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Abstract
In many real-world black-box optimization problems, practitioners know that the maximizer exists
in a rather small subset of the search space, yet most common Bayesian Optimization (BO) frame-
works do not allow them to input their prior knowledge over the maximizer. In addition, although
the goal of BO is only to find the optimizer, BO surrogate models typically model the distribution
of the whole latent function, which may introduce a computational burden. Motivated by these, we
propose LEONARDBO, a novel approach to BO in which we only update the distribution of the
argmax directly given the new observation in the surrogate modeling step, using a neural network
to learn to do such updates. This not only enables custom priors over the optimum, but also results
in O(n)-time updates in the number of samples, in contrast to exact Gaussian Process (GP) updates
with O(n3)-time. We analyze our method’s performance empirically on synthetic functions as well
as a real scientific problem where large language models (LLMs) can provide useful priors.

1. Introduction

Bayesian Optimization (BO) enables the optimization of costly-to-evaluate functions via sequen-
tial observations. In practice, the latent function f is typically modeled as a Gaussian process
(GP) with a specified prior mean and kernel. Practitioners seldom tune the kernel and usually
adopt standard choices such as the radial basis function (RBF) or Matérn kernels. This practice
induces a prior–mismatch problem: the expert’s belief about the maximizer (argmax) of f , denoted
x∗ = argmaxx f(x), often conflicts with the GP prior. (Here, we assume a unique maximizer.)
Because optimization ultimately targets x∗, a mismatch in its distribution affects performance di-
rectly. Indeed, RBF kernels put substantial prior mass in the corners of the search space, resulting
in boundary over-exploration. [21].

We propose to train a neural network that maps a prior over x∗ and a new observation to the
corresponding posterior. The network can replicate GP updates for a standard kernel while starting
from an arbitrary prior over the argmax. Defining this prior is generally more transparent than engi-
neering a bespoke kernel and mitigates the mismatch while retaining desirable GP properties such
as smoothness. We call our method LEONARDBO—Learning Updates on Argmax Distributions
for Bayesian Optimization.

To illustrate what it means to update the x∗ distribution directly, consider optimizing the yield
of a chemical reaction by adjusting the ratio of two inputs. A chemist may initially believe that
the optimum lies somewhere in the middle of the range, since extreme ratios are known to perform
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poorly; this belief can be represented directly as a prior distribution over the optimizer location
x∗. As experiments are run, this distribution is updated: for instance, if an evaluation at ratio 0.2
yields much lower output than one at 0.6, the posterior shifts mass away from 0.2 and toward more
promising regions. This example highlights what it means to place and update a prior on where the
maximizer is, without modeling the full function.

Acquisition functions that depend solely on the posterior of x∗ still remain computable. The ob-
vious example is Thompson Sampling. [26] With slight modifications, Predictive Entropy Search [6],
ϵ-Greedy [9], and Top-Two algorithms [20] also remain accessible.

Contributions. We (1) review relevant literature in Appendix A; (2) quantify the prevalence and
severity of prior mismatch in real-world tasks in Appendix B; (3) introduce LEONARDBO, which
replaces GP updates with neurally learned updates on argmax distributions, and present a neural
architecture tailored to discrete domains; (4) evaluate LEONARDBO on synthetic benchmarks; and
(5) show the use of large language models (LLMs) as informative priors in a scientific BO task.

2. Problem Formulation

A Gaussian process (GP) with kernel k(·, ·) and prior mean µ(·) receives data as pairs {(xt, yt)}Tt=1,
where xt ∈ [0, 1]d, yt ∈ R, and T is fixed by a sampling budget or stopping criterion. After
receiving each observation, the GP computes a distribution Pt over the possible underlying functions
f . Pt gives the entire state of the GP at time t. Note that the whole state of the GP can also be
represented by its observational data at time t, Dt = {(xi, yi)}ti=1.

The posterior Pt induces a distribution pt over the maximizer x∗ = argmaxx f(x), since x∗ is
a deterministic function of the random function f . Here, we assume that the maximum is unique,
hence the result of the argmax operation is not a set. Note that we can approximate the distribution pt
by drawing sample functions from Pt and finding their maximizers, which is essentially Thompson
sampling. [26]

Because BO ultimately seeks the maximizer x∗, downstream decisions depend on the argmax
distribution pt(x

∗) rather than on the entire GP posterior. (We note, however, that access to the
full state may still be required to compute future argmax distributions; our aim is to approximate
this update using a reduced representation.) If one could update this distribution using only (i) the
current prior πt+1(x

∗) := pt(x
∗), (ii) the new observation (xt, yt), and (iii) a compact summary

Ct ⊂ Dt of bounded size, the computational cost would reduce to O(1) per step (and O(n) overall)
while the memory footprint would remain constant.

The role of Ct is to retain salient historical information that the pair (πt+1, (xt, yt)) alone may
not capture—thereby preventing the update rule from “forgetting” context that is predictive of x∗.

Computability of the argmax update. A natural question is whether a mapping

M : ∆([0, 1]d)× [0, 1]d × R× R|Ct| → ∆([0, 1]d)

exists such that M[πt(x
∗),xt, yt, Ct] = pt(x

∗). The prior over x∗ contains less information than
the full function posterior, so exact computation may be impossible; however, M can be learned or
approximated statistically. Hence, we parameterize M with a neural network and learn it from data.

