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ABSTRACT

Recently, Evolution Strategies (ESs) have achieved state-of-the-art results: ESs
are a family of evolutionary algorithms that iteratively update the parameters of
a search distribution to sample solutions to be evaluated. By optimizing a pop-
ulation, ESs promise to evolve solutions that are robust. Nevertheless, current
methods have yet to deliver on this promise. We include an explicit drive towards
robustness by applying noise to the search distribution mean after evaluating the
solutions, adding a stochastic drift to the ES search trajectory. We mathematically
ground our algorithm on Energy-Based Models (EBMs) and interpret it as per-
forming Langevin dynamics on the search space, thus converging to a probability
distribution and not a point estimate for the search distribution parameters. So we
introduce ThEBES, the Thorough Energy-Based Evolution Strategy. We compare
ThEBES against state-of-the-art ESs on continuous policy search tasks. Our re-
sults show that ThEBES is competitive in terms of effectiveness. We also find that,
by virtue of its stochastic dynamics, ThEBES evolves policies that are more ro-
bust to observational noise. We thus believe our work to be a promising avenue for
future research and to strengthen the theoretical backings of ESs, since it provides
a solid mathematical ground to ESs in the context of energy-based models.

1 INTRODUCTION

Evolution Strategies (ESs) (Rechenberg, 1973) are a family of evolutionary algorithms (De Jong,
2006) that iteratively update the parameters of a search distribution to sample a population of solu-
tions to be evaluated. They have recently achieved state-of-the-art performance on continuous policy
search tasks (Chrabaszcz et al., 2018) for reinforcement learning agents and are competitive to es-
tablished value-based methods (Salimans et al., 2017; Such et al., 2018). But, performance by itself
may not be strictly sufficient, as we seek agents that are robust: a small perturbation to the agent’s
observations must correspond to a small perturbation to the agent’s behavior (Kirk et al., 2023). Ro-
bustness plays a key role in agents that can adapt to their environment and interact safely with other
agents, including humans, but most current reinforcement learning agents are embarrassingly frail
(Cobbe et al., 2019). By evaluating a “cloud” of solutions, ESs promise to evolve solutions that are
robust to perturbations in the parameter space, so that they are likely to be robust to perturbations in
the observation space. Nevertheless, empirical evidence suggests that current methods have yet to
deliver on this promise (Chrabaszcz et al., 2018; Lehman et al., 2018; Such et al., 2018): evolved
solutions are usually as frail as their value-based counterparts and fail in terms of robustness.

Here we include an explicit drive towards robustness by applying noise to the search distribution
mean after evaluating the solutions, a process we call “smearing”; as a result, the evolution of
the solutions follows a more stochastic trajectory in the search space, covering a wider cloud of
points. We interpret this approach as performing Langevin dynamics—a Bayesian method that adds
a stochastic drift term to gradient ascent—on the search space. Langevin dynamics converge to a
probability distribution and not a point estimate for the search distribution parameters, an approach
that falls in the domain of Energy-Based Models (EBMs) (LeCun et al., 2006). We thus introduce
the Thorough Energy-Based Evolution Strategy (ThEBES).

We compare ThEBES against other state-of-the-art ESs on four continuous policy search tasks and
find it to be competitive. Chiefly, we also test the robustness of the evolved solutions empirically,
by perturbing the state observations with noise. We show that ThEBES achieves higher robustness
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to observational noise when compared to the other methods. Our results suggest that ThEBES
evolves solutions that are comparable in regular conditions, but better in noisy conditions, pointing
to interesting directions for future work. In particular, we showcase its potential for transfer learning
without fine-tuning: we collect an ensemble of solutions by sampling the population at different
stages of evolution and find that ensembles evolved through ThEBES are diverse enough to adapt to
new environments.

Finally, ThEBES strengthens the theoretical backings of ESs, since it provides a solid mathematical
ground to ESs in the context of EBMs, by showing that the fitness function can be transformed
into an energy function to optimize. Such a contribution is relevant in its own right, since re-
searchers have historically struggled to provide mathematical foundations to evolutionary algorithms
(De Jong, 2006).

2 BACKGROUND AND RELATED WORK

Before delving into the derivation of ThEBES, we present the background on ESs and energy-based
modeling. Let X ⊆ Rn be a numerical n-dimensional solution space, consisting of solutions to
an optimization problem (e.g., parameters for neural network controllers for reinforcement learning
agents). Let f : X → R be a fitness function (without loss of generality, to be maximized), telling
the quality of any of the solutions, that we do not make any assumptions about; so, f is a black-box
function. Our black-box optimization problem consists in finding:

argmax
x∈X

f(x) (1)

2.0.1 EVOLUTION STRATEGIES

One relevant instance of black-box optimization algorithms is ESs (Hansen et al., 2015), a family
of evolutionary algorithms (De Jong, 2006). For example, ESs have achieved state-of-the-art results
for continuous control (Salimans et al., 2017) and game-playing (Chrabaszcz et al., 2018). More-
over, they are easy to parallelize and generally robust to hyperparameter settings (Heidrich-Meisner
& Igel, 2008). First introduced by Rechenberg (1973), ESs have since flourished, with new ad-
vancements that include invariance principles (Ollivier et al., 2017) and meta-learning (Lange et al.,
2023).

