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Abstract

Predicting human eye movements during goal-directed visual search is critical
for enhancing interactive Al systems. In medical imaging, such prediction can
support radiologists in interpreting complex data, such as chest X-rays. Many exist-
ing methods rely on generic vision—language models and saliency-based features,
which can limit their ability to capture fine-grained clinical semantics and integrate
domain knowledge effectively. We present LogitGaze-Med, a state-of-the-art
multimodal transformer framework that unifies (1) domain-specific visual encoders
(e.g., CheXNet), (2) textual embeddings of diagnostic labels, and (3) semantic pri-
ors extracted via the logit-lens from an instruction-tuned medical vision—language
model (LLaVA-Med). By directly predicting continuous fixation coordinates and
dwell durations, our model generates clinically meaningful scanpaths. Experiments
on the GazeSearch dataset and synthetic scanpaths generated from MIMIC-CXR
and validated by experts demonstrate that LogitGaze-Med improves scanpath sim-
ilarity metrics by 20-30% over competitive baselines and yields over 5% gains
in downstream pathology classification when incorporating predicted fixations as
additional training data.

1 Introduction

Understanding and predicting human eye movements during visual search is a long-standing problem
in both cognitive science and computer vision [1H4]. In medical imaging, modeling expert gaze—such
as how radiologists examine chest X-rays—offers new avenues to support diagnostic decision-making,
enhance training, and develop interactive Al systems.

However, existing gaze prediction methods often fail in real-world clinical settings, where visual
targets are subtle, abstract, and highly variable depending on the diagnostic task [5} 6]. While most
prior work has focused on free-viewing or saliency-based gaze prediction [7, 8], these approaches
typically neglect the observer’s goal. In contrast, we study goal-directed gaze modeling: predicting
the spatio-temporal sequence of fixations (scanpaths) that occur during active visual search for
specific diagnostic targets [9].

This task poses unique challenges in medical imaging. Diagnostic categories like "pleural effusion”
may not correspond to well-defined objects or regions [[10, [11]. Visual cues can be ambiguous or
distributed across anatomical structures. Moreover, collecting large-scale gaze data across all possible
pathologies is infeasible due to cost, data availability, and privacy concerns [12].
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Figure 1: Scanpath visualization on a chest X-ray image labeled "normal", with fixations (yellow
circles) indicating attention shifts. Image patches are semantically decoded via VLM into labels
such as "bone, gray, metal", "cardio", and "heart", aligning gaze prediction with clinical visual
understanding.

To address these challenges, we introduce LogitGaze-Med, a transformer-based [13]] framework that
integrates three complementary modalities: (1) visual features from a domain-specific encoder (e.g.,
CheXNet [14]); (2) text embeddings that represent diagnostic queries or labels; and (3) semantic
patch-level priors extracted from a medical vision-language model (LLaVA-Med), using the logit lens
technique [T5HI8]]. As shown in Figure|[T] these decoded keywords help align predicted scanpaths
with clinically meaningful image regions.

We evaluate LogitGaze-Med on both the GazeSearch dataset [19]] and a large-scale synthetic gaze
dataset generated over MIMIC-CXR [20} [L1]], with synthetic scanpaths validated through expert
human evaluation. Our model shows strong performance across standard scanpath similarity met-
rics and maintains robustness when tested with alternative medical VLMs (LLaVA-Rad [21]) and
modern encoders (CheSS, PEAC [22}23])). In addition, we find that our model’s predicted fixations
significantly improve downstream pathology classification, suggesting practical utility beyond gaze
modeling. Our main contributions are:

* We introduce LogitGaze-Med, the first framework to apply logit-lens decoding to medical
VLMs for clinically grounded patch-level gaze prediction, with comprehensive ablation
studies demonstrating the importance of domain-specific components.

* Our formulation of scanpath prediction as continuous regression over spatial coordinates
and dwell durations improves downstream pathology classification by over 5%.

» Expert human evaluation validates synthetic scanpaths with high realism (4.3/5.0) and
clinical relevance scores (4.2/5.0).

2 Related Work

We review prior work in three relevant areas: scanpath prediction, VLMs(vision—language models),
and interpretability.

