  
 395 to the source model that recovered 90% of the performance loss in the target domain. B) By decreasing the  
 396 feature penalization penalty to add more features to SGShift’s update, we see how many terms are needed to  
 397 recover performance in the target domain.

398 **Case study in healthcare.** We next evaluate the validity of the top features selected by SGShift-K contributing  
 399 to the shift in COVID-19 severity after Omicron in Figure 3 (data split in Table 2). The highest ranked feature  
 400 across all models is respiratory failure with a negative sign, consistent with the broad observation of less  
 401 severity during Omicron compared to the previous Delta variant (Adjei et al., 2022), partly due to Omicron’s  
 402 decreased ability at infecting lung cells (Hoffmann et al., 2023). More severe cases may be taking place in  
 403 other pathways, such as the upper respiratory tract (Wickenhagen et al., 2025). Abnormal breathing and other  
 404 circulatory/respiratory signs have decreased risk, likely for the same reason. Non-lung related comorbidities  
 405 tend to contribute more to increased hospitalization risk, as with decreased lung comorbidity risk, they may  
 406 now be more relevant to severity (Lewnard et al., 2022).

407 **Case study in genetics.** We consider a known case of concept shift in the difference in Lupus severity  
 408 and prevalence between ancestries. We use the gene expression from 149 healthy and Lupus-affected  
 409 Europeans, and 107 healthy and Lupus-affected Asians (Perez et al., 2022), and aim to predict Lupus status  
 410 using the top 1000 variable genes in B cells, a cell type commonly implicated in Lupus. We split by  
 411 ancestry and apply SGShift-K to find genes contributing to concept shift. Expectedly, we first observe an  
 412 XGBoost model trained on Europeans underperforms when applied to Asians (European AUC 1.0, Asian  
 413 AUC 0.84. SGShift-K discovers 6 genes in B cells contributing to this shift: ERRFI1, RP11-666A1.5, CTD-  
 414 2561B21.11, AC012309.5, AC074212.5, and AP001059.5, all with negative coefficients, and completely  
 415 recovers the performance drop. ERRFI1 and RP11-666A1.5 are both differentially expressed in B cells  
 416 between these ancestries (Wang & Gazal, 2023). A genetic basis of difference in Lupus between ancestries  
 417 has been discovered, and CTD-2561B21.11, AC012309.5, AC074212.5, and AP001059.5 are underpinned  
 418 by eQTLs or repeat variants common in Europeans but rare in East Asians (Morris et al., 2016; Langefeld  
 419 et al., 2017). Interferon signatures commonly correlate with Lupus prevalence, and Asians have elevated  
 420 background interferon levels compared to Europeans, such as RP11-666A1.5 (Rector et al., 2023). These  
 421 results indicate SGShift is picking up true biology underlying the difference in Lupus between European and  
 422 Asian populations, although we acknowledge these findings would need further validation to ensure results  
 423 are robust to the many hidden confounders present in biological data.



Figure 3: **Shifted features in COVID-19 severity.** Real data results showing the ordering of selected features for each model as the penalty term increases for COVID-19 severity. Positive (+) and negative (-) coefficients are treated as 2 distinct features. Only features selected in the top 5 for any model are shown.

## 5 DISCUSSION

We have presented SGShift, a method for attributing concept shift between datasets to a sparse set of features. Our work contributes towards understanding what makes models fail between datasets. We prove statistical guarantees regarding SGShift’s false discovery control and demonstrate high power in detecting true shifted features, even when the assumption of sparsity is violated. We show that true concept shifts in tabular healthcare data do indeed tend to be sparse and SGShift can explain these shifts. Future work could include optimizing model performance by explicitly modeling the difference between datasets given the identified shifted features, disentangling various contributors to concept shift such as label or measurement drift, or extending SGShift to non-tabular data, e.g., images or graphs.

## REFERENCES

Solomon Adjei, Kai Hong, Nicole M Molinari, et al. Mortality risk among patients hospitalized primarily for covid-19 during the omicron and delta variant pandemic periods — united states, april 2020–june 2022. *MMWR Morbidity and Mortality Weekly Report*, 71:1182–1189, 2022. doi: 10.15585/mmwr.mm7137a4.

Tiffany Tianhui Cai, Hongseok Namkoong, and Steve Yadlowsky. Diagnosing model performance under distribution shift. *arXiv preprint arXiv:2303.02011*, 2023.

Emmanuel Candes, Yingying Fan, Lucas Janson, and Jinchi Lv. Panning for gold:‘model-x’knockoffs for high dimensional controlled variable selection. *Journal of the Royal Statistical Society Series B: Statistical Methodology*, 80(3):551–577, 2018.

Lingjiao Chen, Matei Zaharia, and James Y Zou. Estimating and explaining model performance when both covariates and labels shift. *Advances in Neural Information Processing Systems*, 35:11467–11479, 2022.

Alfred F Connors, Neal V Dawson, Norman A Desbiens, William J Fulkerson, Lee Goldman, William A Knaus, Joanne Lynn, Robert K Oye, Marilyn Bergner, Anne Damiano, et al. A controlled trial to improve care for seriously ill hospitalized patients: The study to understand prognoses and preferences for outcomes and risks of treatments (support). *Jama*, 274(20):1591–1598, 1995.

470 L. Duncan, H. Shen, B. Gelaye, et al. Analysis of polygenic risk score usage and performance in diverse  
 471 human populations. *Nature Communications*, 10:3328, 2019.

472

473 Josh Gardner, Zoran Popovic, and Ludwig Schmidt. Benchmarking distribution shift in tabular data with  
 474 tableshift. *Advances in Neural Information Processing Systems*, 2023.

475

476 Riccardo Guidotti, Anna Monreale, Salvatore Ruggieri, Franco Turini, Fosca Giannotti, and Dino Pedreschi.  
 477 A survey of methods for explaining black box models. *ACM computing surveys (CSUR)*, 51(5):1–42, 2018.

478

479 Markus Hoffmann, Lanying YR Wong, Prerna Arora, et al. Omicron subvariant ba.5 efficiently infects lung  
 480 cells. *Nature Communications*, 14:3500, 2023. doi: 10.1038/s41467-023-39147-4.

481

482 Sooyong Jang, Sangdon Park, Insup Lee, and Osbert Bastani. Sequential covariate shift detection using  
 483 classifier two-sample tests. In *International conference on machine learning*, pp. 9845–9880. PMLR, 2022.

484

485 Sean Kulinski and David I Inouye. Towards explaining distribution shifts. In *International Conference on  
 486 Machine Learning*, pp. 17931–17952. PMLR, 2023.

