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ABSTRACT

Regardless the amount of data a machine learning (ML) model is trained on, there will
inevitably be data that differs from their training set, lowering model performance. Concept
shift occurs when the distribution of labels conditioned on the features changes, making
even a well-tuned ML model to have learned a fundamentally incorrect representation.
Identifying these shifted features provides unique insight into how one dataset differs from
another, considering the difference may be across a scientifically relevant dimension, such
as time, disease status, population, etc. In this paper, we propose SGShift, a model for
detecting concept shift in tabular data and attributing reduced model performance to a
sparse set of shifted features. We frame concept shift as a feature selection task to learn
the features that can explain performance differences between models in the source and
target domain. This framework enables SGShift to adapt powerful statistical tools such as
generalized additive models, knockoffs, and absorption towards identifying these shifted
features. We conduct extensive experiments in synthetic and real data across various ML
models and find SGShift can identify shifted features with AUC > 0.9, much higher than
baseline methods, requires few samples in the shifted domain, and is robust in complex
cases of concept shift. Applying SGShift to 2 real world cases in healthcare and genetics
yielded new feature-level explanations of concept shift, including respiratory failure’s
reduced impact on COVID-19 severity after Omicron and European-specific rare variants’
impact on Lupus prevalence.

1 INTRODUCTION

Machine learning (ML) models are often trained on vast amounts of data, but will inevitably encounter test
distributions that differ from the training set. Such distribution shift is one of the most common failure modes
for ML in practice. When models do fail, model developers need to diagnose and correct the problem. In
the simplest case, this may simply consist of gathering more data to retrain the model. However, in other
cases, it may be necessary to fix issues in an an underlying data pipeline, add new features to replace ones
that have become uninformative, or undertake other more complex interventions. A necessary starting point
for any such process is to understand what changed in the new dataset. Developing such understanding
may even have scientific importance. For instance, a novel virus variant may emerge with new risk factors,
lowering the performance of models that predict disease progression, or specific mutations in the genome
could have differing relevance to disease between ancestries, weakening polygenic risk score models due to
fundamentally different biology between populations (Duncan et al., 2019; Martin et al., 2019).

We propose methods for diagnosing distribution shift, focusing specifically on the case of concept shift, or
when the conditional distribution of the label given the features, p(y|X), differs between the source and
target distribution. Concept shift represents the difficult case where the relationship between features and
outcome has changed, as opposed to marginal shifts impacting only X or y by themselves. Indeed, (Liu et al.,
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2024) document concept shift as the primary contributor to performance degradation across a wide range
of empirical examples of distribution shifts. In this setting, our goal is to understand how p(y|X) differs
between the source and target domains.

Understanding distribution shift has been the subject of increasing interest. However, existing methods mostly
operate relative to a structure for the data which is prespecified by the analyst, for example a known causal
graph (Zhang et al., 2023; Subbaswamy et al., 2021), fixed decomposition of the variables (Singh et al.,
2024), or particular assumed models for distribution shift in which out-of-distribution performance can be
identified using only unlabeled data Chen et al. (2022). Methods that do not impose such structural conditions
largely repurpose other tools to explain distribution shift as a secondary objective. For example Mougan et al.
(2023) propose to look for changes in model explanations, while Liu et al. (2023) fit a decision tree to explain
differences in predictions from source and target domain models as part of a larger empirical investigation.

We introduce SGShift, a new method directly designed for diagnosing distribution shift. SGShift offers robust
statistical performance, particularly with limited target-domain samples and without requiring prespecified
causal structure. Just as sparsity is an effective principle for learning predictive models in many settings, we
hypothesize that the update to p(y|X) between the source and target domains may often be sparse (a fact
that we empirically verify in several application domains). In this case, a useful explanation of concept shift
is to identify a small set of features that drive the change between the two distributions, which could e.g.
be the subject of potential modeling fixes. SGShift frames this problem as learning an update to a source
distribution’s predictive model using a minimal set of features to recover the performance loss in the target
distribution. We show how this formulation allows simple, principled, and easily implemented diagnoses of
distribution shift, without requiring any prior knowledge, causal information, or parametric priors regarding
the dataset.

We benchmark SGShift against several baselines on semi-synthetic datasets with known feature shifts,
observing greatly superior performance at identifying shifted features. We then apply SGShift to two real-data
settings and recover real-world concept shifts consistent with findings from medical and biological literature,
such as respiratory failure’s reduced impact on COVID-19 severity after Omicron and European-specific rare
variants’ impact on Lupus prevalence. Together, these findings provide evidence that SGShift can recover
accurate and interpretable descriptions of distribution shift across a wide range of settings.

1.1 ADDITIONAL RELATED WORK

Covariate shift. Much of the existing work on distribution shift has focused on detecting or correcting shifts
in the marginal feature distribution, P (X), e.g. covariate shift with the assumption that P (y|X) remains
unchanged. For instance, (Kulinski et al., 2020) introduce statistical tests to identify which variables have
shifted between source and target domains, while (Kulinski & Inouye, 2023) propose explaining observed
shifts via a learned transportation map between the source and target distributions, not distinguishing between
features and labels. P (X) shift can be identified by methods like two-sample tests (Jang et al., 2022) or
classifiers (Lipton et al., 2018) and corrected by techniques such as importance sampling (Sugiyama et al.,
2007). Cai et al. (2023) further use these ideas to correct covariate shift by regarding the unexplained residual
as a shift in P (y|X), although they don’t correct or explain the concept shift. Although these methods can
be effective for addressing covariate shift, they often do not delve into potential shifts in the conditional
distribution. Explaining shifts in P (y|X) typically involves performing feature-by-feature analyses of the
conditional distribution P (y|Xi) (Guidotti et al., 2018). However, such univariate assessments risk detecting
spurious shifts due to unadjusted confounding in the presence of collinearity among predictors (Raskutti
et al., 2010). Kulinski & Inouye (2023) consider an unsupervised setting where the goal is to identify a set of
features whose distribution differs (e.g., sensors that have been compromised by an adversary), as opposed to
identifying features whose relationship with a supervised label has changed.