While ESs encompass many particular algorithms, Wierstra et al. (2014) introduced a popular class
that evolves a fixed-size population—consisting of individuals xi—of λ solutions as samples from
a search distribution, itself parametrized by θ ∈ Θ ⊆ Rp. The search distribution is set to be an
isotropic Gaussian N(θ, σ2I), where σ is the step-size. The parameters of the search distribution
consist only of the mean θ. Then, the problem of Equation (1) is recast as an optimization in the
p-dimensional search space Θ:

argmax
θ∈Θ

Ex∼N(θ,σ2I) [f(x)] (2)

where we take the expected value of f over the population of sampled solutions because the xi

are realizations of a search distribution N(θ, σ2I) (in other words, xi = θ + σϵi, with ϵi ∼
N(0, σ2I)). We present the pseudo-code for such an ES in Algorithm 1; our goal is not to propose
a comprehensive formulation of ESs, but to lay the framework for our method (see Section 3).

At every iteration t, ES takes a step (damped by learning rate α) in the direction of the gradient of
Equation (2)∇θ Ex∼N(θ,σ2I) [f(x)] (line 9), which has been proven to approximate the expression
on the right-hand side of line 8: 1

σλ

∑λ
i=1 siϵi and we include the proof in Appendix A.1.

In other words, ES iteratively updates the search distribution mean as the weighted recombination of
the current population, where the weights are the fitness values and thus favor fitter solutions. This
process continues until nevals fitness evaluations have been computed and outputs the mean at the
last iteration θ∗.

2.1 ENERGY-BASED MODELS

ESs take a generative modeling approach: they aim to estimate the density of high-fitness solutions
through a search distribution, whose parameters are to be adapted. By iteratively updating θt with
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input : nevals number of fitness evaluations, λ population size, θ0 initial search distribution
mean, step-size σ, fitness function f , learning rate α.

output: θ∗ search distribution mean at the last iteration.
1 t← 0
2 i← 0
3 while i < nevals do
4 ϵ1, . . . , ϵλ ∼ N(0, σ2I)
5 foreach i ∈ {1, . . . , λ} do
6 si ← f(θt + σϵi)
7 end
8 gt ← 1

σλ

∑λ
i=1 siϵi

9 θt+1 ← θt − αgt
10 t← t+ 1
11 i← i+ λ
12 end
13 θ∗ ← θt

Algorithm 1: The pseudo-code for ES.

steps in the direction of the gradient of Ex∼N(θt,σ2I) [f(x)], ESs converge to a point estimate for
θt; in other words, they perform a maximum likelihood estimation of the search distribution pa-
rameters. In this way, ESs miss the opportunity to model a more complex distribution of potential
solutions. EBMs (LeCun et al., 2006), a class of generative models, are general enough to comprise
maximum likelihood models but are less restrictive. Whereas maximum likelihood converges to a
point estimate for θ, EBMs allow us to take into consideration the uncertainty surrounding θ.

EBMs have recently come under the spotlight for generative modeling (Song & Ermon, 2019), pro-
pelled by a tractable sampling procedure (Welling & Teh, 2011). Notably, Che et al. (2020) found
that formulating generative adversarial networks—a popular class of neural generative models—as
EBMs led to more efficient training; similarly, Grathwohl et al. (2019) proved that the same holds
true for standard classifiers. From the policy search perspective, Haarnoja et al. (2017) incorporated
EBMs into established reinforcement learning methods to learn repertoires of behaviors; Du & Mor-
datch (2019) highlighted better generalization for EBMs, while Henaff et al. learned policies from
purely observational data with no environment interactions.

In detail, we want to estimate a posterior probability px∼N(θ,σ2I) : Θ → [0, 1]. px∼N(θ,σ2I) is the
probability that, after observing x according to N(θ, σ2I), θ is θ. In most scenarios, we are not in
the condition to make any assumptions on px∼N(θ,σ2I). But, we can express—through Boltzmann’s
trick—any probability distribution as:

px∼N(θ,σ2I)(θ) =
exp

(
−Ex∼N(θ,σ2I)(θ)

)
z(x)

(3)

where E : Θ → R is an energy function, the exponentiation ensures the probabilities are non-
negative, and dividing by z(x) =

∫
x∈X exp (−Ex∼N(θ,σ2I)(θ))dx (the partition function) ensures

the probabilities lie in [0, 1]. There are no assumptions on the energy function: it can be any function,
provided that it maps to a scalar.