487

488 Sean Kulinski, Saurabh Bagchi, and David I Inouye. Feature shift detection: Localizing which features  
 489 have shifted via conditional distribution tests. *Advances in neural information processing systems*, 33:  
 490 19523–19533, 2020.

491

492 C. Langefeld, H. Ainsworth, D. Graham, et al. Transancestral mapping and genetic load in systemic lupus  
 493 erythematosus. *Nature Communications*, 8:16021, 2017.

494

495 Joseph A Lewnard, Vincent X Hong, Manish M Patel, et al. Clinical outcomes associated with sars-cov-2  
 496 omicron (b.1.1.529) variant and ba.1/ba.1.1 or ba.2 subvariant infection in southern california. *Nature  
 497 Medicine*, 28:1933–1943, 2022. doi: 10.1038/s41591-022-01887-z.

498

499 Sai Li, T Tony Cai, and Hongzhe Li. Transfer learning for high-dimensional linear regression: Prediction, es-  
 500 timation and minimax optimality. *Journal of the Royal Statistical Society Series B: Statistical Methodology*,  
 501 84(1):149–173, 2022.

502

503 Sai Li, Tianxi Cai, and Rui Duan. Targeting underrepresented populations in precision medicine: A federated  
 504 transfer learning approach. *The annals of applied statistics*, 17(4):2970, 2023.

505

506 Zachary Lipton, Yu-Xiang Wang, and Alexander Smola. Detecting and correcting for label shift with black  
 507 box predictors. In *International conference on machine learning*, pp. 3122–3130. PMLR, 2018.

508

509 Jiashuo Liu, Tianyu Wang, Peng Cui, and Hongseok Namkoong. On the need for a language describing  
 510 distribution shifts: Illustrations on tabular datasets. *Advances in Neural Information Processing Systems*,  
 511 36:51371–51408, 2023.

512

513 Jiashuo Liu, Tianyu Wang, Peng Cui, and Hongseok Namkoong. Rethinking distribution shifts: Empirical  
 514 analysis and inductive modeling for tabular data, 2024. URL <https://arxiv.org/abs/2307.05284>.

515

516 A. R. Martin, M. Kanai, Y. Kamatani, et al. Clinical use of current polygenic risk scores may exacerbate  
 517 health disparities. *Nature Genetics*, 51:584–591, 2019.

Nicolai Meinshausen and Peter Bühlmann. Stability selection. *Journal of the Royal Statistical Society Series  
 B: Statistical Methodology*, 72(4):417–473, 2010.

Ryan E Miller and Patrick Breheny. Marginal false discovery rate control for likelihood-based penalized  
 regression models. *Biometrical Journal*, 61(4):889–901, 2019.

517 D. Morris, Y. Sheng, Y. Zhang, et al. Genome-wide association meta-analysis in chinese and european  
 518 individuals identifies ten new loci associated with systemic lupus erythematosus. *Nature Genetics*, 48:  
 519 940–946, 2016.

520

521 Carlos Mougan, Klaus Broelemann, David Masip, Gjergji Kasneci, Thanassis Thiropanis, and Steffen Staab.  
 522 Explanation shift: How did the distribution shift impact the model? *arXiv preprint arXiv:2303.08081*,  
 523 2023.

524 All of Us Research Program Investigators. The “all of us” research program. *New England Journal of  
 525 Medicine*, 381(7):668–676, 2019.

526

527 R. K. Perez et al. Single-cell rna-seq reveals cell type–specific molecular and genetic associations to lupus.  
 528 *Science*, 376:eabf1970, 2022.

529

530 Garvesh Raskutti, Martin J Wainwright, and Bin Yu. Restricted eigenvalue properties for correlated gaussian  
 531 designs. *The Journal of Machine Learning Research*, 11:2241–2259, 2010.

532

533 I. Rector, K. A. Owen, P. Bachali, E. Hubbard, J. Yazdany, M. Dall’era, A. C. Grammer, and P. E. Lipsky.  
 534 Differential regulation of the interferon response in systemic lupus erythematosus distinguishes patients of  
 535 asian ancestry. *RMD Open*, 9:e003475, 2023.

536

537 Zhimei Ren, Yuting Wei, and Emmanuel Candès. Derandomizing knockoffs. *Journal of the American  
 538 Statistical Association*, 118(542):948–958, 2023.

539

540 Mark Rudelson and Roman Vershynin. Non-asymptotic theory of random matrices: extreme singular values.  
 541 In *Proceedings of the International Congress of Mathematicians 2010 (ICM 2010) (In 4 Volumes) Vol. I:  
 542 Plenary Lectures and Ceremonies Vols. II–IV: Invited Lectures*, pp. 1576–1602. World Scientific, 2010.

543

544 Bernhard Schölkopf, Francesco Locatello, Stefan Bauer, Nan Rosemary Ke, Nal Kalchbrenner, Anirudh  
 545 Goyal, and Yoshua Bengio. Towards causal representation learning, 2021. URL <https://arxiv.org/abs/2102.11107>.

546

547 Harvineet Singh, Fei Xia, Alexander Gossman, Andrew Chuang, Joon Hong, and Junfeng Feng. Who experiences  
 548 large model decay and why? a hierarchical framework for diagnosing heterogeneous performance  
 549 drift. In *Proceedings of the 42nd International Conference on Machine Learning (ICML)*, 2025.

550

551 Harvineet Singh et al. A hierarchical decomposition for explaining ml performance discrepancies. In  
 552 *Advances in Neural Information Processing Systems (NeurIPS)*, 2024.

553

554 Beata Strack, Jonathan P DeShazo, Chris Gennings, Juan L Olmo, Sebastian Ventura, Krzysztof J Cios, and  
 555 John N Clore. Impact of hba1c measurement on hospital readmission rates: analysis of 70,000 clinical  
 556 database patient records. *BioMed research international*, 2014(1):781670, 2014.

557

558 Adarsh Subbaswamy, Russell Adams, and Suchi Saria. Evaluating model robustness and stability to dataset  
 559 shift. In *Proceedings of the 24th International Conference on Artificial Intelligence and Statistics (AISTATS  
 560 2021)*, 2021.

561

562 Masashi Sugiyama, Matthias Krauledat, and Klaus-Robert Müller. Covariate shift adaptation by importance  
 563 weighted cross validation. *Journal of Machine Learning Research*, 8(5), 2007.

564

565 Sara A Van de Geer. High-dimensional generalized linear models and the lasso. 2008.

566

567 Roman Vershynin. *High-dimensional probability: An introduction with applications in data science*, volume 47. Cambridge university press, 2018.