2



094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

Under review as a conference paper at ICLR 2026

Conditional distribution shift. Recent efforts have begun to tackle shifts in the conditional distribution
P (y|X) more directly. For example, (Zhang et al., 2023) consider changes in a causal parent set as a whole,
relying on known causal structures. (Mougan et al., 2023) propose a model-agnostic “explanation shift
detector” that applies SHAP (Shapley additive explanations) to a source-trained model and covariates in
both source and target domains, without including the outcomes in the target domain. They then use a
two-sample test on the feature-attribution distributions from SHAP to detect whether the model’s decision
logic has changed because of the changing of P (X) across domains. Despite its effectiveness in signaling
shifts, this approach does not pinpoint which features are driving the changes in P (y|X). (Singh et al., 2024)
decompose the domain loss gap into predefined marginal and conditional segments, then allocate feature-level
contributions, while (Singh et al., 2025) automatically discover subgroups within the data for which to produce
feature-level explanations. (Subbaswamy et al., 2021) stress tests a source model before distribution shift,
requiring a prespecified set of shifting variables. (Chen et al., 2022) focus on estimation of performance shift
on an unlabeled dataset, but this require restrictive assumptions for identifiability, particularly that non-shifted
features have no shifts at all when conditioned on the shifted features and label between datasets. WhyShift
(Liu et al., 2023) compares two independently trained models - one from each domain - and analyze their
difference to locate regions of covariate space with the largest predictive discrepancy. SGShift differs in
that we aim to explicitly identify what the features contributing to conditional distribution shift are without
requiring any prior knowledge of the dataset.

2 PRELIMINARIES AND PROBLEM FORMULATION

ML prediction tasks. We consider standard ML tasks, such as classification, regression, etc. Given features
X ∈ X ⊆ Rp, the goal is to predict associated labels y ∈ Y . Let h(·) denote an ML model applicable to this
task. Given this model’s predictions h(X) and true labels y, the performance can be quantified by a loss
ℓ(ŷ, y). This can be any loss, such as 0-1 loss in classification or MSE in regression.

Conditional distribution shift. ML models are typically trained on one set of data, and then applied to
another. This training and inference data often come from different distributions, referred to as source and
target domains. We consider the particular case of conditional distribution shift, where the probability of
observing y given the same X differs between source and target domains. Formally, let PS and PT denote
the probability density/mass function of the source and target domains, respectively. Conditional distribution
shift occurs when PS(y | X) ̸= PT (y | X).

Problem formulation. We consider the problem of identifying the set of features that cause conditional
distribution shift. Suppose we observe i.i.d. samples (X(S)

i , y
(S)
i )nS

i=1 ∼ PS and (X
(T )
i , y

(T )
i )nT

i=1 ∼ PT . A
source model hS(·) is trained and applied to the target domain. A shift happens such that PT (y | X) ̸=
PS(y | X) for at least one feature in X , thus hS(·) underperforms when applied to T . Our goal is to identify
the smallest set of shifted features A ∈ X on which the change depends. Formally, consider the difference
between the conditional expectation functions,

∆(X) = d′(ES [y|X],ET [y|X]).

for some difference metric d′. In some cases, we may also choose to model ∆ on a transformed scale, e.g., the
logit scale for a binary response, in which case we will take ∆(X) = g(ES [y|X])− g(ET [y|X]) for some
link function g. Our hypothesis is that for many realistic distribution shifts, ∆ will be (approximately) sparse,
i.e., depending on only a small number of inputs in X . Let A ⊆ X denote this support set. For example,
this may be the case if specific nodes in a causal process generating the data are intervened on, as is the
premise for several previous models of distribution shift . Our goal is to recover the support set A to serve as
an explanation of the shift. In practice, we may not expect that sparsity is exactly satisfied, so we look for a ∆
that solves

min
∆̂

d(∆(X), ∆̂(X)) s.t. ∆̂ is k-sparse

3



141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

Under review as a conference paper at ICLR 2026

for some distance function d. k-sparse denotes that ∆ is constant with respect to all but k inputs, and we
search across a range of values of k to identify a level of sparsity at which ∆ is well-approximated.

The problem is potentially challenging because ∆ is the difference between two regression functions over
different data distributions. For any given training point X , we see either a label y from distribution S
or distribution T , but never both. Accordingly, it is not possible to directly apply existing methods for
sparse regression. The most directly related work, the WhyShift framework introduced by for diagnosing
concept shift, takes a plugin approach. A plugin strategy first fits models on the two separately datasets
to approximate ES [y|X] and ET [y|X]. Second, it fits a second model regressing some difference metric
of ÊS [y|X] and ÊT [y|X] on X to summarize the structure in ∆. However, this plugin approach risks an
accumulation of errors, particularly when we are interested in recovering structure related to sparsity: given
noisy approximations to the two conditional expectations, the difference between ÊS [y|X] and ÊT [y|X] will
not necessarily display the same sparsity pattern as ∆ (as we observe experimentally). It is also potentially
challenging when we have limited target-domain data, since separately fitting ET [y|X] may be especially
difficult in this setting.

3 METHOD

Our method, SGShift, circumvents these difficulties by reformulating the above problem in a way that allows
existing sparse regression methods to be applied in a black-box fashion. Instead of first fitting separate
models for ES [y|X] and ET [y|X] and then finally using them to fit ∆, SGShift starts with just a source-
distribution model hS(X). We then find a sparse correction term such that the corrected model has maximum
target-distribution performance. Formally, SGShift solves

min
∆̂

ET [ℓ(hS(X) + ∆̂(X), y)] s.t. ∆̂ is k-sparse

This recipe has two advantages. First, it can be instantiated with any sparse regression method, taking the
source-distribution model hS(X) as a fixed “constant” term that is applied to each sample. Second, we can
separately control the complexity of the model used for the source vs correction term: when source-domain
data is abundant, h may be relatively complex, but under the common challenge of limited target-domain data,
we can use a simpler model for ∆̂. In this work, we instantiate SGShift using ℓ1 regularization for sparsity
and knockoffs for false discovery control, as these are widely used, easy to implement, and tend to perform
robustly in practice. We show that SGShift directly inherits the theoretical guarantees of these methods for
recovery of the support set, despite the fact that the outcome we are attempting to recovery the sparsity pattern
for is never directly observed. However, other sparse regression methods can be applied out-of-the-box to fit
the characteristics of specific data distributions.

