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Abstract
Nearest neighbor (NN) methods have re-emerged
as competitive tools for matrix completion, of-
fering strong empirical performance and recent
theoretical guarantees, including entry-wise er-
ror bounds, confidence intervals, and minimax
optimality. Despite their simplicity, recent work
has shown that NN approaches are robust to a
range of missingness patterns and effective across
diverse applications. This paper introduces N2,
a unified Python package and testbed that con-
solidates a broad class of NN-based methods
through a modular, extensible interface. Built
for both researchers and practitioners, N2 sup-
ports rapid experimentation and benchmarking.
Using this framework, we introduce a new NN
variant that achieves state-of-the-art results in sev-
eral settings. We also release a benchmark suite of
real-world datasets—from healthcare and recom-
mender systems to causal inference and LLM eval-
uation—designed to stress-test matrix completion
methods beyond synthetic scenarios. Our experi-
ments demonstrate that while classical methods
excel on idealized data, NN-based techniques con-
sistently outperform them in real-world settings.

1. Introduction
Nearest neighbor methods are a class of non-parametric
algorithms widely used for regression, classification and
pattern recognition. Due to their scalability and success
under models with minimal assumptions, nearest neigh-
bor methods have recently been adopted for practical fields
such as matrix completion and counterfactual inference in
panel data settings. Matrix completion is a well-established
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field that supplies practitioners with many tools to recover
underlying matrices using partial or even noisy observa-
tions (HMLZ15; Cha15; KMO10), with recommendation
systems (KBV09; Rec11) as an important use-case. Panel
data counterfactual inference aims at learning the treatment
effect of policies across time (Bai09; BN21; ABD+21).
One important example is individualized healthcare pre-
dictions (KSS+19). Nearest neighbor methods were re-
cently recognized as effective in providing granular in-
ference guarantees for both matrix completion and coun-
terfactual inference when either the missingness or the
policy treatment are not completely random and con-
founded (MC19; DTT+22a; ADSS23).

Despite nearest neighbor methods popularity, there is no uni-
fied package that lets a user easily switch between different
kinds of nearest neighbor algorithms for matrix completion
and counterfactual inference. In this paper, we present a
package (GitHub link: N2) to unify several nearest neighbor
methods under a single interface, so users can easily choose
the method that suits their data the best.

1.1. Our contributions

Overall, our contributions in this paper are summarized
below:

1. We provide a unified, easy to implement nearest neigh-
bor library that contains a breadth of nearest neighbor
algorithms for matrix completion problems.

2. We present a unified framework for nearest neighbor
algorithms that facilitates extending to new variants.

3. We demonstrate our library’s wide applicability
through several real-world data sets in a new test bench
called N2-Bench.

1.2. Related work

We contextualize our contributions in the context of both
nearest neighbors as a general algorithm and matrix comple-
tion specifically.
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Nearest neighbors As introduced above, nearest neigh-
bor methods are widely used for non-parametric regression,
classification, and pattern recognition (CH67; CBS20). Re-
cently, nearest neighbor methods were introduced as an ef-
fective algorithm for matrix completion problems (LSSY19;
ADSS23; DTT+22a), especially when the missingness
depended on observations and unobserved confounders.
The fact that nearest neighbor methods target a single
entry at a time via matching makes it effective against
various types of missing patterns. The class of algo-
rithms has grown to account for a wide range of appli-
cations (DTT+22b; CFC+24; FCAD24; SPD24; SPD25),
with a focus on inference for personalized treatment ef-
fects in the causal inference literature. Our library, N2,
is designed to easily implement the vanilla versions of
nearest neighbors (LSSY19; DTT+22a) as well as its un-
weighted (DTT+22b; SPD24) and weighted (SPD25) vari-
ants. Finally, N2 is also capable of distributional matrix
completion (CFC+24; FCAD24).

Other matrix completion methods Universal singular
value thresholding (USVT), proposed in (Cha15; BC22),
is a classical spectral-based method for performing matrix
completion; its core functionality is based on a singular
value decomposition of the matrix and thresholding the
singular values. SoftImpute, introduced by (HMLZ15), is
another widely used optimization-based algorithm for ma-
trix completion. The algorithm computes ridge-regression
updates of the low-rank factors iteratively and finally soft-
thresholds the singular values to impose a nuclear norm
penalty. Notably USVT and SoftImpute have provable guar-
antees when missingness is completely at random, but em-
pirically fail when the missing pattern depends on the ob-
served entries or the unobserved confounders (ADSS23).
Our real-world analysis in Sec. 4 once again demonstrates
this point.

Existing software for matrix completion and nearest
neighbors Scikit-Learn (PVG+11), a popular Python
package for machine learning tools, implements a simple
k-nearest neighbor algorithm for imputing missing values
in a feature matrix. However, their implementation is de-
signed for the feature matrix setting. So, neighbors are only
defined across samples (row-wise). Additionally, they do
not provide any implementation for more advanced nearest
neighbor algorithms, nor does their package allow for easy
extendability like our proposed package.

Organization Sec. 2 contains an overview of the existing
nearest neighbor algorithms implemented in our library,
N2. Sec. 3 touches upon the high-level (class) structure of
N2, as well as the interface for practitioners. Sec. 4 tests
different variants of nearest neighbor methods and classical
methods on our new test bench of diverse datasets called N2-

Bench. Finally, in Sec. 5, we provide concluding remarks
and outline future directions of research.

2. Nearest Neighbors for Matrix Completion
We now introduce the mathematical model for matrix com-
pletion:

for i ∈ [N ], t ∈ [T ] :

Zi,t :=

{
X1(i, t), ..., Xn(i, t) ∼ µi,t if Ai,t = 1,

unknown if Ai,t = 0.

