
Unconstrained Dynamic Regret via Sparse Coding

Zhiyu Zhang∗
Harvard University

zhiyuz@seas.harvard.edu

Ashok Cutkosky
Boston University

ashok@cutkosky.com

Ioannis Ch. Paschalidis
Boston University
yannisp@bu.edu

Abstract

Motivated by the challenge of nonstationarity in sequential decision making, we
study Online Convex Optimization (OCO) under the coupling of two problem
structures: the domain is unbounded, and the comparator sequence u1, . . . , uT is
arbitrarily time-varying. As no algorithm can guarantee low regret simultaneously
against all comparator sequences, handling this setting requires moving from
minimax optimality to comparator adaptivity. That is, sensible regret bounds
should depend on certain complexity measures of the comparator relative to one’s
prior knowledge. This paper achieves a new type of such adaptive regret bounds
leveraging a sparse coding framework. The complexity of the comparator is
measured by its energy and its sparsity on a user-specified dictionary, which offers
considerable versatility. For example, equipped with a wavelet dictionary, our
framework improves the state-of-the-art bound [JC22] by adapting to both (i)
the magnitude of the comparator average ∥ū∥ = ∥

∑T
t=1 ut/T∥, rather than the

maximum maxt ∥ut∥; and (ii) the comparator variability
∑T

t=1 ∥ut − ū∥, rather
than the uncentered sum

∑T
t=1 ∥ut∥. Furthermore, our analysis is simpler due to

decoupling function approximation from regret minimization.

1 Introduction

Nonstationarity is prevalent in sequential decision making, which poses a critical challenge to the
vast majority of existing approaches developed offline. Consider weather forecasting for example
[SBG+21]. A meteorologist typically starts from the governing physical equations and simulates
them online using high performance computing; the imperfection of this physical model can lead to
time-varying patterns in its forecasting error. Alternatively, a machine learning scientist may build a
data-driven model from historical weather datasets, but its online deployment is subject to distribution
shifts. If the structure of such nonstationarity can be exploited in our algorithm, then we may expect
better forecasting performance. This paper investigates the problem from a theoretical angle – we
aim to improve nonstationary online decision making by incorporating temporal representations.

Concretely, we study Online Convex Optimization (OCO), which is a repeated game between us (the
player) and an adversarial environment E . In each (the t-th) round, with a mutually known Lipschitz
constant G:

1. We make a prediction xt ∈ Rd based on the observations before the t-th round.
2. The environment E reveals a convex loss function lt : Rd → R dependent on our prediction

history x1, . . . , xt; lt is G-Lipschitz with respect to ∥·∥2.
3. We suffer the loss lt(xt).

The game ends after T rounds, and then, our total loss is compared to that of an alternative sequence
of predictions u1, . . . , uT ∈ Rd. Without knowing the time horizon T , the environment E and the

∗Work done at Boston University. Future versions available at https://arxiv.org/abs/2301.13349.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://arxiv.org/abs/2301.13349

comparator sequence {ut}t∈Z, our goal is to achieve low unconstrained dynamic regret

RegretT (u1:T) := sup
E

[
T∑

t=1

lt(xt)−
T∑

t=1

lt(ut)

]
. (1)

Fixing any comparator {ut}t∈Z: if such an expression can be upper-bounded by a sublinear function
of T , then asymptotically, in any environment, we perform at least as well as the {ut}t∈Z sequence.

The above setting deviates from the most standard setting of OCO [Haz16, Ora19] in two ways.

• Structure 1. The domain Rd is unbounded.
• Structure 2. The comparator is allowed to be time-varying.

While the latter has been studied extensively in the literature (since [Zin03]) to account for nonstation-
arity, most existing approaches require a time-invariant bounded domain to set the hyperparameters
properly, which, to some extent, limits the amount of nonstationarity they can handle. One might
argue that most practical problems have a finite range, which could be heuristically estimated from
offline datasets. However, such a heuristic is not robust in nature, as underestimates will invalidate
the theoretical analysis, and overestimates will make the regret bound excessively conservative. It
is thus important to study the more challenging unconstrained dynamic setting2 combining the two
problem structures, where algorithms cannot rely on pre-selected range estimates at all.

Taking a closer look at their analysis, it is perhaps a little surprising that these two problem structures
share a common theme, despite being studied mostly separately. In either the unconstrained static
setting [MO14, OP16, CO18] or the bounded dynamic setting [Zin03, HW15, ZLZ18], the standard
form of minimax optimality [ABRT08, AABR09, RS14b] becomes vacuous, as it is impossible
to guarantee that supu1:T

RegretT (u1:T) is sublinear in T . Circumventing this issue relies on
comparator adaptivity3 – instead of only depending on T , any appropriate regret upper bound,
denoted by BoundT (u1:T), should also depend on the comparator u1:T through a certain complexity
measure. Intuitively, despite the intractability of hard comparators, nonvacuous bounds can be
established against “easy ones”. A total loss bound then follows from the oracle inequality

T∑
t=1

lt(xt) ≤ inf
u1:T

[
T∑

t=1

lt(ut) + BoundT (u1:T)

]
. (2)

A crucial observation is that the complexity of u1:T is not uniquely defined: one could imagine
bounding RegretT (u1:T) by many different non-comparable functions of u1:T . Essentially, this
complexity measure serves as a Bayesian prior:4 choosing it amounts to assigning different priorities
to different comparators u1:T ∈ Rd×T . The associated algorithm guarantees lower BoundT (u1:T)
against comparators with higher priority, and due to Eq.(2), the total loss of our algorithm is low if
some of these high priority comparators actually achieve low loss

∑T
t=1 lt(ut). Such a Bayesian

reasoning highlights the importance of versatility in this workflow: in order to place an arbitrary
application-dependent prior, we need a versatile algorithmic framework that adapts to a wide range
of complexity measures. This leads to the limitations of existing results, discussed next.

To our knowledge, [JC22] is the only existing work that considers our setting. Two unconstrained
dynamic regret bounds are presented based on three statistics of the comparator sequence, the
maximum range M := maxt ∥ut∥2, the norm sum S :=

∑T
t=1 ∥ut∥2 and the path length P :=∑T−1

t=1 ∥ut+1 − ut∥2. First, using a 1D unconstrained static algorithm as a simple range scaler, the
paper achieves [JC22, Lemma 10]

RegretT (u1:T) ≤ Õ
(√

(M + P)MT
)
. (3)

2It is known that unconstrained OCO algorithms can also handle time-varying (but not necessarily bounded)
domains in a black-box manner [Cut20, Section 4].

3In general, adaptivity means achieving near minimax optimality simultaneously for many restricted sub-
classes of the problem, where minimax optimality is well-defined [Joh19, Chapter 6].

4The prior can be selected on the fly, depending on the observation history. This brings key practical benefits:
Appendix E discusses how an empirical forecaster based on domain knowledge or deep learning could be
“robustified” using our framework.

2

Table 1: Comparison in almost static environments. Each row improves the previous row (omitting
logarithmic factors), c.f., Appendix A.

Algorithm P -dependent bound K-switching regret Example 1 Example 2

ADER [ZLZ18] (meta-expert OGD) Õ
(√

(D + P)DT
)

Õ
(
D
√

(1 +K)T
)

N/A Õ(T 3/4)

[JC22, Algorithm 6] (range scaling) Õ
(√

(M + P)MT
)

Õ
(
M

√
(1 +K)T

)
Õ(T) Õ(T 3/4)

[JC22, Algorithm 2] (centered MD) Õ
(√

(M + P)S
)

Õ
(√

(1 +K)MS
)

Õ(T 3/4) Õ(T 3/4)

Ours (Haar OLR) Õ
(
∥ū∥2

√
T +

√
PS̄

)
Õ
(
∥ū∥2

√
T +

√
KĒ

)
Õ(

√
T) Õ(

√
T)

Then, by developing a customized mirror descent approach, most of the effort is devoted to improving
MT to S [JC22, Theorem 4], i.e., adapting to the magnitude of individual ut.

RegretT (u1:T) ≤ Õ
(√

(M + P)S
)
. (4)

Despite the strengths of these results and their nontrivial analysis, a shared limitation is that both
bounds depend explicitly on the path length P . Intuitively, it means that good performance is only
guaranteed in almost static environments: in the typical situation of S = Θ(T), these bounds are
only sublinear when P = o(T), which rules out important persistent dynamics such as periodicity.
Moreover, even the second bound still depends on MS instead of a finer characterization of each
individual ut’s magnitude. That is, the mission of removing M is not fully accomplished yet.5

The goal of this paper is to extend comparator adaptivity to a wider range of complexity measures.
For almost static environments in particular, quantitative benefits will be obtained from specific
instances of this general approach.

1.1 Contribution

The contributions of this paper are twofold.

1. First, we present an algorithmic framework achieving a new type of unconstrained dynamic
regret bounds. It is based on a conversion to vector-output Online Linear Regression (OLR):
given a dictionary H of orthogonal feature vectors spanning the sequence space RdT , we use
an unconstrained static OCO algorithm to linearly aggregate these feature vectors, which are
themselves time-varying prediction sequences. Such a procedure guarantees

RegretT (u1:T) ≤ Õ
(√

E · SparsityH
)
, (5)

where E =
∑T

t=1 ∥ut∥22 is the energy of the comparator u1:T , and SparsityH measures the
sparsity of u1:T on the dictionaryH.6 Both E and SparsityH are unknown beforehand.
Compared to [JC22], the main advantage of this framework is its versatility. Prior knowledge on
the transform domain can be incorporated by pickingH, and favorable algorithmic properties can
be conveniently inherited from static online learning.

2. Our second contribution is quantitative: although [JC22] is specifically crafted to handle almost
static environments, we show that equipped with a Haar wavelet dictionary, our framework
actually guarantees better bounds (Table 1) in this setting, which is a surprising finding to us.

• With the comparator average ū :=
∑T

t=1 ut/T and the first order variability S̄ :=∑T
t=1 ∥ut − ū∥2, our Haar wavelet algorithm guarantees

RegretT (u1:T) ≤ Õ
(
∥ū∥2

√
T +

√
PS̄
)
.

5The significance of this issue could be seen through an analogy to (static D-bounded domain) gradient

adaptive OCO: although there are algorithms achieving the already adaptive O

(
D
√

G
∑T

t=1 ∥gt∥2

)
static

regret bound, the hallmark of gradient adaptivity is the so-called “second-order bound” O

(
D
√∑T

t=1 ∥gt∥
2
2

)
,

popularized by ADAGRAD [DHS11]. In a rough but related sense, we aim to achieve “second order comparator
adaptivity”, which is only manifested in the less studied dynamic regret setting.

6For conciseness, we omit u1:T in the notation. Throughout this paper, the regularity parameters on the RHS
of the regret bound generally depend on u1:T . A list of these parameters is presented in Appendix A, including
their relations.

3

It improves Eq.(4) by (i) a better dependence on the comparator magnitude (
√
MS →

∥ū∥2
√
T); and (ii) decoupling the bias ū from the characterization of variability (

√
PS →√

PS̄).
• With the number of switches K :=

∑T−1
t=1 1[ut+1 ̸= ut] and the second order variability

Ē :=
∑T

t=1 ∥ut − ū∥22, the same Haar wavelet algorithm guarantees an unconstrained switching
regret bound

RegretT (u1:T) ≤ Õ
(
∥ū∥2

√
T +

√
KĒ

)
,

which improves the existing Õ
(√

(1 +K)MS
)

bound resulting from Eq.(4) and P =

O(KM).
Due to the local property of wavelets, our algorithm runs in O(d log T) time per round, matching
that of the baselines. As for the regret, our bounds are never worse than the baselines, and in
two examples corresponding to ∥ū∥2 ≪ M and S̄ ≪ S, they reduce to clearly improved rates
in T . Furthermore, our analysis follows from the generic regret bound Eq.(5) and the wavelet
approximation theory, providing an intriguing connection between disparate fields.

The paper concludes with an application in fine-tuning time series forecasters, where unconstrained
dynamic OCO is naturally motivated. Due to limited space, this is deferred to Appendix E, with
experiments that support our theoretical results.

1.2 Related work

Our paper addresses the connection between unconstrained OCO and dynamic OCO. Although they
both embody the idea of comparator adaptivity, unified studies have been scarce.

Unconstrained OCO To obtain static regret bounds in OCO, Online Gradient Descent (OGD)
[Zin03] is often the default approach. With learning rate η, it guarantees O(η−1 ∥u∥22 + ηT) regret
with respect to any unconstrained static comparator u ∈ Rd, and the optimal choice in hindsight
is η = O(∥u∥2 /

√
T). Without the oracle knowledge of ∥u∥2, it is impossible to tune η optimally.

To address this issue, a series of works (also called parameter-free online learning) [SM12, MA13,
GY14, MO14, OP16, FKMS17, CO18, FRS18, MK20, CLW21, ZCP22] developed vastly different
strategies to achieve the oracle optimal rate O(∥u∥

√
T) up to logarithmic factors. That is, the

algorithm performs as if the complexity measure ∥u∥ is known beforehand.

There is certain flexibility in the choice of the norm ∥·∥: L1 and L2 norm bounds were presented in
[SM12], while Banach norm bounds were developed by [FRS18, CO18]. Historically, the connection
between the L1 norm and sparsity has powered breakthroughs in batch data science, including LASSO
[Tib96] and compressed sensing [CRT06]. However, the parallel path in online learning remains
less studied: while the sparsity implication of the L1 norm adaptive bounds has been discussed
in the literature [SM12, Ger13, vdH19], there is in general a lack of downstream investigations
with concrete benefits. In this paper, we show that the sparsity of the comparator can be naturally
associated to the structural simplicity of a nonstationary environment.

Dynamic OCO Comparing against dynamic sequences is a classical research topic. It is clear that
one cannot go beyond linear regret in the worst case, therefore various notions of complexity should
be introduced.

• The closest topic to ours is the universal dynamic regret, where the regret bound adapts to the
complexity of an arbitrary u1:T on a bounded domain with Lp-diameter D. In the most common
framework, the complexity measure is an Lp,q norm of the difference sequence {ut+1 − ut}, such
as the Lp,1 norm, i.e., the path length P =

∑T−1
t=1 ∥ut+1 − ut∥p [HW01].7 Omitting the depen-

dence on the dimension d (thus also the choice of p), the optimal bound under convex Lipschitz
losses is Õ

(√
(D + P)DT

)
[Zin03, HW15, JRSS15, GS16, ZLZ18], while the accelerated rate8

Õ(P 2/3T 1/3∨1) can be achieved with strong convexity [BW21, BW22]. Improvements have been

7Motivated by nonparametric statistics, the Lp,q norm
(∑T−1

t=1 ∥ut+1 − ut∥qp
)1/q

with q > 1 is associated
to more homogeneous measures of comparator smoothness [BW19, BW21].

8Further omitting the dependence on the diameter D.