564 J. Wang and S. Gazal. Ancestry-specific regulatory and disease architectures are likely due to cell-type-specific  
 565 gene-by-environment interactions. *medRxiv*, 2023. preprint.  
 566

567 A. Wickenhagen, M. Flagg, J.R. Port, et al. Evolution of omicron lineage towards increased fitness in the  
 568 upper respiratory tract in the absence of severe lung pathology. *Nature Communications*, 16:594, 2025.  
 569 doi: 10.1038/s41467-025-55938-3.

570 Haoran Zhang, Harvineet Singh, Marzyeh Ghassemi, and Shalmali Joshi. "why did the model fail?":  
 571 Attributing model performance changes to distribution shifts. 2023.

572

## 573 A JUSTIFICATION OF RESTRICTED STRONG CONVEXITY (RSC)

574

575 The RSC condition is central to ensuring the quadratic growth of the loss difference around the true parameter  
 576  $\delta^*$ , even in high dimensions. We formalize its validity as follows:

577 **Lemma A.1** (RSC for  $\ell_1$ -Penalized Loss). *Let  $\phi_i \in \mathbb{R}^K$  be i.i.d. sub-Gaussian vectors with covariance  
 578  $\Sigma \succ 0$ .  $L_T(\delta) = \ell(h_S(X_T) + \phi_T^\top \delta, y_T)$ , where  $\ell(\eta, y)$  is twice-differentiable and  $\nabla_\eta^2 \ell(\eta, y) \geq \kappa > 0$   
 579 uniformly. We aim to show that, for sufficiently large  $n_T$ , with high probability over the sample,*

$$580 \quad L_T(\mathbf{a}) - L_T(\mathbf{b}) - \langle \mathbf{a} - \mathbf{b}, \nabla L_T(\mathbf{b}) \rangle \geq c_1 n_T \|\mathbf{a} - \mathbf{b}\|_2^2 - c_2 \|\mathbf{a} - \mathbf{b}\|_1^2.$$

581 for all  $\mathbf{a}, \mathbf{b} \in \mathbb{R}^K$ , where  $c_1, c_2 > 0$  are constants depending on  $\kappa$  and  $\Sigma$ .

582 *Proof.* Define  $\mathbf{h} = \mathbf{a} - \mathbf{b}$ . By Taylor's theorem, there exists a point  $\tilde{\delta}$  on the line segment between  $\mathbf{a}$  and  $\mathbf{b}$   
 583 such that

$$584 \quad L_T(\mathbf{a}) - L_T(\mathbf{b}) - \langle \mathbf{h}, \nabla L_T(\mathbf{b}) \rangle = \frac{1}{2} \mathbf{h}^\top \nabla^2 L_T(\tilde{\delta}) \mathbf{h},$$

585 where

$$586 \quad \nabla^2 L_T(\tilde{\delta}) = \sum_{i=1}^{n_T} \nabla_\eta^2 \ell(h_S(X_i) + \phi_i^\top \tilde{\delta}, y_i) \phi_i \phi_i^\top \succeq \kappa \sum_{i=1}^{n_T} \phi_i \phi_i^\top.$$

587 Defining the empirical covariance  $\hat{\Sigma} = \frac{1}{n_T} \sum_{i=1}^{n_T} \phi_i \phi_i^\top$ , it follows that

$$588 \quad \mathbf{h}^\top \nabla^2 L_T(\tilde{\delta}) \mathbf{h} \geq \kappa n_T \mathbf{h}^\top \hat{\Sigma} \mathbf{h}.$$

589 Under the assumption that  $\{\phi_i\}$  are i.i.d. sub-Gaussian with  $\mathbb{E}[\phi_i \phi_i^\top] = \Sigma \succ 0$ , standard concentration  
 590 results (e.g., Theorem 9 of Rudelson & Vershynin (2010), or Theorem 3.1 in Raskutti et al. (2010)) show that  
 591 for  $n_T$  on the order of  $\frac{a \log K}{\lambda_{\min}(\Sigma)}$ , the empirical covariance  $\hat{\Sigma}$  satisfies a restricted eigenvalue inequality with  
 592 high probability

$$593 \quad \mathbf{h}^\top \hat{\Sigma} \mathbf{h} \geq \gamma_{\min} \|\mathbf{h}\|_2^2 - \tau \frac{\log K}{n_T} \|\mathbf{h}\|_1^2.$$

594 where  $\gamma_{\min} > 0$  and  $\tau > 0$  are constants depending on  $\Sigma$  and the sub-Gaussian norm of  $\phi_i$ . Combining this  
 595 restricted eigenvalue (RE) bound with the lower Hessian bound above yields

$$596 \quad \mathbf{h}^\top \nabla^2 L_T(\tilde{\delta}) \mathbf{h} \geq \kappa n_T \left( \gamma_{\min} \|\mathbf{h}\|_2^2 - \tau \frac{\log K}{n_T} \|\mathbf{h}\|_1^2 \right)$$

597 Substitute back into the Taylor expansion, there exist constants  $c_1$  and  $c_2$  such that

$$598 \quad L_T(\mathbf{a}) - L_T(\mathbf{b}) - \langle \mathbf{a} - \mathbf{b}, \nabla L_T(\mathbf{b}) \rangle \geq \underbrace{\frac{1}{2} \kappa \gamma_{\min} n_T \|\mathbf{a} - \mathbf{b}\|_2^2}_{c_1} - \underbrace{\frac{1}{2} \kappa \tau \|\mathbf{a} - \mathbf{b}\|_1^2}_{c_2}.$$

600 This is precisely the Restricted Strong Convexity (RSC) condition. □

611    **B PROOF OF THEOREM 3.1: CONVERGENCE GUARANTEE FOR ESTIMATION ERROR**  
 612    **UNDER RSC**

614    *Proof.* Given the definition of  $\hat{\delta}$ , there exists a subgradient  $z \in \partial\|\hat{\delta}\|_1$  such that

$$615 \quad \nabla L(\hat{\delta}) + \lambda z = \mathbf{0}$$

617    To bound the norm of the parameter  $\delta$ , with standard Lasso analysis under Restricted Strong Convexity (RSC)  
 618    Van de Geer (2008) (justified in Appendix A), we will use the RSC condition of  $L$  that

$$619 \quad L(\mathbf{a}) - L(\mathbf{b}) - \langle \mathbf{a} - \mathbf{b}, \nabla L(\mathbf{b}) \rangle \geq c_1 n_T \|\mathbf{a} - \mathbf{b}\|_2^2 - c_2 \|\mathbf{a} - \mathbf{b}\|_1^2$$

620    As  $\hat{\delta}$  minimized the penalized loss,

$$621 \quad L(\hat{\delta}) - L(\delta^*) + \lambda(\|\hat{\delta}\|_1 - \|\delta^*\|_1) \leq 0$$