(1)

In other words, for matrix entries where Ai,t = 1, we
observe n measurements Zi,t that takes value Xi,t real-
ized from distribution µi,t. When n = 1, i.e., Zi,t =
X1(i, t), we refer to (1) as the scalar matrix completion
model; scalar matrix completion is the most common
problem posed in the literature (CR12; Rec11; KBV09;
HMLZ15; Cha15; DTT+22a; DTT+22b; ADSS23), where
the goal is to learn the mean of the underlying distribu-
tions {θi,t =

∫
xdµi,t(x)}i∈[N ],t∈[T ]. When there are more

than one observed measurements per entry, i.e., Zi,t =
[X1(i, t), ..., Xn(i, t)] for n ≥ 2, we refer to (1) as the dis-
tributional matrix completion problem, the goal being the
recovery of the distributions as a whole. We refer the read-
ers to App. A for a detailed discussion on the structural
assumptions imposed on the model (1).

3. N2 Package and Interface
We now present our unified Python package, N2, for nearest
neighbor algorithms for matrix completion. In particular,
we provide a class structure which abstracts the estimation
procedure utilized in each different nearest neighbor method
as well as the the DISTANCE and AVERAGE modules de-
scribed above in Sec. 2. On top of that, our library facilitates
easy extensions to other nearest neighbors algorithms and
other data types on top of scalars and distributions. For
example, as long as a distance and average notion are well
defined, our library can be easily applied to a matrix of
images or text strings.

Class structure. The core functionality of N2 is based
on two abstract classes: EstimationMethod and
DataType.

EstimationMethod classes contain the logic to impute
a missing entry such as how to use calculated distances.
We separate this from the DataType abstraction because
several estimation methods can be used for multiple data
types. For example, RowRowEstimator implements the
RowNN procedure for any data type given to it, such as
scalars or distributions.

2



A Unified Python Package and Test Bench for Nearest Neighbor-Based Matrix Completion

DataType classes implement a distance and average func-
tion for any kind of data type. For scalars we use squared
distance and simple averaging. For distributions, we imple-
ment two metrics, Wasserstein (W2NN) and kernel maxi-
mum mean discrepancy (MMD, KernelNN). This abstract
class allows for our package to extend to any data types
beyond the ones we tested. For instance, a practitioner can
easily add a DataType for text strings which uses vector
embeddings to find distances and averages between between
strings without needing to rewrite any of the estimation pro-
cedure.

Interface. To use our library, a user simply has to instanti-
ate a composite class NearestNeighborImputerwith
their EstimationMethod and DataType of choice.
We provide constructor functions to automatically create
popular NearestNeighborImputer classes such as a
two-sided nearest neighbor estimator with the scalar data
type. From a design pattern point of view, this is known
as a Composite design pattern (GHJV93, pg. 163). We use
this design pattern so that anyone looking to customize the
estimation procedure can do so for any kind of data type
simultaneously. Similarly, with the exception of doubly ro-
bust estimators, each estimation procedure works out of the
box with any data type that implements the DataType ab-
stract class. The Doubly robust estimation method does not
work out of the box with distributions because a subtraction
operation is not well defined in the distribution space.

Finally, the user simply needs to input (i) a data matrix, (ii) a
mask matrix which specifies which values are missing, and
(iii) the row and column to impute. Thus, a user can test out
different estimation procedures by changing just one line
of code. Separately from the core functionality, we have
also implemented several cross-validation classes which
take in a NearestNeighborImputer class and find
the best hyperparameters to use (e.g., distance thresholds
and weights).

4. N2-Bench and Results
In this section, we evaluate several nearest neighbor algo-
rithms provided by our library, N2, on real-world data. As
part of our package, we include data loaders which auto-
matically download the necessary datasets and format them
for evaluation. These datasets and loaders comprise our
proposed benchmark for nearest neighbor matrix comple-
tion algorithms, N2-Bench. We also test several existing
popular matrix completion techniques (HMLZ15; Cha15).
For details on our experimental setup, computing hardware,
and boxplot generation, see App. D.

4.1. Personalized healthcare: HeartSteps

The HeartSteps V1 study (HeartSteps study for short) is a
clinical trial designed to measure the efficacy of the Heart-
Steps mobile application for encouraging non-sedentary ac-
tivity (KSS+19). The HeartSteps V1 data and its subsequent
extensions have been widely used for benchmarking a vari-
ety of tasks including counterfactual inference of treatment
effect (DTT+22a; CFC+24), reinforcement learning for in-
tervention selection (LGKM20), and micro-randomized trial
design (QWC+22). In the HeartSteps study, N = 37 partic-
ipants were under a 6-week period micro-randomized trial,
where they were provided with a mobile application and
an activity tracker. Participants independently received a
notification with probability p = 0.6 for 5 pre-determined
decision points per day for 40 days (T = 200). We denote
observed entries Zi,t as the mean participant step count for
one hour after a notification was sent and unobserved entries
as the unknown step count for decision points where no noti-
fication was sent. Our task is to estimate the counterfactual
outcomes: the participant’s step count should they have re-
ceived a different treatment (notification or no notification)
than they did at specific time points during the study.

Results & Discussion. We benchmark the performance
of the matrix completion methods by measuring absolute
error on held-out observed step counts across 10 partici-
pants in the last 50 decision points. We use the remaining
data to find nearest neighbor hyperparameters using cross-
validation. To benchmark distributional nearest neighbors
methods (KernelNN and W2NN) against the scalar meth-
ods, we first set each entry to have the number of samples
n = 60, where each sample is the 1 minute step count be-
fore imputation. Then, we take the mean of the imputed
empirical distribution as the estimate.

In Fig. 1(a), we compare the absolute error of the imputed
values across the nearest neighbor and baseline methods.
The scalar nearest neighbor methods far out-perform USVT
and are on par with SoftImpute. The two distributional
nearest neighbor methods far outperform all methods op-
erating in the scalar setting; it suggests that matching by
distributions collect more homogeneous neighbors, thereby
decreases the bias of the method, compared to matching
only the first moments as done in most scalar matrix nearest
neighbor methods.