Scanpath Prediction Early models of scanpath generation relied on saliency maps or hand-crafted
heuristics [24]], lacking semantic understanding and goal-awareness. Recent transformer-based
methods have advanced goal-directed gaze modeling. GazeFormer [9] introduced a zero-shot
"ZeroGaze" task by encoding search goals via natural language, achieving strong spatial-temporal
accuracy while being over five times faster than prior approaches. HAT(The Human Attention
Transformer) [25] unified top-down and bottom-up attention in a single framework, leveraging a
simplified foveated retina to model human-like spatio-temporal attention. GazeXplain [26] extended
this by generating natural language rationales alongside fixation sequences, bridging "where" and
"why" people look. LookHear (ART) [27] tackled multimodal gaze by modeling real-time fixations
during spoken object reference. LogitGaze [28] integrated semantic priors from VLMs using logit-
lens decoding, improving prediction accuracy by 15% and enhancing interpretability through explicit



concept-level alignment. Foundational insights such as inhibition of return (IOR) [29] continue to
inform fixation dynamics by discouraging re-attending to previously viewed regions.

In the medical domain, GazeSearch [19] introduced the first task-aligned chest X-ray visual search
dataset and a dedicated baseline ("ChestSearch"), revealing that general-purpose gaze models under-
perform in clinical settings. Despite these advances, few approaches jointly model clinical semantics,
task conditioning, and probabilistic scanpaths in a unified, end-to-end architecture.

Vision-Language Models Instruction-tuned VLMs have shown strong generalization across do-
mains. LLaVA [15]] bootstrapped multimodal instruction tuning using GPT-4 [30], demonstrating
robust performance on open-ended vision tasks. LLaVA-Med [16] adapted this approach to biomedi-
cal images by generating self-instruction data from PubMed figure captions [31]], outperforming prior
Med-VQA models with minimal domain-specific fine-tuning. LLaVA-Rad [21]] further specialized
this approach for radiology, training on 697k image-report pairs. Voila-A [32] leveraged AR/VR gaze
data to align VLM attention with human fixations, using GPT-4 to annotate the VOILA-COCO dataset
and integrating gaze into perceiver modules for interpretability. R-LLaVA [33] injected region-level
priors into CLIP inputs to enhance Med-VQA accuracy, emphasizing the utility of explicit visual
context. These studies show the promise of task-aligned or gaze-aware VLMs, but most do not
directly model spatio-temporal attention or fixations.

Interpretability of VLMs Interpreting VLMs is essential for trustworthy Al, especially in medicine.
Neo et al. [18] showed that LLaVA gradually refines object-level semantics across layers. The logit
lens [17] projects intermediate activations into the output space, revealing how representations
evolve—from generic concepts in early layers to clinical terms like "consolidation." Originally
for language models, this method was adapted to vision-language settings in scan path prediction
task [28]], offering interpretable semantic priors.

3 Methodology

Our scanpath prediction pipeline consists of four main stages: (1) logit-lens semantic extraction;
(2) preprocessing of visual and textual features; (3) joint transformer encoding with multiterm loss
formulation; and (4) fixation decoding and scanpath regression. All components are aligned with the
schematic shown in Figure[2]

3.1 Logit-Lens Semantic Extraction

Given an input chest X-ray I € R¥*W we extract patch-level semantics using a vision—-language

transformer. The image is divided into a P x P grid (with P = 24, yielding M = 576 patches),
and a pretrained multimodal model—either LLaVA [15], LLaVA-Med [34], or LLaVA-Rad [21]]
fine-tuned on radiological data—produces the final hidden state for each patch:

h; eRY, i=1,... M.
After layer normalization, logits over the vocabulary are computed:
hf = LayerNorm(h;), £; = Wim h} 4 bim, p; = softmax(¢;) € RY.

From the top-k logits {ji.1,...,Jik}. we extract corresponding word vectors using the frozen
language embedding matrix Ey,, € RV *%:

Si = [Elm(ji,1)7 .. 7Elm(ji,k)} S RkXd.

These are pooled (e.g., via mean) into a single semantic vector s; € R?. This logit-lens mecha-
nism [17} 18] exposes latent clinical concepts—such as "consolidation" or "effusion"—at the patch
level.