EBMs converge to an estimate for px∼N(θ,σ2I) by optimizing (via, e.g., gradient ascent) the right-
hand side of Equation (3). But, for most energy functions, the partition function is intractable as
it requires integrating over the set of all possible x, which historically limited the development of
EBMs. Following (Welling & Teh, 2011), we can approximate a gradient ascent on the energy by
means of Langevin dynamics (Namiki, 2008) (an iterative optimization scheme) since, as we shall
see, they transform our problem into a tractable one and converge to a posterior distribution for the
parameters θ. Indeed, Langevin dynamics originally developed as a discretization of a stochastic dif-
ferential equation whose equilibrium distribution is the posterior distribution; in physics, Langevin
dynamics describe the time evolution of particles that are subject to both deterministic and stochastic
forces.

Langevin dynamics modify the usual gradient ascent update by injecting noise such that the trajec-
tory of the parameters converges to the full posterior distribution rather than just a point estimate.
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Figure 1: Path for gradient ascent and Langevin dynamics on the toy function y = −x2 (so
log px∼N(θ,σ2I)(θ) = −x2). Because of the stochastic drift in the update, the latter does not ascend
straight to the maximum but bounces back and forth until settling on it. For this test, α = 0.1,
θ0 = 3, and σ = 1.

They unfold as follows:

θt+1 = θt + α∇θ log px∼N(θ,σ2I)(θ) +
√
ασηt (4)

ηt ∼ N(0, I) (5)

where ηt is a stochastic drift. We illustrate the difference between gradient ascent and Langevin dy-
namics in Figure 1 for a 1-dimensional function. Because of the stochastic drift, Langevin dynamics
do not ascend straight to the maximum but bounce back and forth until settling on it.

Whereas Welling & Teh (2011) does not refer to energy-based modeling when introducing Langevin
dynamics, EBMs allow us to link Langevin dynamics to ESs, as we shall see in the next section.

3 THEBES: THOROUGH ENERGY-BASED EVOLUTION STRATEGY

We introduce ThEBES, starting from the algorithmic formulation, then moving on to the theoretical
explanation. We present the pseudo-code in Algorithm 2: it consists of the generic ES of Algorithm 1
with the addition of stochastic drift to the gradient update at line 10, a process that we call “smearing”
(because it perturbs the search distribution mean). In other words, we perform a Langevin (and not
gradient) ascent in the parameter space: by virtue of the stochastic drift, we evolve solutions that are
more robust to observational noise.

input : nevals number of fitness evaluations, λ population size, θ0 initial search distribution
mean, step-size σ, fitness function f , learning rate α.

output: θ∗ search distribution mean at the last iteration.
1 t← 0
2 i← 0
3 while i < nevals do
4 ϵ1, . . . , ϵλ ∼ N(0, σ2I)
5 foreach i ∈ {1, . . . , λ} do
6 si ← f(θt + σϵi)
7 end
8 gt ← 1

σλ

∑λ
i=1 siϵi

9 ηt ∼ N(0, I)
10 θt+1 ← θt + αgt +

√
ασηt

11 t← t+ 1
12 i← i+ λ
13 end
14 θ∗ ← θt

Algorithm 2: The pseudo-code for ThEBES.
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We here provide a mathematically-grounded explanation for our formulation. We believe that
ThEBES does not converge to a point estimate for the parameters θ, but to the posterior density
px∼N(θ,σ2I) (mentioned in Section 2.1), thus taking a Bayesian perspective.

We begin from the ES of Algorithm 1. As discussed in Section 2.1, Langevin dynamics pro-
vide the tool to converge to a posterior distribution for θ. Nevertheless, we shall not rely on
Equation (4) as it is, since we still need a way to compute px∼N(θ,σ2I)(θ) before approximating
∇θ log px∼N(θ,σ2I)(θ) via sampling a population. So, we now derive a more tractable form for
it. Through Boltzmann’s trick (Equation (3)), we can express px∼N(θ,σ2I)(θ) as the function of an
energy −Ex∼N(θ,σ2I)(θ). We then find that:

∇θ log px∼N(θ,σ2I)(θ) = ∇θ

(
log exp (−Ex∼N(θ,σ2I)(θ))− log z(x)

)
= −∇θEx∼N(θ,σ2I)(θ) (6)

because the partition function does not depend on θ. In synthesis, we are formulating our prob-
lem as that of ascending the landscape of an energy function (and the method to do so is exactly
Langevin dynamics). −Ex∼N(θ,σ2I) [f(x)] from Equation (2), whose gradient we already derived
as 1

σλ

∑λ
i=1 f(xi)ϵi, is a function of θ, depends on x, and it maps to a scalar: it is thus a suitable

candidate for the energy. In other words, the energy is a smoothing of the fitness function that makes
the fitness landscape smoother and hence better behaved.
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Figure 2: Geometric interpretation of plain and
smeared gradient on a toy 2-dimensional space.
Black arrows are the ϵi perturbations, blue arrows
are the f(xi)ϵi, the green arrow is the plain gra-
dient

∑λ
i=1 f(xi)ϵi, while the red arrows are the

smeared gradient
∑λ

i=1 f(xi)ϵi +
√
ασηt under

different sampled perturbations ηt.