We draw N sample functions from the reference GP, run BO for T steps using acquisition
function α(·), and at each step approximate π(x∗) and p(x∗) with M Monte-Carlo samples. This
yields NT input–output pairs for M. We minimise the expected Kullback–Leibler divergence

ℓ = E[KL(p̂t(x
∗; θ)||pt(x∗))],
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where p̂t(x
∗; θ) = M[πt(x

∗),xt, yt, Ct], and the expectation is taken with respect to the GP states
encountered by following the acquisition α(·). Note that µ(·) and k(·, ·) specifies the GP.

Existence of a likelihood function. One might ask whether a likelihood function Lt(x
∗) exists

such that pt(x∗) = πt(x
∗)Lt(x

∗). However, if we try to estimate Lt(x
∗) by dividing the posterior

by the prior, the estimate also depends on the order of observations, implying that no likelihood
function in this simple multiplicative form exists. For a more detailed discussion, see Appendix C.

However, across random BO realizations, an average likelihood

L̂(x∗)[x, y] = E[pt(x∗)/πt(x
∗)]

may still be well defined. Learning this quantity regularizes the updates of network by discouraging
highly variable updates for identical observations.

Equivariance properties. If the domain were infinite, the average likelihood would satisfy

• Positional equivariance: L̂(x∗)[x, y] = L̂(x∗ − x)[0, y];

• Rotation invariance: L̂(x∗
1)[x, y] = L̂(x∗

2)[x, y] whenever ∥x∗
1 − x∥ = ∥x∗

2 − x∥,

because the underlying kernel is stationary and depends only on distances between points. Al-
though the practical domain is finite, we retain these symmetry assumptions in our model design.

3. The Neural Network

The preceding discussion indicates that the prior π(x∗) contains information about p(x∗) that cannot
be expressed solely through a rotation- and shift-invariant likelihood L(x∗). Nevertheless, such a
likelihood may capture most of the update, with π(x∗) providing a modest correction.

Guided by this intuition, we train a network to predict an argmax-likelihood term L(x∗) from
the inputs (x, y) and recover the posterior by multiplication. Working in log space,

log p̂(x∗) = log π(x∗) + NN(x, y),

where NN is required to be shift-invariant and permutation-symmetric in x. This is enforced by
modelling L(x∗)[x, y] = ρ(∥x∗ − x∥) [y], and learning the radial function ρ with a small network.

To allow limited, non-symmetric adjustments, we introduce a latent representation z that de-
pends on both the prior and the observation history:

log p̂(x∗) = Direct-p̂-Decoder(z; θ1)

+ (log π(x∗) + ρ-to-L-Transform(ρ-Decoder(z, θ2),xt)) ,

z = Direct-π-Encoder(log π(x∗), θ3) + y-Encoder(yt, θ4)

+ y-Encoder(yt − y∗t−1; θ5)

y∗t−1, the previous best observation is the context Ct that we use here. The latent encoders
and decoders employ convolutional layers to preserve local structure. Parameters θ1 and θ3 are
initialized at zero, limiting the direct influence of the prior and bounding posterior asymmetry at the
start of training. For details of the architecture and training, check Appendix D.
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4. Experiments

We begin by describing the training procedure. We generated transition data from an exact GP fol-
lowing Thompson Sampling (TS) on a discrete grid. We considered domains of up to 3 dimensions,
each being the unit hypercube. Each axis was discretized into 11 grid points ranging from 0 to 1 in
increments of 0.1, resulting in 11, 121, and 1331 total grid points depending on dimensionality.

After each GP update in the BO loop, we generated M = 500,000 Thompson samples to
approximate the argmax distribution and saved it. This was done for N = 2000 parallel episodes
and T = 30 timesteps. The GP used zero prior mean, an RBF kernel with lengthscale 0.2, noise
variance 0.01, and outputscale 1.0. We trained networks of appropriate size to match task difficulty.
(76k parameters for 1D, 438k for 2D, and 5.9M for 3D.) Code for the experiments and training of
models can be found online.1

4.1. Synthetic Experiments

Here, we again considered functions on grids of 11 points per dimension, sampled from GPs with
hyperparameters given exactly in the previous section. We had N = 1000 runs for T = 30
timesteps, each run having an independent function drawn from the GP. Then, we replaced the
GP with our neural networks to predict the posterior over the argmax and ran TS using the predicted
(approximate) posterior. The resulting instantaneous and simple regret curves are in Figure 1. The
networks match GP performance reasonably and even outperform it early in simple regret.
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Figure 1: Instantaneous and simple regret for three dimensions using GP and LEONARDBO under
Thompson Sampling. For all figures, solid lines show the median; error bars indicate
95% bootstrap confidence intervals. GP results use 2000 runs; LEONARDBO uses 1000.

