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Abstract. Surface registration plays a significant role in computer vi-
sion and engineering fields. One of the most challenging problems in
surface registration, however, is to obtain a unique bijective registra-
tion for surfaces with large deformations and landmarks constraints. In
this work, a novel surface registration framework is proposed to tackle
this problem using optimal mass transport mapping (OMTMap) and
Teichmüller mapping (T-Map). All metric surfaces with the disk topol-
ogy are mapped to the planar disk using OMT-Map, which avoids huge
area distortion, thus rendering our method more robust. A landmark-
constrained T-Map is then computed between two planar disks such that
the maximal conformality distortion is minimized while the landmarks
are matched. Compared with existing surface registration methods, our
method is more advantageous in enforcing the robustness by avoiding
large area distortion, and producing diffeomorphisms with all landmarks
matched consistently. Numerical experiments on various surfaces demon-
strate the efficiency, robustness of our method.

Keywords: Surface registration, large deformations, landmark constraints,
optimal mass transport, Teichmüller mapping

1 Introduction
The past decade has witnessed a remarkable growth of interest and research
efforts in 3D surface registration, ranging from computer vision field [1–3] to
medical imaging field [4, 5]. Given two metric surfaces (S1, g1) and (S2, g2) with
Riemannian metrics, the surface registration problem is to find an optimal one-
to-one correspondence mapping f : S1 → S2 between the surfaces.

Landmark-free surface registration has been studied to obtain one-to-one
correspondence between surfaces without landmark constraints. A variety of
algorithms have been developed to acquire these surface registrations, includ-
ing shape information-based methods [6, 7], conformal mapping-based methods
which minimize the angle distortion [8, 9], and quasi-conformal mapping-based
methods which minimize the maximal dilation of the mapping [10, 11].

Compared with landmark-free surface registration algorithms which cannot
match landmark features, the landmark-constrained surface registration algo-
rithms have been proposed to obtain a one-to-one correspondence between sur-
faces that matches landmark features. However, hard constraints may cause
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flipping in the mapping where diffeomorphism is not guaranteed. It is still a
challenging problem to obtain a robust and bijective surface registration which
can match landmarks consistently, especially when two surfaces undergo non-
isometric large deformations.

Motivated by the above problem, we propose a novel method of robust regis-
tration for surfaces with large deformations and landmark constraints based on
both optimal mass transport mapping (OMT-Map) and Teichmüller mapping
(T-Map). The main idea behind this is to employ OMT-Map to achieve an area
preserving mapping which maps source and target surfaces to a unit planar disk
without large area distortion. Then the surface registration problem is converted
to computing a landmark-matching T-Map between two planar disks such that
the maximal conformality distortion is minimized while the mapping has uni-
form conformality distortion over the whole domain. In order to compute the
T-Map efficiently and effectively, we propose an iterative algorithm in which an
optimal Beltrami coefficient is obtained. The registration method proposed in
this work is not only robust, but also guarantees diffeomorphism and landmark
constraints for surfaces with large deformations.

1.1 Related work

In recent decades, 3D surface registration methods have been intensively investi-
gated. Conformal mapping based surface registration methods [12, 13] map sur-
faces conformally to 2D canonical domains and boil 3D surface registration prob-
lem down to 2D image registration problem. These methods can minimize the
angle distortion, while they may induce large area distortion. Quasi-conformal
mapping based surface registration methods have also been proposed to tackle
large-scale nonrigid deformations. The Beltrami holomorphic flow method [14]
was presented to compute a unique surface quasi-conformal map. By adjusting
Beltrami coefficients, surface diffeomorphisms are equivalently adjusted to ob-
tain the optimal map with desired properties. In [15], a novel surface registration
method based on quasi-conformal mapping was also proposed. This method ex-
tracts the features on the surfaces, then estimates the Beltrami coefficient, and
finally uniquely determines the registration mapping by solving Beltrami equa-
tions using curvature flow. Compared with our proposed method, however, both
conformal mapping based and quasi-conformal mapping based methods cannot
avoid area distortion.