3.1 SGSHIFT: INSTANTIATION WITH ℓ1 REGULARIZATION

Our suggested implementation of SGShift uses a generalized additive model (GAM) with ℓ1 regularization to
model the correction term. Specifically, we model

g(ET [y | X]) = hS(X) + ϕ(X)⊤δ (1)
where g is a link function, ϕ(X) is a set of basis functions chosen by the user (by default, ϕ(X) = X), δ is a
vector of coefficients for the correction term. The GAM link function g allows the user to model sparsity
on, e.g., the logits scale when y is binary, which may be more natural than the probability scale. In order to
control the sparsity level of δ, SGShift imposes ℓ1 regularization and solve

δ̂ = arg min
δ∈RK

{
L(δ) + λ∥δ∥1

}
L(δ) := ℓ(hS(XT ) + ϕ(XT )

⊤δ, yT ) (2)

where ℓ here is the negative log-likelihood for the generalized additive model and λ is a regularization
parameter which we vary to obtain solutions of a range of sparsity levels.

4
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3.2 SGSHIFT-A: REFINED FITTING CONSIDERING SOURCE MODEL MISSPECIFICATION

Prioritizing shifted features relies on an existing model trained on the source dataset. However, it may be that
this model does not represent the data well due to difficulties in model fitting. To avoid source model misfit
biasing the selection of shifted features, we incorporate an additional absorption term to nullify this effect.
The main absorption idea is that the error from fitting occurs in both domains, while the conditional shift
occurs only in the target domain. We solve:

(ω̂, δ̂) = arg min
ω,δ∈RK

{
ℓ
([
hS(XS)
hS(XT )

]
︸ ︷︷ ︸

offset

+

[
ϕ⊤S 0
ϕ⊤T ϕ⊤T

] [
ω
δ

]
︸ ︷︷ ︸

absorption

,

[
yS
yT

])
+ λω∥ω∥1 + λδ∥δ∥1

}
(3)

where ω ∈ RK acts on both domains and δ ∈ RK is in the target domain only. We induce hierarchical
regularization λω < λδ to penalize the inference of shift more heavily than model misspecification to be
conservative in identifying shifted features.

3.3 SGSHIFT-K: EXPLICIT FALSE DISCOVERY CONTROL WITH KNOCKOFFS

While ℓ1 regularization enables recovery of a sparse correction vector δ, we may wish for principled
guarantees that limit the false discovery of features that did not in fact shift. For this purpose, we adapt the
knockoffs framework (Candes et al., 2018). Knockoffs generate synthetic features that mimic the correlation
structure of the real data to limit false discoveries. Following (Candes et al., 2018), we construct a Model-X
knockoff matrix X̃ = [X̃(1), . . . , X̃(p)] ∈ Rn×p and apply SGShift’s variable selection procedure to the
basis-transformed design matrix [ϕ ϕ̃] = [ϕ(X) ϕ(X̃)] ∈ Rn×2K . We then form a combined coefficient

vector δ′ =
[
δ

δ̃

]
∈ R2K where δ corresponds to original basis functions and δ̃ to their knockoffs. The details

of the construction and selection with knockoffs is in Appendix C. Unlike classical knockoff regression,
however, our model is applied not to the raw features but to the additive correction term on top of the source
predictor f̂(XT ). Concretely, we treat f̂(XT ) as a fixed offset and fit the residual correction using both
original and knockoff basis functions. The optimization problem becomes:

δ̂′ = arg min
δ′∈R2K

{
ℓ
(
hS(XT ) + [ϕT ϕ̃T ]

⊤δ′, yT

)
+ λ∥δ′∥1

}
. (4)

We then apply the standard derandomized knockoffs procedure for feature selection (Ren et al., 2023), which
effectively uses the knockoff features – that are known to be “fake” – to set a threshold for inclusion in
the returned set. Notably, the objective of SGShift-K is shifted feature selection only with the generation
of knockoff copies, while SGShift and SGShift-A can do simultaneous feature selection and target model
correcting from the trained source model.

3.4 THEORETICAL GUARANTEES

We show that when the model in Equation 1 is well-specified, SGShift has desirable theoretical guarantees on
recovery of the true shift coefficients δ under proper choice of the regularization parameter λ. Importantly,
this only requires imposing assumptions on the form of the between-distribution difference ∆, rather than on
the complete regression function ET [y|X], which is allowed to be nonparametric (as opposed to the standard
Lasso setting). In particular, we obtain the following:
Theorem 3.1 (Convergence Guarantee for δ from SGShift (with Equation 2)). Assume δ∗ ∈ RK be the true
parameter with support A ⊆ [K], |A| = a, ϕ(X) be sub-Gaussian. Suppose (1) Loss function L satisfies
Restricted Strong Convexity (RSC, justification in Appendix A) (2) Subgradient Bound: ∥∇L(δ∗)∥∞ ≲ λ. (3)
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Regularization Parameter: nTλ = λ′ ≍
√
logK/nT . Then, with probability approaching 1, the estimation

error δ̂ − δ∗ satisfies ∥δ̂ − δ∗∥22 ≲ a logK
nT

.

The proof is in Appendix B.

Further, the use of knockoffs in the second stage allows us to prove stronger guarantees on the probability
that any feature is false included in the selected set.
Theorem 3.2 (Stability Selection Control). Let Ac = {k : δ∗k = 0} denote the set of features with zero
coefficient in the true data distribution and B the number of knockoff samples.

(PFER Control) Assume for each k ∈ Ac, P (k ∈ Â[b]) ≤ α uniformly over b, where α is the per-iteration
false selection probability controlled via τ . For any stability threshold π > α:

E
[
|Â(π) ∩Ac|

]
≤ |Ac| exp

(
−2B(π − α)2

)
.