In Fig. 1 panel (b), we show an example of an imputed
entry in the distributional nearest neighbors setting. In this
case, the ground truth distribution is bimodal, as the partic-
ipant was largely sedentary (0 steps) with small amounts
of activity. While both KernelNN and W2NN capture the
sedentary behavior of the participant, KernelNN is able to
recover the bimodality of the original distribution whereas
W2NN cannot.
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Figure 1. HeartSteps: estimating step count under scalar and
distributional matrix completion settings. Panel (a) shows the
absolute error of predicted step count of the nearest neighbor
methods against matrix completion baselines (SoftImpute, USVT).
Panel (b) shows an example of an imputed entry in the distribu-
tional matrix completion setting.

4.2. Movie recommendations: MovieLens

The MovieLens 1M dataset (HK15) contains 1 million rat-
ings (1–5 stars) from 6,040 users on 3,952 movies. Collab-
orative filtering on MovieLens has long been a benchmark
for matrix-completion methods: neighborhood-based al-
gorithms (SKKR01), latent-factor models (KBV09), and,
more recently, nearest neighbors interpreted as blind regres-
sion under a latent–variable model (LSSY19). These assist
practitioners in data-driven recommendation systems, since
more accurate rating imputation directly drives better per-
sonalized suggestions and user engagement. This is a stan-
dard scalar matrix completion problem with N = 6, 040
and T = 3, 952. Each rating is an integer in {1, . . . , 5}.
The dataset has a very high percentage of missing values:
95.53% missing. Our task is to estimate unobserved ratings
using various matrix completion algorithms. We benchmark
the performance of nearest neighbors against matrix factor-
ization by measuring absolute error on held-out ratings. See
App. D.3 for additional details on the dataset.
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Figure 2. MovieLens: Estimation error for a random subsam-
ple of size 500. For experimental settings and discussion see
Sec. 4.2.

Results & Discussion. We fit the nearest neighbor meth-
ods using a random sample of size 100 from the first 80%
of the dataset to choose nearest neighbor hyperparameters
via cross-validation.We then test the method on a random
subsample of size 500 from the last 20% of the dataset. As
observed in Fig. 2, all nearest neighbor methods have a lower
average error than USVT and a much lower standard devia-
tion of errors, with ColNN, RowNN, DRNN, and AutoNN
performing the best out of the nearest neighbor methods.
SoftImpute performs on par with the nearest neighbor meth-
ods. Note that the nearest neighbor methods perform well
even while only being trained on a tiny subset of the data of
size 100 out of the 1 million ratings available.

5. Conclusion
In this paper, we present a unified framework, Python li-
brary (N2), and test bench (N2-Bench) for nearest neighbor-
based matrix completion algorithms. We demonstrate how
our library supports a diverse set of datasets spanning
patient-level healthcare causal inference (HeartSteps) and
recommendation systems (MovieLens). Our framework and
library facilitate researchers and practitioners to easily try
different NN methods on their dataset of choice as well as
extend the library to more complex methods.

In future work, we plan on speeding up the runtime of N2,
particularly for commonly used settings such as scalars-
valued matrices. We also plan on adding support for dis-
tributed datasets too large to fit into memory. Finally, we
plan on extending the library to other nearest neighbor algo-
rithms, such as approximate nearest neighbors methods and
ones that use linear regression instead of simple averaging.
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A. Structural assumptions
Provable guarantees of nearest neighbors in matrix settings (1) can be shown when structural assumptions are imposed on
the distributions µi,t and the missingness Ai,t. We collect existing results from (LSSY19; DTT+22b; CFC+24; FCAD24;
SPD24; SPD25). Given data with missing observations from (1), the practitioner is interested in learning information of the
distributions, e.g., mean of the distributions {θi,t =

∫
xdµi,t(x)}.

The first assumption specifies the factor structure on the mean; that is, there exists latent factors ui, vt that collectively
characterize the signal of each entry (i, t) of the matrix (LSSY19; DTT+22a; ADSS23; CFC+24; FCAD24). Such a factor
model is analogous to the low rank assumptions commonly imposed in matrix completion (CR12). The second assumption
specifies how the missing pattern Ai,t was generated; for instance missing completely at random (MCAR) assumes that
Ai,t are independent to all other randomness present in the model (1) and that all entries have positive probability of being
observed.

A.1. Factor model

For the scalar matrix completion problem, i.e., (1) with n = 1, the main goal is to learn (or impute) the mean of the
underlying distribution θi,t for any missing entries (LSSY19; DTT+22b; DTT+22a; ADSS23; SPD24; SPD25). The
majority of this literature assumes (i) an additive noise model µi,t = θi,t + εi,t for centered i.i.d. sub-Gaussian noise ε and
(ii) mean factor model, i.e., θi,t = f(ui, vt) for some latent factors ui, vt and real valued function f .

For the distributional matrix completion problem (i.e., (1) with n > 1) the main goal is to learn the underlying distribution
itself (CFC+24; FCAD24); a factor model is imposed on the distribution as a whole. For instance, a factor model is assumed
on the kernel mean embedding of distributions; that is, there exist latent factors ui and vt and an operator g such that∫
k(x, ·)dµi,t(x) = g(ui, vt).