622    By the RSC condition

$$624 \quad L(\hat{\delta}) - L(\delta^*) - \langle \hat{\delta} - \delta^*, \nabla L(\delta^*) \rangle \geq c_1 n_T \|\hat{\delta} - \delta^*\|_2^2 - c_2 \|\hat{\delta} - \delta^*\|_1^2$$

625    Define  $\mathbf{d} = \hat{\delta} - \delta^*$

$$626 \quad c_1 n_T \|\mathbf{d}\|_2^2 - c_2 \|\mathbf{d}\|_1^2 + \langle \mathbf{d}, \nabla L(\delta^*) \rangle + \lambda(\|\hat{\delta}\|_1 - \|\delta^*\|_1) \leq 0$$

627    By Hölder's inequality

$$629 \quad \|\langle \mathbf{d}, \nabla L(\delta^*) \rangle\|_1 \leq \|\mathbf{d}\|_1 \|\nabla L(\delta^*)\|_\infty$$

630    By triangle inequality

$$631 \quad \|\hat{\delta}\|_1 - \|\delta^*\|_1 \geq -\|\mathbf{d}\|_1$$

632    Under the assumption that

$$633 \quad \|\nabla L(\delta^*)\|_\infty \leq c_3 \lambda$$

$$634 \quad |\langle \mathbf{d}, \nabla L(\delta^*) \rangle| \leq c_3 \lambda \|\mathbf{d}\|_1$$

635    From standard Lasso analysis, we often assume

$$636 \quad \|\mathbf{d}_{A^c}\|_1 \leq \|\mathbf{d}_A\|_1, \|\mathbf{d}\|_1 \leq 2\|\mathbf{d}_A\|_1$$

637    By Cauchy-Schwarz inequality

$$638 \quad \|\mathbf{d}_A\|_1 \leq \sqrt{a} \|\mathbf{d}_A\|_2 \leq \sqrt{a} \|\mathbf{d}\|_2, \|\mathbf{d}\|_1^2 \leq 4a \|\mathbf{d}\|_2^2$$

$$639 \quad 0 \geq c_1 n_T \|\mathbf{d}\|_2^2 - c_2 \|\mathbf{d}\|_1^2 + \langle \mathbf{d}, \nabla L(\delta^*) \rangle + \lambda(\|\hat{\delta}\|_1 - \|\delta^*\|_1)$$

$$640 \quad \geq c_1 n_T \|\mathbf{d}\|_2^2 - c_2 \|\mathbf{d}\|_1^2 - c_3 \lambda \|\mathbf{d}\|_1 - \lambda \|\mathbf{d}\|_1$$

$$641 \quad \geq c_1 n_T \|\mathbf{d}\|_2^2 - 4c_2 a \|\mathbf{d}\|_2^2 - 2(c_3 + 1)\sqrt{a} \lambda \|\mathbf{d}\|_2$$

$$642 \quad \|\mathbf{d}\|_2 \leq \frac{2\sqrt{a}(c_3 + 1)\lambda}{c_1 n_T - 4c_2 a}$$

643    with the condition  $\lambda \asymp \sqrt{\log K/n_T}$ , we can rewrite  $\|\mathbf{d}\|_2^2 \leq \frac{C a \log K}{n_T}$ , where  $C > 0$  depends on  $c_1, c_2, c_3$  but  
 644    not on  $n_T, a$ , or  $K$ , reaching a similar result to Li et al. (2022; 2023) in sparse high dimensional regression  
 645    based transfer learning.  $\square$

646    **Remark 1.** The RSC condition is ensured by the sub-Gaussian design and curvature of the loss (Lemma A.1),  
 647    which are standard in high-dimensional statistics Raskutti et al. (2010).

648    **Remark 2.** Sub-Gaussian concentration gives  $\|\nabla L(\delta^*)\|_\infty \leq c_3 \lambda$  with high probability Vershynin (2018).

649    **Remark 3.** The condition  $\lambda \asymp \sqrt{\log K/n_T}$  ensures compatibility between regularization and noise, standard  
 650    in  $\ell_1$ -penalized M-estimation Van de Geer (2008).

651    **Remark 4.** The offset  $h_S$  does not affect RSC because it is fixed during the optimization over  $\delta$ , leaving the  
 652    curvature of  $\ell$  and design  $\phi_i$  as the drivers of convexity.

658 C CONSTRUCTION AND SELECTION WITH KNOCKOFFS  
659660 Following Candes et al. (2018), a Model-X knockoff matrix  $\tilde{X} = [\tilde{X}^{(1)}, \dots, \tilde{X}^{(p)}] \in \mathbb{R}^{n \times p}$  of a matrix  
661 constructed by horizontally stacked random vectors  $X = [X^{(1)}, \dots, X^{(p)}] \in \mathbb{R}^{n \times p}$ . The knockoffs is  
662 constructed such that, for any subset  $A \subseteq [p]$ ,

663 
$$(X, \tilde{X})_{\text{swap}(A)} \stackrel{d}{=} (X, \tilde{X}).$$
  
664

665 where  $X^{(j)}$  denotes the  $j$ th column of  $X$ ,  $(X, \tilde{X})_{\text{swap}(A)}$  is obtained by swapping the column entries  $X^{(j)}$   
666 and  $\tilde{X}^{(j)}$  for any  $j \in A$ . Crucially,  $\tilde{X}$  must be constructed conditional on  $X$  but independent of  $y$  to ensure  
667  $\tilde{X} \perp\!\!\!\perp y | X$ .  
668669 We set variable importance measure as coefficients:  $Z_k = |\hat{\delta}'_k(\lambda)|$ ,  $\tilde{Z}_k = |\hat{\delta}'_{k+K}(\lambda)|$ . Alternatively, we  
670 can also use  $Z_k = \sup\{\lambda \geq 0 : \hat{\delta}'_k(\lambda) \neq 0\}$ , the lambda value where each feature/knockoff enters the  
671 lasso path (meaning becomes nonzero). The knockoff filter works by comparing the  $Z_k$ 's to the  $\tilde{Z}_k$ 's and  
672 selecting only variables that are clearly better than their knockoff copy. The reason why this can be done  
673 is that, by construction of the knockoffs, the null (not related to  $y$ ) statistics are pairwise exchangeable.  
674 This means that swapping the  $Z_k$  and  $\tilde{Z}_k$ 's corresponding to null variables leaves the joint distribution  
675 of  $(Z_1, \dots, Z_K, \tilde{Z}_1, \dots, \tilde{Z}_K)$  unchanged. Once the  $Z_k$  and  $\tilde{Z}_k$ 's have been computed, different contrast  
676 functions can be used to compare them. In general, we must choose an anti-symmetric function  $a$  and we  
677 compute the symmetrized knockoff statistics  $W_k = a(Z_k, \tilde{Z}_k) = -a(\tilde{Z}_k, Z_k)$  such that  $W_k$  indicates that  $X_k$   
678 appears to be more important than its own knockoff copy. We use difference of absolute values of coefficients  
679 by default, but many other alternatives (like signed maximum) are also possible.  
680681  
682  
683  
684  
685  
686  
687  
688  
689  
690  
691  
692  
693  
694  
695  
696  
697  
698  
699  
700  
701  
702  
703  
704