(FDR Control) Assume each Â[b] satisfies E
[
|Â[b]∩Ac|
|Â[b]|∨1

]
≤ q (FDR control at level q via τ ) as per Theorem

3.1 in (Candes et al., 2018). Then:

FDR(Â(π)) ≤ q

1− (1− π)B
.

The proof is in Appendix D. We also provide a discussion of FDR control for SGShift in Appendix E.

4 EXPERIMENTS

Evaluation setup We evaluate our method on three real-world healthcare datasets (details in Appendix F)
exhibiting natural distribution shifts, 30-day Diabetes Readmission (Strack et al., 2014) split by ER admission,
COVID-19 Hospitalizations (of Us Research Program Investigators, 2019) split by pre and post-Omicron, and
SUPPORT2 Hospital Expenses (Connors et al., 1995) split by death in hospital. For each of these 3 naturally
shifted datasets, we construct semi-synthetic simulations, consistent with previous work (Singh et al., 2025;
Zhang et al., 2023). We fit a “generator” model” to the real labels in source domain, relabeling the source
data, then simulate the target dataset’s labels with an induced conditional shift by perturbing g(E[y|X]) based
on selected input features. A “base” model is then trained from the relabeled source domain. We vary base
and generator models to be each combination of decision tree, logistic/linear regression, gradient boosting,
and support-vector machines, for a total of 16 settings in each dataset and 48 total settings. We consider 4
scenarios in each setting, sparse shift, where a small set of features are shifted, dense shift, where >60% of
the features are shifted, global shift, where all features shift slightly, with a few shifting greater than others,
and interaction shifts, occurring in the interaction space. Full preprocessing details and replication code is in
the appendix.

Baselines We consider 3 baseline models which also use both features and labels in source and target
domain to identify shifted features. Diff, a method we construct where we simply compute the outcome
discrepancies of two “base models” separately trained on source and target data, and apply sparse regression
on held-out samples and the base models’ outcome probability differences to identify features contributing
to the shifts. WhyShift (Liu et al., 2023) uses two “base models” separately trained on source and target
domains and computes model outcome probability discrepancies, then trains a non-linear decision tree on
these discrepancies to detect regions (paths in the tree) responsible for conditional shifts. We extract the
features from any path in the learned tree with feature importance > 0 and consider them as the shifted
features. SHAP, a Shapley value-based method we adapt from (Mougan et al., 2023) such that we can find
individual features that differ between datasets. SHAP trains “base models” separately on source and target
data, computes the Shapley value of each feature, and ranks the largest absolute differences between models.

6



282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328

Under review as a conference paper at ICLR 2026

4.1 BENCHMARKING

Accuracy in identifying shifted features. First, we examine the case of sparse shifts, in line with SGShift’s
sparsity assumption. 5 features are perturbed in each dataset between domains, while the rest remains fixed.
Table 1 shows evaluation of SGShift in detecting shifted features in these simulations, measured in AUC at
detecting true shifted features (a binary 0/1 label). Across model settings and datasets, SGShift achieves the
strongest performance compared to baselines Diff, WhyShift and SHAP, with AUC typically greater than 0.9,
0.1-0.2 higher than the nearest baseline. Despite the presence of model mismatch, SGShift still attains high
performance in the mismatched setting, on average only 0.02 AUC below the matched setting.

We next examine the case of dense concept shift, violating SGShift’s sparsity assumption. 25/33, 25/30, and
40/64 features are perturbed in each simulation setting of Diabetes readmission, COVID-19, and SUPPORT2
respectively. Table 1 shows evaluation results. Despite the assumption of sparsity, SGShift still attains AUC
greater than 0.8 and 0.9. This is in contrast to baseline methods, whose performance may reduce substantially,
such as all methods in the Diabetes dataset, each with AUC around 0.6, down from around around 0.75
previously. SGShift is robust towards dense shift and does not over-emphasize a few features when many
may be shifted.

Next, we vary the sample size available in the target domain, simulating an online learning setting where data
is gradually streaming in. Results for COVID-19 are reported in Figure 1. SGShift is able to identify over
half the shifting features given only 100 samples, and over 85% given 500 samples. This indicates SGShift is
indeed an effective diagnostic tool, not requiring many samples for identifying features or correcting models.
Similar results are reported for Diabetes and COVID-19 in Appendix H.

Results of global and interaction shifts are available in the Appendix I, J.

Sparse simulations Dense simulations
Model Match Diff WhyShift SHAP SGShift Model Match Diff WhyShift SHAP SGShift

Diabetes Readmission Diabetes Readmission
Matched 0.64 0.73 0.77 0.90 Matched 0.54 0.52 0.64 0.86
Mismatched 0.69 0.72 0.76 0.86 Unmatched 0.58 0.57 0.60 0.82
COVID-19 COVID-19
Matched 0.78 0.76 0.81 0.99 Matched 0.79 0.65 0.86 0.95
Mismatched 0.77 0.71 0.77 0.97 Unmatched 0.78 0.74 0.78 0.93
SUPPORT2 SUPPORT2
Matched 0.83 0.67 0.82 0.96 Matched 0.62 0.56 0.62 0.92
Mismatched 0.80 0.67 0.76 0.95 Unmatched 0.73 0.60 0.70 0.92

Table 1: Performance in identifying shifted features. AUC of detecting true set of shifted features in sparse
(left) and dense (right) semi-synthetic simulations. Matched refers to when generator and base model are
the same, mismatched/unmatched when they differ. Results are aggregated across the 4 matched and 12
mismatched settings. Highest performing method is in bold for each dataset and model match setting.

4.2 REAL DATA

Real-world sparse concept shift. We verify the sparsity of true concept shift in Figure 2A. Across datasets
and model configurations, SGShift is able to learn updates to the source model that recover 90% of the
performance loss in the target domain, requiring less than 1/3 of the total features, and in some cases as little
as one feature. As an illustrative example, we show how SGShift recovers performance for a gradient boosting
model in the COVID-19 dataset in Figure 2B. With only 1 feature, the performance loss can be completely
recovered. Furthermore, adding additional features beyond what is needed may even reduce performance.
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Figure 1: Performance across sample sizes. Sample size is varied from 50 to 1000. 95% CI’s are shown
across 16 simulation settings. Recall is measured at fixed FPR 5%.