4

studied under the additional smoothness assumption [ZZZZ20, ZZZZ21]. These bounds subsume
results in switching (a.k.a., shifting) regret, where the complexity of u1:T is measured by its number
of switches K, as P is dominated by DK.

A notable exception is the dynamic model framework from [HW15, ZLZ18]. Still considering
a bounded domain, it takes a collection of dynamic models as input, which are mappings from
the domain to itself. Then, the complexity of a comparator u1:T is measured by how well it
can be reconstructed by the best dynamic model in hindsight. Essentially, the use of temporal
representations is somewhat similar to the dictionary in our framework. The important difference is
that instead of using the best feature (or the best convex combination of the features) to measure
the comparator, we use linear combinations of the features – this allows handling unconstrained
domains through subspace modeling.

• Besides the universal dynamic regret, there are other notions of dynamic regret that do not induce
oracle inequalities like Eq.(2), including (i) the restricted dynamic regret [YZJY16, ZYY+17,
BW19, BW20, BZW21], which depends on the complexity of certain offline optimal comparators;9

and (ii) regret bounds that depend on the functional variation
∑T−1

t=1 maxx |lt(x)− lt+1(x)|
[BGZ15, CWW19]. They are not as relevant to our purpose, due to being vacuous on unbounded
domains under the linear losses – this is an important setting in our investigation.

Unconstrained (universal) dynamic regret To our knowledge, [JC22] is the only work studying
the universal dynamic regret without a bounded domain, whose contributions have been summarized
in our Introduction. Here we survey some negative results in the literature.

• The restricted dynamic regret is a special case of the universal dynamic regret, therefore lower
bounds for the former apply to the latter as well. For convex Lipschitz losses [YZJY16] and
strongly convex losses [BW19], any algorithm should suffer the dynamic regret of Ω(P) and
Ω(P 2), respectively.

• For dynamic OCO on bounded domains, a recurring analysis goes through the notion of strong
adaptivity [DGSS15]: one first achieves low static regret bounds on every subinterval of the time
horizon [1 : T], and then assembles these local bounds appropriately to bound the global dynamic
regret [ZYZ+18, Cut20, BW21, BW22]. Following this route in the unconstrained setting appears
to be challenging, as [JC22, Section 4] showed that (a natural form of) strong adaptivity cannot be
achieved there.

Additional discussions of related works are deferred to Appendix B, including the more general
problem of online nonparametric regression, the more specific problem of parametric time series
forecasting, and other orthogonal uses of sparsity in online learning.

1.3 Notation

For two integers a ≤ b, [a : b] is the set of all integers c such that a ≤ c ≤ b. The brackets are
removed when on the subscript, denoting a tuple with indices in [a : b]. Treating all vectors as column
vectors, span(A) represents the column space of a matrix A. log is natural logarithm when the base
is omitted, and log+(·) := 0 ∨ log(·). polylog denotes a poly-logarithmic function of its input. 0
represents a zero vector whose dimension depends on the context.

2 The general sparse coding framework

This section presents our sparse coding framework, achieving the generic sparsity adaptive regret
bound Eq.(5). The key idea is to view online learning on the sequence space RdT , rather than the
default domain Rd. Despite its central role in signal processing (e.g., the Fourier transform), such a
view is (in our opinion) under-explored by the online learning community.10

9Notably, [BW19, BW20] creatively employed wavelet techniques to detect change-points of the environment,
which, to the best of our knowledge, is the only existing use of wavelets in the online learning literature.

10Possibly due to the emphasis on the static regret: the sequence u1:T collapses into a time-invariant u, which
is contained in Rd.

5

2.1 Setting

To begin with, we follow the conventions in online learning [Haz16, Ora19] to linearize convex losses.
Consider that instead of the full loss function lt, we only observe its subgradient gt ∈ ∂lt(xt) at
our prediction xt. By using the linear loss ⟨gt, ·⟩ as a surrogate, we can still upper bound the regret
Eq.(1) due to lt(xt) − lt(u) ≤ ⟨gt, xt − u⟩. The linear loss problem is also called Online Linear
Optimization (OLO), where each observation gt is a d dimensional vector satisfying ∥gt∥2 ≤ G.

Now, consider the length T sequences of predictions x1:T , gradients g1:T and comparators u1:T . Let
us flatten everything and treat them as dT dimensional vectors, concatenating per-round quantities in
Rd. These are called signals. The comparator statistics could be more succinctly represented using
vector notations, e.g., the energy E =

∑T
t=1 ∥ut∥22 = ∥u1:T ∥22.

Our framework requires a dictionary matrixH ∈ RdT×N , possibly revealed online, whose columns
are N nonzero feature vectors. We writeH in an equivalent block form as [ht,n]1≤t≤T,1≤n≤N , where
each block ht,n ∈ Rd×1. The accompanied linear transform u = Hû relates a signal u ∈ RdT to a
coefficient vector û ∈ RN (if it exists). Adopting the convention in signal processing, we will call
RdT the time domain, and RN the transform domain. In general, symbols without hat refer to time
domain quantities, while their transform domain counterparts are denoted with hat.

Summarizing the above, we consider the following concise interaction protocol.11 Despite its
parametric appearance, our main focus is on the nonparametric regime, where the dictionary size N
scales with the amount of data T .

Vector-output OLR with linear losses In the t-th round, our algorithm observes a d-by-N feature
matrix Ht := [ht,n]1≤n≤N , linearly combines its columns into a prediction xt ∈ Rd, receives a
loss gradient gt ∈ Rd, and then suffers the linear loss ⟨gt, xt⟩. We assume that12 ∥ht,n∥2 ≤ 1,∑T

t=1 ∥ht,n∥22 ≥ 1 and ∥gt∥2 ≤ G. The performance metric is the unconstrained dynamic regret
defined in Eq.(1).

2.2 Main result

In a nutshell, our strategy is to apply an unconstrained static OLO algorithm on the transform domain,
and in a coordinate-wise fashion. This is remarkably simple, but also contains a few twists. To make
it concrete, let us start with a single feature vector.

Size 1 dictionary Consider an index n ∈ [1 : N], which is associated to the feature h1:T,n :=
[h1,n, . . . , hT,n] ∈ RdT . We suppress the index n and write it as h1:T = [h1, . . . , hT]. For any
comparator u1:T ∈ span(h1:T), there exists û ∈ R such that u1:T = h1:T û. The cumulative loss of
u1:T can be rewritten as

⟨g1:T , u1:T ⟩ = ⟨g1:T , h1:T ⟩ û =

T∑
t=1

⟨gt, ht⟩ û,

which is the loss of the coefficient û in a 1D OLO problem with surrogate loss gradients ⟨gt, ht⟩.
Essentially, to compete with a 1D comparator subspace span(h1:T), it suffices to run a 1D static
regret algorithm A that competes with û ∈ R. Such a procedure is presented as Algorithm 1.

It still remains to choose the static algorithm A. Technically, all known static comparator adaptive
algorithms can be applied. As an illustrative example, we adopt the FREEGRAD algorithm [MK20],
which simultaneously achieves static comparator adaptivity and second order gradient adaptivity
[DHS11].13 Its pseudocode and static regret bound are presented in Appendix C.1 for completeness.

In summary, our single feature learner (Algorithm 1) has the following simplified guarantee, with the
full gradient adaptive version deferred to Appendix C.

11Despite also using features, the considered setting slightly differs from the standard notion of regression, as
the loss function here does not necessarily have a minimizer. We use the term OLR for cleaner exposition.

12The assumptions on the features are mild: an important special case is maxt ∥ht,n∥2 = 1, as in the Haar
wavelet dictionary. We impose these assumptions to apply unconstrained static algorithms verbatim.

13A gradient adaptive regret bound refines our definition Eq.(1) by depending on the actually encountered
environment E as well. FREEGRAD enjoys another favorable property called scale-freeness: the predictions are
invariant to any positive scaling of the loss gradients and the Lipschitz constant G.

6

Algorithm 1 Sparse coding with size 1 dictionary.

Require: An algorithm A for static 1D unconstrained OLO with G-Lipschitz losses; and a nonzero
feature vector h1:T ⊂ RdT .

1: for t = 1, 2, . . . , do
2: Receive ht ∈ Rd.
3: If ht is nonzero, query A for its output, and assign it to x̂t ∈ R; otherwise, x̂t is arbitrary.
4: Predict xt = x̂tht ∈ Rd, and receive the loss gradient gt ∈ Rd.
5: If ht is nonzero, compute ĝt = ⟨gt, ht⟩ and send it to A as its surrogate loss gradient.
6: end for

Lemma 2.1. Let ε > 0 be an arbitrary hyperparameter for FREEGRAD (Algorithm 3 in Ap-
pendix C.1). Applying its 1D version as the static subroutine, for all T ∈ N+ and u1:T ∈ span(h1:T),
Algorithm 1 guarantees

RegretT (u1:T) ≤ εG+ ∥u1:T ∥2 G · polylog
(
max

t
∥ut∥2 , T, ε

−1
)
.

Note that the hyperparameter ε can be arbitrarily small. Further neglecting poly-logarithmic factors,
the bound is essentially Õ (G ∥u1:T ∥2).
General dictionary Given the above single feature learner, let us turn to the general setting with
N features. We run N copies of Algorithm 1 in parallel, aggregate their predictions, and the regret
bound sums Lemma 2.1, similar to [Cut19] in the static setting. The pseudocode is presented as
Algorithm 2, and the regret bound is Theorem 1.

Algorithm 2 Sparse coding with general dictionary.

Require: A dictionaryH = [ht,n], where ht,n ∈ Rd; and a hyperparameter ε > 0.
1: For all n ∈ [1 : N], initialize a copy of Algorithm 1 asAn. It runs the 1D version of Algorithm 3

as a subroutine, with hyperparameter ε/N .
2: for t = 1, 2, . . . , do
3: ReceiveHt = [ht,n]1≤n≤N . For all n, send ht,n to An, and query its prediction wt,n.
4: Predict xt =

∑N
n=1 wt,n.

5: Receive loss gradient gt, and send it to A1, . . . ,AN as loss gradients.
6: end for

Theorem 1. Consider any collection of signals z(n) ∈ span(h1:T,n), ∀n. We define its reconstruction
error (for the comparator u1:T) as z(0) = u1:T −

∑N
n=1 z

(n) ∈ RdT . Then, for all T ∈ N+ and
u1:T ∈ RdT , Algorithm 2 guarantees

RegretT (u1:T) ≤ εG+G

(
N∑

n=1

∥∥∥z(n)∥∥∥
2

)
·polylog

(
max
t,n

∥∥∥z(n)t

∥∥∥
2
, T,N, ε−1

)
+G

T∑
t=1

∥∥∥z(0)t

∥∥∥
2
,

where z
(n)
t ∈ Rd is the t-th round component of the sequence z(n) ∈ RdT .

To interpret this very general result, let us consider a few concrete settings.

• Static regret. If the size N = d and the dictionary Ht = Id, then for any static comparator
(ut = u ∈ Rd), we can let z(n) be the projection of the sequence u1:T onto span(h1:T,n). This
leaves zero reconstruction error, i.e., u1:T =

∑N
n=1 z

(n). Theorem 1 reduces to

RegretT (u1:T) ≤ εG+ ∥u∥1 G
√
T · polylog

(
∥u∥∞ , T, d, ε−1

)
, (6)

which recovers a standard Õ(∥u∥1
√
T) bound in coordinate-wise unconstrained static OLO [Ora19,

Section 9.3]. The gradient adaptive version yields a better Õ(∥u∥2
√
T) bound, c.f., Appendix C.2.

• Orthogonal dictionary. Entering the dynamic realm, we now consider the situation where feature
vectors are orthogonal (standard in signal processing), and the comparator u1:T ∈ span(H). Same
as the static setting, we are free to define z(n) as the projection

z(n) = ⟨h1:T,n, u1:T ⟩
h1:T,n

∥h1:T,n∥22
.

7

Due to orthogonality, the projection preserves the energy of the time domain signal, i.e, E =

∥u1:T ∥22 =
∑N

n=1

∥∥z(n)∥∥2
2
. By further defining SparsityH := (

∑N
n=1

∥∥z(n)∥∥
2
)2/
∑N

n=1

∥∥z(n)∥∥2
2

(arbitrary when the denominator is zero), Theorem 1 reduces to

RegretT (u1:T) ≤ Õ
(√

E · SparsityH
)
. (7)

Note that as the squared L1/L2 ratio, SparsityH is a classical sparsity measure [HR09] of the
decomposed signals {z(n)}1≤n≤N : if there are only N0 ≤ N nonzero vectors within this collection,
then SparsityH ≤ N0 due to the Cauchy-Schwarz inequality. Therefore, the generic sparsity
adaptive bound Eq.(7) depends on (i) the energy of the comparator u1:T ; and (ii) the sparsity of its
representation, without knowing either condition beforehand. The easier the comparator is (low
energy, and sparse onH), the lower the bound becomes.

• Overparameterization. So far we have only considered N ≤ dT , where feature vectors can be
orthogonal. However, a key idea in signal processing is to use redundant features (N ≫ dT) to
obtain sparser representations. Theorem 1 implies a feature selection property in this context:
since it applies to any decomposition of u1:T , as long as u1:T can be represented by a subset H̃ of
orthogonal features withinH, the regret bound adapts to SparsityH̃, the sparsity of u1:T measured
on H̃. That is, we are theoretically justified to assemble smaller dictionaries into a larger one – the
regret bound adapts to the quality of the optimal (comparator-dependent) sub-dictionary H̃.

100 101 102 103 104 105

Indices (log)

100

102

104

106

Fo
ur

ie
r c

oe
ffi

cie
nt

s (
ab

s,
lo

g)

Data
Fitted, =0.68

Figure 1: The power law.

How to choose the dictionary H? In practice, we may use prior
knowledge on the dynamics of the environment. For example, if
the environment is periodic, such as the weather or the traffic, then
a good choice could be the Fourier dictionary. Similarly, wavelet
dictionaries are useful for piecewise regular environments. Another
possibility is to learn the dictionary from offline datasets, which is
also called representation learning. Overall, such prior knowledge
is not required to be correct – our algorithm can take any dictionary
as input, and the regret bound naturally adapts to its quality. The
established connection between adaptivity and signal structures is
a key benefit of our framework.

Power law For a more specific discussion, let us consider an empirically justified setup. In signal
processing, the study of sparsity has been partially motivated by the power law [Pri21]: under the
standard Fourier or wavelet transforms, the n-th largest transform domain coefficient of many real
signals can have magnitude roughly proportional to n−α, where α ∈ (0.5, 1). We also observe this
phenomenon from a weather dataset, with details presented in Appendix E.1. Figure 1 plots the
sorted Fourier coefficients of an actual temperature sequence, on a log-log scale. A fitted dashed line
is shown in orange, with (negative) slope α = 0.68.

When the power law holds, our bound Eq.(7) has a more interpretable form. Assuming d = 1 and
N = T ,

SparsityH =
(
∑T

n=1 n
−α)2∑T

n=1 n
−2α

= O
(
T 2−2α

)
.