We can eventually plug this result back into
Equation (4) to obtain the following update
rule:

θt+1 = θt +
α

σλ

λ∑
i=1

f(xi)ϵi +
√
ασηt (7)

ηt ∼ N(0, I) (8)

As a result of the stochastic drift ηt, θt+1 ∼
N(θt +

α
σλ

∑λ
i=1 f(xi)ϵi, ασ

2I) and it is no
longer a point estimate. We illustrate the dif-
ference between plain and smeared gradient in
Figure 2.

We introduce the Thorough Energy-Based Evo-
lution Strategy (ThEBES ): “Thorough” be-
cause it follows a rigorous mathematical deriva-
tion; “Energy-Based” because it converges to a
posterior distribution for the search parameters
θ; “Evolution Strategy” because it belongs to
this family of algorithms. With respect to the
ES of Algorithm 1, it amounts to a simple mod-
ification: the addition of stochastic drift (smear-
ing) at line 10. In a world that teems with bulky
and intricate algorithms, ThEBES is an elegant
addition to consolidated knowledge and does
not require further hyperparameters.

4 EXPERIMENTAL EVALUATION

Our goal is to investigate the following research questions:

RQ1 Is ThEBES effective when compared to other established algorithms?
RQ2 If yes, why does ThEBES work? In particular, does the stochasticity in the gradient update

make the evolved solutions more robust?

We investigate these questions on reinforcement learning agents, because of the relevance that
robustness plays in the adaptation to environmental changes. In particular, we consider four
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continuous policy search tasks (see ??), namely CartPole-Hard, HalfCheetah, Ant, and
LunarLander. We compare ThEBES with state-of-the-art ESs (see Section 4.1). For all the tasks,
the policy x consists of the parameters (i.e., weights and biases) of a feed-forward, fully-connected
neural network controller for the agents of the form: ak = hx(ot), where a ∈ Rnout is the output
(the action for the agent) and o ∈ Rnin is the observation input to the controller at time step t. Un-
less otherwise specified, the neural network has 2 hidden layers of 64 neurons each and tanh as the
activation function. As a result of its action, the agent receives a reward rk ∈ R at time step k to
accrue the final fitness: f =

∑tfinal
t=1 rk, where tfinal is the total number of time steps in the simulation.

We include the hyperparameter settings for all algorithms in Appendix A.4. Moreover, we experi-
ment and discuss the impact of selected hyperparameters on ThEBES in Appendix A.5.

For every experiment, we performed 5 independent runs varying the random seed. For a given
seed and policy, every fitness evaluation is deterministic. We carried out the statistical tests using
the Mann Whitney U-rank test for independent samples. The code is publicly available at URL
omitted for double-blind review. We ran all experiments on a Google Colab Pro notebook equipped
with an A100 Nvidia GPU. Each run took approximately 25 s for CartPole-Hard and 500 s for
HalfCheetah, Ant, and LunarLander.

4.1 BASELINES

As baselines, we consider:

OpenAI-ES (OpenES) (Salimans et al., 2017): according to (Pagliuca et al., 2020), it is one of the
most effective modern ESs and proved competitive to state-of-the-art reinforcement learn-
ing algorithms (Salimans et al., 2017). OpenES is algorithmically similar to ThEBES, with
the exception of the stochastic drift, making it an ideal baseline. Moreover, we apply the
same implementation details of Appendix A.2. With respect to the original implementation,
this one does not employ weight decay and virtual batch normalization.

Random Search (RS): it is a pure random search algorithm; as a result, it is an ideal minimum
baseline. It uniformly samples individuals from [−5, 5]n and returns the highest-fitness
one.

Covariance Matrix Adaptation Evolution Strategy (CMA-ES) (Hansen & Ostermeier, 2001):
an established numerical optimization algorithm. CMA-ES iteratively optimizes the so-
lution in the form of a multivariate normal distribution. At each iteration, it samples
the distribution obtaining a population of individuals and then updates the parameters of
the distribution based on the best half of the population. CMA-ES employs non-trivial
heuristics while updating the distribution—we refer the reader to Hansen & Ostermeier
(2001).

Separable Natural Evolution Strategy (sNES) (Wierstra et al., 2014): an established instance
of natural evolution strategies, which adopt probabilistic models to estimate the gradient
of the fitness function. In addition, sNES adapts the step-size to strike a balance between
exploration and exploitation.