Landmark features are usually needed to guide surface registration. Landmark-
constrained surface registration has also been extensively studied. Among com-
puter vision research efforts, an iterative algorithm based on Möbius Voting [16]
was proposed to compute point correspondences between surfaces that are ap-
proximately partially isometric. However, it cannot guarantee the diffeomor-
phism. An optimization method based on landmark-constrained basis [17] was
presented to establish full surface registration and geodesic deformation be-
tween two surfaces. In medical imaging field, [18] introduced a brain registration
method using a quasi-exhaustive set of sulci as landmarks. [19] proposed an al-
gorithm by extending landmark matching to the large deformation setting insur-
ing the generation of diffeomorphisms, which was applied to brain registration.
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Recently, [20] proposed an OMT-Map based registration method. It composes
the optimal mass transport map with the conformal map to obtain the unique
area-preserving map, which is intrinsic to the Riemannian metric. This area-
preserving map in conjunction with harmonic map was then used for surface
registration, which avoids the large area distortion that conformal mapping may
cause. Nevertheless, this method cannot guarantee the diffeomorphism. By con-
trast, our proposed method can not only guarantee the diffeomorphism, but also
is capable of minimizing the conformality distortion.

Compared with existing surface registration methods, e.g., the conformal
mapping based method and OMT-Map based method, our proposed surface
registration method is more advantageous: the OMT-Map which is employed
in our method enforces the robustness by avoiding large area distortion; the T-
Map in our method produces the diffeomorphism with all the landmarks matched
consistently.

1.2 Contribution

To the best of our knowledge, this work is the first one to propose the use of
OMT-Map and T-Map to compute robust and unique bijective registration for
surfaces with large deformations and landmark constraints. The major contri-
bution of this work is the introduction of a novel surface registration framework
based on the composition of T-Map with OMT-Map. It is advantageous due to
the following merits:

– Robustness. The conventional conformal mapping-based surface registration
method can preserve local shapes(i.e.,conformal) but may introduce large
area distortions which exceed machine precision, resulting in problems and
failure of surface registration. In contrast, our method is capable of construct-
ing an area-preserving mapping which avoids large area distortion. Moreover,
existing methods focus on registering near-isometric or near-conformal sur-
faces. In contrast, our method is capable of handling surfaces with large
deformations, because of the flexibility of Teichmüller map. In theory, for
any pair of homeomorphic surfaces with quite different geometries, there ex-
ists a unique Teichmüller map between them, which is diffeomorphic and
minimizes the angle distortion. Thus our method is more robust.

– Diffeomorphism. In [20], the surface registration for landmark constraints
is based on a harmonic mapping, which may encounter overlaps (flipping)
although landmarks can be matched consistently. Thus, it is possible that
diffeomorphism is not guaranteed. Compared with that method, this work
proposes to compute a unique T-Map with landmark constraints such that
diffeomorphism is guaranteed.

– Minimal conformality distortion. The algorithm for computation of T-Map
in this work is to determine an optimal one-to-one correspondence for regis-
tration with landmark constraints. The computed T-Map can minimize the
maximal conformality distortion and achieve uniform conformality distortion
over the whole domain.
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2 Theoretic Background
In this section, we briefly introduce the theoretic background. We refer read-
ers to [21, 22] for more details of optimal mass transport mapping and [23] for
Teichmüller mapping.

2.1 Optimal Mass Transport Mapping

The problem of optimal mass transport was first studied by Monge [24].

Definition 1 (Optimal Mass Transport Problem). Suppose (X,µ), (Y, ν)
represent two metric spaces X and Y with probabilities measures µ and ν respec-
tively, satisfying the property of same total mass

∫
X
µdx =

∫
Y
νdy. A map T :

X → Y is measure preserving if ∀B ⊂ Y, µ(T−1(B)) = ν(B). Let c : X×Y → R
be a transportation cost function. The problem of optimal mass transport is to
find the measure preserving map T such that the following total transportation
cost is minimized: ∫

X

c(x, T (x))dµ(x) (1)

Kantorovich [21] proposed the relaxation of Monge’s problem and solved it by
employing linear programming in the 1940’s. Brenier [25] discovered and proved
the connection between the optimal mass transport and the gradient map of a
convex function at the end of 1980’s.