A.2. Missingness pattern

For both the scalar and distributional matrix completion problem (1), the missing pattern (i.e., how the missingness Aj,s was
generated) can be categorized into three classes using the taxonomy of (LR19): missing-completely-at-random (MCAR),
missing-at-random (MAR) and missing-not-at-random (MNAR). MCAR assumes that the missingness Ai,t is exogenous (in-
dependently generated from all the randomness in the model) and i.i.d. with propensity P(Ai,t = 1) = p > 0 for all (i, t).
MAR is a more challenging scenario compared to MCAR as missingness is not exogenous, but its randomness depends on
the observations. Further, propensities pi,t may differ for entries (i, t) but positivity still holds, i.e., mini∈[N ],t∈[T ] pi,t > 0.
An important instance for MAR is the adaptive randomized policies (DZCM22). The MNAR setup is the most challenging
as it assumes the missingness depends on the unobserved latent confounders, while positivity may also be violated, i.e.,
mini∈[N ],t∈[T ] pi,t = 0. The staggered adoption pattern, where a unit remains treated once a unit is treated at some adoption
time, is a popular example of MNAR, mainly because positivity is violated. See (ABD+21; AI22) for more details on
staggered adoption.

We briefly outline the structural assumptions existing nearest neighbor methods were shown to work with provable guarantees;
for all the existing methods, factor models (with slightly different details; compare the mean factorization (LSSY19) and the
distribution factorization (CFC+24; FCAD24)) are all commonly assumed.

• (Scalar matrix completion) The vanilla versions of nearest neighbors (RowNN) in (LSSY19; DTT+22a) are shown to
work for MCAR and MAR setup; the latter shows that simple nearest neighbors can provably impute the mean when the
missingness is fully adaptive across all users and history. The variants of vanilla nearest neighbors DRNN (DTT+22b)
is proven to work under MCAR, while TSNN (SPD24) is proven to work under unobserved confounding, i.e., MNAR.

• (Distributional matrix completion) The KernelNN (CFC+24) is shown to recover the underlying distribution under
MNAR, whereas W2NN (FCAD24) is shown to work under MCAR.

B. Nearest neighbor algorithms
B.1. Unified framework

We introduce two general modules (namely DISTANCE and AVERAGE) from which the variants of nearest neighbors are
constructed. We introduce several shorthands used in the modules. Denote the collection of measurements, missingness, and
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weights:

Z :=
{
Zj,s

}
j∈[N ],s∈[T ]

, A := {Aj,s}j∈[N ],s∈[T ],

and W := {wj,s}j∈[N ],s∈[T ].

Let φ(x, x′) be a metric between x, x′ ∈ X for some space X . Further define φ̂(Zi,t, Zj,s) as a data-dependent distance
between any two observed entries (i, t) and (j, s) of the matrix (1). The two modules can now be defined:

(i) DISTANCE(φ̂,Z,A): Additional input is the data-dependent distance between entries of matrix φ̂ and output is the
collection of row-wise and column-wise distance of matrix:

ρrowi,j :=

∑
s̸=t Ai,sAj,sφ̂(Zi,s, Zj,s)∑

s̸=t Ai,sAj,s
and

ρcolt,s :=

∑
j ̸=i Aj,tAj,sφ̂(Zj,t, Zj,s)∑

j ̸=i Aj,tAj,s
,

(ii) AVERAGE(φ,W,Z,A): Additional input are the weightsW , metric φ and output is the optimizer

θ̂ = argmin
x∈X

∑
j∈[N ],s∈[T ]

wj,sAj,sφ(x, Zj,s).

The DISTANCE module calculates the row-wise and column-wise distance of the matrix, by taking the average of the
observed entry-wise distance φ̂(·, ·). The AVERAGE module calculates the weighted average of observed measurements,
where the notion of average depends on the metric φ and the space X on which the metric φ is defined. Notably, the weights
W in the AVERAGE module encodes the entry information of the estimand.

Remark 1 The vanilla row-wise nearest neighbors (LSSY19) that targets the mean θi,t =
∫
xdµi,t(x) of entry (i, t) is

recovered by first applying DISTANCE with φ̂(Zj,s, Zj′,s′) = (Zj,s − Zj′,s′)
2, applying AVERAGE with the non-smooth

weight wj,s = 1(ρrowi,j ≤ η1) · 1(ρcols,t ≤ 0), and using the metric φ(x, y) = (x − y)2. Note that the non-smooth weight
satisfies wj,t = 1(ρrowi,j ≤ η1), whereas wj,s = 0 for s ̸= t; by defining the nearest neighbor set Nt,η1 := {j ∈ [N ] : ρrowj,t ≤
η1}, the AVERAGE module output can be rewritten as argminx∈R

∑
j∈Nt,η1

Aj,t(x− Zj,t)
2 = |Nt,η1 |−1

∑
j∈Nt,η1

Zj,t.

B.2. Existing methods

We present existing variants of nearest neighbors using the two modules introduced App. B.1; all the methods presented
here are recovered by sequentially applying DISTANCE and AVERAGE with the appropriate specification of φ̂, φ andW .

For simple notation, we introduce a shorthand for the non-continuous weight

w
(i,t)
j,s (η1, η2) := 1(ρrowi,j ≤ η1) · 1(ρcols,t ≤ η2).

All methods except AWNN and our newly proposed AutoNN, have binary weights i.e., wj,s ∈ {0, 1}. AutoNN, detailed
in App. B.7, uses weights to carefully pool together the benefits of TSNN and DRNN. AWNN (SPD25) improves upon
RowNN by adaptively choosing the weights which optimally balances the bias-variance tradeoff of RowNN as follows(

w⋆
1(i, t), ..., w

⋆
N (i, t)

)
:= (2)

argmin
(v1,...,vN )∈∆N

2 log(2N)σ̂2
∑
k∈[N ]

v2k +
∑
k∈[N ]

vkAk,tρ
row
i,k .

where σ̂2 is the estimated error and ∆N is a simplex in RN ; see (SPD25) for details of (2). Tab. 1 contains a concise
summary of the existing nearest neighbor variants; see App. B for a detailed exposition for each methods.
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Table 1. Variants of nearest neighbors for matrix completion.