In a typical setting of E = Θ(T), we obtain a sublinear Õ(T 1.5−α) dynamic regret bound.

3 The Haar OLR algorithm

This section presents the quantitative contributions of this paper: despite its generality, our sparse
coding framework can improve existing results [JC22]. Our workhorse is the ability of wavelet bases
to sparsely represent smooth signals.

3.1 Haar wavelet

Wavelet is a fundamental topic in signal processing, with long lasting impact throughout modern
data science. Roughly, the motivation is that a signal can simultaneously exhibit nonstationarity at
different time scales, such as slow drifts and fast jumps, therefore to faithfully represent it, we should
apply feature vectors with different resolutions. We will only use the simplest Haar wavelets, which
is already sufficient. Readers are referred to [Mal08, Joh19] for a thorough introduction to this topic.

8

Specifically, we start from the 1D setting (d = 1) with a dyadic horizon (T = 2m, for some m ∈ N+).
The Haar wavelet dictionary consists of T (unnormalized) orthogonal feature vectors, indexed by a
scale parameter j ∈ [1 : log2 T] and a location parameter l ∈ [1 : 2−jT]. Given a (j, l) pair, define a
feature h(j,l) = [h

(j,l)
1 , . . . , h

(j,l)
T] ∈ RT entry-wise as

h
(j,l)
t =


1, t ∈ [2j(l − 1) + 1 : 2j(l − 1) + 2j−1];

−1, t ∈ [2j(l − 1) + 2j−1 + 1 : 2j l];

0, else.

It means that h(j,l) is only nonzero on a length-2j interval, while changing its sign once in the middle
of this interval. Collecting all the (j, l) pairs yield T − 1 features; then, we incorporate an extra
all-one feature h∗ = [1, . . . , 1] to complete this size T dictionary.

The defined features can be assembled into the columns of a matrix Haarm. To help with the intuition,
Haar2 with T = 4 is presented in Eq.(8). The columns from the left to the right are h∗, h(2,1), h(1,1)

and h(1,2). Observe that they are orthogonal, and the norm assumption from Section 2.1 is satisfied.
Therefore, our sparsity adaptive regret bound Eq.(7) is applicable.

Haar2 =

1 1 1 0
1 1 −1 0
1 −1 0 1
1 −1 0 −1

 . (8)

Given this 1D Haar wavelet dictionary, we apply a minor variant of Algorithm 2 to prevent the
dimension d from appearing in the regret bound. When d = 1, the algorithm is exactly Algorithm 2,
where intuitions are most clearly demonstrated. Then, the doubling trick [SS11, Section 2.3.1] is
adopted to relax the knowledge of T . The pseudocode is presented as Algorithm 5 in Appendix D.

Computation An appealing property is that most Haar wavelet features are supported on short
local intervals. Despite N = T , there are only log2 T active features in each round. Therefore, the
runtime of our algorithm is O(d log T) per round, matching that of all the baselines we compare to.
This local property holds for compactly supported wavelets, most notably the Daubechies family
[Dau88, CDV93]. The latter can represent more general, piecewise polynomial signals.

3.2 Main result

For almost static environments, our Haar OLR algorithm guarantees the following bounds, by relating
comparator smoothness to the sparsity of its Haar wavelet representation. Different from [JC22]
which only contains P -dependent bounds, we also provide a K-switching regret bound, in order to
avoid using P = O(KM).14 Interestingly, the proofs of the following two bounds are quite different:
the first uses exact sparsity, while the second uses approximate sparsity.
Theorem 2 (Switching regret). For all T ∈ N+ and u1:T ∈ RdT , Algorithm 5 guarantees

RegretT (u1:T) ≤ Õ
(
∥ū∥2

√
T +

√
KĒ

)
. (9)

Theorem 3 (Path length bound). For all T ∈ N+ and u1:T ∈ RdT , Algorithm 5 guarantees

RegretT (u1:T) ≤ Õ
(
∥ū∥2

√
T +

√
PS̄
)
. (10)

It can be verified (Appendix A) that for all comparators u1:T , our bounds are at least as good as prior
works (Table 1). The optimality is a more subtle issue, as one should compare upper bound functions
(of u1:T) to lower bound functions in a global manner, rather than comparing the exponents of T in
minimax online learning.

Nonetheless, we present two examples of u1:T , where the improvement can be clearly seen through
better exponents of T . To give it a concrete background, suppose we want to sequentially predict
a 1D time series z1, . . . , zT ∈ R. This could be formulated as a OCO problem where the decision
xt there is our prediction of zt, and the loss function is the absolute loss lt(x) = |x− zt|. A natural

14Recall that one of our motivations is to remove M from the existing bounds.

9

choice of the comparator is the ground truth sequence z1:T , and due to Eq.(2), any upper bound
on RegretT (z1:T) also upper-bounds the total forecasting loss of our algorithm. Below we present
specific 1D comparator sequences u1:T to demonstrate the strength of our results, which could be
intuitively thought as the true time series z1:T in this more restricted discussion.

Example 1 (Tracking outliers). Consider the situation where u1:T has a locally outlying scale: we
set all the instantaneous comparators ut to 1, except k ≤

√
T consecutive members which are set

to
√
T . Crucially, |ū| = O(1) and S̄ = O(k

√
T), while M =

√
T and S = Θ(T). With details

deferred to Appendix D.7, both our bounds, i.e., Eq.(9) and (10), are Õ(
√
kT), while the fine baseline

Eq.(4) is Õ(T 3/4), and the coarse baseline Eq.(3) is Õ(T). The largest gain is observed when k is a
constant, i.e., the comparator is subject to a short but large perturbation.

Example 2 (Persistent oscillation). Consider the situation where ū = 1, and all the instantaneous
comparators oscillate around ū: ut = ū+ αt/

√
T . αt = 1 or −1, and it only switches sign for k

times. Notice that S̄ =
√
T , while S = Θ(T). All the baselines are Õ

(√
T + k1/2T 1/4

)
, while

both our bounds are Õ(
√
T). The largest gain is observed when k = T − 1, i.e., the comparator

switches in every round.

In summary, we show that existing bounds are suboptimal, while the optimality of our results remains
to be studied. It highlights the importance of comparator energy and variability in the pursuit of
better algorithms, which have not received enough attention in the literature. Next, we briefly sketch
the proofs of these bounds.

Proof sketch The switching regret bound mostly follows from a very simple observation: if a
sequence is constant throughout the support of a Haar wavelet feature, then its transform domain
coefficient for this feature is zero. As features on the same scale j do not overlap, a K-switching
comparator can only induce K nonzero coefficients on the j-th scale. There are at most K log2 T

nonzero coefficients in total, therefore SparsityH = Õ(K). The bound Eq.(9) is obtained by applying
this argument after taking out the average of u1:T .

As for the path length bound, the idea is to consider the reconstructed sequences, using transform
domain coefficients on a single scale j. These are usually called detail sequences in the wavelet
literature [Mal08]. Each detail sequence has a relatively simple structure, whose path length and
variability can be associated to the magnitude of its transform domain coefficients. Moreover, as
these detail sequences are certain “locally averaged” and “globally centered” versions of the actual
comparator u1:T , their regularities are dominated by the regularity of u1:T itself. In combination, this
yields a relation between PS̄ and the coefficients’ L1 norm, i.e.,

∑N
n=1

∥∥z(n)∥∥
2

in Theorem 1, from
which the bound is established.

Compared to the analysis of [JC22], the key advantage of our analysis is the decoupling of function
approximation from the generic sparsity-based regret bound. The former is algorithm-independent,
while the latter can be conveniently combined with advances in static online learning. With the help
of approximation theory (e.g., Fourier features, wavelets, and possibly deep learning further down
the line), intuitions are arguably clearer in this way, and solutions could be more precise (compared
to analyses that “mix” function approximation with regret minimization).

Additional discussion Finally, due to limited space, we defer additional discussion of our technical
results to Appendix F, including

• The related use of Multi-Resolution Analysis (MRA) in the existing online learning literature.
• The comparison between Lipschitz and strongly convex losses in unconstrained dynamic OCO.

4 Conclusion

This paper presents a unified study of unconstrained and dynamic online learning, where the two
problem structures are naturally connected via comparator adaptivity. Building on the synergy
between static parameter-free algorithms and temporal representations, we develop an algorithmic
framework achieving a generic sparsity-adaptive regret bound. Equipped with the wavelet dictionary,
our framework improves the quantitative results from [JC22], by adapting to finer characterizations
of the comparator sequence.

10

Acknowledgments and Disclosure of Funding

We thank Vivek Goyal for helpful pointers to the signal processing literature, and the NeurIPS
reviewers for their constructive feedback. This research was partially supported by the NSF under
grants CCF-2200052, DMS-1664644, and IIS-1914792, by the ONR under grant N00014-19-1-2571,
by the DOE under grant DE-AC02-05CH11231, by the NIH under grant UL54 TR004130, and by
Boston University.

References
[AABR09] Jacob Abernethy, Alekh Agarwal, Peter L Bartlett, and Alexander Rakhlin. A stochastic view of

optimal regret through minimax duality. In Conference on Learning Theory, 2009.

[ABRT08] Jacob Abernethy, Peter L Bartlett, Alexander Rakhlin, and Ambuj Tewari. Optimal strategies
and minimax lower bounds for online convex games. In Conference on Learning Theory, pages
415–423, 2008.

[AHMS13] Oren Anava, Elad Hazan, Shie Mannor, and Ohad Shamir. Online learning for time series prediction.
In Conference on learning theory, pages 172–184. PMLR, 2013.

[AHZ15] Oren Anava, Elad Hazan, and Assaf Zeevi. Online time series prediction with missing data. In
International conference on machine learning, pages 2191–2199. PMLR, 2015.

[AM16] Oren Anava and Shie Mannor. Heteroscedastic sequences: beyond gaussianity. In International
Conference on Machine Learning, pages 755–763. PMLR, 2016.

[AW01] Katy S Azoury and Manfred K Warmuth. Relative loss bounds for on-line density estimation with
the exponential family of distributions. Machine Learning, 43(3):211–246, 2001.

[BGZ15] Omar Besbes, Yonatan Gur, and Assaf Zeevi. Non-stationary stochastic optimization. Operations
research, 63(5):1227–1244, 2015.

[BW19] Dheeraj Baby and Yu-Xiang Wang. Online forecasting of total-variation-bounded sequences.
Advances in Neural Information Processing Systems, 32, 2019.

[BW20] Dheeraj Baby and Yu-Xiang Wang. Adaptive online estimation of piecewise polynomial trends.
Advances in Neural Information Processing Systems, 33:20462–20472, 2020.

[BW21] Dheeraj Baby and Yu-Xiang Wang. Optimal dynamic regret in exp-concave online learning. In
Conference on Learning Theory, pages 359–409. PMLR, 2021.

[BW22] Dheeraj Baby and Yu-Xiang Wang. Optimal dynamic regret in proper online learning with strongly
convex losses and beyond. In International Conference on Artificial Intelligence and Statistics,
pages 1805–1845. PMLR, 2022.

[BZW21] Dheeraj Baby, Xuandong Zhao, and Yu-Xiang Wang. An optimal reduction of TV-denoising to
adaptive online learning. In International Conference on Artificial Intelligence and Statistics, pages
2899–2907. PMLR, 2021.

[CDV93] Albert Cohen, Ingrid Daubechies, and Pierre Vial. Wavelets on the interval and fast wavelet
transforms. Applied and computational harmonic analysis, 1993.

[CLW21] Liyu Chen, Haipeng Luo, and Chen-Yu Wei. Impossible tuning made possible: A new expert
algorithm and its applications. In Conference on Learning Theory, pages 1216–1259. PMLR, 2021.

[CO18] Ashok Cutkosky and Francesco Orabona. Black-box reductions for parameter-free online learning
in banach spaces. In Conference On Learning Theory, pages 1493–1529. PMLR, 2018.

[CRT06] Emmanuel J Candès, Justin Romberg, and Terence Tao. Robust uncertainty principles: Exact signal
reconstruction from highly incomplete frequency information. IEEE Transactions on information
theory, 52(2):489–509, 2006.

[Cut19] Ashok Cutkosky. Combining online learning guarantees. In Conference on Learning Theory, pages
895–913. PMLR, 2019.

[Cut20] Ashok Cutkosky. Parameter-free, dynamic, and strongly-adaptive online learning. In International
Conference on Machine Learning, pages 2250–2259. PMLR, 2020.

11

[CWW19] Xi Chen, Yining Wang, and Yu-Xiang Wang. Nonstationary stochastic optimization under Lp,q-
variation measures. Operations Research, 67(6):1752–1765, 2019.

[Dau88] Ingrid Daubechies. Orthonormal bases of compactly supported wavelets. Communications on pure
and applied mathematics, 41(7):909–996, 1988.

[DGSS15] Amit Daniely, Alon Gonen, and Shai Shalev-Shwartz. Strongly adaptive online learning. In
International Conference on Machine Learning, pages 1405–1411. PMLR, 2015.

[DHS11] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of machine learning research, 12(7), 2011.

[DSSST10] John C Duchi, Shai Shalev-Shwartz, Yoram Singer, and Ambuj Tewari. Composite objective mirror
descent. In COLT, volume 10, pages 14–26. Citeseer, 2010.

[FKK16] Dean Foster, Satyen Kale, and Howard Karloff. Online sparse linear regression. In Conference on
Learning Theory, pages 960–970. PMLR, 2016.

[FKMS17] Dylan J Foster, Satyen Kale, Mehryar Mohri, and Karthik Sridharan. Parameter-free online learning
via model selection. Advances in Neural Information Processing Systems, 30, 2017.

[FRS18] Dylan J Foster, Alexander Rakhlin, and Karthik Sridharan. Online learning: Sufficient statistics
and the Burkholder method. In Conference On Learning Theory, pages 3028–3064. PMLR, 2018.

[Ger13] Sébastien Gerchinovitz. Sparsity regret bounds for individual sequences in online linear regression.
The Journal of Machine Learning Research, 14(1):729–769, 2013.

[GG15] Pierre Gaillard and Sébastien Gerchinovitz. A chaining algorithm for online nonparametric
regression. In Conference on Learning Theory, pages 764–796. PMLR, 2015.

[GS16] Andras Gyorgy and Csaba Szepesvári. Shifting regret, mirror descent, and matrices. In International
Conference on Machine Learning, pages 2943–2951. PMLR, 2016.

[GW18] Pierre Gaillard and Olivier Wintenberger. Efficient online algorithms for fast-rate regret bounds
under sparsity. Advances in Neural Information Processing Systems, 31, 2018.

[GY14] Sébastien Gerchinovitz and Jia Yuan Yu. Adaptive and optimal online linear regression on L1-balls.
Theoretical Computer Science, 519:4–28, 2014.

[Haz16] Elad Hazan. Introduction to online convex optimization. Foundations and Trends® in Optimization,
2(3-4):157–325, 2016.