2.2 Discrete optimal mass transport mapping

Our discrete optimal mass transport mapping is based on Brenier’s approach.
Theorem 1 (Brenier). Suppose the transportation cost function c : X×Y → R
is the quadratic Euclidean distance c(x, y) = |x− y|2. If µ and ν have finite sec-
ond order moments where µ is absolutely continuous, then there exists a convex
function u : X → R unique up to a adding a constant, such that the gradient
map ∇u minimizes the quadratic transportation cost

∫
X
|x− T (x)|2dµ(x), and

gives the unique optimal mass transport mapping.
Let Ω be a convex domain in X and space Y be discretized to {y1, y2, ..., yk}

with Dirac measure ν =
∑k
j=1 νjδ(y − yi). Suppose a height vector consisting

of k real numbers is defined as h = (h1, h2, ..., hk) ∈ Rn, and we define the
supporting hyperplane for each (yi, hi) as:

πi(h) : 〈x, yi〉+ hi = 0 (2)

where 〈, 〉 denotes the inner product in Rn. A convex function uh(x), representing
the upper envelope of all supporting hyperplanes, is given by:

uh(x) = max
1≤i≤k

{〈x, yi〉+ hi} (3)

Let G(h) denote the graph of uh(x). The projection of G(h) induces a polyg-

onal partition of convex domain Ω, i.e., Ω =
⋃k
i=1Wi(h), where each cell Wi(h)

is the projection of each facet of the convex polyhedron G(h). The cell Wi(h) is
given by:

Wi(h) = {x ∈ X|uh(x) = 〈x, yi〉+ hi} ∩Ω (4)
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Fig. 1. Discrete optimal mass transport mapping.

and its area is defined as:

wi(h) =

∫

Wi(h)

µ(x)dx (5)

Since the convex function uh(x) on each cell Wi(h) is a linear function πi(h),
the gradient map ∇uh given below maps each cell Wi(h) to a single point yi:

∇uh|Wi(h) = yi (6)

where i = 1, 2, ..., k. The cell decomposition induced by a convex function u is
illustrated in Figure 1, with details explained in [22].

An important theorem serving as a theoretic foundation for discrete optimal
mass transport theory and computational algorithm is also presented as follows:

Theorem 2. For any given measure ν, which satisfies Σk
j=1νj =

∫
Ω
µ where

νj > 0, there must exist a height vector h unique up to adding a constant vector,
and the convex function uh(x) = max1≤i≤k{〈x, yi〉+ hi} induces the cell decom-

position of Ω, Ω =
⋃k
i=1Wi(h), such that each cell satisfies the area-preserving

constraint as follows: ∫

Wi(h)

µ(x)dx = νi, i = 1, 2, ..., k. (7)

In addition, the gradient map ∇uh minimizes the quadratic transportation cost
below: ∫

Ω

|x− T (x)|2µ(x)dx (8)

Alexandrov [26] first proved the existence and uniqueness, and Brenier [25]
also proved the uniqueness and optimality. Recently, Gu et al. [22] have proposed
a novel proof for the existence and uniqueness using the variational principle.
We follow their approach in our work.

The admissible space of height vectors is defined as follows:

H0 := {h|Σk
j=1hj = 0,

∫

Wi(h)

µ > 0,∀i = 1, ..., k} (9)
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According to Brunn-Minkowski theorem [26], H0 is a convex domain. We can
construct a convex energy function

E(h) =

∫ h

0

k∑

i=1

wi(η)dηi −
k∑

i=1

νihi + C (10)

where C is a constant. Note that the first term in above equation is the volume of
the convex polyhedron bounded by the graph G(h) and the cylinder comprising
vertical lines through boundary of Ω.

Thus, the gradient of the energy function is denoted by

∇E(h) = (w1(h)− ν1, ..., wk(h)− νk)T (11)

Let eij = Wi(h) ∩Wj(h) ∩Ω be the edge where the cells Wi(h) and Wj(h)
intersect. Then Hessian of the energy function E(h) is expressed as:

∂2E(h)

∂hi∂hj
=





∫
eij

µ(x)dx

|yj−yi| Wi(h) ∩Wj(h) ∩Ω 6= ∅
0 otherwise.

(12)

Gu et al. [22] have proven that the admissible space H0 is convex and the
energy in Eqn.(10) is hence convex, when Ω is convex. Moreover, the unique
global minimizer h0 is an interior point of H0, which induces the unique optimal
mass transport mapping.

The global minimizer can be computed efficiently using Newton’s method
due to the convexity of the energy in Eqn.(10). In comparison to Kantorovich’s
approach where n2 variables are unknown, this approach has only n unknown
variables.

2.3 Teichmüller mapping

As a special class of diffeomorphisms, Teichmüller mapping (T-Map) ia a quasi-
conformal mapping with uniform conformality distortion over the whole domain.
We give some theoretic foundation relevant to Teichmüller mapping below.