These results indicate that true concept shift can indeed often be explained by a subset of features shifting.
Results of additional model configurations and datasets are in the Appendix.

Figure 2: Sparsity in real world concept shift. A) How many features SGShift required to learn an update
to the source model that recovered 90% of the performance loss in the target domain. B) By decreasing the
feature penalization penalty to add more features to SGShift’s update, we see how many terms are needed to
recover performance in the target domain.

Case study in healthcare. We next evaluate the validity of the top features selected by SGShift contributing
to the shift in COVID-19 severity after Omicron in Figure 3. The highest ranked feature across all models is
respiratory failure with a negative sign, consistent with the broad observation of less severity during Omicron
compared to the previous Delta variant (Adjei et al., 2022), partly due to Omicron’s decreased ability at
infecting lung cells (Hoffmann et al., 2023). More severe cases may be taking place in other pathways, such as
the upper respiratory tract (Wickenhagen et al., 2025). Abnormal breathing and other circulatory/respiratory
signs have decreased risk, likely for the same reason. Non-lung related comorbidities tend to contribute more

8
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to increased hospitalization risk, as with decreased lung comorbidity risk, they may now be more relevant to
severity (Lewnard et al., 2022).

Figure 3: Shifted features in COVID-19 severity. Real data results showing the ordering of selected features
for each model as the penalty term increases for COVID-19 severity. Positive (+) and negative (-) coefficients
are treated as 2 distinct features. Only features selected in the top 5 for any model are shown.

Case study in genetics. We consider a known case of concept shift in the difference in Lupus severity and
prevalence between ancestries. We use the gene expression from 149 healthy and Lupus-affected Europeans,
and 107 healthy and Lupus-affected Asians (Perez et al., 2022), and aim to predict Lupus status using
the top 1000 variable genes in B cells, a cell type commonly implicated in Lupus. We split by ancestry
and apply SGShift to find genes contributing to concept shift. Expectedly, we first observe an XGBoost
model trained on Europeans underperforms when applied to Asians (European AUC 1.0, Asian AUC 0.84).
SGShift discovers 6 genes in B cells contributing to this shift: ERRFI1, RP11-666A1.5, CTD-2561B21.11,
AC012309.5, AC074212.5, and AP001059.5, all with negative coefficients. ERRFI1 and RP11-666A1.5
are both differentially expressed in B cells between these ancestries (Wang & Gazal, 2023). A genetic
basis of difference in Lupus between ancestries has been discovered, and CTD-2561B21.11, AC012309.5,
AC074212.5, and AP001059.5 are underpinned by eQTLs or repeat variants common in Europeans but rare
in East Asians (Morris et al., 2016; Langefeld et al., 2017). Interferon signatures commonly correlate with
Lupus prevalence, and Asians have elevated background interferon levels compared to Europeans, such as
RP11-666A1.5 (Rector et al., 2023). These results indicate SGShift is picking up true biology underlying the
difference in Lupus between European and Asian populations.

5 DISCUSSION

We have presented SGShift, a method for attributing concept shift between datasets to a sparse set of features.
Our work contributes towards understanding what makes models fail between datasets. We prove statistical
guarantees regarding SGShift’s false discovery control and demonstrate high power in detecting true shifted
features, even when the assumption of sparsity is violated. We show that true concept shifts in tabular
healthcare data do indeed tend to be sparse and SGShift can explain these shifts. Future work could include
optimizing model performance by explicitly modeling the difference between datasets given the identified
shifted features, or extending SGShift to non-tabular data, e.g., images or graphs.
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A JUSTIFICATION OF RESTRICTED STRONG CONVEXITY (RSC)

The RSC condition is central to ensuring the quadratic growth of the loss difference around the true parameter
δ∗, even in high dimensions. We formalize its validity as follows:

Lemma A.1 (RSC for ℓ1-Penalized Loss). Let ϕi ∈ RK be i.i.d. sub-Gaussian vectors with covariance
Σ ≻ 0. LT (δ) = ℓ(hS(XT ) + ϕ⊤T δ, yT ), where ℓ(η, y) is twice-differentiable and ∇2

ηℓ(η, y) ≥ κ > 0
uniformly. We aim to show that, for sufficiently large nT , with high probability over the sample,

LT (a)− LT (b)− ⟨a− b,∇LT (b)⟩ ≥ c1nT ∥a− b∥22 − c2∥a− b∥21.

for all a,b ∈ RK , where c1, c2 > 0 are constants depending on κ and Σ.

Proof. Define h = a− b.By Taylor’s theorem, there exists a point δ̃ on the line segment between a and b
such that

LT (a)− LT (b)− ⟨h,∇LT (b)⟩ =
1

2
h⊤∇2LT (δ̃)h,

where

∇2LT (δ̃) =

nT∑
i=1

∇2
ηℓ(hS(Xi) + ϕ⊤i δ̃, yi)ϕiϕ

⊤
i ⪰ κ

nT∑
i=1

ϕiϕ
⊤
i .

Defining the empirical covariance Σ̂ = 1
nT

∑nT

i=1 ϕiϕ
⊤
i , it follows that

h⊤∇2LT (δ̃)h ≥ κnTh
⊤Σ̂h.