3.2 Visual and Textual Feature Preprocessing

Visual Feature Encoders. Each image is resized to 768 x 768, normalized, and passed through
one of several CNN backbones:
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Figure 2: LogitGaze-Med architecture integrating vision-language processing with multiscale posi-
tional encoding. The framework fuses visual features (patch/pixel levels) with semantic embeddings
(e.g., bone, heart, opacity) through a decoder. Joint optimization across classification tasks such
as edema, pneumonia, and normal, along with spatial (L., £,) and temporal (£;) losses, enables
human-like scanpath generation. Closed-loop decoding projects hidden states into an interpretable
clinical vocabulary space.

¢ ResNetCOCO. A ResNet50-FPN [33] from Mask R-CNN [36], pretrained on MS
COCO [37]], processes batches x € RB*3x768x768.

f = backbone(x) € REXCXHXW' 0 — 9048 H' x W' = 24 x 24.
Flattening and permuting yields:
Xyis € REXM>dvis g = 2048,
e CheXNet [14]. A DenseNet-121 [38]], pretrained on the ChestX-ray14 dataset [39], outputs
RB*1024xH'xW' A 1 % 1 convolution expands channels to 2048, yielding:
X, € RBXMx2048,

* Alternative encoders. We also evaluate modern medical image encoders including
CheSS [22] and PEAC [23] to assess framework robustness across different visual back-
bones.

Textual Task Embeddings. Each diagnostic label (e.g., "normal," "pneumonia") is encoded with a
SentenceTransformer (e.g., stsb-roberta-base-v2) [40]:

Ctask € Rdtc"t, t = Wi etask + bt S Rd.



3.3 Joint Transformer Encoding and Loss Formulation

Embedding Fusion. Visual features Uy, € RBXM *d and semantic embeddings Usey, € RB*Mxd
are linearly projected into a shared dimension d. These are concatenated:

F‘joint = [Uvis 5 Usem} € RE*2Mxd
Learnable 2D positional encodings and broadcasted task embedding T} .5k € RB*4 are added:

Z = TransformerEncoder(Fioins + PEpatch + Trask @ - -+ ® Thagk) € REX2M*d,

Loss Functions. We jointly optimize three objectives with fixed weighting coefficients A; and As:
L= Ecls + )\1 Espatial + )\2 ‘Ctime .
~~ N—— N~~~

token coordinate dwell time
classification regression regression

The weighting parameters are fixed throughout training, with baseline values A\; = 1.0 and Ay = 1.0
selected via preliminary validation.

* Token Classification: At each timestep ¢ € [1, L], the decoder predicts a binary stop token
1y € [0,1]. A masked cross-entropy loss is used:

£Cls =

Z]It logm(ct , ¢ €{0,1}.

vahd

* Spatial Loss: We compute the L1 distance between predicted and ground truth coordinates:

1
£spatia1 — N Z]It |.’L‘t - xt' + |yt yt‘)

valid

* Temporal Loss: The predicted dwell time 7 is supervised using mean squared error:

Ltime = E Ht Tt — Tt

vwhd

3.4 Fixation Decoding and Scanpath Regression

Decoder Architecture. We use a transformer decoder with Ny layers and L learnable query
embeddings {Qo, . .., Qr_1} C R The initial query Qg is modulated with the first human fixation
via 2D positional encoding, ensuring all compared methods are equally conditioned on initial gaze
position. Self- and cross-attention operations over encoder outputs Z produce:

Fdec c RBxLxd'

Fixation Parameter Regression. For each step ¢, six MLP heads predict the spatial means i, fiy, ,
dwell time mean p,, and log-variances A;,, Ay, , Ar,. Predictions are sampled via the reparameteri-
zation trick:

&y = pg, + €5, exp(0.5);,), €5, ~N(0,1),

and similarly for ¢; and 7;. This stochastic sampling enables the model to represent variability in
human gaze behavior.

4 Results

4.1 Database

We evaluate LogitGaze-Med on several datasets that capture radiologists’ eye movements during
chest X-ray interpretation. Preference was given to datasets aligned with diagnostic search tasks.

Our primary dataset is GazeSearch [19], designed for scanpath prediction in medical imaging. Unlike
earlier datasets that reflect free viewing, GazeSearch employs a target-present search paradigm with



known findings (e.g., cardiomegaly). It filters fixations to emphasize task-relevant sequences, making
scanpaths more representative of purposeful diagnostic behavior.