705 D PROOF OF THEOREM 3.2: STABILITY SELECTION CONTROL  
706

707 **Proof. PFER Control:** For each null feature  $k \in A^c$ , the per-iteration selection probability satisfies  
708  $P(k \in \hat{A}^{[b]}) \leq \alpha$ . This holds if  $\tau$  is chosen to control the PFER at level  $\alpha K$  in each iteration, following  
709 Meinshausen & Bühlmann (2010). Define  $V_k^{[b]} = \mathbf{1}\{k \in \hat{A}^{[b]}\}$  as independent Bernoulli trials with  
710  $\mathbb{E}[V_k^{[b]}] \leq \alpha$ . The selection frequency  $\hat{\Pi}_k = \frac{1}{B} \sum_{b=1}^B V_k^{[b]}$  is a binomial proportion with  $\mathbb{E}[\hat{\Pi}_k] \leq \alpha$ . By  
711 Hoeffding's inequality:  
712

$$713 P\left(\hat{\Pi}_k \geq \pi\right) \leq \exp(-2B(\pi - \alpha)^2) \quad \forall \pi > \alpha.$$

715 Summing over all null features and applying linearity of expectation:  
716

$$717 \mathbb{E}\left[|\hat{A}(\pi) \cap A^c|\right] = \sum_{k \in A^c} P\left(\hat{\Pi}_k \geq \pi\right) \leq |A^c| \exp(-2B(\pi - \alpha)^2).$$

720 **FDR Control:** Let  $V^{[b]} = |\hat{A}^{[b]} \cap A^c|$  and  $R^{[b]} = |\hat{A}^{[b]}|$ . By the knockoff filter guarantee from Theorem 3.1  
721 in Candes et al. (2018), each  $\tau$  ensures  $\mathbb{E}\left[\frac{|\hat{A}^{[b]} \cap A^c|}{|\hat{A}^{[b]}| \vee 1}\right] = \mathbb{E}\left[\frac{V^{[b]}}{R^{[b]} \vee 1}\right] \leq q$ . The stabilized FDR satisfies:  
722

$$723 \text{FDR}(\hat{A}(\pi)) = \mathbb{E}\left[\frac{|\hat{A}(\pi) \cap A^c|}{|\hat{A}(\pi)| \vee 1}\right] \leq \mathbb{E}\left[\frac{\sum_{b=1}^B V^{[b]}}{B\pi}\right] \quad (\text{since } \hat{\Pi}_k \geq \pi \implies \sum_{b=1}^B \mathbf{1}\{k \in \hat{A}^{[b]}\} \geq B\pi) \\ 724 = \frac{1}{B\pi} \sum_{b=1}^B \mathbb{E}\left[\frac{V^{[b]}}{R^{[b]} \vee 1} \cdot R^{[b]}\right] = \frac{1}{B\pi} \sum_{b=1}^B \mathbb{E}\left[R^{[b]} \cdot \mathbb{E}\left[\frac{V^{[b]}}{R^{[b]} \vee 1} \mid R^{[b]}\right]\right] \\ 725 \leq \frac{1}{B\pi} \sum_{b=1}^B \mathbb{E}\left[R^{[b]} \cdot q\right] = \frac{q}{B\pi} \sum_{b=1}^B \mathbb{E}\left[R^{[b]}\right].$$

726 where the last line is by Theorem 3.1 in Candes et al. (2018). From Proposition 1 and Appendix A.2 in  
727 Ren et al. (2023), the geometric thinning inequality  $\sum_{b=1}^B \mathbb{E}[R^{[b]}] \geq \frac{\mathbb{E}[|\hat{A}(\pi)|]}{1 - (1 - \pi)^B}$  holds because each feature's  
728 selection events are independent across  $B$  iterations. Substituting this bound  
729

$$730 \text{FDR}(\hat{A}(\pi)) \leq \frac{q}{B\pi} \sum_{b=1}^B \frac{\mathbb{E}[|\hat{A}(\pi)|]}{1 - (1 - \pi)^B} = \frac{q}{1 - (1 - \pi)^B}.$$

□

731  
732  
733  
734  
735  
736  
737  
738  
739  
740  
741  
742  
743  
744  
745  
746  
747  
748  
749  
750  
751

752 **E FDR CONTROL OF NAIVE SGSHIFT**

753  
754 Given the assumption of i.i.d. observations and the exponential family distribution to generate the dependent  
755 variable  $y$ ,  $f(X_i)$  determines the  $\mathbb{E}[y_i | X_i]$  under domain  $S$ , and  $\delta$  captures the shift.  
756

757 The negative log-likelihood function of  $\delta$  can be written as

758 
$$L(\delta) = \sum_{i=1}^{n_T} \left\{ \psi(f(X_i) + \phi_i^\top \delta) - y_i(f(X_i) + \phi_i^\top \delta) \right\} = \ell(f(X_T) + \phi_T^\top \delta, y_T)$$
  
759  
760

761 where  $\psi(\cdot)$  is uniquely determined by the link  $g(\cdot)$ ,  $\ell(\eta, y) = \psi(\eta) - y\eta$  where  $\eta = f(X) + \phi^\top \delta$ .

762 We regularize the GAM loss with an  $\ell_1$ -penalty

763 
$$\hat{\delta}(\lambda) = \arg \min_{\delta \in \mathbb{R}^K} \left\{ \sum_{i=1}^{n_T} (\psi(\eta_i) - y_i \eta_i) + \lambda \|\delta\|_1 \right\}$$
  
764  
765

766 The score vector is

767 
$$\nabla L(\delta) = \sum_{i=1}^{n_T} [\psi'(f(X_i) + \phi_i^\top \delta) - y_i] \phi_i$$
  
768  
769

770 Evaluated at  $\delta = 0$ ,  $\gamma := \nabla L(\delta) \Big|_{\delta=0} = \sum_{i=1}^{n_T} [\psi'(f(X_i)) - y_i] \phi_i$ , where  $\psi'(\cdot)$  is the canonical mean  
771 function.  
772

773 By the Karush–Kuhn–Tucker (KKT) conditions,  $\hat{\delta}_j(\lambda) \neq 0$  iff  $|\gamma_j| > \lambda$ ; hence selection of  $j$  depends only  
774 on the distribution of  $\gamma_j$ .  
775

776 Assume each row  $\phi_i$  is sub-Gaussian with i.i.d. coordinates and that every coordinate of  $\phi_i$  and  $y_i$  has been  
777 centered and variance-normalized.