[HLS+18] Elad Hazan, Holden Lee, Karan Singh, Cyril Zhang, and Yi Zhang. Spectral filtering for general
linear dynamical systems. Advances in Neural Information Processing Systems, 31, 2018.

[HR09] Niall Hurley and Scott Rickard. Comparing measures of sparsity. IEEE Transactions on Information
Theory, 55(10):4723–4741, 2009.

[HW01] Mark Herbster and Manfred K Warmuth. Tracking the best linear predictor. The Journal of Machine
Learning Research, 1:281–309, 2001.

[HW15] Eric C Hall and Rebecca M Willett. Online convex optimization in dynamic environments. IEEE
Journal of Selected Topics in Signal Processing, 9(4):647–662, 2015.

[JC22] Andrew Jacobsen and Ashok Cutkosky. Parameter-free mirror descent. In Conference on Learning
Theory, pages 4160–4211. PMLR, 2022.

[Joh19] Iain M Johnstone. Gaussian estimation: Sequence and wavelet models. Unpublished lecture notes,
2019. https://imjohnstone.su.domains/GE_09_16_19.pdf.

[JOWW17] Kwang-Sung Jun, Francesco Orabona, Stephen Wright, and Rebecca Willett. Improved strongly
adaptive online learning using coin betting. In Artificial Intelligence and Statistics, pages 943–951.
PMLR, 2017.

[JRSS15] Ali Jadbabaie, Alexander Rakhlin, Shahin Shahrampour, and Karthik Sridharan. Online optimiza-
tion: Competing with dynamic comparators. In Artificial Intelligence and Statistics, pages 398–406.
PMLR, 2015.

[Kal14] Satyen Kale. Open problem: Efficient online sparse regression. In Conference on Learning Theory,
pages 1299–1301. PMLR, 2014.

12

https://imjohnstone.su.domains/GE_09_16_19.pdf

[KKLP17] Satyen Kale, Zohar Karnin, Tengyuan Liang, and Dávid Pál. Adaptive feature selection: Computa-
tionally efficient online sparse linear regression under rip. In International Conference on Machine
Learning, pages 1780–1788. PMLR, 2017.

[KM16] Vitaly Kuznetsov and Mehryar Mohri. Time series prediction and online learning. In Conference
on Learning Theory, pages 1190–1213. PMLR, 2016.

[LLZ09] John Langford, Lihong Li, and Tong Zhang. Sparse online learning via truncated gradient. Journal
of Machine Learning Research, 10(3), 2009.

[LS15] Haipeng Luo and Robert E Schapire. Achieving all with no parameters: Adanormalhedge. In
Conference on Learning Theory, pages 1286–1304. PMLR, 2015.

[MA13] Brendan McMahan and Jacob Abernethy. Minimax optimal algorithms for unconstrained linear
optimization. Advances in Neural Information Processing Systems, 26:2724–2732, 2013.

[Mal08] Stephane Mallat. A Wavelet Tour of Signal Processing: The Sparse Way. Academic Press, 2008.

[MK20] Zakaria Mhammedi and Wouter M Koolen. Lipschitz and comparator-norm adaptivity in online
learning. In Conference on Learning Theory, pages 2858–2887. PMLR, 2020.

[MO14] H Brendan McMahan and Francesco Orabona. Unconstrained online linear learning in hilbert
spaces: Minimax algorithms and normal approximations. In Conference on Learning Theory, pages
1020–1039. PMLR, 2014.

[OP16] Francesco Orabona and Dávid Pál. Coin betting and parameter-free online learning. Advances in
Neural Information Processing Systems, 29, 2016.

[Ora19] Francesco Orabona. A modern introduction to online learning. arXiv preprint arXiv:1912.13213,
2019.

[Pri21] Eric Price. Sparse recovery. In Tim Roughgarden, editor, Beyond the Worst-Case Analysis of
Algorithms, page 140–164. Cambridge University Press, 2021.

[RS14a] Alexander Rakhlin and Karthik Sridharan. Online non-parametric regression. In Conference on
Learning Theory, pages 1232–1264. PMLR, 2014.

[RS14b] Alexander Rakhlin and Karthik Sridharan. Statistical learning and sequential prediction. Unpub-
lished lecture notes, 2014. http://www.mit.edu/~rakhlin/courses/stat928/stat928_
notes.pdf.

[SBG+21] Martin G Schultz, Clara Betancourt, Bing Gong, Felix Kleinert, Michael Langguth, Lukas Hubert
Leufen, Amirpasha Mozaffari, and Scarlet Stadtler. Can deep learning beat numerical weather
prediction? Philosophical Transactions of the Royal Society A, 379(2194):20200097, 2021.

[SM12] Matthew Streeter and Brendan Mcmahan. No-regret algorithms for unconstrained online convex
optimization. Advances in Neural Information Processing Systems, 25, 2012.

[SS11] Shai Shalev-Shwartz. Online learning and online convex optimization. Foundations and trends in
Machine Learning, 4(2):107–194, 2011.

[SST11] Shai Shalev-Shwartz and Ambuj Tewari. Stochastic methods for L1-regularized loss minimization.
Journal of Machine Learning Research, 12:1865–1892, 2011.

[Tib96] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical
Society: Series B (Methodological), 58(1):267–288, 1996.

[vdH19] Dirk van der Hoeven. User-specified local differential privacy in unconstrained adaptive online
learning. Advances in Neural Information Processing Systems, 32, 2019.

[Vov01] Volodya Vovk. Competitive on-line statistics. International Statistical Review, 69(2):213–248,
2001.

[Xia09] Lin Xiao. Dual averaging method for regularized stochastic learning and online optimization.
Advances in Neural Information Processing Systems, 22, 2009.

[YZJY16] Tianbao Yang, Lijun Zhang, Rong Jin, and Jinfeng Yi. Tracking slowly moving clairvoyant: Optimal
dynamic regret of online learning with true and noisy gradient. In International Conference on
Machine Learning, pages 449–457. PMLR, 2016.

13

http://www.mit.edu/~rakhlin/courses/stat928/stat928_notes.pdf
http://www.mit.edu/~rakhlin/courses/stat928/stat928_notes.pdf

[ZCP22] Zhiyu Zhang, Ashok Cutkosky, and Ioannis Paschalidis. PDE-based optimal strategy for uncon-
strained online learning. In International Conference on Machine Learning, pages 26085–26115.
PMLR, 2022.

[Zin03] Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In
Proceedings of the 20th International Conference on Machine Learning, pages 928–936, 2003.

[ZLZ18] Lijun Zhang, Shiyin Lu, and Zhi-Hua Zhou. Adaptive online learning in dynamic environments.
Advances in neural information processing systems, 31, 2018.

[ZYY+17] Lijun Zhang, Tianbao Yang, Jinfeng Yi, Rong Jin, and Zhi-Hua Zhou. Improved dynamic regret for
non-degenerate functions. Advances in Neural Information Processing Systems, 30, 2017.

[ZYZ+18] Lijun Zhang, Tianbao Yang, Zhi-Hua Zhou, et al. Dynamic regret of strongly adaptive methods. In
International conference on machine learning, pages 5882–5891. PMLR, 2018.

[ZZZZ20] Peng Zhao, Yu-Jie Zhang, Lijun Zhang, and Zhi-Hua Zhou. Dynamic regret of convex and smooth
functions. Advances in Neural Information Processing Systems, 33:12510–12520, 2020.

[ZZZZ21] Peng Zhao, Yu-Jie Zhang, Lijun Zhang, and Zhi-Hua Zhou. Adaptivity and non-
stationarity: Problem-dependent dynamic regret for online convex optimization. arXiv preprint
arXiv:2112.14368, 2021.

14

Appendix

Organization Appendix A summarizes a list of comparator statistics involved in our theoretical
analysis. Appendix B surveys additional related works. Appendix C, D and E respectively present
details of our general sparse coding framework, its special version with wavelet dictionaries, and
applications in time series forecasting. Finally, Appendix F presents additional discussion of our
technical results.

A List of comparator statistics

A major task in comparator adaptive online learning is finding suitable statistics to quantify the
regularity of a comparator sequence. Several such statistics are defined throughout this paper, which
are summarized in Table 2. Note that for the definition of sparsity on the last line, we assume the
dictionaryH is orthogonal, and the sequence u1:T is contained in its span. Then, z(n) is defined as
the projection of u1:T onto a feature vector h1:T,n, i.e.,

z(n) = ⟨h1:T,n, u1:T ⟩
h1:T,n

∥h1:T,n∥22
.

This is well defined due to our assumption ∥h1:T,n∥2 ≥ 1 from Section 2.1.

Name Notation Definition

Maximum range M maxt ∥ut∥
Comparator average ū 1

T

∑T
t=1 ut

Path length P
∑T−1

t=1 ∥ut+1 − ut∥2
Norm sum S

∑T
t=1 ∥ut∥2

First order variability S̄
∑T

t=1 ∥ut − ū∥2
Energy E

∑T
t=1 ∥ut∥22

Second order variability Ē
∑T

t=1 ∥ut − ū∥22
Number of switches K

∑T−1
t=1 1[ut+1 ̸= ut]

Sparsity on a dictionaryH SparsityH
(
∑N

n=1∥z(n)∥
2
)2∑N

n=1∥z(n)∥2
2

Table 2: A list of comparator statistics.

Next, let us discuss their relations, in order to interpret our quantitative contribution more clearly
(Table 1). It is clear that S ≤MT , therefore the fine baseline Eq.(4) from [JC22] improves the coarse
one Eq.(3); comparing their associated switching regret bounds follows the same reasoning.

To compare our results to the baselines, observe that

∥ū∥2
√
T =

∥∥∥∥∥ 1√
T

T∑
t=1

ut

∥∥∥∥∥
2

≤
T∑

t=1

1√
T
∥ut∥2 ≤

√
E ≤

√
MS,

S̄ =

T∑
t=1

∥ut − ū∥2 ≤
T∑

t=1

∥ut∥2 + T ∥ū∥2 =

T∑
t=1

∥ut∥2 +

∥∥∥∥∥
T∑

t=1

ut

∥∥∥∥∥
2

≤ 2S,

Ē =

T∑
t=1

∥ut − ū∥22 ≤ 2MS̄ ≤ 4MS.

Therefore,
∥ū∥2

√
T +

√
PS̄ ≤

√
MS + 2

√
2PS = O

(√
(M + P)S

)
,

∥ū∥2
√
T +

√
KĒ ≤

√
MS + 2

√
KMS = O

(√
(1 +K)MS

)
.

15

That is, both our path-length-dependent bound and the switching regret bound are at least as good as
the results from [JC22]. Concrete benefits are demonstrated in Example 1 and 2.

Finally, as a sanity check, our path-length-dependent bound does not violate the lower bound Ω(P):
even when ū = 0,

P =

T−1∑
t=1

∥ut+1 − ut∥2 ≤
T−1∑
t=1

∥ut+1 − ū∥2 +
T−1∑
t=1

∥ut − ū∥2 ≤ 2S̄,

therefore our bound is never better than Õ(P).

B More on related work

Online regression Our sparse coding framework converts unconstrained dynamic OCO to a special
form of online regression. The standard setting of the latter [RS14a] considers a repeated game as
well: in each round, we observe a covariate xt ∈ Rd, make a prediction ŷt ∈ R (which depends on
xt), and then observe a label yt ∈ R. The performance metric is the minimax regret under the square
loss

RegretT (F) =
T∑

t=1

(ŷt − yt)
2 − inf

f∈F

T∑
t=1

(f(xt)− yt)
2.

Roughly, the problem is of a nonparametric type if the complexity of the function class F is not fixed
a priori, but grows with T (i.e., the amount of data).

Overall, such an online regression problem is highly general, as static OCO is recovered if xt is
time-invariant. The setting we utilize is a variant with (i) vector output; (ii) general convex losses;
(iii) xt specified by the dictionary, possibly being sparse itself (e.g., wavelets); and (iv) the function
class F being linear, but unbounded. As discussed in Footnote 11, our setting deviates from the
conventional definition of regression, as a general convex loss function does not necessarily have
minimizers. We adopt the terminology of “regression” for streamlined exposition.

Existing works on online nonparametric regression [RS14a, GG15] have established the relation of
this problem to certain path length characterizations of dynamic regret. However, the generality of this
setting makes the analysis challenging, and especially, algorithms can be computationally expensive.
With a bounded domain assumption (on predictions ŷt), a recent breakthrough [BW21] simultaneously
achieved several notions of optimality for path-length-dependent bounds, with efficient computation.
Readers are referred to [BW21, Appendix A] for a thorough discussion of this line of works.

For the special case of Online Linear Regression (OLR) with square losses, the celebrated VAW
forecaster [AW01, Vov01] guarantees O(N log T) regret against any unbounded coefficient vector
û ∈ RN , where N is the dimension of the feature space. Such a fast rate becomes vacuous in the
nonparametric regime (when N > T) [GY14], therefore [Ger13] proposed a sparsity regret bound
Õ(∥û∥0) and an accompanying inefficient algorithm as its high dimensional generalization. Efficient
computation was addressed by [GW18], but the obtained result only applies to bounded û. In a rough
sense, such sparsity regret bounds are the square loss and feature-based analogue of the L1-norm
parameter-free bounds in OLO [Ora19, Chapter 9]. They are also closely related to sparsity oracle
inequalities in statistics, as reviewed by [Ger13].

Parametric time series models For time series forecasting, most prior works are devoted to
parametric strategies with strong inductive bias, such as the ARMA model, state space models,
and more recent deep learning models. Online learning has been applied to such models as well
[AHMS13, AHZ15, AM16, KM16, HLS+18], leading to forecasting guarantees under mild statistical
assumptions. When convexity is present, some of these problems could be reframed as special cases
of our OLR problem, with a constant-size dictionary that does not grow with T ; for example, learning
the autoregressive model corresponds to defining the features as the fixed-length observation history.
Also, Appendix E shows that given a parametric time series forecaster (possibly without performance
guarantees), our algorithm can be applied on top of it, in order to provably correct its nonstationary
bias.

Other sparsity topics in OL Finally, we review other sparsity-related topics in online learning,
which do not fit into the scope of this paper. [LLZ09, Xia09, DSSST10, SST11] considered using

16

online learning to solve batch L1 regularized problems. The goal is to achieve sparse predictions
instead of sparsity adaptive regret bounds. [Kal14, FKK16, KKLP17] studied online sparse regres-
sion, where only a subset of features are available in each round. The challenge is to handle bandit
feedback in OLR.

C Detail on the general framework

This section presents details on our general sparse coding framework. Appendix C.1 introduces the
static subroutine we adopt from [MK20]. Appendix C.2 proves our main results, but with additional
gradient adaptivity compared to the main paper.

C.1 Unconstrained static subroutine

The following static OCO algorithm and its guarantee are due to [MK20, Section 3.1]. We assume
that ∥ĝt∥2 ≤ Ĝ, and Ĝ > 0.

