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Abstract

Molecular shape and geometry dictate key biophysical recognition processes, yet
many graph neural networks disregard 3D information for molecular property
prediction. Here, we propose a new contrastive-learning procedure for graph neural
networks, Molecular Contrastive Learning from Shape Similarity (MolCLaSS),
that implicitly learns a three-dimensional representation. Rather than directly
encoding or targeting three-dimensional poses, MolCLaSS matches a similarity
objective based on Gaussian overlays to learn a meaningful representation of
molecular shape. We demonstrate how this framework naturally captures key
aspects of three-dimensionality that two-dimensional representations cannot and
provides an inductive framework for scaffold hopping.

1 Introduction and Background

Molecular shape is critical for biophysical processes, yet encoding relevant three-dimensional features
remains challenging for many molecular property prediction tasks, especially when an understanding
of three-dimensional shape is limited or unknown [1]. Numerous methods have been developed to
effectively encode individual conformers that are both appropriate and highly-effective for conformer-
level prediction tasks such as predicting quantum chemical properties of single conformational poses
[2; 3; 4; 5; 6]. However, these approaches are poorly suited for representing complete molecules since
relying on a single low-energy conformer to represent a diverse conformational ensemble is inherently
limiting. Dietterich et al. [7] first recognized and addressed this challenge in the development of
the multiple-instance learning framework [8]. Recent studies have explored deep multiple-instance
learning approaches for learning on conformational ensembles [9; 10], yet are computationally-
demanding due to the need to encode each conformer independently. Furthermore, methods that
encode three-dimensional information often do not provide a strong performance benefit over 2D
baselines [10].

Herein, we propose to inject graph neural networks with implicit 3D shape information through a
supervised contrastive approach. Learning implicit 3D representations have been recently explored
by Stärk et al. [11] and Liu et al. [12], but these approaches do not consider three-dimensional
relationships between molecules and hence do not learn a direct measure of molecular shape similarity.
In contrast, we propose to learn key features of molecular shape through direct comparison with
the use of 3D molecular similarity kernels based on Gaussian overlays [13]. Specifically, methods
such as the Rapid Overlay of Chemical Structures (ROCS) [14] provide a fast and scalable method
for matching molecular shapes based both on molecular volumes and electrostatic matching on
predefined pharmacophore features.
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Figure 1: Our proposed model couples a pairwise, Gaussian shape- and pharmacophore similarity
objective to a graph contrastive learning procedure to learn molecular embeddings with implicit
3D-information. A. For each input molecule, we sample a conformational ensemble and perform
OpenEyeROCS to find a maximum overlay via ShapeTanimoto and ColorTanimoto similarities. B.
The resulting pairwise, 3D shape similarities become the objective of our graph contrastive learning
procedure on 2D graphs only, which are approximated using a Tanimoto kernel function.

Our framework, Molecular Contrastive Learning on Shape Similarity (MolCLaSS), naturally aligns
a pairwise shape similarity objective with supervised contrastive learning framework to learn mean-
ingful representations of molecular shape (Figure 1). Our work contributes directly in two ways:
1) MolCLaSS provides fast, scalable, and inductive approximation of 3D-shape similarity scores
between molecules directly from their 2D graphs, and does not require conformer generation and
shape alignment for inference, and 2) we demonstrate how MolCLaSS learns meaningful molecular
embeddings that naturally capture 3D-shape and features that 2D, topological methods cannot. The
resulting pre-trained encoder can be used for downstream molecular shape tasks.

2 Related Work

Graph Neural Networks for Small Molecules Graph neural networks have been widely developed
for predicting small molecule properties and activities [15; 16; 17] on both 2D and 3D tasks. The
properties of individual conformers have been effectively modeled by leveraging 3D spatial features
for a range of quantum chemical and property prediction tasks [3; 4; 5; 6]. Adams et al. [18] recently
described a hybrid approach for conformationally-invariant 3D approaches. Furthermore, "4D"
multiple-instance learning methods have recently been developed that operate over sets of conformers
that are each modeled as a graph [9; 10]. Our work builds on this prior work to learn improved and
compact representations.