Definition 2 (Conformal Mapping). Let (S, g) be a surface S with a Rie-
mannian metric g. A diffeomorphism f : (S, g) → (D, dx2 + dy2) maps the
surface to a planar unit disk D. f is a conformal(angle-preserving) mapping, if
g(x, y) = e2λ(x,y)(dx2 + dy2), where λ : S → R is called conformal factor which
denotes the area distortion.

Quasi-conformal mapping is a generalization of conformal mapping, which
preserves orientation between Riemann surfaces with bounded conformality dis-
tortions. We give its definition as follows:

Definition 3 (Quasi-conformal Mapping). Suppose f : C → C is a diffeo-
morphism. f is a quasi-conformal mapping if f satisfies the Beltrami equation:

∂f

∂z̄
= µ(z)

∂f

∂z
(13)

for some complex-valued function µ : C → C satisfying ‖µ‖∞ < 1. µ is called
the Beltrami coefficient, which measures the local conformality distortion of f .
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Fig. 2. Geometric illustration of Beltrami
coefficient µ.

Fig. 3. Overall framework of our registra-
tion algorithm.

The quasi-conformal mapping maps infinitesimal circles to infinitesimal el-
lipses. As shown in Figure 2, the ratio between the longer axis and the shorter

axis of the infinitesimal ellipse is denoted by 1+|µ|
1−|µ| , which describes the eccen-

tricity of the infinitesimal ellipse. The orientation of infinitesimal ellipse is given
by the angle between the longer axis and the real axis, i.e., θ = 1

2argµ. The
maximal dilation of f is given by:

K(f) =
1 + ‖µ‖∞
1− ‖µ‖∞

(14)

In terms of the quasi-conformal mapping between two Riemann surfaces, we use
Beltrami differential rather than Beltrami coefficient. A Beltrami differential
µ(z)dz̄dz on a Riemann surface is an assignment to each chart (Uα, φα) of an L∞
complex-valued function µα, which is defined on parameter zα such that:

µα(zα)
dz̄α
dzα

= µβ(zβ)
dz̄β
dzβ

(15)

on the domain covered by another chart (Uβ , φβ). Here,
dzβ
dzα

=
dφαβ
dzα

and φαβ =

φβ ◦ φ−1
α .

A T-Map is intuitively a quasi-conformal map with uniform distribution of
conformality distortions. We give the definition of T-Map as follows:
Definition 4 (Teichmüller Mapping). Suppose f : S1 → S2 is a quasi-
conformal mapping. f is a Teichmüller mapping associated with the integrable
holomorphic function ϕ : S1 → C if its associated Beltrami coefficient is of the
form:

µ(f) = k
ϕ̄

|ϕ| (16)

for some constant 0 ≤ k < 1 and holomorphic function ϕ 6= 0 with ‖ϕ‖1 =∫
S1
|ϕ| <∞. The Beltrami coefficient of this form is of Teichmüller type.
T-Map can be utilized for surface registration with landmark constraints. We

can obtain a unique T-Map with landmark constraints by computing an optimal
Beltrami coefficient such that the maximal dilation is minimized and the norm
of Beltrami coefficient is constant everywhere.

3 Algorithms
In this section, the OMT-Map based area preserving mapping algorithm is pre-
sented with details, followed by the T-Map algorithm. Finally, the proposed
surface registration framework is given.



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Title Suppressed Due to Excessive Length 9

Algorithm 1 OMT-Map based Area Preserving Mapping

Input: A triangle mesh M with disk topology and a threshold δw of area difference.
Output: An area preserving mapping f : M → D where D is a planar unit disk.

1: Compute a conformal mapping φ : M → D based on the holomorphic one-form
method.

2: Initialize height vector h← (0, 0, ..., 0), and set target area w̄i ← νi using Eqn.(17).
Then translate and scale all points in P such that they are all in the unit disk D.

3: Compute the power diagram, then compute the area wi of each cell Wi and the
edge lengths.

4: Compute the dual power Delaunay triangulation and edge lengths.
5: Construct the Hessian matrix H according to Eqn.(12).
6: Update the height vector h← h +H−1(w̄ −w).
7: Repeat step 3 through step 6 until ‖w̄i − wi‖ < δw for each cell. Then we obtain

a OMT-Map τ : (D, dzdz̄)→ (P, ν).
8: The area preserving mapping is constructed by τ−1◦φ : M → D, where each vertex
vi ∈M is mapped to the centroid ci of cell Wi.