Runtime Analysis. All runtime experiments were performed on Intel® Xeon® Gold 6152 CPUs
(2.10 GHz). The LEONARDBO–TS–3D model requires on average 0.0195s to update the distri-
bution, Ct, and draw a TS. For variational GP methods, we optimized the ELBO and selected
inducing points following (1) greedy variance reduction [2] and (2) greedy improvement reduc-
tion (GIR) [15], as recommended for global accuracy and optimization, respectively. Two standard
strategies were used to determine the number of inducing points: (1) warm-start with 10 exact GP
steps and use 10 inducing points; (2) warm-start with 5 steps and use half of the data as inducing

1. https://github.com/EMKaragozlu/LeonArDBO
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points (ScaleInd). Figure 2 shows comparable regret across methods, with LEONARDBO being or-
ders of magnitude faster. Note, however, that all experiments were run on CPU, which may inflate
variational GP runtimes.

More experimental results can be found Appendix E and F.
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Figure 2: Regret (left) and runtime (right) comparisons between LEONARDBO-TS and variational
baselines. 1000 parallel episodes were used. The figure excludes the warm-start phase.

4.2. LEONARDBO for LLM-Enhanced BO

Here, we consider the Buckminsterfullerene adducts experiment from the Olympus package. [7]
The aim is to maximize the mole fraction of a desired chemical product by controlling three process
conditions (temperature, reaction time and ratio of sultine to C60). We discretize the space and
employ our 3D model and the GP it was trained to copy.

To feed LEONARDBO, we asked gpt-4o-mini with temperature 0.7 for five possible optimizer
locations and the probability that the true optimizer is in the vicinity of one of these, and repeated
this for five samples. We then constructed a Gaussian mixture prior. (We accounted for the prob-
ability that it is not in any vicinity, by adding a uniform to the mixture.) To evaluate, we draw
N = 1000 samples from the built-in Bayesian neural network emulator from Olympus trained on
actual data from [11] to simulate the results. The results in Figure 3 indicate that LLMs can provide
an informative prior that benefits algorithms capable of exploiting argmax priors, especially early
on; conversely, eliciting a full functional prior from an LLM is considerably more challenging. The
standard GP baseline lacks a mechanism to incorporate such information and therefore lags behind.

5. Conclusion

This work introduced and tested LEONARDBO, a Bayesian optimization framework that updates
only the distribution of the maximizer and skips the usual surrogate modeling. For future work, a
continuous version of LEONARDBO could be developed using optimal transport, flow-based, or
diffusion-based update mechanisms.
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Figure 3: Simple normalized regret of the GPT-informed LEONARDBO and vanilla GP with TS.
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[6] José Miguel Hernández-Lobato, Matthew W Hoffman, and Zoubin Ghahramani. Predictive
entropy search for efficient global optimization of black-box functions. Advances in neural
information processing systems, 27, 2014.

[7] Riley Hickman, Priyansh Parakh, Austin Cheng, Qianxiang Ai, Joshua Schrier, Matteo
Aldeghi, and Alán Aspuru-Guzik. Olympus, enhanced: benchmarking mixed-parameter and
multi-objective optimization in chemistry and materials science, May 2023.

6



LEONARDBO

[8] Carl Hvarfner, Frank Hutter, and Luigi Nardi. Prior-weighted acquisition functions for faster
bayesian optimization (π-bo). Technical Report 2204.00032, arXiv, 2022. arXiv:2204.00032
[cs.LG].

[9] Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. Reinforcement learning:
A survey. Journal of artificial intelligence research, 4:237–285, 1996.

[10] Agustinus Kristiadi, Felix Strieth-Kalthoff, Marta Skreta, Pascal Poupart, Alán Aspuru-Guzik,
and Geoff Pleiss. A sober look at llms for material discovery: Are they actually good for
bayesian optimization over molecules? arXiv preprint arXiv:2402.05015, 2024.
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Appendix A. Related Work

GPs, introduced by Williams and Rasmussen [29], are the standard surrogate in BO. We highlight
four relevant directions.

Scalable GP inference. Exact GP updates scale cubically, limiting BO with many evaluations.
Sparse and variational approximations use inducing points, starting from pseudo-point methods
[16, 23] and later unified by Titsias [27]. Stochastic variational inference extends this to large data
[5], while online [1] and Bayesian selection [19] adapt inducing sets dynamically. These achieve
near-linear complexity with high accuracy. Random embeddings even allow real-time BO in billion-
dimensional spaces [28].

Boundary over-exploration. Stationary kernels with constant means bias acquisition toward
corners of bounded domains. Remedies include virtual derivative sign observations at boundaries
[21], decaying mean/kernels, and acquisition penalties, all redirecting evaluations inward and im-
proving efficiency.

Argmax priors in BO. Rather than default RBF kernels and constant means, practitioners often
know likely optima locations. Approaches include input warping [24], priors over the optimum itself
[25], and π-BO [8], which reweights acquisitions by a prior density while preserving convergence.
These reduce sample complexity but not computational cost, as they still maintain full posteriors.