Adaptive Sample Efficient Black-box Optimization (ASEBO) (Choromanski et al., 2019):
ASEBO adapts to the geometry of the fitness function by dynamically learning the intrinsic
dimensionality of the gradient. In experiments on continuous control tasks, it led to better
sample-efficiency than state-of-the-art ESs.

We implemented ThEBES using EvoJAX (Tang et al., 2022), a recent GPU-accelerated evolutionary
framework. For the baselines, we adopted their EvoJAX implementation when available, otherwise
we reimplemented their EvoSAX (Lange, 2023) one into the framework. For LunarLander,
that is not available in EvoJAX, we reimplemented all the algorithms using the reference official
implementation released by the respective authors.

4.2 RESULTS

We present and analyze the experimental results of our research questions.
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Figure 3: Median± standard deviation (solid line and shaded area) for the fitness of the best policies
f∗ drawn from 5 independent runs. The dashed lines stand for the threshold for the tasks to be said
“solved” according to (Tang et al., 2022; Brockman et al., 2016). ThEBES is competitive with other
established algorithms on these tasks.

4.2.1 RQ1: IS THEBES EFFECTIVE WHEN COMPARED TO OTHER ESTABLISHED
ALGORITHMS?

To establish the effectiveness of ThEBES as a direct policy search algorithm, we compare it against
the baselines of Section 4.1. As an index of effectiveness, we consider the fitness of the best policy
f∗. We report the results in terms of median ± standard deviation in Figure 3 as a function of
evolutionary time; for each task, we highlight the “solved” threshold (Tang et al., 2022; Brockman
et al., 2016) with a dashed black line. As an additional test, we include two functions from the
Nevergrad (Bennet et al., 2021) black-box optimization library: Sphere and Rastrigin.

ThEBES evolves policies that solve the tasks and are competitive with other approaches. In case
of Nevergrad, ThEBES manages to recover the optimum. With the exception of the Ant task, all
lines settle on a plateau, and continuing evolution would unlikely bring any improvements. The
best policies evolved by ThEBES are significantly better (p < 0.01) than those found by RS,
a random search algorithm, that does not even succeed in solving the tasks of HalfCheetah,
Ant, and LunarLander. Moreover, the evolved best policies of ThEBES are comparable to
those found by the other state-of-the-art algorithms: their median f∗ is actually the highest in the
CartPole-Hard, Ant, and LunarLander tasks, but the p-values are not significant. The re-
sults for all the baselines are in line with what was reported in their respective papers.

Through that evidence, we can positively answer to RQ1: ThEBES evolves policies that are effective
when compared to other established algorithms.

4.2.2 RQ2: ARE THE POLICIES EVOLVED BY THEBES MORE ROBUST?

We hypothesize the reason for the effectiveness of ThEBES to be that, thanks to its stochastic drift
component, it evolves policies that are more robust to observational noise. We select the best pol-
icy from each of the 5 independent runs of Section 4.2.1 and re-assess it on 100 independent test
evaluations (with predefined random seeds) characterized by varying environmental conditions: for
CartPole-Hard, the initial cart position, cart velocity, and pole angle are sampled uniformly in
[−1, 1] (the domain of the observations), while for HalfCheetah and Ant the initial joint po-
sitions are perturbed with noise uniformly distributed in [−0.1, 0.1] and the velocities are sampled
uniformly from [−0.1, 0.1]. As the performance index, we compute the average of f over the re-
assessment evaluations f∗

test. We report the f∗
test distribution in Figure 4, together with the p-values

in brackets.
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environmental conditions of the best policies drawn from 5 independent runs. ThEBES evolves
policies that are generally more robust.
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Figure 5: Left: evolutionary paths (solid lines) of θt for one exemplar run on the 2-dimensional
flat sphere function with a plateau centered at (0, 0). The starting points are black diamonds, while
the endings are black squares. Left: ThEBES traces a more stochastic path and hovers around the
plateau. Right: best individuals taken at every 10 iteration over 5 runs, plotted over the donut.
ThEBES individuals still cover a wide area, while most OpenES individuals fall into the donut hole.

ThEBES evolves policies that are generally more robust than those found by the baselines. Its
evolved policies are even significantly better than those found by the baselines (p < 0.05),
with the exception of CMA-ES on the CartPole-Hard and LunarLander and sNES on
LunarLander.

To better visualize this intuition, we plot in Figure 5 the evolutionary path (trajectory of θt, the red
solid line) on the 2-dimensional flat sphere function: fsphere(x) = −max(x2

1 + x2
2, 0.25). fsphere is

the simplest function that can be visualized in two dimensions since it is convex and smooth, and has
one fitness plateau centered at (0, 0); in this way, the posterior distribution should not concentrate
on one optimum point but on the whole plateau. In the second plot from the left of Figure 5, we
compare the path for one exemplar run of ThEBES and one exemplar run of OpenES, both consisting
of nevals = 40 000; paths for different runs were similar. We adopted the same hyperparameters for
CartPole-Hard.