3.1 OMT-Map based area preserving mapping algorithm

Suppose (S, g) is a simply connected surface S with Riemannian metric g.
According to Riemann mapping theorem, there exists a conformal mapping
φ : (S, g) → (D, dzdz̄) such that g = e2λ(z)dzdz̄. The conformal factor λ de-
termines a measure ν = e2λ(z)dzdz̄ on the unit disk D. Then there exists a
unique OMT-Map τ : (D, dzdz̄) → (D, ν). The area preserving mapping is then
given by the composition τ−1 ◦ φ : (S, g)→ (D, dzdz̄).

In the discrete algorithm, the surface S is approximated by a triangle mesh M
with scaled total area π. The conformal mapping φ : (M, g)→ (D, dzdz̄) is com-
puted based on the holomorphic one-form method [27]. All vertices v1, v2, ..., vn ∈
M are mapped conformally onto unit disk D, and form a point set which is de-
noted by P = {φ(v1), φ(v2), ..., φ(vn)}. In the discrete OMT-Map τ : (D, dzdz̄)→
(P, ν), the discrete measure for ν is defined as follows:

vi =
1

3

∑

[vi,vj ,vk]∈M
Area([vi, vj , vk]) (17)

where [vi, vj , vk] is a triangle face adjacent to vi.
The discrete OMT-Map based area preserving mapping can be computed by

minimizing the convex energy in Eqn.(10) using Newton’s method. The algo-
rithm is illustrated in Alg.1.

3.2 Teichmüller mapping algorithm

The T-Map is computed using an iterative algorithm closely related to computa-
tion of harmonic mapping. The algorithm iteratively solves Beltrami equation to
obtain an optimal Beltrami coefficient which corresponds to the desired T-Map.

Specifically, a landmark-constrained harmonic mapping f (k) : D1 → D2 is
computed based on current discrete metric [28], where k = 1, 2, .... The Beltrami
coefficient µ of above mapping is then computed according to Beltrami equation
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Algorithm 2 Teichmüller Mapping

Input: Two triangulated planar unit disks D1, D2, two corresponding interior land-
mark constraints {pi}ni=1 ∈ D1, {qi}ni=1 ∈ D2, and a threshold δµ of Beltrami
coefficient difference.

Output: A T-Map f̃ : D1 → D2 which matches landmarks

1: Compute initial edge length and edge weight in D1, and set k ← 0.
2: Set k ← k + 1, and then compute a constrained harmonic map f (k) : D1 → D2,

such that f (k) aligns the corresponding landmarks given above.
3: Compute the Beltrami coefficient µ defined on each face using Eqn.(13).
4: Compute a projection P(µ) on Beltrami coefficient µ using Eqn.(18).
5: Smooth the projection P(µ) and obtain the updated Beltrami coefficient µ′.
6: Deform the metric in original source disk D1 using above updated Beltrami coeffi-

cient µ′ by computing each new edge length and edge weight.
7: Repeat step 2 through step 6 until ‖µ′ − µ‖ < δµ for each face. The final T-Map

is given by f̃ = f (k).

Algorithm 3 Landmark-constrained Surface Registration

Input: Triangular meshes of surfaces S1 and S2 with disk topology.
Output: A one-to-one correspondence f : S1 → S2 which registers the source surface

to the target surface.

1: Locate a set of corresponding points on S1 and S2 respectively as the landmark
constraints.

2: Use Alg.1 to compute the OMT-Map based area preserving mapping φi : Si → Di,
where i = 1, 2 and Di is a unit disk.

3: Use Alg.2 to compute a landmark-constrained T-Map f̃ : D1 → D2.
4: The surface registration with landmark constraints is given by f = φ−1

2 ◦ f̃ ◦ φ1 :
S1 → S2.

in Eqn.(13). To obtain a Beltrami coefficient of the Teichmüller type, we project
above Beltrami coefficient µ into the one with constant norm as follows:

P(µ) = (

∫
D1
|µ|dD1∫

D1
dD1

)
µ

|µ| (18)

The projection P(µ) is then smoothed, becoming the updated Beltrami coeffi-
cient µ′ which is used to deform the discrete metric in original disk D1.

The above procedure continues until the iteration converges. As a result, the
Beltrami coefficient µ converges to an optimal one of Teichmüller type, which in-
duces the corresponding T-Map f̃ : D1 → D2. Furthermore, the maximal dilata-
tion is minimized and the norm of Beltrami coefficient is constant everywhere.
The algorithm for computation of this T-Map is given by Alg.2.