778 Let  $\sigma_\gamma^2 := \mathbb{V}(y_i | X_i) = \psi''(f(X_i))$ , where  $\psi''(\cdot)$  is the variance function of the canonical exponential-family  
779 model.  
780

781 Let the true parameter be  $\delta^* \in \mathbb{R}^K$  with support  $A \subseteq [K]$ ,  $|A| = a$ , so  $\delta_j^* = 0$  for  $j \in A^c$ .  
782

783 **Null coordinates.** Let  $j$  be a null coordinate  $j \in A^c$  among  $K - a$  null coordinates.

784 Because  $\delta_j^* = 0$ ,

785 
$$\mathbb{E}[y_i - \psi'(f(X_i)) | X_i] = 0, \mathbb{E}[(y_i - \psi'(f(X_i))) \phi_{ij}] = \mathbb{E}[\mathbb{E}[y_i - \psi'(f(X_i)) | X_i] \phi_{ij}] = 0$$
  
786

787 Define  $Z_{ij} = (y_i - \psi'(f(X_i))) \phi_{ij}$ ,  $\{Z_{ij}\}_{i=1}^{n_T}$  are i.i.d., mean-zero, and sub-Gaussian.  
788

789 
$$\mathbb{V}[Z_{ij}] = \mathbb{E}[(y_i - \psi'(f(X_i)))^2 \phi_{ij}^2] = \mathbb{E}[\psi''(f(X_i)) \phi_{ij}^2] = \mathbb{E}[\psi''(f(X_i))] = \sigma_\gamma^2$$
  
790

791 where the second equality follows by the law of total variance and independence between  $\phi_{ij}$  and  $y_i | X_i$ .  
792

Under mild moment conditions, the Lindeberg–Feller central limit theorem (CLT) implies

793 
$$\frac{1}{\sqrt{n}} \sum_i \{(y_i - \psi'(f(X_i))) \phi_{ij}\} \xrightarrow{d} N(0, \sigma_\gamma^2) \quad \text{if } j \in A^c$$
  
794  
795

796 Therefore, for null coordinates, we have

797 
$$\frac{1}{\sqrt{n}} \gamma_j = -\frac{1}{\sqrt{n}} \sum_i (y_i - \psi'(f(X_i))) \phi_{ij} \xrightarrow{d} N(0, \sigma_\gamma^2) \quad \text{if } j \in A^c$$
  
798

799  
 800   **False-selection probability and plug-in mFDR estimate.** Because  $\hat{\delta}_j(\lambda) \neq 0$  iff  $|\gamma_j| > \lambda$ , the  
 801   null-coordinate error rate is

802   
$$Pr(j \text{ selected} | j \in A^c) = Pr(|\gamma_j| > \lambda) = 2 \left\{ 1 - \Phi \left( \frac{\lambda}{\sqrt{n}\sigma_\gamma} \right) \right\}$$
  
 803

804   where  $\Phi$  is the standard normal CDF.

805   Following Miller & Breheny (2019), the marginal FDR is

806  
 807   
$$\text{mFDR}(\lambda) = \frac{\mathbb{E}[\#\text{False Discoveries}]}{\mathbb{E}[\#\text{Selected}]}$$
  
 808

810   Plugging in the null probability above yields

811  
 812   
$$\widehat{\text{FDR}}(\lambda) = \min \left\{ \frac{2(K-a)(1 - \Phi(\lambda/\sqrt{n}\sigma_\gamma))}{|\hat{A}(\lambda)| \vee 1}, 1 \right\}$$
  
 813

814   A practical one-pass rule that controls FDR at level  $\alpha$  is

815  
 816   
$$\hat{\lambda}_\alpha = \min \left\{ \lambda : \widehat{\text{FDR}}(\lambda) \leq \alpha \right\}$$
  
 817

818  
 819  
 820  
 821  
 822  
 823  
 824  
 825  
 826  
 827  
 828  
 829  
 830  
 831  
 832  
 833  
 834  
 835  
 836  
 837  
 838  
 839  
 840  
 841  
 842  
 843  
 844  
 845

846 F DATASETS  
847

848 All datasets are listed as below, and the full preprocessing code from raw data, together with the preprocessed  
849 data, are available in the source code, except restricted access COVID-19 Hospitalization data where  
850 we provide detailed fetching code and data version information from NIH All of Us Research Program  
851 of Us Research Program Investigators (2019). Standardization is performed within the pipeline to ensure that  
852 features with larger values don't disproportionately influence the  $\ell_1$  regularization penalty.  
853

|               | Diabetes readmission     | COVID-19    | SUPPORT2          |
|---------------|--------------------------|-------------|-------------------|
| Total samples | 73,615                   | 16,187      | 9,105             |
| Features      | 33                       | 30          | 64                |
| Source size   | 49,213                   | 11,268      | 5,453             |
| Target size   | 24,402                   | 2,219       | 1,817             |
| Domain split  | Emergency room admission | New variant | Death in hospital |

861 Table 2: Dataset summary.  
862  
863

864 **Diabetes 30-Day Readmission** The Diabetes 130-US Hospitals dataset, available through the UCI Machine  
865 Learning Repository (<https://archive.ics.uci.edu/dataset/296/diabetes+130-us+hospitals+for+years+1999-2008>), comprises 101,766 encounters of diabetic patients across 130  
866 U.S. hospitals between 1999-2008 Strack et al. (2014). We fetch the data following TableShift's procedure  
867 Gardner et al. (2023). We define the source domain as 49,213 non-ER admissions (elective or urgent) with  
868 25,196 readmitted patients, and the target domain as 24,402 ER admissions with 10,684 readmitted patients,  
869 with the binary classification task being prediction of 30-day readmission risk.  
870

871 **COVID-19 Hospitalization** The COVID-19 cohort is part of the NIH All of Us Research Program of Us Re-  
872 search Program Investigators (2019), a (restricted access) dataset containing electronic health records for  
873 16,187 patients diagnosed with COVID-19 between 2020-2022. Features include demographic variables (age,  
874 gender, race), temporal indicators (diagnosis date relative to Omicron variant emergence), comorbidity status  
875 for 13 chronic conditions (diabetes, COPD), and diagnostic context (EHR vs. claims-based). We partition the  
876 data into three temporal groups: a source domain of 11,268 patients diagnosed prior to the beginning of 2022  
877 with 2,541 patients hospitalized, a target domain of 2,219 patients diagnosed in January 2022 (early Omicron  
878 era) with 359 patients hospitalized. The binary classification task predicts hospitalization status (inpatient vs.  
879 outpatient).  
880