Under the assumption that {ϕi} are i.i.d. sub-Gaussian with E[ϕiϕ⊤i ] = Σ ≻ 0, standard concentration
results (e.g., Theorem 9 of Rudelson & Vershynin (2010), or Theorem 3.1 in Raskutti et al. (2010)) show that
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for nT on the order of a logK
λmin(Σ) , the empirical covariance Σ̂ satisfies a restricted eigenvalue inequality with

high probability

h⊤Σ̂h ≥ γmin∥h∥22 − τ
logK

nT
∥h∥21.

where γmin > 0 and τ > 0 are constants depending on Σ and the sub-Gaussian norm of ϕi. Combining this
restricted eigenvalue (RE) bound with the lower Hessian bound above yields

h⊤∇2LT (δ̃)h ≥ κnT

(
γmin∥h∥22 − τ

logK

nT
∥h∥21

)
Substitute back into the Taylor expansion, there exist constants c1 and c2 such that

LT (a)− LT (b)− ⟨a− b,∇LT (b)⟩ ≥ 1
2κγmin︸ ︷︷ ︸
c1

nT ∥a− b∥22 − 1
2κτ︸︷︷︸
c2

∥a− b∥21.

This is precisely the Restricted Strong Convexity (RSC) condition.

13
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B PROOF OF THEOREM 3.1: CONVERGENCE GUARANTEE FOR ESTIMATION ERROR
UNDER RSC

Proof. Given the definition of δ̂, there exists a subgradient z ∈ ∂∥δ̂∥1 such that

∇L(δ̂) + λz = 0

To bound the norm of the parameter δ, with standard Lasso analysis under Restricted Strong Convexity (RSC)
Van de Geer (2008) (justified in Appendix A), we will use the RSC condition of L that

L(a)− L(b)− ⟨a− b,∇L(b)⟩ ≥ c1nT ∥a− b∥22 − c2∥a− b∥21
As δ̂ minimized the penalized loss,

L(δ̂)− L(δ∗) + λ(∥δ̂∥1 − ∥δ∗∥1) ≤ 0

By the RSC condition

L(δ̂)− L(δ∗)− ⟨δ̂ − δ∗,∇L(δ∗)⟩ ≥ c1nT ∥δ̂ − δ∗∥22 − c2∥δ̂ − δ∗∥21
Define d = δ̂ − δ∗

c1nT ∥d∥22 − c2∥d∥21 + ⟨d,∇L(δ∗)⟩+ λ(∥δ̂∥1 − ∥δ∗∥1) ≤ 0

By Hölder’s inequality
∥⟨d,∇L(δ∗)⟩∥1 ≤ ∥d∥1∥∇L(δ∗)∥∞

By triangle inequality
∥δ̂∥1 − ∥δ∗∥1 ≥ −∥d∥1

Under the assumption that
∥∇L(δ∗)∥∞ ≤ c3λ

|⟨d,∇L(δ∗)⟩| ≤ c3λ∥d∥1
From standard Lasso analysis, we often assume

∥dAc∥1 ≤ ∥dA∥1, ∥d∥1 ≤ 2∥dA∥1
By Cauchy-Schwarz inequality

∥dA∥1 ≤
√
a∥dA∥2 ≤

√
a∥d∥2, ∥d∥21 ≤ 4a∥d∥22

0 ≥ c1nT ∥d∥22 − c2∥d∥21 + ⟨d,∇L(δ∗)⟩+ λ(∥δ̂∥1 − ∥δ∗∥1)
≥ c1nT ∥d∥22 − c2∥d∥21 − c3λ∥d∥1 − λ∥d∥1
≥ c1nT ∥d∥22 − 4c2a∥d∥22 − 2(c3 + 1)

√
aλ∥d∥2

∥d∥2 ≤ 2
√
a(c3 + 1)λ

c1nT − 4c2a

with the condition λ ≍
√
logK/nT , we can rewrite ∥d∥22 ≤ Ca logK

nT
, where C > 0 depends on c1, c2, c3 but

not on nT , a, or K, reaching a similar result to Li et al. (2022; 2023) in sparse high dimensional regression
based transfer learning.

Remark 1. The RSC condition is ensured by the sub-Gaussian design and curvature of the loss (Lemma A.1),
which are standard in high-dimensional statistics Raskutti et al. (2010).

Remark 2. Sub-Gaussian concentration gives ∥∇L(δ∗)∥∞ ≤ c3λ with high probability Vershynin (2018).

Remark 3. The condition λ ≍
√
logK/nT ensures compatibility between regularization and noise, standard

in ℓ1-penalized M-estimation Van de Geer (2008).

Remark 4. The offset hS does not affect RSC because it is fixed during the optimization over δ, leaving the
curvature of ℓ and design ϕi as the drivers of convexity.
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C CONSTRUCTION AND SELECTION WITH KNOCKOFFS

Following Candes et al. (2018), a Model-X knockoff matrix X̃ = [X̃(1), . . . , X̃(p)] ∈ Rn×p of a matrix
constructed by horizontally stacked random vectors X = [X(1), . . . , X(p)] ∈ Rn×p. The knockoffs is
constructed such that, for any subset A ⊆ [p],(

X, X̃
)

swap(A)

d
=

(
X, X̃

)
.

where X(j) denotes the jth column of X ,
(
X, X̃

)
swap(A)

is obtained by swapping the column entries X(j)

and X̃(j) for any j ∈ A. Crucially, X̃ must be constructed conditional on X but independent of y to ensure
X̃ ⊥⊥ y | X .

We set variable importance measure as coefficients: Zk = |δ̂′k(λ)|, Z̃k = |δ̂′k+K(λ)|. Alternatively, we
can also use Zk = sup{λ ≥ 0 : δ̂′k(λ) ̸= 0}, the lambda value where each feature/knockoff enters the
lasso path (meaning becomes nonzero). The knockoff filter works by comparing the Zk’s to the Z̃k’s and
selecting only variables that are clearly better than their knockoff copy. The reason why this can be done
is that, by construction of the knockoffs, the null (not related to y) statistics are pairwise exchangeable.
This means that swapping the Zk and Z̃k’s corresponding to null variables leaves the koint distribution
of (Z1, . . . , ZK , Z̃1, . . . , Z̃K) unchanged. Once the Zk and Z̃k’s have been computed, different contrast
functions can be used to compare them. In general, we must choose an anti-symmetric function a and we
compute the symmetrized knockoff statisticsWk = a(Zk, Z̃k) = −a(Z̃k, Zk) such thatWk indicates thatXk

appears to be more important than its own knockoff copy. We use difference of absolute values of coefficients
by default, but many other alternatives (like signed maximum) are also possible.
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D PROOF OF THEOREM 3.2: STABILITY SELECTION CONTROL

Proof. PFER Control: For each null feature k ∈ Ac, the per-iteration selection probability satisfies
P (k ∈ Â[b]) ≤ α. This holds if τ is chosen to control the PFER at level αK in each iteration, following
Meinshausen & Bühlmann (2010). Define V [b]

k = 1{k ∈ Â[b]} as independent Bernoulli trials with
E[V [b]

k ] ≤ α. The selection frequency Π̂k = 1
B

∑B
b=1 V

[b]
k is a binomial proportion with E[Π̂k] ≤ α. By

Hoeffding’s inequality:

P
(
Π̂k ≥ π

)
≤ exp

(
−2B(π − α)2

)
∀π > α.