To assess generalization, we also use the Eye Gaze dataset [11], which contains expert fixations
but is limited in scale. To overcome this, we generate synthetic scanpaths for a large MIMIC-CXR
subset [20]], enabling downstream tasks like gaze-informed pathology classification and large-scale
evaluation.

For cross-domain benchmarking, we include COCO-Searchi8 [41]], a visual search dataset from the
general vision domain. LogitGaze-Med performs worse here, validating its specialization for medical
imaging and the need for task-specific inductive biases.

4.2 Evaluation Metrics

To evaluate scanpath prediction, we follow the GazeSearch protocol [19] and report multiple metrics
that capture spatial, temporal, and dynamic gaze characteristics.

ScanMatch [42] aligns scanpaths using a variant of the Needleman-Wunsch algorithm [43]]. Each
fixation is encoded by spatial bin and temporal order, with optional inclusion of duration(w/ Dur.).
For "w/o duration"(w/o Dur.) variants, the alignment omits fixation length information.

SED [44}45] (Scanpath Edit Distance) is a Levenshtein-based metric that counts insertions, deletions,
and substitutions between discretized fixations. While duration and geometry are ignored, it remains
an intuitive measure of sequence similarity.

STDE [46]] embeds scanpaths into a temporal-spatial space and is sensitive to rhythm and timing
variations. It captures biologically plausible gaze behavior, common in diagnostic reading.

MultiMatch [47] compares scanpaths along five continuous dimensions: shape, direction, length,
position, and duration.

For downstream classification tasks, we also report AUROC (Area Under the Receiver Operating
Characteristic Curve) to assess the effectiveness of gaze-informed models in distinguishing between
clinical conditions. AUROC serves as a proxy for clinical utility and interpretability.

4.3 Scanpath Prediction

We evaluate scanpath prediction on the GazeSearch dataset [[19], focusing on the target present condi-
tion. Our model, LogitGaze-Med, is compared against GazeFormer [9], HAT [_25]], ChestSearch [[19],
and LogitGaze [28]].

LogitGaze-Med leverages LLaVA-Med [34] and optionally integrates CheXNet [[14] for pathology-
aware encoding. All models are trained from scratch on the GazeSearch dataset and identically
conditioned on the first fixation to ensure fair comparison. All models are trained for 100 epochs
(batch size 32) on a 3090Ti GPU. We use a 6-layer encoder-decoder transformer (hidden size 512), a
staged learning rate schedule (1e—6 / 2e—6 / 1e—4), and dropout (0.4 on the classifier).

LogitGaze-Med outperforms all baselines on both sequence-level and component-wise metrics. With
CheXNet features, we observe a relative ScanMatch gain of +26% (w/o duration) and +48% (w/
duration), and SED is reduced by 4%. As shown in Tables [I]and [2] improvements in vector and
duration similarity confirm enhanced alignment with human scan dynamics.

Table 1: Performance on scanpath similarity metrics (higher is better for ScanMatch/STDE, lower is
better for SED).

Method ScanMatch 1 SED | STDE 1
w/o Dur. w/ Dur.

GazeFormer [9] 0.293 £0.021  0.201 £0.015 | 5.11 £0.08 | 0.799 + 0.004
HAT [25] 0.309 + 0.020 - 5.07 £0.07 | 0.800 £ 0.004
GazeSearch [19] 0.332 £0.019 0.223 £0.014 | 4.88+0.06 | 0.809 + 0.004
LogitGaze [128] 0.328 +£0.018  0.225 4+ 0.015 | 5.07 £0.07 | 0.810 £ 0.004
LogitGaze-Med (Res) 0.416 £ 0.017 0.325+0.012 | 4.68 +0.05 | 0.852 4+ 0.003
LogitGaze-Med (CheX) | 0.419 +0.016 0.330 - 0.010 | 4.68 = 0.05 | 0.855 £ 0.003




Table 2: MultiMatch similarity (higher is better) across five components.