The work most closely related to ours is Chang et al. [3], which proposes a transformer-based
meta-learning approach that learns predictive distributions for both data and latent variables, while
also being able to encode priors over latents. One of their applications is BO, where the argmax lo-
cation and maximum value are treated as latent variables. Their method additionally offers runtime
improvements through amortization. However, (1) their network requires all observed data as input,
even though this set already fully characterizes the surrogate model state, (2) their transformer ar-
chitecture incurs a runtime of O(n2), and (3) in sequential BO, the latents must be re-inferred as the
dataset grows, further increasing computational cost. In contrast, with LEONARDBO we show that
(1) retaining only the previous argmax distribution, rather than the full observation set, is sufficient
to achieve low regret, (2) for a static dataset of size n, our architecture achieves O(n) total runtime
by applying O(1) sequential updates, and (3) as a result, the cumulative runtime across a BO task
is O(n), since previously inferred posteriors can be directly reused.

LLMs for BO. Pre-trained LLMs offer rich priors. Ramos et al. [17] use token probabilities
and in-context learning to guide molecule optimization. Liu et al. [14] apply LLMs for warm starts,
surrogates, and candidate generation. However, in-context updates are often unreliable [10], and
true Bayesian integration may require costly retraining.

Appendix B. Prior Mismatch in the Wild

As noted by Siivola et al. [22], stationary kernels such as RBF combined with constant mean func-
tions assign disproportionate prior mass to corner solutions. However, few studies quantify the
extent of this mismatch in real-world tasks. We examine the phenomenon on five molecular optimi-
sation problems from Liang et al. [13]: electrical conductivity, absorbance spectrum score, stability
score, mechanical toughness, and shape score. The corresponding datasets contain 3–5 input di-
mensions and 100–600 candidate molecules (see Table 1 in [13]).

To characterise the severity of the bias, we formalise the notion of corners. A design point
x ∈ X ⊂ Rd is a corner in dimension i if xi ∈ (argmaxx′∈X x′

i) ∪ (argminx′∈X x′
i). If x is

9



LEONARDBO

Table 1: Empirical Investigation of the Prior Mismatch on the Corners

Dataset π(x∗ ∈ S1) π(x∗ ∈ S2) π(x∗ ∈ S3) π(x∗ ∈ S4) π(x∗ ∈ S5) C(x∗)

Crossed Barrel 99.7% 95.5% 76.6% 36.1% 0 2
P3HT 73.9% 69.8% 69.8% 50.3 % 13.4% 0
AutoAM 99.6% 90.1 % 76.3 % 35.0 % 0 1
Perovskite 93.4% 56.5% 56.5% 0 0 1
AgNP 23.4% 9.2% 0 0 0 0

a corner in j dimensions, we call it a j-corner; let Sj denote the set of all j-corners and define
C(x) = max{j : x ∈ Sj}.

Each input space is scaled to [0, 1]d and outputs are standardised. We initialise GPs with zero
mean and an RBF kernel, adopting the prior hyperparameters of Liang et al. [13]: unit length- and
output-scale and noise variance 0.01. Whereas Liang et al. [13] updated these hyperparameters on-
line, we retain their prior values. For each task we estimate, from 107 GP samples, the probability π
that the true optimiser x∗ is a j-corner, and denote this by π(x∗ ∈ Sj). Table 1 shows that GPs
markedly overestimate the likelihood of high-order corners.

To summarise this overconfidence, we define

Eτ∼real-world BO tasks
[
π
(
x∗
τ ∈ SC(x∗

τ )+1

)]
,

where x∗
τ denotes the maximiser for task τ . A calibrated surrogate should yield a value below 0.5,

as over- and underestimates balance. Across the five tasks this quantity reaches 64.1%, indicating
pronounced overconfidence in boundary solutions.

Although our analysis is limited to chemically related tasks, we expect similar mismatches
to arise in other domains. Practitioners often design search spaces assuming interior optima; if
boundaries were suspected, the domain would typically be expanded at the outset.

Appendix C. On the Existence of Multiplicative Likelihood

Figure 4 demonstrates that the update depends on the order of observations, implying that no likeli-
hood function in this simple multiplicative form exists.

Appendix D. Training and Architectural Details

As mentioned in the paper, the network consists of a Direct-p̂-Decoder, a ρ-Decoder, a Direct-π-Encoder,
and two y-Encoders.

For our 3D model, the y-Encoders are MLPs with hidden layer sizes [16, 24, 80, 160, 280], out-
put size 400, and skip connections (inspired by [4]) from the input to the third hidden layer, and
from the third hidden layer to the output. The Direct-π-Encoder is a convolutional neural network
([12]) with 4 repetitions of convolutional layer, batchnorm, ReLU, and dropout (with 0.5 probabil-
ity) sequences. Also, there is a residual connection from start to the second layer and from second
layer to the final layer. Each convolutional layer has kernel size 2 and 30 channels. In the end, there
is a linear layer to map the last feature map to z, which has 400 dimensions. The Direct-p̂-Decoder
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Figure 4: Left figures for the state of the GP, green is prior and gray is posterior in the middle figure,
right figure is the supposed ‘likelihood’. The top two rows show the states of a GP when it
receives the samples (1, 1) and (7, -1) in sequence. The bottom two rows is the same with
observation order reversed. 3M sample draws are used to compute empirical likelihoods.

is a similar CNN with 6 repetitions of convolutional, upsampling, 0.5 dropout, ReLU, and batch-
norm layers. There is a skip from input to the third layer and from third to the final layer. All
convolutional layers have kernel size 3 and 30 channels. In the very beginning, there is a linear
layer to map z to appropriate size and shape. The ρ-Decoder is an MLP with hidden layer sizes
[360, 320, 280, 240, 200], skip connections from the input to the third layer, and from there to the
output. It also has dropout with 0.5 probability for regularization.