Algorithm 3 FREEGRAD [MK20, Definition 4]: scale-free and gradient adaptive unconstrained static
OLO.

Require: A hyperparameter ε > 0; dimension d; Lipschitz constant Ĝ.
1: Initialize a gradient sum counter s = 0 ∈ Rd and a variance counter v = Ĝ2.
2: for t = 1, 2, . . . do
3: Predict

x̂t = −εs ·
(2v + Ĝ ∥s∥2)Ĝ2

2(v + Ĝ ∥s∥2)2
√
v
· exp

(
∥s∥22

2v + 2Ĝ ∥s∥2

)
.

4: Observe the loss gradient ĝt.
5: Update s← s+ ĝt, and v ← v + ĝ2t .
6: end for

Lemma C.1 (Theorem 20 of [MK20]). With any hyperparameter ε > 0, for all T ∈ N+ and û ∈ R,
Algorithm 3 guarantees

T∑
t=1

⟨ĝt, x̂t − û⟩ ≤ εĜ+

[
2 ∥û∥2

√
VT log+

(
2 ∥û∥2 VT

εĜ2

)]
∨
[
4 ∥û∥2 Ĝ log

(
4 ∥û∥2

√
VT

εĜ

)]
,

where

VT = Ĝ2 +

T∑
t=1

∥ĝt∥22 .

C.2 Proof of the main result

We now present the analysis of our general sparse coding framework. The following lemma is a
slightly more general version of Lemma 2.1 in the main paper, which characterizes the performance
of our single direction learner (Algorithm 1). Recall that gt ∈ ∂lt(xt) from the OCO-OLO reduction.

Lemma C.2 (Lemma 2.1, full). Let ε > 0 be an arbitrary hyperparameter for Algorithm 3. Applying
its 1D version as the static subroutine, for all T ∈ N+ and u1:T ∈ span(h1:T), against any adversary
E , Algorithm 1 guarantees

T∑
t=1

lt(xt)−
T∑

t=1

lt(ut) ≤ εG+

G
∥u1:T ∥2
∥h1:T ∥2

+

√√√√ T∑
t=1

⟨gt, ut⟩2
 · polylog (max

t
∥ut∥2 , T, ε

−1
)
.

The simplified form (Lemma 2.1) is recovered by using ∥h1:T ∥2 ≥ 1 and ∥gt∥2 ≤ G.

17

Proof of Lemma 2.1. Subsuming poly-logarithmic factors, the static regret bound of our static sub-
routine (Algorithm 3) can be written as

T∑
t=1

ĝt (x̂t − û) ≤ εĜ+ |û|

Ĝ+

√√√√ T∑
t=1

ĝ2t

 · polylog (|û| , T, ε−1
)
,

where û is any 1D static comparator that the subroutine handles.

Now, for any single-directional comparator u1:T ∈ span(h1:T) considered in this lemma, there exists
û ∈ R such that u1:T = ûh1:T . The dynamic regret can be rewritten as

T∑
t=1

lt(xt)−
T∑

t=1

lt(ut) ≤
T∑

t=1

⟨gt, xt − ut⟩ =
T∑

t=1

⟨gt, htx̂t − htû⟩ =
T∑

t=1

ĝt(x̂t − û),

and the RHS can be bounded using the static regret bound above. Note that |ĝt| = |⟨gt, ht⟩| ≤ G,
therefore the surrogate Lipschitz constant Ĝ from the static regret bound can be assigned to G.

In summary,

T∑
t=1

lt(xt)−
T∑

t=1

lt(ut) ≤ εG+ |û|

G+

√√√√ T∑
t=1

⟨gt, ht⟩2
 · polylog (|û| , T, ε−1

)

= εG+

G
∥u1:T ∥2
∥h1:T ∥2

+

√√√√ T∑
t=1

⟨gt, ut⟩2
 · polylog(∥u1:T ∥2

∥h1:T ∥2
, T, ε−1

)

≤ εG+

G
∥u1:T ∥2
∥h1:T ∥2

+

√√√√ T∑
t=1

⟨gt, ut⟩2
 · polylog (max

t
∥ut∥2 , T, ε

−1
)
,

where the last line is due to our assumption that ∥h1:T ∥2 ≥ 1.

Next, we prove the unconstrained dynamic regret bound with general dictionaries (Theorem 1).

Theorem 4 (Theorem 1, full). Consider any collection of signals z(n) ∈ span(h1:T,n), ∀n. We
define its reconstruction error (for the comparator u1:T) as z(0) = u1:T −

∑N
n=1 z

(n) ∈ RdT . Then,
for all T ∈ N+ and u1:T ∈ RdT , against any adversary E , Algorithm 2 guarantees

T∑
t=1

lt(xt)−
T∑

t=1

lt(ut) ≤ εG−
T∑

t=1

〈
gt, z

(0)
t

〉

+

G

N∑
n=1

∥∥z(n)∥∥
2

∥h1:T,n∥2
+

N∑
n=1

√√√√ T∑
t=1

〈
gt, z

(n)
t

〉2 · polylog(max
t,n

∥∥∥z(n)t

∥∥∥
2
, T,N, ε−1

)
,

where z
(n)
t ∈ Rd is the t-th round component of the sequence z(n) ∈ RdT .

Proof of Theorem 4. The idea of this theorem is a dynamic analogue of [Cut19] to aggregate the
regret bound of single direction learners. For all decomposition u1:T =

∑N
n=0 z

(n) such that
z(n) ∈ span(h1:T,n) for all n ∈ [1 : T], we have

T∑
t=1

lt(xt)−
T∑

t=1

lt(ut) ≤ ⟨g1:T , x1:T − u1:T ⟩ =
〈
−g1:T , z(0)

〉
+

N∑
n=1

〈
g1:T , w1:T,n − z(n)

〉
.

18

For the first term on the RHS,
〈
−g1:T , z(0)

〉
= −

∑T
t=1

〈
gt, z

(n)
t

〉
. As for the rest, we plug in

Lemma C.2, with hyperparameter ε/N .

N∑
n=1

〈
g1:T , w1:T,n − z(n)

〉

≤
N∑

n=1

εN−1G+

G

∥∥z(n)∥∥
2

∥h1:T,n∥2
+

√√√√ T∑
t=1

〈
gt, z

(n)
t

〉2 · polylog (max
t

∥∥∥z(n)t

∥∥∥
2
, T,N, ε−1

)
≤ εG+

G

N∑
n=1

∥∥z(n)∥∥
2

∥h1:T,n∥2
+

N∑
n=1

√√√√ T∑
t=1

〈
gt, z

(n)
t

〉2 · polylog(max
t,n

∥∥∥z(n)t

∥∥∥
2
, T,N, ε−1

)
.

Next, we show how this dynamic regret bound recovers the static regret bound in Rd. As discussed in
Section 2.2, the static setting amounts to picking N = d andHt = Id, and the decomposed signals
z(n) are determined by orthogonal projection of the static comparator sequence u1:T = [u, . . . , u].

Specifically, z(n)t is a d-dimensional vector which is zero except the n-th entry; its n-th entry equals
the n-th entry of the static comparator u. If we index the gradient as gt = [gt,1, . . . , gt,d] ∈ Rd and

the static comparator as u = [u1, . . . , ud] ∈ Rd, then
〈
gt, z

(n)
t

〉
= gt,nun. Applying Theorem 4,

against static u1:T ,

T∑
t=1

lt(xt)−
T∑

t=1

lt(ut)

≤ εG+

G

N∑
n=1

∥∥z(n)∥∥
2

∥h1:T,n∥2
+

N∑
n=1

√√√√ T∑
t=1

〈
gt, z

(n)
t

〉2 · polylog(max
t,n

∥∥∥z(n)t

∥∥∥
2
, T,N, ε−1

)

≤ εG+

G

d∑
i=1

|ui|
√
T√

T
+

d∑
i=1

|ui|

√√√√ T∑
t=1

g2t,i

 · polylog (∥u∥∞ , T,N, ε−1
)

≤ εG+

G ∥u∥1 + ∥u∥2

√√√√ T∑
t=1

∥gt∥22

 · polylog (∥u∥∞ , T,N, ε−1
)
. (Cauchy-Schwarz)

In the asymptotic regime with large T , RegretT (u1:T) = Õ(∥u∥2
√
T).

D Detail on the wavelet algorithm

This section presents details of our wavelet algorithm. The pseudocode is presented in Appendix D.1.
Appendix D.2 introduces the wavelet-specific notations for our analysis. Appendix D.3 presents
a generic sparsity based bound for our algorithm. Appendix D.4 and D.5 prove our main results.
Auxiliary lemmas are contained in Appendix D.6. Finally, Appendix D.7 works out the details of the
two examples from the main paper.

D.1 Pseudocode

For all m ∈ N+, let T = 2m, and let Haarm be the T × T Haar dictionary matrix defined in
Section 3.1, for d = 1. We apply the following variant (Algorithm 4) of our sparse coding framework,
in order to remove all d dependence from the final regret bound. It adopts the d dimensional version
of the static subroutine (FREEGRAD), instead of the 1D version in Section 2. The pseudocode mirrors
the combination of Algorithm 1 and 2.

It is equivalent to view Algorithm 4 as operating on a dT × dT “master” dictionary matrixH, defined
block-wise as the following: for all (i, j) ∈ [1 : T]2, the (i, j)-th block of H is the product of the

19

Algorithm 4 Haar OLR with known time horizon.

Require: A time horizon T = 2m; the T × T Haar dictionary matrix Haarm; and a hyperparameter
ε > 0 (default is 1).

1: Let N = T . For all n ∈ [1 : N], initialize a copy of the d dimensional version of Algorithm 3
(FREEGRAD) as An, with hyperparameter ε/N .

2: for t = 1, 2, . . . , do
3: Receive the t-th row of Haarm, and index it as [ht,1, . . . , ht,N]; note that ht,n ∈ R.
4: for n = 1, 2, . . . , N do
5: If ht,n ̸= 0, queryAn for its output, and assign it to x̂t,n ∈ Rd; otherwise, x̂t,n is arbitrary.
6: Define wt,n = ht,nx̂t,n ∈ Rd.
7: end for
8: Predict xt =

∑N
n=1 wt,n ∈ Rd, receive loss gradient gt ∈ Rd.

9: for n = 1, 2, . . . , N do
10: If ht,n ̸= 0, compute ĝt,n = ht,ngt and send it to An as its surrogate loss gradient.
11: end for
12: end for

Algorithm 5 Anytime Haar OLR (Algorithm 4 with doubling trick).

1: for m = 1, 2, . . . , do
2: Run Algorithm 4 for 2m rounds, which uses the matrix Haarm. The hyperparameter is set to

1.
3: end for

(i, j)-th entry of Haarm (which is a scalar) and the d-dimensional identity matrix Id. That is,H is
a block matrix; each block is a diagonal matrix with equal diagonal entries determined by Haarm.
Roughly, the algorithm measures distances in Rd by the L2 norm, while measuring RT by the L1

norm.

Algorithm 4 alone is not sufficient for our purpose: it must take an integer m and run for a fixed
T = 2m rounds. We apply a meta algorithm (Algorithm 5), which simply restarts the known T
algorithm using the classical doubling trick, c.f., [SS11, Section 2.3.1].

D.2 More background

Although the analysis of our framework is simpler than [JC22], a challenge is carefully indexing all
the quantities to account for the vectorized setting. It is thus important to introduce a few notations to
streamline the presentation. Haarm is the T × T Haar dictionary matrix defined in Section 3.1, with
T = 2m. Recall the statistics of the comparator sequence, summarized in Appendix A.

Local interval Given any scale-location pair (j, l), let the support I(j,l) be the time interval where
the feature h(j,l) is nonzero. That is,

I(j,l) := [2j(l − 1) + 1 : 2j l].

Moreover, let I(j,l)+ denote the first half of this interval, and I
(j,l)
− for the second half. h(j,l) is 1 on

I
(j,l)
+ , and −1 on I

(j,l)
− .

Normalization Let ˜Haarm be the orthonormal matrix obtained by scaling the columns of Haarm.
The normalized feature vectors are also denoted by tilde, i.e., instead of h∗ and h(j,l), the normalized
features are h̃∗ and h̃(j,l). They are vectors in RT , with the t-th component denoted by h̃∗

t and h̃
(j,l)
t ,

in R.

Coordinate sequence Consider any comparator sequence u1:T ∈ RdT . For all coordinate i ∈ [1 :

d], we define its i-th coordinate sequence as u(i)
1:T ∈ RT : the t-th entry of this coordinate sequence

u
(i)
1:T , denoted by u

(i)
t , is the i-th coordinate of ut.

20

Transform domain coefficient We will also use the transform domain coefficients of u1:T , under
the Haar wavelet transform. Recall that in the single-feature, generic setting (Section 2.2), we denoted
a single transform domain coefficient by û ∈ R. With wavelets, the transform domain encodes
dT -dimensional vectors. According to our convention so far, we will denote them by scale-location
pairs (j, l): given a (j, l) pair, the “coefficient” û(j,l) is a d-dimensional vector. There are T − 1
pairs of (j, l) in total; complementing the representation, we use another û∗ ∈ Rd to represent the
“coefficient” for the all-one feature.

Given any scale parameter j ∈ [1 : log2 T] and location parameter l ∈ [1 : 2−jT], let

û(j,l) :=
[〈

h̃(j,l), u
(1)
1:T

〉
, . . . ,

〈
h̃(j,l), u

(d)
1:T

〉]
,

and for the all-one feature,

û∗ :=
[〈

h̃∗, u
(1)
1:T

〉
, . . . ,

〈
h̃∗, u

(d)
1:T

〉]
.

That is, each entry is the inner product between the normalized feature and a coordinate sequence
from u1:T .

Due to the orthonormality of the applied transform (specified by the normalized features h̃∗ and
h̃(j,l)), the energy is preserved between the time domain and the transform domain, i.e.,

E = ∥u1:T ∥22 = ∥û∗∥22 +
∑
j,l

∥∥∥û(j,l)
∥∥∥2
2
,

and also the second order variability (the energy of the centered dynamic component within u1:T),

Ē =

T∑
t=1

∥ut − ū∥22 =
∑
j,l

∥∥∥û(j,l)
∥∥∥2
2
. (11)

Moreover, since h̃∗ equals 1/
√
T times the all-one vector,

∥û∗∥22 =

d∑
i=1

〈
h̃∗, u

(i)
1:T

〉2
=

d∑
i=1

(
1√
T

∑
t

u
(i)
1:T

)2

= T

d∑
i=1

(
1

T

∑
t

u
(i)
1:T

)2

= ∥ū∥22 T. (12)

Detail reconstruction Given the transform domain coefficients, we can reconstruct details of the
comparator u1:T on the time domain. Similar to our notation in the generic framework (Section 2.2),
we keep the letter z, but replace the index n by (j, l), which is more suitable for indexing wavelets.