Method Vector Direction Length Position Duration
GazeFormer [9] 0.902 + 0.008 0.644 £ 0.010 0.899 £0.009 0.803 £ 0.007 0.595 &+ 0.015
HAT 0.909 +0.007 0.649 £0.010 0.910 £ 0.008 0.825 % 0.006 -
GazeSearch 0.917 £ 0.006  0.679 = 0.010 0.917 £0.007 0.829 £ 0.006 0.695 £ 0.014
LogitGaze [28] 0.882 +0.009 0.643 0.008 0.923 £0.005 0.809 £ 0.006 0.625 +0.013
LogitGaze-Med (Res) 0.935 +0.004  0.650 &= 0.008 0.939 £ 0.006 0.823 +0.005 0.743 £ 0.010
LogitGaze-Med (CheX) | 0.938 £ 0.004 0.651 £ 0.009 0.948 & 0.005 0.823 £+ 0.005 0.740 £ 0.010

2

(c) Consolidation

(a) Normal

(b) Cardiomegaly (d) Pneumonia

Figure 3: Comparison of human scanpaths (top), LogitGaze-Med predictions (middle), and Gaze-
Search predictions (bottom) across tasks: normal, cardiomegaly, consolidation, and pneumonia. The
models are evaluated under target-present conditions.

Figure[3|presents qualitative comparisons of scanpaths for several diagnostic tasks. Each triplet shows
the human scanpath (top), predictions from LogitGaze-Med (middle), and predictions from Gaze-
Search (bottom). Visually, LogitGaze-Med produces more human-like trajectories, with smoother
saccades and task-relevant fixations that better reflect real radiological reading behavior. In contrast
to baselines, it captures the diagnostic flow more accurately. These examples highlight the model’s
ability to generate plausible and clinically coherent visual search patterns.

4.4 X-Ray classification analysis

To assess the utility of gaze information in medical imaging, we reproduced and extended the
classification setups introduced by on the MIMIC-CXR dataset [20]. In addition to their
original settings, we introduced a new variant using model-generated fixations, allowing us to
evaluate generalization beyond human gaze annotations. We addressed a 3-class classification task
(normal, congestive heart failure (CHF), and pneumonia) and explored how different gaze-informed
architectures affect performance.

The baseline model uses a convolutional encoder and a linear classification head, taking only X-ray
images as input. In the second setup, we augment the image with temporal fixation heatmaps: the
image is encoded into a visual vector vcxgr, while each of m gaze heatmaps passes through a separate



CNN. These are aggregated via a BILSTM with self-attention into a gaze vector Ug,,., and the final
prediction is based on [vcxr; ugaze]. The third setup introduces a multi-task U-Net [48]] that jointly
predicts pathology and reconstructs a static gaze heatmap. An EfficientNet-BO [49] encoder is used,
with a classification head at the bottleneck and a decoder predicting the gaze map. The total loss is a
weighted sum of binary cross-entropy for both tasks.

To test generalization, we replaced human fixations with synthetic ones generated by various models
(GazeFormer [9], LogitGaze [28]], LogitGaze-Med), producing 8 scanpaths per image. Heatmaps
derived from these were substituted into each pipeline without changing architecture or training
protocol.

To validate the quality of our synthetic MIMIC-CXR scanpaths, we conducted a structured human
evaluation with a board-certified radiologist (5+ years experience). The expert reviewed a hold-out
set of 100 chest X-rays (50 with real and 50 with synthetic scanpaths, randomized and blinded) and
provided ratings on a 5-point Likert scale for visual realism and clinical relevance.

Table 3: AUROC scores across three classification setups on MIMIC-CXR-JPG using human and
synthetic gaze. For LogitGaze-Med, per-class AUROC scores are as follows: Baseline (Normal
0.87, CHF 0.85, Pneumonia 0.74), Temporal (Normal 0.93, CHF 0.92, Pneumonia 0.85), and U-Net
(Normal 0.94, CHF 0.92, Pneumonia 0.87).

Method ‘ Baseline Temporal U-Net

Eye-Gaze [11]] 0.77 £0.02 0.82 £ 0.03 0.87 £0.02
GazeFormer [9]) 0.78 +0.02 0.84 +0.02 0.89 +0.01
LogitGaze [28] 0.80 £ 0.01 0.87 £0.02 0.90 £ 0.01
LogitGaze-Med \ 0.82 + 0.01 0.90 £ 0.02 0.91 +0.01

(a) Original CXRs (b) Human (c) LogitGaze-Med (d) Eye-Gaze baseline

Figure 4: Attention maps for three conditions: normal (top), CHF (middle), and pneumonia (bot-
tom). (a) Original X-rays; (b) Human gaze reference; (c) LogitGaze-Med; (d) Eye-Gaze baseline.
Heatmaps generated by aggregating raw fixation coordinates into static heatmaps via Gaussian kernel
smoothing [50]. Yellow denotes high attention.