Type Method φ̂(x, y) φ(x, y) wj,s

n = 1 RowNN (LSSY19) (Alg. 1) (x− y)2 (x− y)2 1(ρrowi,j ≤ η1, ρ
col
s,t ≤ 0)

ColNN (LSSY19) (Alg. 1) (x− y)2 (x− y)2 1(ρrowi,j ≤ 0, ρcols,t ≤ η2)
TSNN (SPD24) (Alg. 2) (x− y)2 (x− y)2 1(ρrowi,j ≤ η1, ρ

col
s,t ≤ η2)

AWNN (SPD25) (Alg. 5) (x− y)2 (x− y)2 w⋆
j (i, t) · 1(ρcols,t ≤ 0)

DRNN (DTT+22b) (Alg. 3) RowNN+ ColNN− TSNN
AutoNN (App. B.7) α · DRNN+ (1− α) · TSNN

n > 1 KernelNN (CFC+24) (Alg. 4) M̂MD
2

k(x, y) MMD2
k(x, y) 1(ρrowi,j ≤ η1, ρ

col
s,t ≤ 0)

W2NN (FCAD24) (Alg. 4) Ŵ2
2(x, y) W2

2(x, y) 1(ρrowi,j ≤ η1, ρ
col
s,t ≤ 0)

Under the distributional matrix completion setting (n > 1 in (1)), the methods KernelNN and W2NN in Tab. 1 take µ, ν ∈ X
as square integrable probability measures, and φ(µ, ν) as either the squared maximum mean discrepency (i.e. MMD2

k(µ, ν),
see (MFS+17)) or squared Wasserstein metric (i.e., W2(µ, ν), see (Big20)). Further, the entry-wise distance φ̂(x, y) in this

case is either the unbiased U-statistics estimator M̂MD
2

k(Zi,t, Zj,s) for MMD2
k(µi,t, µj,s) (see (MFS+17)) or the quantile

based estimator Ŵ2(Zi,t, Zj,s) for W2(µi,t, µj,s) (see (Big20)).

The nearest neighbor methods introduced in Tab. 1 are elaborated in this section. We present two versions of each method;
the first version explicitly constructs neighborhoods instead of subtly embedding them in the weightsW of the AVERAGE
module, and the second version specifies how each methods can be recovered by applying the two modules, DISTANCE and
AVERAGE, sequentially.

B.3. Vanilla nearest neighbors

We elaborate on the discussion in Rem. 1 and provide here a detailed algorithm based on the explicit construction of
neighborhoods, which is essentially equivalent to RowNN in Tab. 1. The inputs are measurements Z , missingness A, the
target index (i, t), and the radius η.

Step 1: (Distance between rows) Calculate the distance between row i and any row j ∈ [N ] \ {i} by averaging the squared
Euclidean distance across overlapping columns:

ρi,j :=

∑
s̸=t Ai,sAj,s(Zi,s − Zj,s)

2∑
s̸=t Ai,sAj,s

.

Step 2: (Construct neighborhood) Construct a neighborhood of radius η within the tth column using the distances {ρi,j : j ̸= i}:

Nt,η :=
{
j ∈ [N ] \ {i} : ρi,j ≤ η

}
Step 3: (Average across observed neighbors) Take the average of measurements within the neighborhood:

θ̂i,t,η :=
1

|Nt,η|
∑

j∈Nt,η

Aj,tZj,t.

In practice, the input η for RowNN should be optimized via cross-validation; we refer the reader to App. C for a detailed
implementation.

We specify the exact implementation of the two modules DISTANCE, AVERAGE to recover RowNN:
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Algorithm 1: RowNN for scalar nearest neighbor
Input: Z,A, η, (i, t)

1 Initialize entry-wise metric φ̂(Zj,s, Zj′,s′)← (Zj,s − Zj′,s′)
2 and metric φ(x, y)← (x− y)2

2 Initialize hyper-parameter η ← (η1, 0)

3 Calculate row-wise metric
{
ρrowi,j : j ̸= i

}
← DISTANCE(φ̂,Z,A)

4 Initialize weight wj,s ← 1(ρrowi,j ≤ η1, ρ
col
s,t ≤ η2)

5 Calculate average θ̂i,t ← AVERAGE(φ,W, Z,A)

6 return θ̂i,t

The discussion for RowNN here can be identically made for ColNN as well.

B.4. Two-sided and doubly-robust nearest neighbors

We elaborate on the variants of the vanilla nearest neighbors algorithm TSNN and DRNN in Tab. 1; we first elaborate on an
equivalent version of each of the methods which explicitly constructs neighborhoods.

In the following three step procedure, DRNN and TSNN differs in the last averaging step: the inputs are the measurements
Z , missingness A, the target index (i, t), and the radii η = (η1, η2).

Step 1: (Distance between rows) Calculate the distance between row i and any row j ∈ [N ] \ {i} and the distance between
column t and any column s ∈ [T ] \ {t}:

ρrowi,j :=

∑
s ̸=t Ai,sAj,s(Zi,s − Zj,s)

2∑
s̸=t Ai,sAj,s

and ρcolt,s :=

∑
j ̸=i Aj,tAj,s(Zj,t − Zj,s)

2∑
j ̸=i Aj,tAj,s

Step 2: (Construct neighborhood) Construct a row-wise and column-wise neighborhood of radius η1 and η2 respectively,

Nrow
t,η1

:=
{
j ∈ [N ] \ {i} : ρrowi,j ≤ η

}
and Ncol

i,η2
:=

{
s ∈ [T ] \ {t} : ρcolt,s ≤ η

}
Step 3: (Average across observed neighbors) Take the average of measurements within the neighborhood; the first and the

second averaging correspond to DRNN and TSNN respectively:

θ̂DR
i,t,η :=

∑
j∈Nrow

t,η1
,s∈Ncol

i,η2

Aj,tAi,sAj,s

(
Zj,t + Zi,s − Zj,s

)∑
j∈Nrow

t,η1
,s∈Ncol

i,η2

Aj,tAi,sAj,s
and

θ̂TSi,t,η :=

∑
j∈Nrow

t,η1
,s∈Ncol

i,η2

Aj,sZj,s∑
j∈Nrow

t,η1
,s∈Ncol

i,η2

Aj,s
.