Our 2D model uses the same building blocks but is similar. Its y-Encoders have the hidden layer
sizes [16, 24, 80, 160, 280], Direct-π-Encoder and Direct-p̂-Decoder has 15 channels, the ρ-Decoder
has hidden layers [180, 160, 140, 120, 100], and z is 200 dimensional.
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Our 1D model’s y-Encoders have the hidden layer sizes [4, 6, 20, 40, 70], Direct-π-Encoder and
Direct-p̂-Decoder has 7 channels, the ρ-Decoder has hidden layers [90, 80, 70, 60, 50], and z is 100
dimensional.

For t = 1, we set y∗ = −10. We use Adam optimizer with lr=0.001, and (0.9, 0.999) beta
values, for all models. We train for 500 epochs with early stopping. We apply weight decay of
1 to the parameters of Direct-π-Encoder and Direct-p̂-Decoder, and 1e-4 to the rest. To ensure
numerical stability, we add 1e-15 to probability densities we receive, and keep the same behaviour
in evaluation. (This avoids 0 probability regions.)

Appendix E. Additional Experiments

The context Ct and distribution shift. All experiments operate under distribution shift, as ap-
proximation error places the system in states unseen during training. Although methods such as
dataset aggregation [18] could mitigate this, we observed that a compact summary Ct of the his-
tory already stabilises learning. In preliminary runs without Ct, regret diverged after roughly ten
timesteps. We hypothesised that supplying the network with the best observed value y∗t−1 would
help, and indeed this modification resolved the divergence. Empirically, enlarging Ct or including
the location x∗

t−1 provided no additional benefit.

Convergence of regret. TS with GPs converges to zero regret, and we aim for our models to
exhibit the same behaviour. To test longer horizons we generated new data with N = 5000, T =
100, M = 100,000, and lengthscale 1.0 on a 3D domain, and trained a 677k-parameter model.
Though intermediate performance is weaker due to the smaller model, the regret converges to zero
within 100 steps (Figure 5, left).

Out-of-distribution acquisitions. We also evaluated generalisation to acquisition functions that
differ from those used in training. A model was trained on data produced by a random policy
over the interval [0, 10] (100 grid points) with lengthscale 1.0 in 1D. Despite the mismatch, the
model performs reasonably under TS (Figure 5, right), suggesting it is possible to train on diverse
or random policies and deploy the model with any acquisition function.

Figure 5: Regret curves for (left) long-horizon 3D experiments and (right) OOD generalization in
1D. 1000 and 100 parallel episodes are used, respectively.
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Details for the GPT experiment. We min-max scaled the domain and add a Gaussian with co-
variance 0.5 around each guess. Note that the third response did not have any confidence reported,
so we dropped it. Finally, we added uniform distributions based on the probability that the LLM
assigns to the event that optimum is not near any of the suggested points. Finally, if the LLM uses
phrases like “20-30%” we treated it as 25%.

Here is our prompt:
Hey, I want to optimize the production of o-xylenyl adducts of Buck-

minsterfullerenes. You can vary three process conditions (tempera-
ture, reaction time and ratio of sultine to C60) to maximize the mole
fraction of the desired product. Experiments are executed on a three
factor fully factorial grid with six levels per factor. the ranges
for each condition are as follows:

reaction time: [ 3, 31] hours
temperature: [100, 150] degrees Celsius
sultine to C60 ratio: [ 1.5, 6.0]

Give 5 suggestions to try where you expect the minimizer to be close
to and format them in triples. You can elaborate on your reasoning
and also express how likely you think the minimizer will be in the vicin-
ity of each of these points. Also, give the likelihood for the op-
timizer is not in the vicinity of any of these points, and simply you’re
not confident in your guess.

And here are the LLM generated responses:

1. To optimize the production of o-xylenyl adducts of
Buckminsterfullerenes (C60), we can explore combinations
of the three process conditions: reaction time,
temperature, and sultine to C60 ratio. Given the
constraints and ranges provided, I will suggest five sets
of conditions that could lead to an optimal mole fraction
of the desired product.

↪→

↪→

↪→

↪→

↪→

↪→

### Suggested Experimental Conditions

1. **(Reaction Time: 3 hours, Temperature: 100C, Sultine to
C60 Ratio: 1.5)**↪→

- **Reasoning:** This point represents the lower bounds of
all factors. It could help establish a baseline for
reaction efficiency at the minimum conditions. It's
likely that the product yield will be low here, but it
can inform how reaction time and temperature affect
the rate of reaction.

↪→

↪→

↪→

↪→

↪→

2. **(Reaction Time: 31 hours, Temperature: 150C, Sultine to
C60 Ratio: 6.0)**↪→
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- **Reasoning:** This combination tests the upper extremes
of each factor. A long reaction time at a high
temperature may favor the formation of the desired
adducts, potentially increasing mole fraction
significantly. However, it may also lead to side
reactions or degradation, so it's a critical test
point.