The evolutionary paths of ThEBES and OpenES radically differ. OpenES traces a straight path
toward the plateau, whereas ThEBES traces a more stochastic path. Intuitively, ThEBES zigzags
because of the smearing component in the gradient update. We also remark that ThEBES ends up
“wandering” over the plateau, thus better covering the posterior.

To elucidate the benefits of following a stochastic path, we carry out a transfer learning experiment
on a toy function. We repeat the aforementioned experiments on the flat sphere for 5 independent
runs and save the best individual every 10 iterations. We then re-evaluate these individuals on the
donut function (third plot from the left of Figure 5) and visualize each one of them as a point (fourth
plot from the left of Figure 5). The donut function is the flat sphere function with a hole of fitness
−4 (of radius 0.25) at the center. The donut is thus a deceptive landscape, as we would expect any
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individual that reached the optimum to likely fall in the hole. As we can see, the individuals evolved
with ThEBES form a cloud scattered over a wide area around the fitness plateau, whereas individuals
evolved with OpenES concentrate on the hole. The fitness is significantly different between the
two algorithms (p < 0.01) for this new function, suggesting that ThEBES implicitly provides an
ensemble of solutions that is diverse enough to adapt to new environments.

Through that evidence, we can positively answer to RQ2: ThEBES generally evolves policies that
are more robust than those found by the baselines. Moreover, the results on toy functions suggest
that ThEBES may offer transfer learning without fine-tuning, as it collects a more diverse set of
solutions over its trajectory.

5 DISCUSSION AND CONCLUSION

Evolution Strategies (ESs) have achieved state-of-the-art results: by optimizing a population, they
promise to evolve solutions that are robust. Nevertheless, current methods have yet to deliver
on this promise (Chrabaszcz et al., 2018). We introduce the Thorough Energy-Based Evolution
Strategy (ThEBES), a novel evolutionary algorithm (De Jong, 2006) that includes an explicit drive
for robustness by perturbing the search distribution mean with noise. ThEBES is mathematically
grounded and we derive the interpretation from Energy-Based Models (EBMs) (LeCun et al., 2006),
as it approximates Langevin dynamics on the search space. We show that ThEBES achieves bet-
ter robustness—when compared to state-of-the-art ESs—to observational noise on four continuous
policy search tasks. We also suggest that ensembles of solutions evolved through ThEBES have the
potential to adapt well to unseen environments.

Finally, ThEBES establishes a solid mathematical grounding to the connection between ESs and
EBMs, arguing that the fitness function can be transformed into an energy function to optimize.
Such a contribution is relevant in its own right, since researchers have historically struggled to
provide mathematical foundations to evolutionary algorithms (De Jong, 2006).

5.1 LIMITATIONS

For our claims to be universal, more experiments are required, considering different types of robust-
ness. We considered test environments coming from the same distribution of training environments,
while an overarching evaluation of robustness would also consider out-of-distribution environments.
Moreover, we here focused on observational noise, while it would also be interesting to consider ro-
bustness to parameter noise (i.e., perturbations in the parameter space (Such et al., 2018)).

5.2 BROADER IMPACT

Our algorithm can be applied in ways that may have potential negative impacts on the broader
society. While the experiments of this paper consider self-contained simulated agents, future—albeit
distant—agents may evolve harmful adaptation abilities. Still, we believe this scenario belongs to
the world of science fiction for the foreseeable future.
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A APPENDIX

A.1 PROOF OF LINE 8 IN ALGORITHM 1

We now prove that∇θ Ex∼N(θ,σ2I) [f(x)] ≈ 1
σλ

∑λ
i=1 siϵi, for the sake of Algorithm 1. By virtue

of the policy gradient theorem (Williams, 1992), the following equality holds:

∇θt Ex∼N(θt,σ2I) [f(x)] = Ex∼N(θt,σ2I)

[
f(x)∇θt logN(θt, σ

2I)
]

(9)

The parameters of the search distribution consist only of the mean θt and we have:

∇θt
logN(θt, σ

2I) = ∇θt
log

1

σ
√
2π

exp

(
(x− θt)

2

2σ2

)
(10)

and by the linearity of the gradient operator, we can further simplify to:

∇θt
log

1

σ
√
2π

exp

(
(x− θt)

2

2σ2

)
= ∇θt

(x− θt)
2

2σ2
=

(x− θt)

σ2
=

ϵ

σ
(11)

where the last step holds because x = θt + σϵ, with ϵ ∼ N(0, σ2I). Finally, after plugging this
result into Equation (9), ES approximates the expected value of Equation (9) as the sample average
of a population of λ individuals xi ∼ N(θt, σ

2I) (line 4):

Ex∼N(θt,σ2I)

[
f(x)∇θt logN(θt, σ

2I)(x)
]
=

1

σ
Eϵ∼N(θt,σ2I) [f(x)ϵ] ≈

1

σλ

λ∑
i=1

f(xi)ϵi (12)

A.2 IMPLEMENTATION

We found some additions to the basic ThEBES algorithm to be useful in practice, though not algo-
rithmically necessary.