The synthetic scanpaths received mean scores of 4.3+0.5 for visual realism and 4.2+0.6 for clinical
relevance. In a binary classification task (real vs. synthetic), the expert achieved only 58% accuracy,



indicating that synthetic scanpaths were often indistinguishable from real ones. These results confirm
the plausibility and clinical validity of our generated scanpaths.

Table [3] reports AUROC scores across all three setups. Temporal and multi-task models consis-
tently outperform the baseline, showing that gaze information—especially when structured tem-
porally—enhances diagnostic accuracy. Among gaze sources, LogitGaze-Med achieves the best
performance in all cases, suggesting that its vision-language grounding improves semantic alignment
with pathology.

Figure [ contrasts attention maps from LogitGaze-Med and Eye-Gaze. LogitGaze-Med, limited to
six predicted fixations as in GazeSearch [19]], produces focused and pathology-aligned maps. In
contrast, human and Eye-Gaze maps are often broader and less selective, reflecting more chaotic
viewing behavior and weaker diagnostic relevance.

4.5 Ablation Analysis

We conduct comprehensive ablation experiments to evaluate the roles of different components,
semantic continuity, and domain specificity in gaze prediction.

Hyperparameter Sensitivity Analysis. We analyzed the sensitivity of our model to the loss weighting
parameters \; (coordinate loss) and Ao (dwell time loss). As shown in Table the model maintains
robust performance across a broad range of values (A\; € [0.5 — 5.0], A2 € [0.1 — 5.0]), with optimal
performance at A\; = 2.0, Ao = 0.5. This configuration improves shape and position consistency
while maintaining strong duration modeling.

Table 4: Effect of varying A; (coordinate loss) and Ay (dwell time loss) on scanpath similarity
(MultiMatch components). Best values in bold.

Loss Weights | Shape Direction Length Position Duration
A =1.0,2=1.0 0.921 0.633 0.932 0.812 0.712
A1 =20, =05 0.938 0.651 0.948 0.823 0.740
A =01,2=1.0 0.866 0.570 0.882 0.743 0.707
A1 =1.0, A =0.1 0.917 0.624 0.926 0.805 0.610
A1 =1.0, A =5.0 0.910 0.615 0.920 0.792 0.689
A1 =5.0,A=1.0 0.887 0.593 0.902 0.760 0.701

Component-wise Ablation. Table [5] shows the importance of each modality. The image-only
baseline performs poorly, confirming that visual features alone are insufficient. Adding clinical text
substantially improves performance, highlighting the value of semantic intent. The full model with
logit-lens achieves the best results, demonstrating the benefit of combining clinical context with
localized attention.

Table 5: Stepwise ablation analysis of LogitGaze-Med on GazeSearch.

Method | ScanMatch w/o Dur. + ScanMatch w/ Dur. 1 SED | STDE 1

Image only 0.148 + 0.039 0.126 + 0.034 8.54 +0.28 0.562 + 0.094
+ Text only 0.280 + 0.020 0.206 + 0.013 5.954+0.06 0.810 £ 0.004
LogitGaze-Med (full) 0.419 + 0.016 0.330 + 0.010 4.68 + 0.05 0.855 + 0.003

Encoder and VLM Comparison. Table [6]evaluates different combinations of VLMs and visual
encoders. LLaVA-Med and LLaVA-Rad yield comparable results, confirming robustness to VLM
choice. While modern encoders like CheSS and PEAC offer slight improvements, CheXNet remains
competitive, supporting its use as a strong baseline.

Semantic Continuity. To assess the importance of structured semantic alignment, we compare
LogitGaze-Med with two baselines: (1) a random predictor [27]] and (2) a variant with shuffled
reference alignments (LogitGaze — Medgp,, ), which disrupts the scanpath’s semantic structure.
Table shows that LogitGaze — Medgp. s suffers a >40% drop in ScanMatch and a similar decline
in MultiMatch, confirming that preserving alignment is essential for meaningful predictions.