Pre-Training Graph Neural Networks Graph pretraining methods are an active area of research.
Hu et al. [19] first reported a pretraining strategy based on self-supervised node pre-training, followed
by supervised pre-training with masking. You et al. [20] recently demonstrated the effectiveness
of a contrastive learning approach on graphs, which was further extended by Wang et al. [21, 22].
Recently, Stärk et al. [11] and Liu et al. [12] developed self-supervised approaches to maximize
three-dimensional information for 2D-graph neural network pretraining with promising results. These
approaches aim to maximize mutual information with the goal of matching a 2D representation to
a three-dimensional pose, but they do not explicitly consider three-dimensional similarity between
molecules. Our work here presents a supervised contrastive approach for pretraining neural networks
that complements the self-supervised approaches above.

Kernel-Based Approximations of Molecular Shape Our work is closely related to prior work
on learning low dimensional embeddings from molecular similarity kernels. Raghavendra and
Maggiora [23] introduced a method to learn molecular basis vectors by directly decomposing
Tanimoto similarities. The SCISSORS method by Haque & Pande [24; 25; 26] generalizes a kernel
PCA approach to molecular similarity measures, including ROCS, that provides a fast approximation
for molecular similarity. These prior approaches are naturally transductive; to obtain new scores,
molecules must be scored against the resulting basis set and predicted based on a least-squares

2



estimate. Our approach couples the intuition of Haque and Pande [24] with modern graph neural
networks to directly learn a meaningful molecular space that is naturally inductive, i.e. can generalize
to new and unseen molecules without the need for additional conformer generation and scoring.

3 Problem Formulation and Methods

We invoke a variation of the classic similar property principle and assume that two molecules are
similar if they can adopt similar molecular shapes [27; 28]. Prior approaches for encoding three-
dimensional information typically operate on a molecular input xi and corresponding spatial features
si that includes explicit atomic coordinate, distance, or angle information. These approaches rely on
designing an expressive transformation fθ(xi, si) that can accurately learn to map similar molecules
to similar parts of chemical space, and assume that a single or several low-energy conformers encode
relevant geometry. Rather than operate over explicit spatial representations, we instead adopt an
implicit strategy that leverages a predefined similarity kernel over pairs of molecular inputs k(xi, xj).
Critically, by leveraging a well-defined 3D similarity function using inner products, we avoid the
need to explicitly encode spatial features si, and can focus on learning an invariant function fθ(xi).

As illustrated in Figure 1, our approach naturally fits a supervised contrastive learning framework:
given a set of molecules, our goal is to learn an expressive representation satisfies a pairwise similarity
constraint k(xi, xj). Here, we decompose this representation into graph encoder fθ and projection
heads gθ to flexibly model multiple outputs. In this study, we use Gaussian shape and color overlays
as an intuitive measure of shape similarity [13; 1], and follow the insight of Haque and Pande [24, 25]
to leverage the Tanimoto kernel [29]:

T (zi, zj) =
zi · zj

zi · zi + zj · zj − zi · zj
(1)

This interpretation defines a molecular embedding space, where three-dimensional shape similarities
can be conveniently modeled based on inner products. Rather than approximate embeddings zi via
linear decomposition methods, our objective is to learn an inductive model that generates zi directly
from a molecular graph. Here, we use an encoder based on the Graph Isomorphism Network with
Edge features [19] followed by two projection heads to model Shape and Color separately:

vt+1
p = qθ((1 + ϵ) · vt

p +
∑

q∈N (p)

σ(vt
q + ep,q)) (2)

with fθ(xi) = hi =
∑
p∈G

vT
p (3)

z
{c,s}
i = gθ(hi) = U{c,s}σ(V {c,s}hi) (4)

Above, vt
p corresponds to the hidden state of the node p at step t (final step T ), with hi as the final

graph representation of molecule i using sum pooling. The projection heads gθ(hi) are parameterized
by Color- and Shape-dependent MLPs with trainable weight matrices U and V , and σ is a ReLU
nonlinearity. Finally, we optimize the network to directly predict ShapeTanimoto and ColorTanimoto
scores via minimization of the following loss function:

L{s,c} =
1

N2

N∑
i=1

N∑
j=1

(
T{s,c}(zi, zj)− k{s,c}(xi,xj)

)2
with L = Ls + λLc (5)