3.3 Surface registration algorithm

We combine the T-Map with OMT-Map for surface registration with landmark
constraints. The geometric illustration of the overall framework is shown in Fig-
ure 3. The Alg.3 gives the details of the landmark-constrained surfaces registra-
tion algorithm.
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(a) Source surface (b) Conformal map (c) OMT-Map (d) Texture mapping

(e) Target surface (f) Conformal map (g) OMT-Map (h) Texture mapping

Fig. 4. Surface mapping results of Sophie model. (a-c).source surface, its conformal
mapping result, and OMT-Map result; (e-g).target surface, its conformal mapping re-
sult, and OMT-Map result; (d&h). T-Map from source surface in (d) to target surface
in (h), which is illustrated by texture mapping.

(a) Source surface (b) Conformal map (c) OMT-Map (d) Texture mapping

(e) Target surface (f) Conformal map (g) OMT-Map (h) Texture mapping

Fig. 5. Surface mapping results of Armadillo model. (a-c).source surface, its conformal
mapping result, and OMT-Map result; (e-g).target surface, its conformal mapping re-
sult, and OMT-Map result; (d&h). T-Map from source surface in (d) to target surface
in (h), which is illustrated by texture mapping.

3.4 Computational complexity

Our proposed algorithm includes three steps, i.e., conformal mapping, optimal
mass transport mapping and Teichmüller mapping. For the first step, there are
different algorithms for computing conformal mappings, and their complexities
are comparable. For the second step, there are mainly two approaches, i.e., Kon-
tarovich’s method and Brenier’s approach. Our method is based on Brenier’s
approach, which involves O(n) unknown variables. In contrast, Kantorovich’s
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(a) Source surface (b) Conformal map (c) OMT-Map (d) Texture mapping

(e) Target surface (f) Conformal map (g) OMT-Map (h) Texture mapping

Fig. 6. Surface mapping results of Dog and Koala bear models. (a-c).source surface,
its conformal mapping result, and OMT-Map result; (e-g).target surface, its conformal
mapping result, and OMT-Map result; (d&h). T-Map from source surface in (d) to
target surface in (h), which is illustrated by texture mapping.

(a) Source surface (b) Conformal map (c) OMT-Map (d) Texture mapping

(e) Target surface (f) Conformal map (g) OMT-Map (h) Texture mapping

Fig. 7. Surface mapping results of brain. (a-c).source surface, its conformal mapping
result, and OMT-Map result; (e-g).target surface, its conformal mapping result, and
OMT-Map result; (d&h). T-Map from source surface in (d) to target surface in (h),
which is illustrated by texture mapping.

approach has O(n2) unknowns. For the third step, our method can compute the
Teichmüller maps between surfaces with landmark constraints efficiently.

4 Experiments
We implemented our algorithms using C++ on Windows platform, and evaluated
our landmark-constrained registration method by comparing it with existing
registration methods, i.e., conformal mapping based method [13] and OMT-
Map based method [20]. The experimental evaluation was performed on various
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(a) Sophie model (b) Armadillo model

(c) Dog and Koala models (d) Brain surfaces

Fig. 8. Surface registration results. The registered correspondences by the proposed
method are shown for (a). Sophie model; (b). Armadillo model; (c). dog and koala bear
models; (d). brain surfaces. The white circular dots denote the landmark constraints,
and the cyan lines connecting the red circular dots between the source and target
surfaces demonstrate the registered correspondences.

surface models and a collection of 10 brain surfaces shown in Table 1, where the
geometric properties of surface model (e.g., number of vertices, edges, and faces)
and landmarks information were reported. All the experiments were conducted
on a laptop computer of Intel Core i7 CPU, 2.60GHz with 8GB memory.

Figures 4, 5, 6 and 7 show the surface mapping results for Sophie model,
Armadillo model, Dog and Koala bear models, as well as some brain surfaces,
respectively. In the above figures, the subfigure (a) gives the original source
surface, and the subfigures (b) and (c) represent the conformal mapping result
and OMT-Map result of the source surface. Similarly, the subfigure (e) shows the
target surface in the registration, and the subfigures (f) and (g) demonstrate the
conformal mapping result and OMT-Map result of the target surface. Illustrated
by the texture mappings in the subfigures (d) and (h), the T-Map gives the
registration result of our proposed method which maps circle-texture in subfigure
(d) to ellipse-texture in subfigure (h), with landmark constraints denoted by
white dots. Moreover, Figure 8 illustrates the registration results of our proposed
method. The white circular dots denote the landmark constraints, and the cyan
lines connecting the red circular dots demonstrate the registered correspondences
between the source and target surfaces. In Figure 9, the texture mapping results
are given to qualitatively show the registration accuracy of our proposed method.