Let z(j,l) ∈ RdT be the detail of u1:T along the (j, l)-th feature. It is the concatenation of T vectors
in Rd, and for all t, the t-th of these vectors is defined by

z
(j,l)
t := û(j,l)h̃

(j,l)
t ∈ Rd.

Similarly, we can define the detail z∗ along the feature h̃∗. Its t-th component is

z∗t := û∗h̃∗
t ,

and clearly, the RHS does not depend on t since h̃∗ is the normalization of the all-one feature h∗.

Let us also sum the details across different locations. Given a scale j, let

z(j) :=
∑
l

z(j,l) ∈ RdT .

Note that the summands are sequences that do not overlap: at each entry, only one of the summand
sequence is nonzero. The full reconstruction is obtained by summing all the details,

u1:T := z∗ +

log2 T∑
j=1

z(j).

21

Statistics of the detail sequence We can define statistics of the detail sequences just like the
statistics of the comparator u1:T . Specifically, define the first order variability of the (j, l)-th detail as

S̄(j,l) :=

T∑
t=1

∥∥∥z(j,l)t

∥∥∥
2
.

Note that since the z(j,l)t sequence is centered (with average being equal to 0), its first order variability
equals its norm sum, c.f., Appendix A. Summing over the locations, the first order variability at the
j-th scale is

S̄(j) :=

T∑
t=1

∥∥∥z(j)t

∥∥∥
2
,

which equals
∑

l S̄
(j,l).

Similarly, we can define the path length of the detail sequences. A caveat is that we only count the
path length within the support I(j,l) of the feature h(j,l),

P (j,l) :=

2j l−1∑
t=2j(l−1)+1

∥∥∥z(j,l)t+1 − z
(j,l)
t

∥∥∥
2
.

The comparator’s movement when the support changes does not count. Summing over the locations,

P (j) :=
∑
l

P (j,l).

D.3 Generic sparsity adaptive bound

With the notation from the previous subsection, we now present a generic sparsity adaptive regret
bound for Algorithm 4 (fixed T Haar OLR). Since the latter is a variant of our main sparse coding
framework (Section 2), the result can be analogously derived, although the notations need to be
treated carefully.
Lemma D.1. For any m, T = 2m and u1:T ∈ RdT , with any hyperparameter ε > 0, Algorithm 4
guarantees

RegretT (u1:T) ≤ εG+G

∥z∗∥2 + log2 T∑
j=1

2−jT∑
l=1

∥∥∥z(j,l)∥∥∥
2

 · polylog (M,T, ε−1
)
.

The proof sums the regret bound of the d-dimensional version of the static subroutine (Lemma C.1),
across T different copies. It is very similar to Theorem 1, therefore omitted.

It might be more convenient to use the transform domain coefficients û(j,l) in the bound, rather than
the reconstructed details z(j,l). In this case, we have∥∥∥z(j,l)∥∥∥2

2
=
∑
t

∥∥∥z(j,l)t

∥∥∥2
2
=
∑
t

[∥∥∥û(j,l)
∥∥∥2
2

∣∣∣h̃(j,l)
t

∣∣∣2] = ∥∥∥û(j,l)
∥∥∥2
2

∑
t

∣∣∣h̃(j,l)
t

∣∣∣2 =
∥∥∥û(j,l)

∥∥∥2
2
.

Similarly,
∥z∗∥22 = ∥û∗∥22 .

Therefore,

RegretT (u1:T) ≤ εG+G

∥û∗∥2 +
log2 T∑
j=1

2−jT∑
l=1

∥∥∥û(j,l)
∥∥∥
2

 · polylog (M,T, ε−1
)
. (13)

D.4 Unconstrained switching regret

In the K-switching regret, the complexity of the comparator is characterized by its amount of
switches. The idea is that, if the comparator u1:T is static on a support I(j,l) for some (j, l), then the
corresponding transform domain coefficient û(j,l) = 0 ∈ Rd. We have the following bound for the
fixed T algorithm (Algorithm 4).

22

Lemma D.2. For any m, T = 2m and u1:T ∈ RdT , Algorithm 4 with the hyperparameter ε = 1
guarantees

RegretT (u1:T) = Õ
(
∥ū∥2

√
T +

√
KĒ

)
.

Proof of Lemma D.2. Consider any scale j. Since the supports {I(j,l)}l do not overlap, if u1:T shifts
K times, then there are at most K choices of location l such that the transform domain coefficient
û(j,l) is nonzero. Furthermore, since there are log2 T scales in total, there are at most K log2 T pairs
of (i, l) such that û(j,l) is nonzero. Therefore, using Cauchy-Schwarz and Eq.(11),∑

j,l

∥∥∥û(j,l)
∥∥∥
2
≤
√
K log2 T

√∑
j,l

∥∥û(j,l)
∥∥2
2
=
√
KĒ log2 T .

Plugging this into Eq.(13), and further using Eq.(12) for ∥û∗∥2 complete the proof.

The anytime bound in general follows from the classical doubling trick. A twist is that the analysis is
slightly more involved than the standard one, e.g., [SS11, Section 2.3.1], as we also need to relate the
comparator statistics on each block to those for the entire signal u1:T .
Theorem 2 (Switching regret). For all T ∈ N+ and u1:T ∈ RdT , Algorithm 5 guarantees

RegretT (u1:T) ≤ Õ
(
∥ū∥2

√
T +

√
KĒ

)
. (9)

Proof of Theorem 2. First, assume T can be exactly decomposed into m∗ segments with dyadic
lengths 21, . . . , 2m

∗
. We use ūm, Km and Ēm to represent the statistics of the comparator sequence

on the length 2m block, and let Im denote the time interval that this block operates on. ū, K and S
denote the statistics of the entire signal u1:T , c.f., Appendix A. From Lemma D.2,

RegretT (u1:T) ≤
m∗∑
m=1

Õ
(
∥ūm∥2

√
2m +

√
KmĒm

)
≤ Õ

[
∥ū∥2

(
m∗∑
m=1

√
2m

)
+

m∗∑
m=1

∥ūm − ū∥2
√
2m +

m∗∑
m=1

√
KmĒm

]
. (14)

The first term follows from the standard doubling trick analysis [SS11, Section 2.3.1],

m∗∑
m=1

√
2m ≤

√
2√

2− 1

√
2m∗ = O

(√
T
)
. (15)

As for the second term in Eq.(14), using Cauchy-Schwarz,

m∗∑
m=1

∥ūm − ū∥2
√
2m ≤

√√√√m∗

(
m∗∑
m=1

2m ∥ūm − ū∥22

)
.

m∗ = O(log T), and also observe that the sum (in the parenthesis) on the RHS equals the second
order variability of the following signal: for any time t in the m-th block, the signal’s component is
ūm ∈ Rd. This signal is a locally averaged version of the original comparator u1:T , and the key idea
is that local averaging decreases the variability. Formally, due to Lemma D.7, we have

m∗∑
m=1

∥ūm − ū∥2
√
2m ≤ Õ

(√
Ē
)
. (16)

For the third term in Eq.(14), using Cauchy-Schwarz again,

m∗∑
m=1

√
KmĒm ≤

√√√√(m∗∑
m=1

Km

)(
m∗∑
m=1

Ēm

)
≤
√

KĒ.

23

The sum of Km is straightforward. The inequality for the sum of Ēm follows from the observation
that on the m-th block, ūm minimizes

∑
t∈Im ∥ut − x∥22 with respect to x ∈ Rd.

Also, notice that the second term in Eq.(14) is dominated by the third term. If K = 0, then both
√
Ē

and
√
KĒ equal 0. If K ≥ 1, then

√
Ē ≤

√
KĒ. Therefore, Eq.(14) can be written as

RegretT (u1:T) ≤ Õ
(
∥ū∥2

√
T +

√
KĒ

)
.

As for the general setting where T cannot be exactly decomposed into dyadic blocks: consider the
smallest T ∗ > T such that T ∗ can be decomposed. Due to doubling intervals, T ∗ ≤ 2T . Let us
consider a hypothetical length T ∗ game with the rounds t > T constructed as follows: the loss
gradient gt = 0 ∈ Rd, and ut = ū. In this case, with K and Ē still representing the statistics of the
length T sequence u1:T , the number of switches on the entire time interval [1 : T ∗] is at most K + 1,
and the second order variability on [1 : T ∗] is Ē; furthermore, it is clear that (K + 1)Ē ≤ 2KĒ.
The regret of any algorithm on this hypothetical length T ∗ game is the same as the length T game,
therefore bounding the latter follows from bounding the former.

D.5 Path-length-based bound

Next, we turn to bounds that depend on the path length P of the comparator u1:T . Similar to the
switching regret analysis, we will first consider the setting with fixed dyadic T (Algorithm 4), and
then extend its guarantee through a doubling trick.

D.5.1 Fixed dyadic horizon

In the following, we consider Algorithm 4; assume T = 2m for some m. The static component (i.e.,
z∗) and the dynamic component (i.e., u1:T − z∗) of u1:T are analyzed separately; the former is fairly
standard, while the latter is more challenging. We will first consider the dynamic component, and
proceed in three steps.

Step 1 Considering any scale j, we aim to show
∑

l

∥∥û(j,l)
∥∥
2
≤
√
P (j)S̄(j), which relates the

transform domain coefficients to the regularity of the reconstructed signals.

Lemma D.3. For all (j, l) pair, ∥∥∥û(j,l)
∥∥∥
2
= 2−1/2

√
P (j,l)S̄(j,l),

and ∑
l

∥∥∥û(j,l)
∥∥∥
2
≤ 2−1/2

√
P (j)S̄(j).

Proof of Lemma D.3. Let us start from the first part of this lemma, and express the detail sequence
z(j,l), and equivalently z(j), more explicitly on its support I(j,l).

z
(j)
t =

{
2−j/2û(j,l), t ∈ I

(j,l)
+ ;

−2−j/2û(j,l), t ∈ I
(j,l)
− .

Rewriting P (j,l) and S̄(j,l),

P (j,l) =

2j l−1∑
t=2j(l−1)+1

∥∥∥z(j)t+1 − z
(j)
t

∥∥∥
2
= 21−j/2

∥∥∥û(j,l)
∥∥∥
2
.

S̄(j,l) =
∑

t∈I(j,l)

∥∥∥z(j)t

∥∥∥
2
= 2−j/2

∥∥∥û(j,l)
∥∥∥
2
· 2j = 2j/2

∥∥∥û(j,l)
∥∥∥
2
,

which yields the equality in the lemma. The second part follows from Cauchy-Schwarz.

24

Step 2 Showing that P (j) ≤ P and S̄(j) ≤ S̄. That is, the reconstructed signals are easier than the
original comparator u1:T . Here, P and S̄ should be considered separately.

Lemma D.4. For any u1:T and any scale parameter j∗, P (j∗) ≤ P .

Proof of Lemma D.4. From the definition of P and the reconstruction of u1:T from detail sequences,

P =

T−1∑
t=1

∥ut+1 − ut∥2 =

T−1∑
t=1

∥∥∥∥∥∥z∗t+1 − z∗t +
∑
j

(
z
(j)
t+1 − z

(j)
t

)∥∥∥∥∥∥
2

=

T−1∑
t=1

∥∥∥∥∥∥
∑
j

(
z
(j)
t+1 − z

(j)
t

)∥∥∥∥∥∥
2

,

where the last equality is due to z∗ being a constant sequence.

Consider removing “shorter” scales with 1 ≤ j < j∗, which is equivalent to local averaging, c.f.,
Appendix D.6. Due to Lemma D.7, the path length does not increase, i.e,

T−1∑
t=1

∥∥∥∥∥∥
∑
j

(
z
(j)
t+1 − z

(j)
t

)∥∥∥∥∥∥
2

≥
T−1∑
t=1

∥∥∥∥∥∥
∑
j≥j∗

(
z
(j)
t+1 − z

(j)
t

)∥∥∥∥∥∥
2

.

Then, we can further remove the rounds where the path length is not counted in P (j∗), i.e., when a
time t ∈ I(j

∗,l) but t+ 1 ∈ I(j
∗,l+1).

RHS ≥
∑
l

2j
∗
l−1∑

t=2j∗ (l−1)+1

∥∥∥∥∥∥
∑
j≥j∗

(
z
(j)
t+1 − z

(j)
t

)∥∥∥∥∥∥
2

.

Now, consider any location l, which determines the time interval I(j
∗,l) = [2j

∗
(l − 1) + 1 : 2j

∗
l].

Any detail sequence z(j) with scale j > j∗ is constant on this time interval, thus removing it does not
change the path length at all. Therefore,

P ≥
∑
l

2j
∗
l−1∑

t=2j∗ (l−1)+1

∥∥∥z(j∗)t+1 − z
(j∗)
t

∥∥∥
2
= P (j∗).

As for the first order variability,

Lemma D.5. For any u1:T and any scale parameter j∗, S̄(j∗) ≤ S̄.

Proof of Lemma D.5. From the definition, noticing that ū is entirely captured by the all-one feature,

S̄ =

T∑
t=1

∥ut − ū∥2 =

T∑
t=1

∥∥∥∥∥∥
log2 T∑
j=1

z
(j)
t

∥∥∥∥∥∥
2

.

Due to Lemma D.7, removing short scales amounts to local averaging, which decreases the variability.

S̄ ≥
T∑

t=1

∥∥∥∥∥∥
∑
j≥j∗

z
(j)
t

∥∥∥∥∥∥
2

=
∑
l

∑
t∈I(j∗,l)

∥∥∥∥∥∥z(j∗)t +
∑
j>j∗

z
(j)
t

∥∥∥∥∥∥
2

.

For any l, consider the support of the (j∗, l)-th feature, I(j
∗,l). Observe that

∑
j>j∗ z

(j)
t is time

invariant throughout I(j
∗,l), let us denote it as v ∈ Rd. Meanwhile, for some w ∈ Rd, z(j

∗)
t equals

w on I
(j∗,l)
+ , the first half of this interval, while being −w on the second half I(j

∗,l)
− of this interval.

Therefore,∑
t∈I(j∗,l)

∥∥∥∥∥∥z(j∗)t +
∑
j>j∗

z
(j)
t

∥∥∥∥∥∥
2

= 2j
∗−1 (∥v + w∥2 + ∥v − w∥2) ≥ 2j

∗
∥w∥2 =

∑
t∈I(j∗,l)

∥∥∥z(j∗)t

∥∥∥
2
.

Combining the above,
S̄ ≥

∑
l

∑
t∈I(j∗,l)

∥∥∥z(j∗)t

∥∥∥
2
= S̄(j∗).

25

Step 3 Summarizing the above relations, and using the property that there are only log2 T scales.

Lemma D.6. For any m, T = 2m and u1:T ∈ RdT , Algorithm 4 with the hyperparameter ε = 1
guarantees

RegretT (u1:T) = Õ
(
∥ū∥2

√
T +

√
PS̄
)
.

Proof of Lemma D.6. Starting from the generic regret bound, Eq.(13) for Algorithm 4.