881 **SUPPORT2 Hospital Charges** From the Study to Understand Prognoses Preferences Outcomes and Risks  
882 of Treatment (SUPPORT2), publicly available via the UCI repository (<https://archive.ics.uci.edu/dataset/880/support2>) containing 9,105 critically ill patients Connors et al. (1995). The source  
883 domain is specified as 5,453 patients who survived hospitalization and the target domain as 1,817 in-hospital  
884 deaths. The regression task is defined as a prediction of  $\log_{10}(\text{total hospital costs per patient})$ .  
885

893 **G MODEL HYPERPARAMETERS**  
894895 We used standard implementations of classical machine learning models from `scikit-learn`, with  
896 hyperparameters either set to commonly used defaults or manually tuned for stability and performance.  
897 Supplementary table 3 summarizes the key hyperparameters for each model. Unless otherwise stated, all  
898 models were trained using their default solver settings. Random seeds were fixed via `random_state` to  
899 ensure reproducibility.  
900

---

| 901 <b>Model</b>                        | 902 <b>Hyperparameters</b>                                                  |
|-----------------------------------------|-----------------------------------------------------------------------------|
| 903 Decision Tree (Classifier)          | 904 <code>max_depth=4, random_state={seed}</code>                           |
| 904 Support Vector Machine (Classifier) | 905 <code>kernel='rbf', C=1.0, probability=True, random_state={seed}</code> |
| 905 Gradient Boosting Classifier        | 906 <code>n_estimators=100, random_state={seed}</code>                      |
| 906 Logistic Regression                 | 907 <code>max_iter=200, random_state={seed}</code>                          |
| 907 Decision Tree (Regressor)           | 908 <code>max_depth=4, random_state={seed}</code>                           |
| 908 Support Vector Machine (Regressor)  | 909 <code>kernel='rbf', C=1.0</code>                                        |
| 909 Linear Regression                   | 910 <code>default settings</code>                                           |
| 910 Gradient Boosting Regressor         | 911 <code>n_estimators=100, random_state={seed}</code>                      |

---

912 Table 3: Hyperparameters used for each model. The same random seed (`{seed}`) was applied across models  
913 where applicable to ensure consistency.  
914  
915  
916  
917  
918  
919  
920  
921  
922  
923  
924  
925  
926  
927  
928  
929  
930  
931  
932  
933  
934  
935  
936  
937  
938  
939

940 H ABLATIONS  
941  
942  
943  
944  
945  
946  
947  
948  
949  
950  
951  
952  
953  
954  
955  
956  
957  
958  
959  
960

| Model                       | Sparse simulations |         |             | Dense simulations |         |           |             |
|-----------------------------|--------------------|---------|-------------|-------------------|---------|-----------|-------------|
|                             | Match              | SGShift | SGShift-A   | SGShift-K         | SGShift | SGShift-A | SGShift-K   |
| <b>Diabetes Readmission</b> |                    |         |             |                   |         |           |             |
| Matched                     | 0.80               | 0.81    | <b>0.90</b> |                   | 0.71    | 0.72      | <b>0.85</b> |
| Mismatched                  | 0.79               | 0.81    | <b>0.86</b> |                   | 0.72    | 0.71      | <b>0.78</b> |
| <b>COVID-19</b>             |                    |         |             |                   |         |           |             |
| Matched                     | 0.86               | 0.88    | <b>0.99</b> |                   | 0.80    | 0.83      | <b>0.93</b> |
| Mismatched                  | 0.85               | 0.80    | <b>0.97</b> |                   | 0.76    | 0.76      | <b>0.91</b> |
| <b>SUPPORT2</b>             |                    |         |             |                   |         |           |             |
| Matched                     | 0.92               | 0.94    | <b>0.96</b> |                   | 0.89    | 0.89      | <b>0.92</b> |
| Mismatched                  | 0.86               | 0.88    | <b>0.95</b> |                   | 0.88    | 0.89      | <b>0.92</b> |

972 Table 4: **Performance (AUC) of SGShift variants in identifying shifted features.** AUC of SGShift,  
973 SGShift-A, and SGShift-K in sparse (left) and dense (right) semi-synthetic simulations. Matched refers to  
974 when generator and base model are the same, mismatched when they differ.  
975  
976  
977  
978  
979  
980  
981  
982  
983  
984  
985  
986

987

## I SAMPLE SIZE

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

## A



## B



## C



## D



—●— SGShift-K    —●— Diff    —●— WhyShift    —●— SHAP

Figure 4: **Performance across sample sizes.** Sample size is varied from 50 to 1000. 95% CI's are shown across 16 simulation settings. Recall is measured at fixed FPR 5%.

1034 J GLOBAL CALIBRATION SHIFTS  
1035

1036 **Global shifts.** It may be true that all features are shifted in the same direction in a new domain due to  
1037 differences in sensor calibration. In this case identifying specific shifted features may be difficult as all  
1038 are perturbed slightly. We simulate this global effect where only a few true features having a conditional  
1039 shift, and the rest are perturbed by noise with absolute values from 0.01 to 0.3 while the absolute values of  
1040 true shifts are 3. Results are reported in Figure 5. SGShift-K still strongly identifies true shifted features  
1041 with  $AUC > 0.9$ , even when all features are shifted slightly, and individual features are not over or under  
1042 prioritized. Interestingly, for all methods, performance is relatively unchanged as the scale of the background  
1043 shift increases. This may be due to the intercept term accumulating the background shift, as opposed to  
1044 attributing it to any individual feature.