Next, we specity the exact implemention of the two modules DISTANCE and AVERAGE to recover TSNN and DRNN:

Algorithm 2: TSNN for scalar matrix completion
Input: Z,A, η, (i, t)

1 Initialize entry-wise metric φ̂(Zj,s, Zj′,s′)← (Zj,s − Zj′,s′)
2 and metric φ(x, y)← (x− y)2

2 Initialize tuning parameter η ← (η1, η2)

3 Calculate row-wise and column-wise metric
{
ρrowi,j : j ̸= i

}
,
{
ρcolt,s : s ̸= t

}
← DISTANCE(φ̂, Z,A)

4 Initialize weight wj,s ← 1(ρrowi,j ≤ η1, ρ
col
s,t ≤ η2)

5 Calculate average θ̂i,t ← AVERAGE(φ,W,Z,A)

6 return θ̂i,t

For DRNN algorithm below, we consider Z and A to be N × T sized matrices, so that their transpose
is well defined. Then note that ColNN is simply applying Alg. 1 with transposed observation matrices.
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Algorithm 3: DRNN for scalar matrix completion
Input: Z,A, η, (i, t)

1 Initialize RowNN← Alg. 1 with inputs (Z,A, η, (i, t)) and η ← (η1, 0)

2 Initialize ColNN← Alg. 1 with input (ZT ,AT , η, (i, t)) and η ← (η1, 0)
3 Initialize TSNN← Alg. 2 with inputs (Z,A, η, (i, t)) and η ← (η1, η2)

4 Calculate θ̂i,t ← RowNN+ ColNN− TSNN

5 return θ̂i,t

B.5. Distributional nearest neighbors

Unlike the scalar nearest neighbor methods, distributional nearest neighbors necessitate a distributional notion of distance
between rows and columns of matrix and a distributional analog of averaging. (CFC+24) and (FCAD24) use maximum
mean discrepency (in short MMD) of kernel mean embeddings (MFS+17) and Wasserstein metric (in short W2) (Big20)
respectively both for defining the distance between rows / columns and for averaging. The corresponding barycenters of
MMD and W2 (CAD20; BGKL17) are used for averaging, and so the methods are coined kernel nearest neighbors (in short
KernelNN) and Wasserstein nearest neighbors (in short W2NN) respectively.

We elaborate on a vanilla version three step procedure of KernelNN,W2NN that explicitly constructs neighborhoods. The
input are measurements Z , missingness A, the target index (i, t) and the radius η,

Step 1: (Distance between rows) Calculate the distance between row i and any row j ∈ [N ] \ {i} by averaging the estimator of
distribution metric ϱ̂:

ρMMD
i,j :=

∑
s ̸=t Ai,sAj,sM̂MD

2

k(Zi,s, Zj,s)∑
s̸=t Ai,sAj,s

and ρW2
i,j :=

∑
s̸=t Ai,sAj,sŴ

2
2(Zi,s, Zj,s)∑

s̸=t Ai,sAj,s
.

Step 2: (Construct neighborhood) Construct a neighborhood of radius η within the tth column using the distances {ρi,j : j ̸= i}:

NMMD
t,η :=

{
j ∈ [N ] \ {i} : ρMMD

i,j ≤ η
}

and NW2
t,η :=

{
j ∈ [N ] \ {i} : ρW2

i,j ≤ η
}

Step 3: (Average across observed neighbors) Set µZ
i,t = n−1

∑n
ℓ=1 δXℓ(i,t) as the empirical measure of the multiple measure-

ments Zi,t. Take the barycenter within the neighborhood:

µ̂MMD
i,t,η :=

1

|NMMD
t,η |

∑
j∈NMMD

t,η

Aj,tµ
Z
j,t andµ̂W2

i,t,η := argmin
µ

∑
j∈∈N

W2
t,η

W2
2(µ, µ

Z
j,t).

For further details on the W2 and MMD algorithms see (FCAD24) and (CFC+24), respectively.

Algorithm 4: Vanilla (row-wise) distributional nearest neighbor
Input: Z,A,k, η, (i, t)

1 Initialize entry-wise metric φ̂(Zj,s, Zj′,s′)← M̂MD
2

k(Zj,s, Zj′,s′) or Ŵ2
2(Zj,s, Zj′,s′)

2 Initialize metric φ(x, y)←MMD2
k(x, y) or W2

2(x, y)
3 Initialize tuning parameter η ← (η1, 0)

4 Calculate row-wise metric
{
ρrowi,j : j ̸= i

}
← DISTANCE(φ̂, Z,A)

5 Initialize weight wj,s ← 1(ρrowi,j ≤ η1, ρ
col
s,t ≤ η2)

6 Calculate average µ̂i,t ← AVERAGE(φ,W,Z,A)
7 return µ̂i,t

B.6. Adaptively weighted nearest neighbors

We elaborate on the adaptive variant of the vanilla nearest neighbor algorithm AWNN as mentioned in App. B.2 and Tab. 1.
The input are measurements Z , and missingness A. Note that there is no need for radius parameter η and hence no CV.
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Step 1: (Distance between rows and initial noise variance estimate) Calculate an estimate for noise variance and then the
distance between any pair of distinct rows i, j ∈ [N ] by averaging the squared Euclidean distance across overlapping
columns:

ρi,j :=

∑
s̸=t Ai,sAj,s(Zi,s − Zj,s)

2∑
s̸=t Ai,sAj,s

, Z ←
∑

j,s∈[N ]×[T ] Aj,sZj,s∑
j,s∈[N ]×[T ] Aj,s

, and σ̂2 ←
∑

j,s∈[N ]×[T ] Aj,s(Zj,s − Z)2∑
j,s∈[N ]×[T ] Aj,s

.