Table 6: Performance comparison across different VLM and encoder combinations on GazeSearch

dataset.

Method \ ScanMatch w/o Dur. T ScanMatch w/ Dur. 1 SED | STDE 1

LogitGaze-Med (ResNet) 0.416 +0.017 0.325 £ 0.012 4.68 +0.05 0.852 + 0.003
LogitGaze-Med (CheXNet) 0.419 £ 0.016 0.330 £+ 0.010 4.68 +0.05 0.855 + 0.003
LogitGaze-Med (CheSS) 0.425 £ 0.017 0.321 £ 0.012 4.66 +0.05 0.857 £ 0.003
LogitGaze-Med (PEAC) 0.428 £+ 0.018 0.319 £ 0.012 4.64 +0.05 0.858 + 0.004
LLaVA-Rad + CheXNet 0.417 £0.016 0.329 £+ 0.010 4.67 +0.05 0.854 + 0.004
LLaVA-Rad + CheSS 0.426 £+ 0.018 0.320 £ 0.012 4.65 +0.05 0.857 + 0.004
LLaVA-Rad + PEAC 0.429 + 0.019 0.318 £0.012 4.63 = 0.05 0.859 + 0.004

Table 7: Effect of semantic continuity on gaze prediction.

Method | ScanMatch w/o Dur ScanMatch w/ Dur | MultiMatch Avg 1
LogitGaze-Med (CheX) 0.419 = 0.016 0.330 £ 0.010 0.820 = 0.009
LogitGaze [28] 0.328 £0.017 0.225 £0.020 0.776 £0.011
Random [27]] 0.159 £0.014 0.148 £0.016 0.269 £ 0.012
LogitGaze-M edgn¢ 0.178 £0.016 0.158 £0.015 0.295 £0.013

Domain Specificity. We further evaluate the models on the COCO18 dataset [41] to analyze cross-
domain generalization. While LogitGaze and GazeFormer were trained on COCO18, LogitGaze-Med
was trained only on GazeSearch [19]. As shown in Table 8] LogitGaze-Med performs worse on
COCO, reflecting its specialization for medical imagery. This gap highlights the importance of
domain-aligned training for accurate scanpath prediction.

Table 8: Cross-domain evaluation on COCO18 dataset.

Method | ScanMatch w/o Dur ScanMatch w/ Dur | MultiMatch Avg 1
LogitGaze [28] 0.527 +£0.012 0.454 + 0.013 0.862 + 0.008
GazeFormer [9]] 0.492 £0.014 0.441 £ 0.015 0.816 £ 0.010
LogitGaze-Med 0.353 £0.018 0.289 + 0.020 0.749 £ 0.014

5 Conclusion

We introduced LogitGaze-Med, a multimodal transformer that integrates domain-specific visual
encoders, textual features, and semantic priors via logit-lens decoding from a medical VLM. Evaluated
on real (GazeSearch) and validated synthetic (MIMIC-CXR) scanpaths, our model outperforms prior
approaches, achieving 20-30% gains in scanpath similarity and over 5% improvement in downstream
pathology classification.

Comprehensive evaluation demonstrates robustness across different medical VLMs and visual en-
coders. Expert human evaluation confirms the clinical plausibility of synthetic scanpaths with high
realism (4.3/5.0) and clinical relevance scores (4.2/5.0).

Inference-time analysis shows a modest overhead (85 ms vs. 70 ms per sample) due to logit-lens
extraction, maintaining suitability for clinical workflows with superior interpretability.

Key limitations include sensitivity to noisy activations from non-content tokens, as recent work[51]]
shows transformers encode important context in punctuation and function words, leading to potential
fixation errors from unstable noun activations. Training on synthetic scanpaths also risks overfitting.
Deployment in diverse clinical settings requires further validation across institutions and expertise
levels.

We aim to deploy our framework in radiology for lesion tracking and training, with extensions to
other medical imaging domains. Code will be released to support vision—language grounding and
human—AlI collaboration.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction accurately reflect the main contributions of the
paper: (1) the introduction of LogitGaze-Med, a domain-specific gaze prediction model lever-
aging semantic priors from a medical vision-language model; (2) consistent improvements
in scanpath similarity metrics and downstream classification tasks; and (3) interpretabil-
ity and domain specialization as key strengths. These claims are directly supported by
experimental results and ablation analyses in Section 4.