4.1 Robustness

The proposed landmark-constrained registration method employs the OMT-
Map, which is capable of avoiding large area distortion. To evaluate the ro-
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(a) (b)

(c) (d)

Fig. 9. Texture mapping results: (a). Sophie model; (b). Armadillo model; (c). dog
model; (d). brain surface.

bustness of our method, we demonstrate the conformal mapping results and
OMT-Map results for Armadillo surface models. The Armadillo surfaces were
mapped onto the planar unit disk by conformal mapping and OMT-Map, re-
spectively. As observed from Figure 5(b) and (f) which illustrate the conformal
mapping results, the head area shrunk exponentially and became hard to be
recognized. In the region marked with small white box, the hand with fingers
suffered from exponential area distortion, which may easily exceed the machine
precision and result in problems or failure of surface registration. By contrast,
the fingers marked with a bigger white box in Figure 5(c) and (g) where the
OMT-Map based area preserving mapping results are shown, maintained the
same areas as those on the original Armadillo surface. The similar observation
was also obtained from two different mapping results for dog and koala bear sur-
face models, where the ear and nose of conformal mapping results in Figure 6(b)
and (f) are respectively shrunk with large area distortion, which are neverthe-
less avoided in OMT-Map based area preserving mapping results in Figure 6(c)
and (g). Therefore, the OMT-based area preserving mapping in our registration
method avoids large area distortion, rendering our registration method more
robust.
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(a) Result of Sophie model (b) Result of Armadillo model

(c) Result of Dog and Koala models (d) Result of brain surfaces

Fig. 10. Comparison results of three methods on histograms of Jacobian determinant
for various surfaces in Table 1. The number of negative Jacobian determinants corre-
sponds to the number of flipped faces. The diffeomorphism is indicated by zero flipped
face.
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Table 1. Geometric properties of surface models.

Surface Model #Vertices #Edges #Faces #Landmarks

Sophie#1 21043 62629 41587 9
Sophie#2 21495 64012 42518 9

Armadillo#1 11251 33654 22404 15
Armadillo#2 10933 32702 21770 15

Dog 14858 44423 29566 10
Koala bear 13768 41137 27370 10

Source brain surface 10k∼20k 30k∼60k 20k∼40k 10
Target brain surface 10k∼20k 30k∼60k 20k∼40k 10

Table 2. Comparison of three methods on diffeomorphism.

Number of flipped faces Conformal Map OMT-Map Ours

#Flipped faces for Sophie model 27 38 0
#Flipped faces for Armadillo model 564 302 0
#Flipped faces for dog&koala bear model 227 7 0
#Flipped faces for brain surfaces in average 7 14 0

4.2 Diffeomorphism

One merit which makes our registration method advantageous is that the dif-
feomorphism of the mapping between surfaces is guaranteed. To quantitatively
evaluate the registration performance in guaranteeing the diffeomorphism, we
compared our registration method with the other two existing methods, i.e.,
conformal mapping based method and OMT-Map based method. Specifically,
we computed the Jacobian determinant, and measured the number of flipped
faces by counting the number of negative Jacobian determinants, for various
surface models as well as a set of brain surfaces. Zero flipped faces indicate that
the diffeomorphism in the surface registration result is obtained. As shown in
Table 2, our proposed method guarantees the diffeomorphism by obtaining zero
flipped faces in the registration result, while both of the other two existing meth-
ods produced some flipped faces, where diffeomorphisms were not guaranteed.
In Figure 10.(a)(b)(c)(d) which capture the experimental results for the Sophie,
Armadillo, Dog and Koala bear, and the brain surfaces respectively, the upper
frame with green bars and the middle frame with blue bars indicate that overlaps
(i.e., flipped regions) occur in the registration results of the other two existing
methods, respectively. On the contrary, there is no flipped faces in the regis-
tration result of our proposed registration method, as evidenced by the lower
frame with red bars in Figure 10.(a)(b)(c)(d). Thus, it is shown that our reg-
istration method is effective in computing a non-overlap landmark-constrained
registration, and guarantee the diffeomorphism.