Step 2: (Construct weights) For all rows and columns (i, t) ∈ [N ]× [T ], evaluate w(i,t) = (w1,t, · · · , wn,t), the weights that
optimally minimizes the following loss involving an estimate of the noise variance σ̂2,

w(i,t) = arg minŵ(i,t)

2 log(2m/δ)σ̂2∥ŵ(i,t)∥22 +
∑

i′∈[N ]

ŵi′,tAi′,tρ̂i′,i

, (3)

where ŵ(i,t) = (ŵ1,t, · · · , ŵn,t) is a non-negative vector that satisfy
∑n

i′=1 ŵi′,tAi′,t = 1.

Step 3: (Weighted average) Take the weighted average of measurements:

θ̂i,t =
∑

i′∈[N ]

ŵi′,tAi′,tXi′,t, ∀(i, t) ∈ [N ]× [T ]

Step 4: (Fixed point iteration over noise variance) Obtain new estimate of noise variance and stop if difference between old and
new σ̂2 is small.

σ̂2 ← 1∑
i∈[N ],t∈[T ] Ai,t

∑
i∈[N ],t∈[T ]

(
Zi,t − θ̂i,t

)2

Ai,t

No cross-validation in AWNN The optimization problem in (3) can be solved exactly in linear time (worst case complexity)
using convex optimization (SPD25). AWNN doesn’t rely on radius parameter η. Not only it automatically assigns neighbors
to (i, t)th entry during its weight calculation(non-neighbors get zero weight), but also takes into account the distance of the
neighbors from the (i, t)th entry. The closer neighors get higher weights and vice - versa.

We further specify the exact implementation of the two modules DISTANCE, AVERAGE to recover AWNN:

Algorithm 5: AWNN for scalar nearest neighbor
Input: Z,A, (i, t)

1 Initialize entry-wise metric φ̂(Zj,s, Zj′,s′)← (Zj,s − Zj′,s′)
2 and metric φ(x, y)← (x− y)2

2 Initialize noise - variance estimate σ2
ϵ ← Variance

(
{Zi,t}(i,t)∈[N ]×[T ]

)
3 Calculate row-wise metric

{
ρrowi,j : j ̸= i

}
← DISTANCE(φ̂,Z,A)

4 Initialize weight {w1,t, . . . , wn,t} ← arg minŵ(i,t)

[
2 log(2m/δ)σ̂2∥ŵ(i,t)∥22 +

∑
i′∈[N ] ŵi′,tAi′,tρ̂i′,i

]
5 Calculate average θ̂i,t ← AVERAGE(φ,W, Z,A)

6 return θ̂i,t

B.7. New variant: Auto nearest neighbors

TSNN is a generalization of RowNN and ColNN by setting one of the tuning parameters to zero (see Tab. 1), whereas the
idea underlying DRNN is fundamentally different from that of TSNN; DRNN debiases a naive combination of RowNN and
ColNN whereas TSNN simply boosts the number of measurements averaged upon, thereby gaining from lower variance. So
we simply interpolate the two methods for some hyper-parameter α ∈ [0, 1]; see Tab. 1. Notably the hyper-parameter η for
both DRNN and TSNN are identical when interpolated.

Suppose µi,t = θi,t + εi,t in (1) where εi,t are centered i.i.d. sub-Gaussian distributions across i and t. When σ is large
in magnitude, TSNN denoises the estimate by averaging over more samples, hence providing a superior performance
compared to DRNN in a noisy scenario. When σ is small so that bias of nearest neighbor is more prominent, DRNN
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effectively debiases the estimate so as to provide a superior performance compared to TSNN. The linear interpolator
AutoNN automatically adjusts to the underlying noise level and debiases or denoises accordingly; such property is critical
when applying nearest neighbors to real world data set where the noise level is unknown. We refer to Fig. 3 for visual
evidence.
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Figure 3. Synthetic data experiments. The data on the left has high signal-to-noise ratio, whereas the data on the right has low signal-to-
noise ratio. See App. D.1 for details on the data generating process. Each point corresponds to the mean absolute error ± 1 standard error
across 30 trials.

C. Cross-Validation
For each nearest neighbor method, we use cross-validation to optimize hyperparameters including distance thresholds and
weights, depending on which nearest neighbor algorithm is chosen. Specifically, for each experiment, we choose a subset of
the training test to optimize hyperparameters by masking those matrix cells and then estimating the masked values. We
utilize the HyperOpt library (BYC13) to optimize (possibly multiple) hyperparamters using the Tree of Parzen Estimator
(BBBK11), a Bayesian optimization method. Our package supports both regular distance thresholds and percentile-based
thresholds, which adapt to the distances calculated within the specific dataset.

D. Case Study Details
The boxplots are generated using matplotlib’s (Hun07) standard boxplot function. The box shows the first, second, and
third quartiles. The bottom line shows the first quartile minus the 1.5× the interquartile range. The top line shows the third
quartile plus 1.5× the interquartile range. All experiments are run on standard computing hardware (MacBook Pro with an
M2 Pro CPU with 32 GB of RAM).

D.1. Synthetic data generation

Generate Zi,t = Xi,t ∼ N(θi,t, σ
2), i.e., scalar matrix completion setting, with a linear factor structure θi,t = uivt. Row

latent factors ui ∈ R4 are i.i.d. generated across i = 1, ..., N , where each entry of ui follow a uniform distribution with
support [−0.5, 0.5]; column latent factors vt ∈ R4 are generated in an identical manner. The missingness is MCAR with
propensity pi,t = 0.5 for all i and t. Further, the size of column and rows are identical N = T . For the left panel in Fig. 3,
the noise level is set as σ = 0.001 and for the right panel σ = 1.