Summing over all null features and applying linearity of expectation:

E
[
|Â(π) ∩Ac|

]
=

∑
k∈Ac

P
(
Π̂k ≥ π

)
≤ |Ac| exp

(
−2B(π − α)2

)
.

FDR Control: Let V [b] = |Â[b] ∩Ac| and R[b] = |Â[b]|. By the knockoff filter guarantee from Theorem 3.1

in Candes et al. (2018), each τ ensures E
[
|Â[b]∩Ac|
|Â[b]|∨1

]
= E

[
V [b]

R[b]∨1

]
≤ q. The stabilized FDR satisfies:

FDR(Â(π)) = E

[
|Â(π) ∩Ac|
|Â(π)| ∨ 1

]
≤ E

[∑B
b=1 V

[b]

Bπ

]
(since Π̂k ≥ π =⇒

B∑
b=1

1{k ∈ Â[b]} ≥ Bπ)

=
1

Bπ

B∑
b=1

E
[

V [b]

R[b] ∨ 1
·R[b]

]
=

1

Bπ

B∑
b=1

E
[
R[b] · E

[
V [b]

R[b] ∨ 1
| R[b]

]]

≤ 1

Bπ

B∑
b=1

E
[
R[b] · q

]
=

q

Bπ

B∑
b=1

E
[
R[b]

]
.

where the last line is by Theorem 3.1 in Candes et al. (2018). From Proposition 1 and Appendix A.2 in
Ren et al. (2023), the geometric thinning inequality

∑B
b=1 E[R[b]] ≥ E[|Â(π)|]

1−(1−π)B
holds because each feature’s

selection events are independent across B iterations. Substituting this bound

FDR(Â(π)) ≤ q

Bπ

B∑
b=1

E[|Â(π)|]
1− (1− π)B

=
q

1− (1− π)B
.
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E FDR CONTROL OF NAIVE SGSHIFT

Given the assumption of i.i.d. observations and the exponential family distribution to generate the dependent
variable y, f(Xi) determines the E[yi | Xi] under domain S, and δ captures the shift.

The negative log-likelihood function of δ can be written as

L(δ) =

nT∑
i=1

{
ψ
(
f(Xi) + ϕ⊤i δ

)
− yi

(
f(Xi) + ϕ⊤i δ

)}
= ℓ

(
f(XT ) + ϕ⊤T δ, yT

)
where ψ(·) is uniquely determined by the link g(·), ℓ

(
η, y

)
= ψ

(
η
)
− yη where η = f(X) + ϕ⊤δ.

We regularize the GAM loss with an ℓ1-penalty

δ̂(λ) = arg min
δ∈RK

{ nT∑
i=1

(
ψ(ηi)− yiηi

)
+ λ∥δ∥1

}
The score vector is

∇L(δ) =
nT∑
i=1

[
ψ′(f(Xi) + ϕ⊤i δ

)
− yi

]
ϕi

Evaluated at δ = 0, γ := ∇L(δ)
∣∣∣
δ=0

=
∑nT

i=1

[
ψ′(f(Xi)

)
− yi

]
ϕi, where ψ′(·) is the canonical mean

function.

By the Karush–Kuhn–Tucker (KKT) conditions, δ̂j(λ) ̸= 0 iff |γj | > λ; hence selection of j depends only
on the distribution of γj .

Assume each row ϕi is sub-Gaussian with i.i.d. coordinates and that every coordinate of ϕi and yi has been
centered and variance-normalized.

Let σ2
γ := V(yi | Xi) = ψ′′(f(Xi)

)
, where ψ′′(·) is the variance function of the canonical exponential-family

model.

Let the true parameter be δ∗ ∈ RK with support A ⊆ [K], |A| = a, so δ∗j = 0 for j ∈ Ac.

Null coordinates. Let j be a null coordinate j ∈ Ac among K − a null coordinates.

Because δ∗j = 0,

E[yi − ψ′(f(Xi))|Xi] = 0,E
[(
yi − ψ′(f(Xi))

)
ϕij

]
= E [E[yi − ψ′(f(Xi))|Xi]ϕij ] = 0

Define Zij =
(
yi − ψ′(f(Xi))

)
ϕij , {Zij}nT

i=1 are i.i.d., mean-zero, and sub-Gaussian.

V[Zij ] = E
[(
yi − ψ′(f(Xi))

)2
ϕ2ij

]
= E

[
ψ′′(f(Xi))ϕ

2
ij

]
= E [ψ′′(f(Xi))] = σ2

γ

where the second equality follows by the law of total variance and independence between ϕij and yi | Xi.

Under mild moment conditions, the Lindeberg-Feller central limit theorem (CLT) implies
1√
n

∑
i

{(
yi − ψ′(f(Xi))

)
ϕij

} d−→ N
(
0, σ2

γ

)
if j ∈ Ac

Therefore, for null coordinates, we have
1√
n
γj = − 1√

n

∑
i

(
yi − ψ′(f(Xi))

)
ϕij

d−→ N
(
0, σ2

γ

)
if j ∈ Ac
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False-selection probability and plug-in mFDR estimate. Because δ̂j(λ) ̸= 0 iff |γj | > λ, the
null-coordinate error rate is

Pr(j selected|j ∈ Ac) = Pr(|γj | > λ) = 2
{
1− Φ

( λ√
nσγ

)}
where Φ is the standard normal CDF.