↪→

↪→

↪→

↪→

↪→

↪→

3. **(Reaction Time: 15 hours, Temperature: 125C, Sultine to
C60 Ratio: 4.0)**↪→

- **Reasoning:** This midpoint setting balances between
extremes and aims to capture a moderate reaction
condition that may enhance selectivity toward the
desired product. It's reasonable to hypothesize that
this combination could yield a high mole fraction
without pushing any individual factor to extremes.

↪→

↪→

↪→

↪→

↪→

4. **(Reaction Time: 20 hours, Temperature: 140C, Sultine to
C60 Ratio: 5.0)**↪→

- **Reasoning:** This combination leans slightly towards
the higher temperature and time but maintains a
mid-range sultine to C60 ratio. It may help reveal the
synergistic effects of temperature and time on the
reaction kinetics while ensuring sufficient reactant
concentration.

↪→

↪→

↪→

↪→

↪→

5. **(Reaction Time: 10 hours, Temperature: 120C, Sultine to
C60 Ratio: 3.0)**↪→

- **Reasoning:** This condition tests a lower reaction
time with moderate temperature and a balanced sultine
ratio. It allows for evaluating how reducing the
reaction time impacts yield while still keeping the
other parameters favorable for product formation.

↪→

↪→

↪→

↪→

### Likelihood Analysis
- I estimate that the minimizer (optimal condition for

maximum mole fraction) is likely to be **within the
vicinity of the points** suggested, especially around
points 3 and 4, where we balance temperature and reaction
time effectively. Given the factorial nature of the
experiment, we can anticipate that the optimal conditions
would not stray too far from these balanced settings.

↪→

↪→

↪→

↪→

↪→

↪→
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- The likelihood that the optimizer is **not in the vicinity
of any of these points** is relatively lower, but I would
estimate it at around **20%**. This suggests that while
our suggestions are grounded in reasoning based on the
experimental design, there is still a possibility that
the true optimum lies outside the proposed conditions.

↪→

↪→

↪→

↪→

↪→

In conclusion, these suggested conditions should provide a
productive starting point for your experiments, and I
recommend monitoring the mole fraction closely to
identify further opportunities for optimization based on
initial results.

↪→

↪→

↪→

↪→

2. To optimize the production of o-xylenyl adducts of
Buckminsterfullerenes (C60), we can explore a systematic
approach to varying the three process conditions:
reaction time, temperature, and the ratio of sultine to
C60. Given the ranges for each condition and the
complexity of the reaction, a factorial design is
appropriate.

↪→

↪→

↪→

↪→

↪→

↪→

### Suggested Experimental Conditions

Here are five suggestions for the experimental conditions,
formatted as triples (reaction_time, temperature,
sultine_to_C60_ratio):

↪→

↪→

1. **(3 hours, 100°C, 1.5 ratio)**
- **Reasoning:** This point represents the lower bounds

for all factors. It may provide insights into the
initial reaction kinetics and whether sufficient
reaction occurs at low conditions.

↪→

↪→

↪→

- **Likelihood of Minima:** This is less likely to yield
high product formation, as both time and temperature
are at their lower limits. However, it could be useful
for understanding the reaction base line.

↪→

↪→

↪→

2. **(31 hours, 150°C, 6.0 ratio)**
- **Reasoning:** This condition represents the upper

bounds for all factors, potentially leading to maximum
product formation due to increased energy and
prolonged reaction time.

↪→

↪→

↪→
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- **Likelihood of Minima:** High likelihood of being close
to the optimal point due to the extensive reaction
time and elevated temperature, which might enhance
reactivity.

↪→

↪→

↪→

3. **(15.5 hours, 125°C, 3.75 ratio)**
- **Reasoning:** This middle point offers a balanced

approach, allowing for moderate conditions that can
help identify the effect of each variable without
being extreme.

↪→

↪→

↪→

- **Likelihood of Minima:** Moderate likelihood; as a
central point, it may yield valuable insights into the
interaction effects between factors.

↪→

↪→

4. **(20 hours, 140°C, 6.0 ratio)**
- **Reasoning:** This setting keeps the temperature high

and the sultine to C60 ratio at its maximum, while
reducing the reaction time, which may favor the
formation of adducts without leading to excessive
byproducts.

↪→

↪→

↪→

↪→

- **Likelihood of Minima:** High likelihood of being close
to the optimal point, as it combines elevated
temperature and high reagent availability with a
reasonable reaction time.

↪→

↪→

↪→

5. **(10 hours, 150°C, 1.5 ratio)**
- **Reasoning:** This combination features maximum

temperature with a minimal reagent ratio, which could
drive the reaction effectively while limiting excess
reagent that may produce side reactions.

↪→

↪→

↪→

- **Likelihood of Minima:** Moderate likelihood; while the
temperature is optimal, the low sultine ratio may
limit product formation.

↪→

↪→

### Confidence and Likelihood Assessment

- **Overall Confidence:** I believe that the optimizer is
likely to be in the vicinity of one or more of the
suggested points, particularly the extremes (2 and 4) due
to their high energy conditions and long reaction times.
Given the nature of chemical reactions, extreme
conditions often yield more product, although they can
also lead to side reactions.