First, we apply fitness shaping (introduced by Wierstra et al. (2014), but known since the 1970s)
to the fitness values si before computing the gradient at line 9 of Algorithm 2. Considering that
we do not make any assumption about the fitness f and the problem to be solved, the values si
could potentially lie in any range. As happens with other ESs (Wierstra et al., 2014; Hansen, 2016;
Salimans et al., 2017; Chrabaszcz et al., 2018), fitness shaping makes the update invariant to the
scale of the fitness, decreasing the probability of falling into local optima early and lowering the
influence of outliers. Moreover, in our specific case, the stochastic drift ηt could “vanish” in the
presence of unbounded si values. To prevent this from happening, we apply the fitness shaping
procedure of EvoJAX: it transforms the si values into their ranks, which it then normalizes into
[−0.5, 0.5] (Salimans et al., 2017).

Second, we adopt symmetric sampling, similar to finite difference methods (Spall, 1998). Symmet-
ric sampling is a common feature of contemporary ESs (Sehnke et al., 2010; Salimans et al., 2017)
since it provides a more robust gradient approximation and we found it to improve convergence
quality and time. Every time we pick a perturbation ϵi from N(0, I), we add two symmetric sam-
ples x+ = θt+σϵi and x− = θt−σϵi to the population to be evaluated. Then, to have a population
of λ individuals at every iteration, we just need to sample λ

2 perturbations.

Third, we perform the gradient update using the state-of-the-art Adam scheme (Kingma & Ba, 2015),
as it is appropriate for gradients that are very noisy or sparse. After preliminary experiments, we
found it to improve convergence quality and time, in line with the findings of (Pagliuca et al., 2020)
for policy search with ESs.

Finally, we decay both the learning rate α and the step-size σ as evolution progresses; indeed, after
preliminary experiments, we found that decaying both of them improved convergence quality and
time over no decay or decaying only one of the two. At iteration t, the effective αt and σt are:

αt = max(τ tα0, αlimit) (13)

σt = max(τ tσ0, σlimit) (14)

where τ ∈ [0, 1] is a decay rate, α0 is the initial learning rate, σ0 is the initial step-size, and αlimit
and σlimit are two minimum values.
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(a) CartPole-Hard (b) HalfCheetah (c) Ant (d) LunarLander

Figure 6: The four policy search tasks we considered in our experiments.

A.3 TASKS

We evaluate ThEBES on three policy search tasks for continuous control. We present a snapshot for
each task in Figure 6.

CartPole-Hard consists of balancing a pole on a gliding cart (Barto et al., 1983), but it is a harder
version of the classic benchmark: at the beginning of each simulation, it samples the observation
from a uniform distribution in [−1, 1] (the domain of the observations), thus injecting stochasticity
in the environment. rk is the absolute difference between the actual pole angle and the π

2 angle,
thus rewarding the agent for keeping the pole as upright as possible. The observation consists of the
x-position of the cart, the x-velocity of the cart, the angle of the pole, and the angular velocity of the
pole with respect to its upright standing, so nin = 4. The action is the force to apply to the pole, so
nout = 1. A simulation terminates once kfinal = 1000 time steps have elapsed or the cart drifts out
of the screen, while a run terminates after nevals = 30 000 fitness evaluations. The size of the search
space is p = 4609.

HalfCheetah and Ant are the Brax engine (Freeman et al., 2021) versions of the standard
PyBullet (Coumans & Bai, 2016–2021) locomotion tasks. In both of them, the reward is the traveled
distance over the x-direction. The observation consists of the y-position of the center of mass, the
x-, y- and z-velocity, and the roll, pitch, yaw angles, and (x, y, z) position (relative to the center of
mass) of the robot’s joints, so nin = 26 and 28, respectively. The action consists of the torques to
apply to the robot’s joints, so nout = 6 and 8, respectively. For both tasks, we set kfinal = 1000 and
nevals = 120 000. The sizes of the search spaces are p = 5706 and p = 10 312, respectively.

LunarLander (Brockman et al., 2016) is, finally, a more challenging control task. The eponymous
lander must adjust the throttle of the two engines to mantain a stable trajectory and safely land on
the pad. The reward is inversely related to the distance from the landing pad, with bonus points for
landing safely and a penalty for crashing. The observation consists of the x and y coordinates of
the lander, its linear velocities, its angle, its angular velocity, and two booleans representing whether
each leg is in contact with the ground or not, so nin = 8. The action consists of the throttle for the
two engines, so nout = 2. We set kfinal = 1000 and nevals = 120 000. The size of the search spaces
is p = 4866.