Here, we define the loss as the mean squared error over all the pairs in a batch (size N ) between the
predicted Color and Shape scores based on the Tanimoto kernel (Eq. 1) and the calculated Gaussian
overlay k{s,c} (xi,xj) based on conformer generation and alignment. We balance the individual
objectives Ls and Lc with the tuneable hyperparameter λ to adjust the influence of pharmacophore
features (but typically set to 1).
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ShapeTanimoto ColorTanimoto
Model n r R2 MAE r R2 MAE

2D Tanimoto – 0.000 – – 0.000 – –
ECFP4 + FF-NN 10k 0.733 0.513 0.0473 0.502 0.144 0.0484
ECFP4 + FF-NN 50k 0.793 0.610 0.0419 0.593 0.243 0.0456
ECFP4 + FF-NN 100k 0.822 0.660 0.0388 0.636 0.327 0.0428

MolCLaSS 10k 0.818 0.653 0.0396 0.608 0.295 0.0442
MolCLaSS 50k 0.876 0.757 0.0327 0.718 0.484 0.0374
MolCLaSS 100k 0.893 0.794 0.0301 0.748 0.537 0.0353

Table 1: Model performance for prediction of ShapeTanimoto and ColorTanimoto scores from 2D
graphs. All results are reported on a random, independent test set of 49,621 molecules corresponding
to 1.23 billion pairwise similarity scores. For each training set size n, we report Pearson’s correlation
coefficient r, the coefficient of determination R2, and the mean absolute error (MAE) for all 1.23
billion pairwise scores.

4 Experiments and Results

Prediction of Shape- and Color-Tanimoto Scores from 2D Graphs We systematically investi-
gated the ability of contrastive models to directly predict ShapeTanimoto and ColorTanimoto scores
of drug-like molecules from the ChEMBL database [30; 31]. For these studies, we generated a
complete all-by-all similarity matrix of Shape- and ColorTanimoto scores [13; 14] for 100k molecules
from ChEMBL, with maximum overlay scores recorded from pairwise comparisons of up to 10
conformers generated per molecule [32; 33] (see Appendix for complete details). We refer to the
complete data set as ROCS100k. We assessed the ability of both fingerprint- and graph-based models
to accurately predict pairwise, 3D similarity scores directly from their 2D graph representations.
Although thissetup requires computationally-intensive conformer generation and exhaustive similarity
scoring, this cost is amortized over the training data. At inference time, predicted Shape- and Color-
Tanimoto similarities are directly obtained and circumvent the need for explicit three-dimensional
representations.

As illustrated in Table 4, we directly compared our approach to a Morgan fingerprint [34] and dense
neural network baseline, with positive performance gains for increasingly large data set sizes. Our
graph neural network-based approach based on GINEConv graph layers with independent projection
heads for ShapeTanimoto and ColorTanimoto predictions exhibits a clear improvement over hashed
fingerprint representations, even with significantly less data. For example, MolCLaSS trained with
only 10k examples achieves nearly identical performance to fingerprint-based models trained on
100k examples. Critically, these dense networks learn a non-trivial transformation of the input data.
Indeed, as shown in Table 4 (first row), there is nearly no correlation between bulk Tanimoto scores
on 2D representations and their 3D Tanimoto scores.

Notably, the MolClASS network can directly predict 3D similarity scores with good accuracy
(ShapeTanimoto MAE= 0.030, ShapeTanimoto MAE= 0.035) at only a fraction of the computa-
tional cost. At inference, predicting 3D similarity scores on tens of thousands of molecules takes
only seconds, replacing both the need for conformer generation and overlays and representing an
improvement of nearly 104 − 105 times in speed.

MolCLaSS Representations Capture 3D Shape Similarity. Given the strong performance of
MolCLaSS, we investigated the qualities of the learned molecular embeddings. We specifically
visualized our hold-out test set of ChEMBL molecules in their graph embedding (hi) and projec-
tion heads (zsi , z

c
i ) (Figure 2) against a fingerprint baseline, and colored them based on calculated

three-dimensional descriptors [28; 35] of their low-energy conformers, including radius of gyration
(Figure 2A) and the first principal moment of inertia (Figure 2B). As shown, both the graph-layers
and shape-projection layer provide clear localization based on these 3D properties when compared to
Morgan fingerprints. As expected, the color projection head does not exhibit the same localization, as
pharmacophore features are less dependent on overall molecular shape.
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Figure 2: Comparison of MolClaSS latent graph encodings and projection heads to topological
fingerprints reveals that MolCLaSS provides meaningful latent organization by three-dimensional
features. Latent representations colored by the A. radius of gyration (log-scale) and B. first
principal moment of inertia (log-scale) for a low-energy conformer. The graph embeddings hi and
shape projection zsj learn more localized structure corresponding to human interpretable features.