4.3 Conformality distortion
Our registration method can compute a unique T-Map with constrained land-
marks. In order to evaluate the proposed registration method, we computed the
norm of Beltrami coefficient which measures the local conformality distortion,
and compared our registration method with the other two existing methods for
various surfaces. As illustrated in the upper frames and the middle frames of Fig-
ure 11.(a)(b)(c)(d), we obtained the maximal conformality distortions |µ|max>1
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(a) Result of Sophie model (b) Result of Armadillo model

(c) Result of Dog and Koala models (d) Result of brain surfaces

Fig. 11. Comparison results of three methods on conformality distortion for various
surfaces in Table 1. The upper frame and middle frame in each sub-figure show the
results of the conformal mapping based method and the OMT-Map based method,
respectively. The lower frame gives the results of our proposed method.

for both of the two existing methods. By contrast, our method achieved |µ|max
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Fig. 12. Comparison results of our method with conformal mapping based method on
area distortion.

= 0.27<1, |µ|max = 0.66<1, |µ|max = 0.32<1, and |µ|max = 0.59<1 for the So-
phie, Armadillo, Dog and Koala bear, and the brain surfaces respectively. Fur-
thermore, the norm of Beltrami coefficient obtained by our method is uniformly
equal to 0.24, 0.59, 0.29, and 0.55 respectively, as given in the lower frames of
Figure 11.(a)(b)(c)(d). This demonstrates our registration method can minimize
the maximal conformality distortion and achieve uniform conformality distortion
over the whole domain.

4.4 Area Distortion

In order to demonstrate the advantage of our proposed method on avoiding
large area distortion, we conducted numerical evaluation on Armadillo models
by comparing our method with the existing conformal mapping based method.
Figure 12 shows the the histograms of area distortion, which is computed by
the logarithm of result face area over the original face area. As observed from
the Figure 12(a), the existing conformal mapping based method causes large
shrinkage and area distortion. In contrast, our method almost keeps the same
area and avoids large area distortion in Figure 12(b).

4.5 Comparision with Teichmüller Map based Method

We further compared our method with the pure Teichmüller map (T-Map) based
method [29]. Both methods were run with the same convergence threshold in
the implementation on Armadillo models. According to the experimental re-
sults, both methods achieved diffeomorphism and obtained zero flipped face in
the registration results. However, our method, in terms of the running time,
performed better with a value of 51 seconds, comparing with the T-Map based
method with a value of 88 seconds. Moreover, the norms of Beltrami coefficient
were computed. As shown in Figure 13(a), the distribution of the norm of Bel-
trami coefficient in the T-Map based method is not even. By contrast, nearly
all the norms of Beltrami coefficient in our method is uniformly distributed at
around 0.59 in Figure 13(b).
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Fig. 13. Comparison results of our method with the Teichmüller map based method
on conformality distortion.

5 Conclusion
In this work, a robust and diffeomorphic landmark-constrained surface registra-
tion method is proposed based on OMT-Map and T-Map. The algorithms for
computation of OMT-Map based area preserving mapping, T-Map and landmark-
based surface registration framework are presented with details. Experimental
evaluations are performed on real surface data, which shows that our registration
method is robust, accurate and diffeomorphic. Current work focuses on simply
connected surfaces. In the future, we will generalize the framework to surfaces
with more general topology.
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16. Lipman, Y., Funkhouser, T.: Möbius voting for surface correspondence. ACM
Transactions on Graphics 28(3) (2009)

17. Kurtek, S., Srivastava, A., Klassen, E., Laga, H.: Landmark-guided elastic shape
analysis of spherically-parameterized surfaces. Computer Graphics Forum 32
(2013) 331–349

18. Auzias, G., Colliot, O., Glaunes, J.A., Perrot, M., Mangin, J.F., Trouve, A., Baillet,
S.: Diffeomorphic brain registration under exhaustive sulcal constraints. IEEE
Transactions on Medical Imaging 30(6) (2011) 1214–1227

19. Joshi, S.C., Miller, M.I.: Landmark matching via large deformation diffeomor-
phisms. IEEE Trans Image Process 9(8) (2000) 1357–1370

20. Su, Z., Wang, Y., Shi, R., Zeng, W., Sun, J., Luo, F., Gu, X.: Optimal mass
transport for shape matching and comparison. IEEE TPAMI (2015)

21. Kantorovich, L.V.: On a problem of monge. Uspekhi Mat. Nauk. 3 (1948) 225–226
22. Gu, X., Luo, F., Sun, J., Yau, S.T.: Variational principles for minkowski

type problems, discrete optimal transport, and discrete monge-amperé equations.
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