↪→

↪→

↪→

↪→

↪→

↪→
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- **Likelihood of Not Being Close:** There is still a chance
that the optimal conditions lie outside the suggested
points, particularly if there are nonlinear effects or
interactions between the factors that are not captured by
a linear model. Thus, I would estimate a **20% likelihood
that the optimizer is not in the vicinity of any of these
points**.

↪→

↪→

↪→

↪→

↪→

↪→

This approach balances exploration of extremes while also
considering mid-range conditions, which can help to
locate the optimal settings for maximizing the mole
fraction of the desired product.

↪→

↪→

↪→

3. To optimize the production of o-xylenyl adducts of
Buckminsterfullerenes, we need to consider the three
factors: reaction time, temperature, and the sultine to
C60 ratio. Given that we are working with a three-factor
fully factorial grid and that you have specified the
ranges and levels for each factor, I will provide five
suggested combinations to test, which I believe might
yield favorable results based on the properties of the
reactions involved.

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

### Suggested Combinations:

1. **Combination 1**: (3 hours, 100°C, 1.5)
- **Reasoning**: Starting with the lowest reaction time

and temperature might help in observing the initial
reaction kinetics. A low sultine to C60 ratio could
favor the formation of the desired adduct without
excessive side reactions.

↪→

↪→

↪→

↪→

- **Likelihood of Minimizer**: There is a moderate chance
that the minimizer is in this vicinity since it allows
for the study of the reaction baseline.

↪→

↪→

2. **Combination 2**: (15 hours, 125°C, 3.0)
- **Reasoning**: This combination strikes a balance

between moderate reaction time and temperature. The
mid-level sultine to C60 ratio is also likely to
enhance product formation while maintaining control
over side products.

↪→

↪→

↪→

↪→

- **Likelihood of Minimizer**: High likelihood, as it may
represent an optimal setting for achieving a higher
yield without pushing the system too far.

↪→

↪→
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3. **Combination 3**: (31 hours, 150°C, 4.5)
- **Reasoning**: This combination tests the upper limits

of reaction time and temperature. A higher sultine to
C60 ratio could also help in ensuring that the
reaction goes to completion, though it risks side
reactions.

↪→

↪→

↪→

↪→

- **Likelihood of Minimizer**: Moderate likelihood, as
extreme conditions can sometimes lead to unexpected
results, but may also be suboptimal due to potential
degradation of the fullerenes.

↪→

↪→

↪→

4. **Combination 4**: (20 hours, 140°C, 5.0)
- **Reasoning**: This combination is slightly below the

maximum temperature and at a high reaction time, which
may favor product stability and yield. The sultine to
C60 ratio is also elevated, which should encourage
adduct formation.

↪→

↪→

↪→

↪→

- **Likelihood of Minimizer**: High likelihood, as it
balances time and temperature effectively, allowing
for extended reaction time under favorable conditions.

↪→

↪→

5. **Combination 5**: (10 hours, 110°C, 6.0)
- **Reasoning**: This combination tests a lower

temperature with a high sultine to C60 ratio. It could
be interesting to see if lower energy input with an
excess of sultine could still yield high adduct
production without excessive side reactions.

↪→

↪→

↪→

↪→

- **Likelihood of Minimizer**: Moderate likelihood; while
the temperature is lower, the high ratio may still
lead to a good yield.

↪→

↪→

### Overall Confidence in Suggestions:
The likelihood that the optimizer is not in the vicinity of

any of these points is relatively low, given that these
combinations span a diverse range of the experimental
space. However, there is always a possibility that
optimal conditions could exist outside this grid,
especially if there are nonlinear interactions among the
factors or if the reaction dynamics are complex. Thus,
while I am confident in the combinations suggested, I
would still advise conducting exploratory runs beyond
these points, especially if initial results indicate
unexpected trends.

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→
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4. To optimize the production of o-xylenyl adducts of
Buckminsterfullerenes, we can systematically explore the
parameter space defined by your three factors: reaction
time, temperature, and the ratio of sultine to C60. Given
the ranges for each factor and the fully factorial grid
design, we can suggest five specific combinations
(triples) that are likely to yield favorable results
based on typical chemical reaction behavior.

↪→

↪→

↪→

↪→

↪→

↪→

↪→

### Suggested Experimental Conditions:

1. **(Reaction Time: 3 hours, Temperature: 100C, Sultine to
C60 Ratio: 1.5)**↪→

- **Reasoning**: This combination represents the lower
limits of all three factors. While it may lead to
lower conversion rates, it allows for initial
assessments of the reactivity and stability of the
system under mild conditions.

↪→

↪→

↪→

↪→

2. **(Reaction Time: 31 hours, Temperature: 150C, Sultine to
C60 Ratio: 6.0)**↪→

- **Reasoning**: This combination represents the upper
extremes of all factors. Longer reaction times and
higher temperatures are likely to enhance reactivity
and yield but may also lead to side reactions. This
setup is useful to probe the limits of the system.

↪→

↪→

↪→

↪→

3. **(Reaction Time: 15 hours, Temperature: 125C, Sultine to
C60 Ratio: 4.5)**↪→

- **Reasoning**: This middle-ground combination balances
time, temperature, and reactant ratio. It is often
advantageous to explore such intermediate conditions
to identify optimal yield without risking excessive
degradation or unwanted byproducts.