A key consequence of the Tanimoto similarity objective (Eq. 1) is that it induces a Euclidean structure
over the projected vector space z [36]. Indeed, we found an excellent correlation (Pearson r = 0.87)
between pairwise Euclidean distance and ShapeTanimoto scores (see Appendix). To further probe the
difference in representations we performed a nearest neighbors analysis using the shape projections
in MolCLaSS (Figure 3). In our analysis, we consistently find that MolCLaSS preserves molecular
shape and size. Scaffolds hops based on ring mutations are found nearby while maintaining excellent
overall shape similarity. In contrast, topological fingerprints largely favor substructure matching and
exhibits a wider range of molecular shapes. Together, these two studies illustrate how the MolCLaSS
framework can capture relevant shape measures through a supervised approach.

Figure 3: Nearest neighbors analysis using learned latent representations. We analyze the test set
using k-nearest neighbors to retrieve similar hits based on a given query (top right). A. Nearest
neighbors with MolCLaSS (Euclidean distance) preserves scaffold shape and can hop between
scaffolds through core mutations (top row). B. The same analysis performed with ECFP4 fingerprints
and Tanimoto distance (bottom row). Topological fingerprints heavily emphasize subgraph matches.
Although diverse hits are found, nearest neighbors have a lower shape similarity. C. Reanalysis of
top hits by fastROCS demonstrates how MolCLaSS accurately identifies close three-dimensional
matches (top right), whereas 2D fingerprints produce lower-quality matches.
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5 Conclusions and Future Directions

Our studies above outline a preliminary roadmap for learning three-dimensional representations
based on 3D similarities. In contrast to prior work, MolCLaSS learns via supervised pairwise
comparisons, and hence is able to relate and differentiate molecules of varying size and shape. We
have demonstrated how the MolCLaSS network itself provides a direct and fast approximation method
for approximating shape- and 3D pharmacophore-based, and further illustrated how meaningful
three-dimensional features are naturally learned through this inductive framework. Our ongoing work
seeks to further improve the MolCLaSS framework to improve predictive performance and to explore
its application as a pretrained model for broad molecular property prediction tasks.
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Appendix

All experiments were performed using Python and standard numerical libraries. For cheminformatics
analysis, all molecules were processed using either OpenEye Applications and Toolkits or the open-
source cheminformatics library RDKit [35]. We implemented all experiments in Python using
PyTorch 1.11 [37] and PyTorch Geometric [38].

Appendix A: Molecular Dataset Properties and Creation

All data were downloaded directly from ChEMBL31 release of the ChEMBL database [30; 31].
Molecules were filtered based on OpenEye Filter using the drug-likeness that limits. The resulting
detailed statistics of the molecules and some of their properties are shown in Table 2, with a
representative sample of molecules shown in Figure 4.

OMEGA Conformer Generation

For each molecule, we generate a conformational ensemble using OpenEye Applications (2022.1.1)
using OMEGA (v.4.2.0) [32; 33]. Conformational ensembles were generated with the optimized
default fastROCS settings with multiprocessing: maxconfs=10, ewindow=15, flipper=False,
mpi=128 which been shown to accurately recapitulate binding poses. Molecules with ambiguous or
undefined stereochemistry were dropped during the conformer generation process.

OpenEye fastROCS Scoring

We use OpenEye’s GPU-accelerated fastROCS Toolkit (v.2.2.2.1) to calculate ShapeTanimoto
and ColorTanimoto scores. For each conformer database, we generate an all-by-all similarity matrix
that scores every conformer of every molecule against all conformers of the rest of the database,
saving the maximum score between two molecules. In practice, generation of the ROCS100k training
dataset generates 4.95 billion ShapeTanimoto and ColorTanimoto scores, each, and requires 7 hours
on 3 NVIDIA 3090 RTX GPUs with 80 processes.