D.2. HeartSteps V1

The mobile application was designed to send notifications to users at various times during the day to encourage anti-sedentary
activity such as stretching or walking. Participants could be marked as unavailable during decision points if they were in
transit or snoozed their notifications, so notifications were only sent randomly if a participant was available and were never
sent if they were unavailable. To process the data in the framework of (1), we let matrix entry Zi,t be the average one hour
step count for participant i and decision point t when a notification is sent (i.e. Ai,t = 1) and unknown when a notification
is not sent (i.e. Ai,t = 0). The treatment assignment pattern is represented as the 37 x 200 matrix visualized in Fig. 4. We
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Figure 4. HeartSteps V1 data notification pattern. The dark blue entries indicate that the app sent a notification to a sedentary
participant—the entry has value Ai,t = 1. The white entries indicate that the participant was available but did not receive a notification or
they were active immediately prior to the decision point. The light blue entries indicate the participant was unavailable. We assign the
value Ai,t = 0 for all the white and light blue entries.

use the dataset downloaded from https://github.com/klasnja/HeartStepsV1 (CC-BY-4.0 License).

D.3. MovieLens

We load MovieLens via a custom MovieLensDataLoader that (i) downloads and caches the ml-1m.zip archive, (ii)
reads ratings.dat into a user×movie pivot table, and (iii) constructs the binary mask where observed entries correspond
to rated user–movie pairs. The data matrix is Z ∈ {1, . . . , 5}6040×3952 and mask matrix is A ∈ {0, 1}6040×3952. The
data can be downloaded from https://grouplens.org/datasets/movielens/1m/. See https://files.
grouplens.org/datasets/movielens/ml-1m-README.txt for the usage license.

D.4. Proposition 99

Next we consider a panel data setting, where our goal is to estimate the effect of the California Tobacco Tax and Health
Protection Act of 1988 (a.k.a. Proposition 99) on annual state-level cigarette consumption1. By definition, the counterfactual
cigarette consumption in California—had Proposition 99 never been enacted—is not observed. (ADH10) introduce the
notion of a “synthetic control” to serve as a proxy for this unobserved value based on “neighboring” control states that
never instituted a tobacco tax. These states are not close in a geographical sense, but rather close due to similarities in other
covariates2. We take a different approach and use only the observed cigarette consumption levels from the control states, of
which there are 38 in total. Thus, we frame our problem as a scalar matrix completion problem with N = 39 and T = 31
(see (1)). The last row in the matrix corresponds to the state of California.

Results & Discussion. For each method, we use a 64-16-20 train-validation-test split and use cross validation to fit any
hyperparameters. Fig. 5 plots the various synthetic controls for California (left) and absolute error of each method on the
38 control states, for which we do observe the no-treatment values (right). From Fig. 5(a), we see that nearest neighbor
methods, in particular TSNN and RowNN, are roughly on par with the gold-standard synthetic control method of (ADH10)
(“SC”) for estimating California’s counterfactual cigarette consumption in the post-intervention period (after 1989). This is
despite the fact that the nearest neighbor methods rely on less information for the estimation task. From Fig. 5(b), we see
that all nearest neighbor methods, with the exception of ColNN, achieve similar error levels as the synthetic control baseline.
RowNN achieves even lower error levels. See supplementary experiment details in App. D.4.

Data comes primarily from the Tax Burden on Tobacco compiled by Orzechowski and Walker (OW23) (ODC-By License).
Using synthetic control methods, Abadie et al. construct a weighted combination of control states that closely resembles
California’s pre-1988 characteristics and cigarette consumption patterns. The optimal weights produce a synthetic California
primarily composed of Colorado (0.164), Connecticut (0.069), Montana (0.199), Nevada (0.234), and Utah (0.334), with all

1measured as per capita cigarette sales in packs
2GDP per capita, beer consumption, percent aged 15–24, and cigarette retail prices
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Figure 5. Nearest neighbor methods generate high-fidelity synthetic controls in counterfactual inference for panel data.

other states receiving zero weight. The treatment effect is estimated as the difference between actual California per-capita
cigarette sales and those of synthetic California after Proposition 99’s implementation. By 2000, this analysis revealed
that annual per-capita cigarette sales in California were approximately 26 packs lower than what they would have been
without Proposition 99, representing about a 25% reduction in cigarette consumption. To validate these findings, the authors
conducted placebo tests by applying the same methodology to states not implementing tobacco control programs, confirming
that California’s reduction was unusually large and statistically significant (p = 0.026).

Proposition 99, the California Tobacco Tax and Health Protection Act of 1988, dataset spans from 1970 to 2000, providing
19 years of pre-intervention data before Proposition 99 was implemented in 1988 and 12 years of post-intervention data. It
provides annual state-level cigarette consumption measured as per capita cigarette sales in packs based on tax revenue data.
This data serves as a real data benchmark for many of the variants of synthetic controls (ABD+21). We use the CDC dataset
for the Nearest Neighbors methods and only use the target variable (i.e., cigarette consumption measured in packs per
capita), and the dataset from SyntheticControlMethods library3 for the SC baseline, since it relies on additional covariates.

3https://github.com/OscarEngelbrektson/SyntheticControlMethods/tree/master (Apache-2.0 Li-
cense)
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D.5. PromptEval

MMLU is a multiple choice Q&A benchmark with 57 tasks, with a total of near 14K examples4. 15 different models,
e.g., variants of Llama 3 (Met24), Mistral (JSM+23) and Gemma (TMH+24). The examples are fed into the models with
100 different varying prompting templates. The prompt templates are created by traversing between 3 node modules,
namely a separator, a space and an operator (see (PXW+24) for details), from which 100 unique prompt templates are
created. The unitxt (BPV+24) preprocessing library is used to construct the dataset and evaluation is done by LM-Eval-
Harness (GTA+23) library. The number of examples differ per task and each examples are evaluated on a model (verifiable,
so assigned 0 or 1 for correctness) by wrapping the examples with 100 different prompt templates.

4https://github.com/felipemaiapolo/prompteval (MIT License)
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