↪→

↪→

↪→

↪→

4. **(Reaction Time: 10 hours, Temperature: 150C, Sultine to
C60 Ratio: 3.0)**↪→

- **Reasoning**: Here, were testing a high temperature
with a moderate reaction time and reactant ratio. High
temperatures can enhance the yield, and the moderate
time allows for a compromise between efficiency and
the risk of degradation.

↪→

↪→

↪→

↪→

5. **(Reaction Time: 25 hours, Temperature: 100C, Sultine to
C60 Ratio: 6.0)**↪→
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- **Reasoning**: This combination keeps the temperature
low while extending the reaction time and increasing
the sultine to C60 ratio. It is expected to maximize
product formation while minimizing the risk of side
reactions at high temperatures.

↪→

↪→

↪→

↪→

### Likelihood Assessment:

- **Proximity of Minimizer**: I believe that the minimizer
(the combination that maximizes the mole fraction of the
desired product) could be reasonably expected to be near
the middle-ground conditions, particularly suggestion #3.
This is a typical region where many optimizations find
favorable results due to a balance of reactivity,
stability, and yield.

↪→

↪→

↪→

↪→

↪→

↪→

- **Likelihood of Not Being Close**: There is a moderate
likelihood (around 20-30%) that the optimizer is not in
the vicinity of any of these suggested points. Reaction
behavior can be complex, and the actual optimal
conditions may be influenced by specific kinetics or
thermodynamic factors not fully captured in the initial
range, or they may be affected by unforeseen interactions
between the reactants.

↪→

↪→

↪→

↪→

↪→

↪→

↪→

Overall, I recommend starting with these suggested
combinations and closely monitoring the results to refine
further based on experimental feedback.

↪→

↪→

5. Optimizing the production of o-xylenyl adducts of
Buckminsterfullerenes involves careful selection of
reaction conditions. Given the specified ranges for the
three factors:

↪→

↪→

↪→

1. **Reaction Time:** [3, 31] hours
2. **Temperature:** [100, 150] degrees Celsius
3. **Sultine to C60 Ratio:** [1.5, 6.0]

With a three-factor fully factorial design and six levels per
factor, there are a total of 216 unique combinations to
explore. However, I can suggest five specific
combinations based on theoretical reasoning and general
trends observed in similar chemical reactions.

↪→

↪→

↪→

↪→

### Suggested Points for Experimentation
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1. **Point 1:** (3 hours, 100 °C, 1.5 ratio)
- This combination features the minimum reaction time and

temperature, which may promote rapid formation of
intermediates but could lead to incomplete reactions.
Its a good starting point for determining the baseline
yield.

↪→

↪→

↪→

↪→

- **Likelihood of being close:** Medium; this may help
establish a lower bound for product yield.↪→

2. **Point 2:** (31 hours, 150 °C, 6.0 ratio)
- This point represents maximum extremes for all factors,

potentially leading to high yields if the reaction is
indeed thermally activated and the abundance of
sultine drives the reaction to completion.

↪→

↪→

↪→

- **Likelihood of being close:** High; the extended
reaction time and high temperature could promote
maximum reaction efficiency.

↪→

↪→

3. **Point 3:** (15 hours, 125 °C, 3.0 ratio)
- This combination strikes a balance between reaction time

and temperature, with a moderate sultine to C60 ratio.
This is often a sweet spot in many reactions, allowing
for good product formation without excessive
degradation.

↪→

↪→

↪→

↪→

- **Likelihood of being close:** Medium-High; its
plausible that moderate conditions will yield
favorable results.

↪→

↪→

4. **Point 4:** (15 hours, 150 °C, 1.5 ratio)
- This condition has an elevated temperature but a lower

sultine to C60 ratio. It could potentially favor the
reaction kinetics but may not provide enough sultine
for optimal yields.

↪→

↪→

↪→

- **Likelihood of being close:** Medium; the temperature
is high, but the low ratio could limit product
formation.

↪→

↪→

5. **Point 5:** (31 hours, 100 °C, 3.0 ratio)
- Here, the extended reaction time may allow for complete

reaction at a lower temperature. This might help avoid
thermal degradation of the product, making it a
cautious choice for maximizing yield.

↪→

↪→

↪→
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- **Likelihood of being close:** Medium; while the
extended time is beneficial, the low temperature may
hinder reaction rate.

↪→

↪→

### General Confidence Assessment

Overall, I estimate that the optimizer is likely to be in the
vicinity of one of these suggested points (around 60-70%
confidence). However, there remains a significant chance
(30-40%) that the true optimal set of conditions lies
outside these points, especially if the non-linear
interactions between factors play a significant role.

↪→

↪→

↪→

↪→

↪→

Applying a response surface methodology or a design of
experiments approach after these initial trials could be
beneficial to further refine the conditions and identify
the true optimal parameters.

↪→

↪→

↪→

Appendix F. Additional Figures

Here, we provide log-scale versions of the regret figures in the main paper in Figure 6.
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Figure 6: Regret curves for (left) long-horizon 3D experiments and (right) OOD generalization in
1D. 1000 and 100 parallel episodes are used, respectively.
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