Computational Complexity of All-by-All Conformer ROCS Exhaustive similarity comparisons
between n molecules scales at O(n2). As an upper limit, for k conformers are generated per molecule,
generation of the all-conformer by all-conformer similarity matrix scales at O(k2n2). For symmetric
similarity measures like ColorTanimoto and ShapeTanimoto, O((n)(n − 1)/2) comparisons are
required with no self-comparisons. Similarity, for k sampled conformers we require O((kn)(kn−
1)/2) pairwise comparisons.

Table 2: Detailed Statistics of the ROCS100k Training Dataset (n = 100,000).

Property min. max. mean median std.

Sampled Conformers (k) 1 10 9.48 10 1.78
Heavy Atom Count 15 35 23.88 24 4.71
Molecular Weight 220.20 598.03 337.73 334.42 66.38
Rotatable Bonds 0 11 4.51 4 1.99
Aromatic Rings 0 12 3.14 3 1.01
H-Bond Donors 0 5 1.44 1 0.98

H-Bond Acceptors 0 12 4.34 4 1.72
Heteroatoms 2 14 6.17 6 1.84

Appendix B: Network Architecture and Training Details

All studies were trained using the generated ROCS100k dataset. The size dependence studies
illustrated in 4 using 10k and 50k examples use subsets of the full 100k molecules. A separate
validation set of 8,548 molecules from ChEMBL31 were additionally used for model tuning and
selection. All results in Table 4 are reported on an independent, random test set of 49,621 molecules
from ChEMBL31.
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Table 3: Detailed Statistics of the ROCS50k Test Dataset (n = 49,621).

Property min. max. mean median std.

Sampled Conformers (k) 1 10 9.53 10 1.70
Heavy Atom Count 15 35 23.66 23 4.77
Molecular Weight 220.17 557.52 335.4 331.42 67.56
Rotatable Bonds 0 10 4.42 4 1.96
Aromatic Rings 0 8 3.08 3 1.00
H-Bond Donors 0 5 1.31 1 0.97

H-Bond Acceptors 0 12 4.62 5 1.70
Heteroatoms 2 14 6.37 6 1.85

Figure 4: Random selection of 50 examples from ChEMBL31 for generating the ROCS100k dataset.

All neural networks were trained using the Adam optimizer (learning rate = 1×10−3 to 1×10−4) and
a batch size of 2048 for up to 4,000 epochs, using the early stopping criterion based on the validation
set described above. The model architecture and hidden dimensions are specified in Appendix Table
4. All networks use five graph encoding layers with two project heads (single-hidden layer MLPs).
The entire network is trained on Shape- and Color-Tanimoto targets bounded within [0,1], using mean
squared error as the loss criterion and trained to early stopping.

Neural Network Performance

Our summary of overall performance results and metrics for different model architectures are shown
in Table 4. Below, we include scatter plots of our best model trained on the full ROCS100k dataset in
Figure 5.

Correlation of Euclidean Distance with ShapeTanimoto and ColorTanimoto

The project heads gθ ultimately learn a meaningful Euclidean distance. As shown in the plots
below, molecules closer in the embedded latent space also tend to have a much higher Shape and
ColorTanimoto score (Figure 6).
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Figure 5: Performance of MolCLaSS for predicting ShapeTanimoto and ColorTanimoto trained on
the full ROCS100k data set, corresponding to the final entry in Table 4. results plotted are on the full
49,621 test set molecules.

Figure 6: Plots comparing distance in ShapeTanimoto an ColorTanimoto, vs Euclidean distance for
the Shape- and Color-projection heads. MolClaSS learns a meaningful structural embedding space
where similar shapes are closer together in their latent representation (left), with a more modest
correlation observed for ColorTanimoto (right). Correlations plotted for the unseen 49,621 molecules
in the test set.

Table 4: Neural Network Model Architectures

Model & Module Layer & Description hdim Sizes

MolCLaSS
Graph Encoder fθ 5 x [GINEConv + BatchNorm w/ ReLU] 5× (512 → 1024 → 512)
Projection Head gθ MLP + ReLU 512 → 1024 → 256
ECFP4 + FF-NN
Encoder fθ MLP w/ ReLU 2048 → 2048 → 512
Projection Head gθ MLP + ReLU 512 → 1024 → 256
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