Following Miller & Breheny (2019), the marginal FDR is

mFDR(λ) =
E[#False Discoveries]

E[#Selected]

Plugging in the null probability above yields

F̂DR(λ) = min
{2(K − a)

(
1− Φ

(
λ/

√
nσγ

))
|Â(λ)| ∨ 1

, 1
}

A practical one-pass rule that controls FDR at level α is

λ̂α = min
{
λ : F̂DR(λ) ≤ α

}
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F DATASETS

All datasets are listed as below, and the full preprocessing code from raw data, together with the preprocessed
data, are available in the source code, except restricted access COVID-19 Hospitalization data where
we provide detailed fetching code and data version information from NIH All of Us Research Program
of Us Research Program Investigators (2019). Standardization is performed within the pipeline to ensure that
features with larger values don’t disproportionately influence the ℓ1 regularization penalty.

Diabetes readmission COVID-19 SUPPORT2

Total samples 73,615 16,187 9,105
Features 33 30 64
Source size 49,213 11,268 5,453
Target size 24,402 2,219 1,817
Domain split Emergency room admission New variant Death in hospital

Table 2: Dataset summary.

Diabetes 30-Day Readmission The Diabetes 130-US Hospitals dataset, available through the UCI Machine
Learning Repository (https://archive.ics.uci.edu/dataset/296/diabetes+130-us+
hospitals+for+years+1999-2008), comprises 101,766 encounters of diabetic patients across 130
U.S. hospitals between 1999-2008 Strack et al. (2014). We fetch the data following TableShift’s procedure
Gardner et al. (2023). We define the source domain as 49,213 non-ER admissions (elective or urgent) with
25,196 readmitted patients, and the target domain as 24,402 ER admissions with 10,684 readmitted patients,
with the binary classification task being prediction of 30-day readmission risk.

COVID-19 Hospitalization The COVID-19 cohort is part of the NIH All of Us Research Program of Us Re-
search Program Investigators (2019), a (restricted access) dataset containing electronic health records for
16,187 patients diagnosed with COVID-19 between 2020-2022. Features include demographic variables (age,
gender, race), temporal indicators (diagnosis date relative to Omicron variant emergence), comorbidity status
for 13 chronic conditions (diabetes, COPD), and diagnostic context (EHR vs. claims-based). We partition the
data into three temporal groups: a source domain of 11,268 patients diagnosed prior to the beginning of 2022
with 2,541 patients hospitalized, a target domain of 2,219 patients diagnosed in January 2022 (early Omicron
era) with 359 patients hospitalized. The binary classification task predicts hospitalization status (inpatient vs.
outpatient).

SUPPORT2 Hospital Charges From the Study to Understand Prognoses Preferences Outcomes and Risks
of Treatment (SUPPORT2), publicly available via the UCI repository (https://archive.ics.uci.
edu/dataset/880/support2) containing 9,105 critically ill patients Connors et al. (1995). The source
domain is specified as 5,453 patients who survived hospitalization and the target domain as 1,817 in-hospital
deaths. The regression task is defined as a prediction of log10(total hospital costs per patient).
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G MODEL HYPERPARAMETERS

We used standard implementations of classical machine learning models from scikit-learn, with
hyperparameters either set to commonly used defaults or manually tuned for stability and performance.
Supplementary table 3 summarizes the key hyperparameters for each model. Unless otherwise stated, all
models were trained using their default solver settings. Random seeds were fixed via random_state to
ensure reproducibility.

Model Hyperparameters
Decision Tree (Classifier) max_depth=4, random_state={seed}
Support Vector Machine (Classifier) kernel=’rbf’, C=1.0, probability=True, random_state={seed}
Gradient Boosting Classifier n_estimators=100, random_state={seed}
Logistic Regression max_iter=200, random_state={seed}

Decision Tree (Regressor) max_depth=4, random_state={seed}
Support Vector Machine (Regressor) kernel=’rbf’, C=1.0
Linear Regression default settings
Gradient Boosting Regressor n_estimators=100, random_state={seed}

Table 3: Hyperparameters used for each model. The same random seed ({seed}) was applied across models
where applicable to ensure consistency.
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H SAMPLE SIZE

Figure 4: Performance across sample sizes. Sample size is varied from 50 to 1000. 95% CI’s are shown
across 16 simulation settings. Recall is measured at fixed FPR 5%.
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I GLOBAL CALIBRATION SHIFTS

Global shifts. It may be true that all features are shifted in the same direction in a new domain due to
differences in sensor calibration. In this case identifying specific shifted features may be difficult as all
are perturbed slightly. We simulate this global effect where only a few true features having a conditional
shift, and the rest are perturbed by noise with absolute values from 0.01 to 0.3 while the absolute values
of true shifts are 3. Results are reported in Figure 5. SGShift still strongly identifies true shifted features
with AUC > 0.9, even when all features are shifted slightly, and individual features are not over or under
prioritized. Interestingly, for all methods, performance is relatively unchanged as the scale of the background
shift increases. This may be due to the intercept term accumulating the background shift, as opposed to
attributing it to any individual feature.

Figure 5: Global calibration shift performance. Performance as a background conditional shift is increased
in scale. X-axis represents strength of the background shift, as 0.01x-0.3x the true shift magnitude.
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J INTERACTION SHIFTS

Interaction shifts. We assess each method’s performance in identifying features which shift in the interaction
space in the SUPPORT2 dataset, where features are continuous. The goal is to detect individual features
contributing to shift through interactions with other features. We consider two cases of SGShift, underspecified,
where the basis function does not include interaction terms, and overspecified, where SGShift contains both
second and third tier interactions. Results are reported in Table 4. In both cases, regardless of how the basis
function is specified, SGShift displays strong performance.

Diff WhyShift SHAP SGShift – underspecified SGShift – overspecified
Matched 0.75 0.73 0.80 0.92 0.90
Mismatched 0.72 0.73 0.78 0.89 0.87

Table 4: Performance in detecting interaction shifts.
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