1045  
1046 Global Calibration Shift  
1047

1058 Figure 5: **Global calibration shift performance.** Performance as a background conditional shift is increased  
1059 in scale. X-axis represents strength of the background shift, as  $0.01x-0.3x$  the true shift magnitude.  
1060

1061  
1062  
1063  
1064  
1065  
1066  
1067  
1068  
1069  
1070  
1071  
1072  
1073  
1074  
1075  
1076  
1077  
1078  
1079  
1080

1081 K INTERACTION SHIFTS  
1082

1083 **Interaction shifts.** We assess each method’s performance in identifying features which shift in the interaction  
1084 space in the SUPPORT2 dataset, where features are continuous. The goal is to detect individual features  
1085 contributing to shift through interactions with other features. We consider two cases of SGShift-K, underspec-  
1086 ified, where the basis function does not include interaction terms, and overspecified, where SGShift contains  
1087 both second and third tier interactions. Results are reported in Table 5. In both cases, regardless of how the  
1088 basis function is specified, SGShift displays strong performance.

|            | Diff | WhyShift | SHAP | SGShift-K – underspecified | SGShift-K – overspecified |
|------------|------|----------|------|----------------------------|---------------------------|
| Matched    | 0.75 | 0.73     | 0.80 | <b>0.92</b>                | 0.90                      |
| Mismatched | 0.72 | 0.73     | 0.78 | <b>0.89</b>                | 0.87                      |

1093 Table 5: Performance in detecting interaction shifts.  
1094  
1095  
1096  
1097  
1098  
1099  
1100  
1101  
1102  
1103  
1104  
1105  
1106  
1107  
1108  
1109  
1110  
1111  
1112  
1113  
1114  
1115  
1116  
1117  
1118  
1119  
1120  
1121  
1122  
1123  
1124  
1125  
1126  
1127

1128 L HIGH DIMENSIONAL SHIFTS  
11291130 **High dimensional shifts.** We simulate high dimensional data with 1000 samples and 500, 200, and 100  
1131 features, for each of the 16 model configurations. In each case, 20% of the features are shifted. Results are  
1132 reported below. SGShift-K maintains strong performance (all AUC > 0.89) even as the number of features is  
1133 half the number of samples where other methods lose performance.  
1134

| Model Match         | Diff | WhyShift | SHAP | SGShift-K   |
|---------------------|------|----------|------|-------------|
| <b>500 Features</b> |      |          |      |             |
| Matched             | 0.57 | 0.50     | 0.61 | <b>0.92</b> |
| Unmatched           | 0.57 | 0.51     | 0.62 | <b>0.89</b> |
| <b>200 Features</b> |      |          |      |             |
| Matched             | 0.87 | 0.53     | 0.88 | <b>0.99</b> |
| Unmatched           | 0.86 | 0.53     | 0.86 | <b>0.97</b> |
| <b>100 Features</b> |      |          |      |             |
| Matched             | 0.93 | 0.57     | 0.93 | <b>1.00</b> |
| Unmatched           | 0.94 | 0.57     | 0.92 | <b>1.00</b> |

1144 Table 6: **Performance in identifying shifted features across feature dimensionalities.** AUC of Diff,  
1145 WhyShift, SHAP, and SGShift-K for different numbers of features.  
11461147  
1148  
1149  
1150  
1151  
1152  
1153  
1154  
1155  
1156  
1157  
1158  
1159  
1160  
1161  
1162  
1163  
1164  
1165  
1166  
1167  
1168  
1169  
1170  
1171  
1172  
1173  
1174

1175 M CORRELATED FEATURES  
1176

1177 **Correlated features** We conduct an experiment by simulating 1000 samples in each domain and 500 features  
 1178 (100 shifted), and varying the maximum feature correlation  $\rho$  from 0.1 to 0.9, with  $i$ -th and  $j$ -th predictors  
 1179 correlated as  $\rho^{|i-j|}$ . Results are reported in the figure below. In the presence of shifted feature correlation,  
 1180 SGShift-K is still able to strongly identify shifted features, likely due to knockoff's innate ability at handling  
 1181 feature correlations.  
 1182



Figure 6: **Feature correlation performance.** Ability to identify shifted features as features become more correlated.

1222 N DIAGNOSTICS  
1223

1224 **Diagnostics** To understand the level of concept shift in real data, we add an experiment testing how much  
1225 performance can be recovered with the inverse propensity weighting procedure from WhyShift to account  
1226 for covariate shift. Results are reported below. At most this can recover 15% of the difference, and in many  
1227 cases it actually reduces performance, likely due to its reliance on sufficient target domain sample size, which  
1228 as in the Covid-19 example is small.

| 1230 Dataset  | 1231 Decision Tree | 1232 Gradient Boosting | 1233 Regression | SVM    |
|---------------|--------------------|------------------------|-----------------|--------|
| 1231 Support2 | -3.08%             | 11.81%                 | -6.78%          | 2.39%  |
| 1232 Diabetes | -11.50%            | 2.64%                  | -0.79%          | 14.30% |
| 1233 Covid-19 | -79.09%            | -21.11%                | -7.38%          | -4.90% |

1234 Table 7: **Relative performance (%) after correcting for covariate shift with IPW.**  
1235

1236  
1237  
1238  
1239  
1240  
1241  
1242  
1243  
1244  
1245  
1246  
1247  
1248  
1249  
1250  
1251  
1252  
1253  
1254  
1255  
1256  
1257  
1258  
1259  
1260  
1261  
1262  
1263  
1264  
1265  
1266  
1267  
1268

1269 O SPARSITY IN REAL DATA  
12701271 **Sparsity in real data.** We perform additional performance recovery experiments on datasets with known  
1272 concept shift from WhyShift’s datasets. We train models across 31 state-state pairs in the ACS income  
1273 datasets, and in 87 cases of concept shift, 78 of these can have model performance completely recovered by  
1274 less than 1/3 of the total features, 42 of which require less than 10% of features. The remaining 9 can be  
1275 recovered with less than 50% of features.  
12761299 Figure 7: Features needed to correct for concept shift in real data..  
1300  
1301  
1302  
1303  
1304  
1305  
1306  
1307  
1308  
1309  
1310  
1311  
1312  
1313  
1314  
1315

1316 P SIGNAL TO NOISE EFFECT  
1317

1318 **Varying signal to noise.** We simulate signal-to-noise ratios from 1 to 16 by simulating 1000 samples in  
1319 each domain with 200 features, 40 of which induce concept shift, maximum feature correlation 0.7 with  
1320 i-th and j-th predictors correlated as  $\rho^{|i-j|}$ . We vary the noise variance of the induced concept shift so the  
1321 signal-to-noise ratio is 1 to 16. Results are reported below. We additionally include naive SGShift and  
1322 SGShift-A in the SNR study because knockoff-based methods rely on accurate estimation of the feature  
1323 covariance structure; when the induced concept shift becomes extremely noisy, this estimation becomes less  
1324 stable, which can reduce knockoff power. Even so, across all SNR regimes, all SGShift variants substantially  
1325 outperform baseline methods.

1339 Figure 8: **Signal to noise ratio.** Ability to identify shifted features as signal to noise ratio changes.

1340  
1341  
1342  
1343  
1344  
1345  
1346  
1347  
1348  
1349  
1350  
1351  
1352  
1353  
1354  
1355  
1356  
1357  
1358  
1359  
1360  
1361  
1362