Guidelines:

¢ The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The limitations of the proposed method are discussed in the Conclusion
section. In particular, we note that the logit-lens approach is sensitive to noisy or non-
content activations, and that reliance on unstable content-word embeddings (e.g., from
volatile tokens like nouns) can lead to fixation prediction errors in cluttered medical images.
We also outline future directions to address these issues by incorporating syntactic signals
such as punctuation and structure-related tokens.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.
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* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The paper does not contain formal theoretical results, theorems, or proofs. It
focuses primarily on empirical evaluation and the application of a multimodal transformer-
based framework for gaze prediction in medical diagnostics.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

» Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We describe the architecture of LogitGaze-Med in detail (Section 3), including
input representations, fusion strategies, and optimization setup. All datasets, evaluation
protocols, and baseline implementations are fully specified (Section 4). We also provide
instructions for processing both real and synthetic scanpaths.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.
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(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We commit to releasing our training and evaluation code, including detailed
instructions and environment setup. All real scanpath data (GazeSearch) is already publicly
available. For MIMIC-CXR, we describe how to obtain access and generate synthetic
scanpaths using our pretrained model. All relevant scripts for preprocessing, training, and
evaluation will be released alongside the paper.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they

should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Section 4 (Results) provides a detailed description of datasets (GazeSearch and
MIMIC-CXR), evaluation metrics, and experimental design. Hyperparameters, optimizer
settings, learning rates, and data are described in Results section.

Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.
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* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We report standard deviations for all evaluation metrics across experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

¢ The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: All experiments were conducted on a single NVIDIA RTX 3090 Ti GPU with
24 GB of VRAM. The computational requirements are moderate and reproducible using
standard hardware.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: We have carefully reviewed the NeurIPS Code of Ethics. Our research complies
with all guidelines, including transparency, reproducibility, and the responsible use of data
and models. All datasets used are publicly available and anonymized, and we disclose
limitations and potential biases as appropriate.
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10.

11.

Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Our work primarily focuses on improving the prediction of gaze patterns for
medical image analysis, which can positively impact fields like radiology and assistive
technologies. By improving gaze prediction, we may help doctors to better understand
attention allocation when diagnosing medical images, potentially leading to more accurate
diagnoses.

However, there are potential risks associated with this technology, particularly in sensitive
domains such as medical diagnostics. Misuse of gaze prediction models could lead to
biased decision-making if applied without proper safeguards. For instance, inaccurate gaze
prediction could exacerbate existing biases in medical diagnostics if not rigorously tested
across diverse patient populations.

To mitigate these risks, we advocate for transparent and responsible deployment of the
technology, including continuous monitoring and validation of model outputs in real-world
clinical settings. Additionally, we encourage collaboration with domain experts to ensure
fairness and avoid unintended harms.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer:

Justification: The work described in the paper does not involve high-risk models or data
that could pose significant misuse risks. Our gaze prediction model, designed for medical
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12.

13.

image analysis, does not fall under categories such as pretrained language models or
image generators with high potential for harmful or dual-use applications. However, we
acknowledge the importance of responsible research practices.

While our model itself does not pose a direct misuse risk, we have taken care to ensure that
all datasets used are either publicly available and ethically sourced or have been anonymized
to prevent the disclosure of sensitive information. In cases where the technology could
potentially be misapplied, such as in other domains outside medical image analysis, we
encourage the community to implement safeguards for their respective models.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All external assets used in this work, including datasets and models, are
properly credited with clear citations and licensing terms.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Any new assets introduced in this paper, including custom datasets, models, or
code, are well documented, and the documentation is provided alongside the assets.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

20


paperswithcode.com/datasets

14.

15.

16.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing or research with human subjects.
No such data collection or experimentation was conducted for the work presented.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve research with human subjects, and thus no IRB
approval or equivalent was required.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer:

Justification: The core methodology and scientific rigor of the research do not involve LLMs
as an important or original component. LLMs were not used in the development of the core
methods.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.
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* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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