RegretT (u1:T) ≤ εG+G

∥û∗∥2 +
∑
j,l

∥∥∥û(j,l)
∥∥∥
2

 · polylog (M,T, ε−1
)
.

Due to Eq.(12), ∥û∗∥2 = ∥ū∥2
√
T . Then, combining Lemma D.3, D.4 and D.5,∑
j,l

∥∥∥û(j,l)
∥∥∥
2
≤ O

(√
PS̄ log2 T

)
.

Plugging it into the generic bound completes the proof.

D.5.2 Anytime bound

Now we are ready to prove an anytime unconstrained dynamic regret bound that depends on the path
length.

Theorem 3 (Path length bound). For all T ∈ N+ and u1:T ∈ RdT , Algorithm 5 guarantees

RegretT (u1:T) ≤ Õ
(
∥ū∥2

√
T +

√
PS̄
)
. (10)

Proof of Theorem 3. Similar to the analysis of the switching regret (Theorem 2), we first consider
the situation where the time horizon T can be exactly decomposed into m∗ segments with dyadic
lengths 21, . . . , 2m

∗
. In this situation, we have

RegretT (u1:T) ≤ Õ

[
m∗∑
m=1

∥ūm∥2
√
2m +

m∗∑
m=1

√
PmS̄m

]

≤ Õ

[
∥ū∥2

√
T +

√
Ē +

m∗∑
m=1

√
PmS̄m

]
,

where the second line follows from the proof of Theorem 2, specifically Eq.(15) and Eq.(16).

Now let us consider the remaining sum on the RHS. Using Cauchy-Schwarz,

m∗∑
m=1

√
PmS̄m ≤

√√√√(m∗∑
m=1

Pm

)(
m∗∑
m=1

S̄m

)
≤

√√√√P

(
m∗∑
m=1

2m+1−2∑
t=2m−1

∥ut − ūm∥2

)
,

where

m∗∑
m=1

2m+1−2∑
t=2m−1

∥ut − ūm∥2 ≤
m∗∑
m=1

2m+1−2∑
t=2m−1

(∥ut − ū∥2 + ∥ūm − ū∥2) = S̄ +

m∗∑
m=1

2m ∥ūm − ū∥2 .

The last sum on the RHS is the first order variability of a locally averaged version of u1:T . Due to
Lemma D.7,

m∗∑
m=1

2m ∥ūm − ū∥2 ≤ S̄.

Combining everything above,

RegretT (u1:T) ≤ Õ
(
∥ū∥2

√
T +

√
Ē +

√
PS̄
)
.

26

It remains to show that
√
Ē ≤

√
PS̄, thus the former can be absorbed into the latter. Plugging in the

definitions, this is equivalent to showing

T∑
t=1

∥ut − ū∥22 ≤
T∑

t=1

P ∥ut − ū∥2 ,

and it suffices to prove ∥ut − ū∥ ≤ P for all t ∈ [1 : T]. This is completed in Lemma D.8. Till this
point, we have shown the desirable result in the situation of “exact dyadic partitioning”.

To complete the proof, we turn to the general situation where T cannot be partitioned into dyadic
blocks. This follows from a similar “padding” construction from the proof of Theorem 2. Let
T ∗ = 2⌈log2 T⌉, and by definition, T ∗ ≤ 2T . Let us consider a hypothetical length T ∗ game with the
rounds t > T constructed as follows: the loss gradient gt = 0 ∈ Rd, and ut = ū. Then, the regret of
any algorithm on the length T ∗ hypothetical game equals its regret on the actual length T game, and
the regret bound for the former applies to the latter as well: if we write P ∗ and S̄∗ as the statistics of
the extended length T ∗ comparator, then

RegretT (u1:T) ≤ Õ
(
∥ū∥2

√
T ∗ +

√
P ∗S̄∗

)
.

Clearly, S̄∗ = S̄ and T ∗ ≤ 2T . As for the path length, P ∗ = P +∥uT − ū∥2, and due to Lemma D.8,
∥uT − ū∥2 ≤ P . Plugging it back completes the proof.

D.6 Useful lemma

Our analysis uses two auxiliary lemmas. First, we show that local averaging makes a signal “more
regular”. Consider any signal u1:T ∈ RdT , with the t-th round component ut ∈ Rd. Local averaging
refers to replacing any k consecutive components of u1:T by their average, i.e., setting

uτ+1, . . . , uτ+k = k−1
k∑

i=1

uτ+i,

for some τ ∈ [0 : T − k].

Lemma D.7. Let a signal w1:T ∈ RdT be the result of u1:T after local averaging, and w̄ =

T−1
∑T

t=1 wt ∈ Rd. Then, the path length, the norm sum and the energy of w1:T , including their
centered versions, are all dominated by those of u1:T . That is,

1.
∑T−1

t=1 ∥wt+1 − wt∥2 ≤
∑T−1

t=1 ∥ut+1 − ut∥2;

2.
∑T

t=1 ∥wt − w̄∥2 ≤
∑T

t=1 ∥ut − ū∥2;

3.
∑T

t=1 ∥wt − w̄∥22 ≤
∑T

t=1 ∥ut − ū∥22.

4.
∑T

t=1 ∥wt∥2 ≤
∑T

t=1 ∥ut∥2, and
∑T

t=1 ∥wt∥22 ≤
∑T

t=1 ∥ut∥22.

Proof of Lemma D.7. Starting from the first part of the lemma, we prove for the general case of
0 < τ < T − k. The boundary cases (τ = 0 and τ = T − k) are analogous.

Local averaging only affects the path length caused by the averaged entries uτ+1, . . . , uτ+k, and the
two entries uτ and uτ+k+1 right besides averaging boundary; this original path length quantity in

27

u1:T is
∑k

i=0 ∥uτ+i+1 − uτ+i∥2. After averaging, the path length among these entries becomes∥∥∥∥∥uτ − k−1
k∑

i=1

uτ+i

∥∥∥∥∥
2

+

∥∥∥∥∥k−1
k∑

i=1

uτ+i − uτ+k+1

∥∥∥∥∥
2

= k−1

∥∥∥∥∥
k∑

i=1

(uτ − uτ+i)

∥∥∥∥∥
2

+ k−1

∥∥∥∥∥
k∑

i=1

(uτ+i − uτ+k+1)

∥∥∥∥∥
2

≤ k−1
k∑

i=1

(∥uτ − uτ+i∥2 + ∥uτ+i − uτ+k+1∥2)

≤ k−1
k∑

i=1

 k∑
j=0

∥uτ+j+1 − uτ+j∥2


=

k∑
i=0

∥uτ+i+1 − uτ+i∥2 .

Now consider the second part of the lemma. After local averaging, w̄ = ū. The affected part of the
signal contributes to the following first order variability

k∑
t=1

∥wτ+i − w̄∥2 = k

∥∥∥∥∥k−1
k∑

i=1

uτ+i − ū

∥∥∥∥∥
2

=

∥∥∥∥∥
k∑

i=1

uτ+i − kū

∥∥∥∥∥
2

≤
k∑

t=1

∥uτ+i − ū∥2 .

As for the third part of the lemma,

k∑
t=1

∥wτ+i − w̄∥22 = k

∥∥∥∥∥k−1
k∑

i=1

uτ+i − ū

∥∥∥∥∥
2

2

≤ k−1

(
k∑

i=1

∥uτ+i − ū∥2

)2

≤
k∑

t=1

∥uτ+i − ū∥22 ,

where the last inequality is due to AM-QM inequality.

The final part of the proof is the uncentered version of Part 2 and 3, which follows the same steps. In
fact, any fixed reference point (for the variability) works, i.e., for all v ∈ Rd,

T∑
t=1

∥wt − v∥2 ≤
T∑

t=1

∥ut − v∥2 ,

T∑
t=1

∥wt − v∥22 ≤
T∑

t=1

∥ut − v∥22 .

We also use another simple lemma.

Lemma D.8. Consider any comparator sequence u1:T . For all t, we have ∥ut − ū∥2 ≤ P .

Proof of Lemma D.8. Starting from the definition,

∥ut − ū∥2 =

∥∥∥∥∥ut −
T∑

i=1

T−1ui

∥∥∥∥∥
2

≤ T−1
T∑

i=1

∥ut − ui∥2 ,

and for all i, t ∈ [1 : T], ∥ut − ui∥2 ≤ P due to triangle inequality.

D.7 Quantitative example

This subsection presents details of our two quantitative examples, Example 1 and 2.

28

Tracking outliers We first calculate the relevant statistics of the comparator u1:T . Note that we
assume k ≤

√
T , and in this way, there is only a small amount of ut with large magnitude, which can

then be called outliers.
ū =

1

T

(
k
√
T + T − k

)
,

|ū| = Θ(1), M =
√
T , K = 1 or 2, P = Θ(

√
T), Ē ≤ E = kT + T − k = Θ(kT). As for S and

S̄,
S = k

√
T + T − k = Θ(T),

S̄ = k(
√
T − ū) + (T − k)(ū− 1)

= 2kT−1(T − k)(
√
T − 1)

≤ O(k
√
T).

Intuitively, we have |ū| = Θ(1) while M =
√
T ; S̄ = O(k

√
T) while S = Θ(T). This explains the

improvements detailed next. For each algorithm considered in Table 1, we evaluate both its switching
regret bound and its path-length-dependent bound.

• The minimax algorithm ADER [ZLZ18] is not applicable, as M grows with T and can be larger
than any fixed diameter D.

• The P -dependent bound of the coarse baseline [JC22, Algorithm 6], c.f., Eq.(3), is

Õ
(√

(M + P)MT
)
= Õ(T).

With P = O(KM), the resulting K-dependent bound is

Õ
(
M
√
(1 +K)T

)
= Õ(T).

• The P -dependent bound of the fine baseline [JC22, Algorithm 2], c.f., Eq.(4), is

Õ
(√

(M + P)S
)
= Õ

(
T 3/4

)
.

With P = O(KM), the resulting K-dependent bound is

Õ
(√

(1 +K)MS
)
= Õ(T 3/4).

• Our path length bound is
Õ
(
|ū|
√
T +

√
PS̄
)
= Õ

(√
kT
)
.

Same for our switching regret bound,

Õ
(
|ū|
√
T +

√
KĒ

)
= Õ

(√
kT
)
.

Persistent oscillation Again, we calculate the statistics of the comparator u1:T . ū = 1, M ≤ 2,
K = k, P = Θ(k/

√
T). Crucially, S̄ =

√
T and Ē = Θ(1), while S = Θ(T) and E = Θ(T). Here

the K-dependent bounds of the baselines are loose compared to their corresponding P -dependent
bounds, due to using the relation P = O(KM). Therefore we will only evaluate their P -dependent
bounds.

• Suppose one knows that M ≤ 2 beforehand, then ADER can be applied with D = 2. The regret
bound is

Õ
(√

(D + P)DT
)
= Õ

(√
T + k1/2T 1/4

)
.

• One could check that the P -dependent bounds of the coarse and the fine baselines are also

Õ
(√

(M + P)MT
)
= Õ

(√
T + k1/2T 1/4

)
,

Õ
(√

(M + P)S
)
= Õ

(√
T + k1/2T 1/4

)
.

• For our algorithm, the P -dependent bound is

Õ
(
|ū|
√
T +

√
PS̄
)
= Õ

(√
T
)
.

The K-dependent bound is

Õ
(
|ū|
√
T +

√
KĒ

)
= Õ

(√
T
)
.

29

E Application: Time series forecasting

This section presents an application of our framework in time series forecasting.15 Roughly speaking,
we aim to address the following question:

Given a black box forecaster, can we make it provably robust against (structured) nonstationarity?

Along the way, our objective is to show that

• Simultaneously handling unconstrained domains and dynamic comparators in online learning
brings downstream benefits in time series forecasting.

• Our sparse coding framework can enhance empirically developed forecasting strategies.

Setting Let us consider the following forecasting problem, which resembles the online learning
game introduced at the beginning of this paper. The difference is that, here, we further assume access
to a black box forecaster A. In each (the t-th) round,

1. The black box forecaster A produces a prediction at ∈ Rd based on the observed history (z1:t−1

and l1:t−1).
2. After observing at, we make a prediction xt ∈ Rd.
3. The environment reveals a true value zt ∈ Rd and a convex loss function lt : Rd → R. lt is

G-Lipschitz with respect to ∥·∥2, and zt is one of its minimizer satisfying lt(zt) = 0.

Our goal is to achieve low total loss
∑T

t=1 lt(xt). Since trivially picking xt = at already achieves
a total loss of

∑T
t=1 lt(at), our goal is to improve it in certain situations, by designing a more

sophisticated prediction rule based on at.

Intuition In the above setting, A can be any algorithm that predicts z1:T in a reasonable, but
non-robust manner. Taking the weather forecasting for example, there are a few notable cases.

• A is a simulator of the governing meteorological equations, which uses the online observations
z1:t−1 as boundary conditions.

• A is an autoregressive model, which predicts a linear combination of the past observations. The
coefficients are determined by statistical modeling.

• A is a large deep learning model trained on offline datasets (e.g., the weather history at geographi-
cally similar locations).

Even though such forecasters typically lack performance guarantees, their predictions can be used to
construct time-varying Bayesian priors (see our discussion in the Introduction): given at, we will
apply a fine-tuning adjustment δt to predict xt = at + δt. Intuitively, the total loss is low if at is close
to the true value zt, i.e., when the prior is good.

Reduction to unconstrained dynamic regret Concretely, if xt = at + δt, then due to convexity,
for all subgradients gt ∈ ∂lt(xt) we have lt(xt)− lt(zt) ≤ ⟨gt, δt⟩ − ⟨gt, zt − at⟩. The RHS is the
instantaneous regret of δt in an OLO problem with loss gradient gt and comparator zt− at. Applying
our unconstrained dynamic OLO algorithm, the total loss in forecasting can be bounded as

T∑
t=1

lt(xt) ≤ RegretT (z1:T − a1:T).

That is, the total loss bound adapts to the complexity of the error sequence z1:T − a1:T (of the given
black box forecaster). This contains a1:T = 0 as a special case, where no side information is assumed.

Let us compare this bound to the baseline
∑T

t=1 lt(at), which corresponds to trivially picking
xt = at.

• If z1:T = a1:T , i.e., the black box A is perfect, then the baseline loss is
∑T

t=1 lt(at) = 0. In
this case, due to Theorem 4, our general sparse coding framework guarantees

∑T
t=1 lt(xt) ≤ εG,

where ε > 0 is an arbitrary hyperparameter. That is, our algorithm is worse than the baseline by at
most a constant.
15Code is available at https://github.com/zhiyuzz/NeurIPS2023-Sparse-Coding.

30

https://github.com/zhiyuzz/NeurIPS2023-Sparse-Coding

• If z1:T ̸= a1:T , then in general, the baseline loss
∑T

t=1 lt(at) is linear in T . In contrast, our
algorithm could guarantee a sublinear RegretT (z1:T − a1:T), thus also a sublinear total loss, when
the error sequence z1:T − a1:T is structurally simple (e.g., sparse under a transform, or low path
length) with respect to our prior knowledge.