For CartPole-Hard, HalfCheetah, and Ant, we relied on their EvoJAX (Tang et al., 2022)
implementation, a recent GPU-accelerated evolutionary framework. For LunarLander, that is not
available in EvoJAX, we relied on its gym (Brockman et al., 2016) implementation.

A.4 HYPERPARAMETERS

For all of the baselines, we adopt the hyperparameter values suggested by Tang et al. (2022)—who
carried out extensive grid search experiments for most of the algorithms and tasks considered—
when available, otherwise on the values suggested by the respective authors; for LunarLander,
we found the hyperparameter values for the Brax tasks to work well.

We summarize the hyperparameters set for ThEBES in Table 1. Unless otherwise specified, we
adopt for ThEBES the same hyperparameter values suggested for OpenES, due to the similarity
between the two algorithms.
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Name Description CartPole-Hard HalfCheetah and Ant LunarLander

λ population size 100 256 256
nevals number of fitness evaluations (as stop-

ping criterion)
30 000 120 000 120 000

α0 initial learning rate 0.02 0.01 0.01
σ0 initial step-size 0.03 0.04 0.2
τ learning rate and step-size decay rate 0.999 0.999 0.999
αlimit minimum learning rate 0.001 0.005 0.005
σlimit minimum step-size 0.01 0.001 0.001
θ0 initial search distribution mean 0 0 0

Table 1: Hyperparameter values for ThEBES.
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Figure 7: Heatmap for the median best fitness f∗ out of 5 independent runs on CartPole-Hard,
for 3 numbers of hidden layers, 5 values for the initial learning rate α0, and 5 values for the initial
step-size σ0. Low values of α0 generally lead to lower fitness.

A.5 IMPACT OF HYPERPARAMETERS ON THEBES

We study the impact of selected hyperparameters, in order to grasp how robust ThEBES is to their
choice and have a picture of its overall behavior. We focus on population size λ, initial learning rate
α0, and initial step-size σ0.

A.5.1 INITIAL LEARNING RATE α0 AND INITIAL STEP-SIZE σ0

Since α0 and σ0 jointly affect the smearing process, we jointly study their impact for different com-
binations. After preliminary experiments, we evaluate 5 equidistant values of α0 in [0.001, 0.1]
and 5 equidistant values of σ0 in [0.005, 0.3], while fixing λ = 100. We experiment on the
CartPole-Hard task and, to understand how hyperparameter choices behave across different
problem dimensionalities, we report the results for p = 449, p = 4609, and p = 8709 (correspond-
ing to one, two, and three hidden layers, respectively). As a performance index, we consider the
fitness of the best policy f∗ and report its median over 5 independent runs in Figure 7.

From the figure, we see that ThEBES is generally robust to the hyperparameters considered: per-
formance never drops below f∗ = 600 that, according to Tang et al. (2022), is the threshold for
solving the CartPole-Hard task. At the same time, we spot some trends: very low values of α0

correspond to the worst performance (the dark green top rows), while higher values of α0 combined
with lower values of σ0 perform the best (the brighter colors of the lower-left quadrants). Higher
values of α0 and lower values of σ0 increase the relative impact of the gradient versus the smearing
component, making evolution less “stochastic”. This result suggests that low quantities of stochastic
drift are beneficial when compared to none, while higher quantities are detrimental. Finally, there
does not seem to be a significant impact of problem dimensionality on the performance of ThEBES.
Considering that current evolutionary algorithms can evolve networks with millions of parameters
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Figure 8: Distribution of the best fitness f∗ for 5 independent runs on CartPole-Hard, for 8
values of population size λ. Higher values of λ lead to lower effectiveness.

(Stanley, 2007), we may need larger-scale experiments for this claim to be stronger; still, the net-
work sizes considered insofar are reasonable for the policy search tasks that are common in the
literature.

A.5.2 POPULATION SIZE λ

To understand how population size impacts ThEBES, we evaluate λ on an exponential scale, namely
λ = 2k for k ∈ {4, 5, . . . , 11}. After preliminary experiments, we set α0 = 0.02 and σ0 = 0.03
(their default values) to single out the impact of λ. We considered only the case of p = 4609. As
a performance index, we consider the fitness of the best policy f∗ and report its distribution over
5 independent runs in Figure 8. Considering that all runs had the same computational budget of
nevals = 30 000, higher values of λ imply lower numbers of iterations.

From the figure, we see that higher values of λ lead to lower performance: the higher λ, the lower
f∗ on average. A lower number of iterations is probably a hindrance when following a stochastic
path on the search space, as happens with ThEBES.
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