In summary, the idea is that by sacrificing at most a constant loss when A is perfect (z1:T = a1:T),
we could robustify A against certain structured unseen environments, improving the linear total loss
to a sublinear rate.

Importance of unconstrained domain The above application critically relies on the ability of
our algorithm to handle unconstrained domains. To demonstrate this, suppose we instead use the
bounded domain algorithm from [ZLZ18] to pick the fine-tuning adjustment δt. Then, the above
analysis only holds if an upper bound D of the maximum error maxt ∥zt − at∥2 is known a priori
– this is a stringent requirement in practice. Furthermore, when z1:T = a1:T , such an alternative
approach only guarantees

∑T
t=1 lt(xt) ≤ Õ(D

√
T), which is considerably worse than the baseline 0.

In other words, the alternative fine-tuning strategy could ruin the black box forecaster A, when the
latter performs well.

In the rest of this section, we present experiments for this time series application. Appendix E.1
demonstrates the power law phenomenon, which shows that both the time series z1:T and the
error sequence z1:T − a1:T could exhibit exploitable structures. This implies good performance
guarantees using our theoretical framework. Appendix E.2 goes one step further by actually testing
the fine-tuning performance of our algorithm.

E.1 Power law phenomenon

This subsection further verifies the power law phenomenon discussed in Section 2.2, with both
wavelet and Fourier dictionaries. The goal is to present concrete examples where signal structures
can be exploited by our framework, generating more interpretable, sublinear regret bounds.

Wavelet dictionary We first verify the power law on the Haar wavelet dictionary. Intuitively it is
suitable when the dynamics of the environment exhibits switching behavior. To this end, consider the
following stochastic time series model

zt = zt−1βt + ζt, (17)

where {βt} and {ζt} are iid random variables satisfying ζt ∼ Uniform(−q, q) and

βt =

{
−1, w.p. p,

1, w.p. 1− p.

Picking T = 215 = 32768, p = 0.0005 and q = 0.005, we generate four sample paths of z1:T using
four arbitrary random seeds (2020, 2021, 2022 and 2023), and the obtained time domain signals are
plotted in the first row of Figure 2. As the switching probability p is chosen to be low enough, all the
sample paths exhibit a small amount of sharp switches, corrupted by the noise term ζt. According to
our intuition from signal processing, the Haar wavelet transform of these signals is sparse.

Now let us verify this intuition. We take the Haar wavelet transform of these signals, sort the transform
domain coefficients and plot the results on log-log scales – these are shown as the solid blue lines in
the second row of Figure 2. Using the largest 100 transform domain coefficients on each plot, we fit a
liner model using least square, which is shown as the dashed orange line. The slope of each line is
−α, where α is displayed in the legend. It can be seen that for all four sample paths, the fitted α is
within (0.5, 1), thus justifying the power law phenomenon [Pri21]. Given α, the regret of our Haar
wavelet algorithm is Õ(T 1.5−α), as shown in Section 2.2.

As for the implication in time series forecasting, let us consider forecasting z1:T with a1:T = 0, i.e.,
without the external forecaster A. Given the power law, the total forecasting loss of our fine-tuning
approach is

∑T
t=1 lt(xt) ≤ Õ(T 1.5−α).

We also remark that although only four sample paths are demonstrated, we observe the power law
phenomenon on all random seeds we tried in the experiment.

31

0 5000 10000 15000 20000 25000 30000
Time

1.0

0.5

0.0

0.5

1.0

Si
gn

al

0 5000 10000 15000 20000 25000 30000
Time

1.0

0.5

0.0

0.5

1.0

Si
gn

al

0 5000 10000 15000 20000 25000 30000
Time

1.0

0.5

0.0

0.5

1.0

Si
gn

al

0 5000 10000 15000 20000 25000 30000
Time

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Si
gn

al

100 101 102 103 104

Indices (log)

10 6

10 4

10 2

100

102

W
av

el
et

 c
oe

ffi
cie

nt
s (

ab
s,

lo
g)

Data
Fitted, =0.90

(a) Seed= 2020.

100 101 102 103 104

Indices (log)

10 5

10 3

10 1

101

W
av

el
et

 c
oe

ffi
cie

nt
s (

ab
s,

lo
g)

Data
Fitted, =0.83

(b) Seed= 2021.

100 101 102 103 104

Indices (log)

10 6

10 4

10 2

100

102

W
av

el
et

 c
oe

ffi
cie

nt
s (

ab
s,

lo
g)

Data
Fitted, =0.89

(c) Seed= 2022.

100 101 102 103 104

Indices (log)

10 6

10 4

10 2

100

102

W
av

el
et

 c
oe

ffi
cie

nt
s (

ab
s,

lo
g)

Data
Fitted, =0.66

(d) Seed= 2023.

Figure 2: Verifying the power law on the Haar Wavelet dictionary. First row: time domain signals.
Second row: sorted transform domain coefficients on a log-log plot. The dashed orange line is the
best linear fit on the log-log plot, using the largest 100 transform domain coefficients. From left to
right: four arbitrary random seeds.

Fourier dictionary Next, we verify the power law on the Fourier dictionary. Here we use the
Jena weather forecasting dataset,16 which records the weather data at a German city, Jena, every 10
minutes. We take the data from Jan 1st, 2010 till July 1st, 2022, consisting of T = 656956 time
steps. Two different modalities, namely the temperature and the humidity, are considered. The actual
temperature and humidity sequences are plotted in Figure 3.

2010 2012 2014 2016 2018 2020 2022
Time

20

10

0

10

20

30

40

Te
m

pe
ra

tu
re

 (°
C)

2010 2012 2014 2016 2018 2020 2022
Time

20

40

60

80

100

Re
la

tiv
e

hu
m

id
ity

 (%
)

Figure 3: Time domain behavior of the weather data.

For the sequence of temperature z1:T , we perform its Discrete Fourier Transform (DFT), which
returns T complex number as the frequency domain coefficients. We discard the second half of the
coefficients due to symmetry, since the input of the transform is real. For the remaining coefficients,
we take their absolute values, sort them and plot the result on a log-log plot. Similar to the wavelet
experiment, we also fit a linear model using the largest 100 transform domain coefficients. These are
shown as Figure 4 (Left), which exhibit the power law phenomenon.

Furthermore, we perform the same procedure on the temperature difference sequence {zt+1 − zt},
where the t-th entry is the change of temperature from the t-th time step to the t + 1-th time step.
The result is shown as Figure 4 (Right). Although the tail is heavier, we can still observe similar
power-law phenomenon for large transform domain coefficients.

Now, let us discuss again the implication of the observed power law in time series forecasting. First,
consider forecasting z1:T without A. Given the power law of z1:T itself, the Fourier version of
our forecaster guarantees sublinear total loss. Next, consider forecasting z1:T with A being the
zeroth-order hold forecaster, i.e, at = zt−1. The power law of the difference sequence {zt+1 − zt}
implies good forecasting performance of our framework in this context.

16Available at https://www.bgc-jena.mpg.de/wetter/.

32

https://www.bgc-jena.mpg.de/wetter/

100 101 102 103 104 105

Indices (log)

100

102

104

106

Fo
ur

ie
r c

oe
ffi

cie
nt

s (
ab

s,
lo

g)

Data
Fitted, =0.68

100 101 102 103 104 105

Indices (log)

100

101

102

103

104

Fo
ur

ie
r c

oe
ffi

cie
nt

s o
f d

iff
 (a

bs
, l

og
) Data

Fitted, =0.69

Figure 4: Verifying the power law on the Fourier dictionary. Left: the DFT of the temperature
sequence. Right: the DFT of the temperature difference sequence.

Parallel results on the humidity sequence are reported in Figure 5, with a similar qualitative behavior.
It illustrates the prevalence of the power law across different types of the data.

100 101 102 103 104 105

Indices (log)

101

103

105

107

Fo
ur

ie
r c

oe
ffi

cie
nt

s (
ab

s,
lo

g)

Data
Fitted, =0.73

100 101 102 103 104 105

Indices (log)

100

101

102

103

104

105

Fo
ur

ie
r c

oe
ffi

cie
nt

s o
f d

iff
 (a

bs
, l

og
) Data

Fitted, =0.70

Figure 5: Verifying the power law on the Fourier dictionary. Left: the DFT of the humidity sequence.
Right: the DFT of the humidity difference sequence.

E.2 Fine-tuning forecaster

Finally, we test the performance of our forecasting framework on the synthetic switching data and the
actual temperature sequence. For the first case, our framework is equipped with the Haar wavelet
dictionary. The Fourier dictionary is adopted in the second case. In both cases, we compare our
algorithm against the baseline from [JC22]. More specifically, we take our online learning algorithm
(Algorithm 2) and the algorithm from [JC22], plug them both into the time series forecasting workflow
introduced at the beginning of this section, and then compare their total forecasting loss.

Concretely, let us start from the wavelet dictionary.

Wavelet dictionary In this case, consider the setting without the external forecaster A. We run
both online learning algorithms (our Algorithm 2 and the baseline [JC22, Algorithm 2]), and use their
outputs directly as the time series predictions. Our Algorithm 2 is equipped with the Haar wavelet
dictionary defined in Section 3.1. The configurations of the time series model are the same as the
previous subsection, with T = 215 = 32768, p = 0.0005 and q = 0.005. The loss functions lt are
the absolute loss.

Both algorithms require a confidence hyperparameter ε, and we set it to 1. Since the time series data
Eq.(17) is random, we run both algorithms on 10 random seeds, and calculate their total loss. Our
algorithm achieves a total loss of 44048, which is considerably lower than the baseline’s total loss
62465. This is consistent with the theoretical results developed so far.

33

Fourier dictionary Next, we turn to the task of temperature forecasting. The data is reported in the
previous subsection. We take its first T = 50000 entries, and assign it to the true time series z1:T ; the
loss functions lt are the absolute loss. The black box forecaster A is assigned to the zeroth-order hold
forecaster, i.e., at = zt−1.

For our framework, we need to specify the dictionary. Although using the entire DFT matrix could
lead to low regret guarantees (as demonstrated by the power law), this is computationally challenging.
Instead, we exploit the fact that the weather is naturally periodic, with the period of one day. Picking
the base frequency ω accordingly, we define features indexed by k (the harmonic order) as

ht,2k−1 = cos(kωt),

ht,2k = sin(kωt).

By specifying the maximum order K, we obtain 2K features {ht,2k−1, ht,2k}k∈[1:K] from this
construction. An all-one feature is further added, making the dictionary size N = 2K + 1.

Again, we set the confidence hyperparameter ε = 1 for our algorithm. The total loss as a function
of the dictionary size N is plotted in Figure 6. Notably, the case of N = 0 is equivalent to trivially
following the advice of the given forecaster A: xt = at = zt−1. It can be seen that our fine-tuning
framework (N > 0) actually results in better performance, due to exploiting the structures in the
error sequence z1:T − a1:T .

0 1 3 5 7 9 11 13 15 17 19
Number of features

7.2

7.4

7.6

7.8

8.0

8.2

To
ta

l l
os

s

1e3

Figure 6: Testing our algorithm for temperature forecasting.

We also test the fine-tuning performance of the algorithm from [JC22]. Same as the above, we set
ε = 1. The total loss achieved by this alternative algorithm is 8238, which is around the same as A
itself, and significantly higher than the total loss of our algorithm with moderate amount of features
(N > 5). This fits the intuition from this paper: the environment contains persistent dynamics, which
the algorithm from [JC22] cannot handle.

F Additional discussion

MRA in online learning On a broader scope, wavelets embody the idea of Multi-Resolution
Analysis (MRA), which is reminiscent of the classical geometric covering (GC) construction in
adaptive online learning [DGSS15]. Such a construction starts from a class of GC time intervals,
which are equivalent to the support of Haar wavelet features. On each GC interval, a static online
learning algorithm is defined (corresponding to using an all-one feature, c.f., Section 2.2); and
then, the outputs of these “local” algorithms are aggregated by a sleeping expert algorithm on top
[LS15, JOWW17]. Algorithmically, our innovation is introducing sign changes in the features,
accompanied by a different, additive way to aggregate base algorithms. For tackling nonstationarity,
both approaches have their own strengths: the GC construction can produce strongly adaptive
guarantees on subintervals of the time horizon, while our algorithm does not need a bounded domain.
Their possible connections are intriguing.

34

Lipschitz vs strongly convex losses We also comment on the choice of loss functions in uncon-
strained dynamic OCO. Besides the Lipschitz assumption we impose, a fruitful line of works by Baby
and Wang [BW19, BW20, BW21, BZW21, BW22] considered an alternative setting with strong
convexity, motivated by the prevalence of the square loss in statistics. Their focus is primarily on
bounded domains, as [BW19] showed that evaluated under the square loss, a lower bound for the
unconstrained dynamic regret is Ω(P 2). A sublinear regret bound here requires P = o(

√
T), rather

than P = o(T) with Lipschitz losses – that is, the environment is required to be “more static” than
the typical requirement in the Lipschitz setting.

Essentially, such a behavior is due to the large penalty that the square loss imposes on outliers. An
adversary in online learning can deliberately pick the loss functions such that some of the player’s
predictions are large outliers with “huge” (square) losses, while the offline optimal comparator
sequence suffers zero losses. Using the Lipschitz losses instead may offer an advantage on unbounded
domains, due to being more tolerant to these outliers. Furthermore, Lipschitz losses do not necessarily
have minimizers – this is useful for decision problems (as opposed to estimation), where a ground
truth may not exist.17

Future work For future works, several interesting questions could stem from this paper. For
example,

• Our regret bound is stated against individual comparator sequences. One could investigate the
implication of this result in stochastic environments, where the comparator statistics may take more
concrete forms.

• Besides the sparsity and the energy studied in this paper, an interesting open problem is investigating
alternative complexity measures of the comparator, possibly drawing connections to statistical
learning theory.

• Our framework builds on pre-defined dictionary inputs. The quantitative benefit of using a data-
dependent dictionary is unclear.

• Beyond wavelets, one may investigate the combination of the sparse coding framework with other
function approximators, such as neural networks.

17An example is financial investment without budget constraints: doubling the invested amount also doubles
the return.

35

	Introduction
	Contribution
	Related work
	Notation

	The general sparse coding framework
	Setting
	Main result

	The Haar OLR algorithm
	Haar wavelet
	Main result

	Conclusion
	List of comparator statistics
	More on related work
	Detail on the general framework
	Unconstrained static subroutine
	Proof of the main result

	Detail on the wavelet algorithm
	Pseudocode
	More background
	Generic sparsity adaptive bound
	Unconstrained switching regret
	Path-length-based bound
	Fixed dyadic horizon
	Anytime bound

	Useful lemma
	Quantitative example

	Application: Time series forecasting
	Power law phenomenon
	Fine-tuning forecaster

	Additional discussion

