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Abstract
We present a mathematical formalism and a computational framework for the problem of learning
a dynamical system from noisy observations of a few trajectories and subject to side information
(e.g., physical laws or contextual knowledge). We identify six classes of side information which
can be imposed by semidefinite programming and that arise naturally in many applications. We
demonstrate their value on two examples from epidemiology and physics. Some density results
on polynomial dynamical systems that either exactly or approximately satisfy side information are
also presented.
Keywords: Learning, Dynamical Systems, Sum of Squares Optimization, Semidefinite Program-
ming

1. Introduction
In several safety-critical applications, one has to learn the behavior of an unknown dynamical sys-
tem from noisy observations of a very limited number of trajectories. For example, to autonomously
land an airplane that has just gone through engine failure, limited time is available to learn the
modified dynamics of the plane before appropriate control action can be taken. Similarly, when
a new infectious disease breaks out, few observations are initially available to understand the dy-
namics of contagion. In situations of this type where data is limited, it is essential to exploit “side
information”—e.g. physical laws or contextual knowledge—to assist the task of learning.

In this paper, we present a mathematical formalism of the problem of learning a dynamical
system with side information. We identify a list of six notions of side information that are com-
monly encountered in practice and can be enforced in any combination by semidefinite program-
ming (SDP). After presenting these notions in Section 2.1, we describe the SDP formulation in
Section 3, demonstrate the applicability of the approach on two examples in Section 4, and end with
theoretical justification of our methodology in Section 5.

2. Problem Formulation
Our interest in this paper is to learn a dynamical system

ẋ(t) = f(x(t)), f : Ω→ Rn, (1)
over a given compact set Ω ⊂ Rn from noisy observations of a limited number of its trajectories.
We assume that the unknown vector field f is continuously differentiable (f ∈ C1 for short). This
assumption is often met in applications, and is known to be a sufficient condition for existence and
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uniqueness of solutions to (1) (see, e.g., [10]). In our setting, we have access to a set of the form
D := {(xi, yi), i = 1, . . . , N}, (2)

where xi ∈ Ω is a possibly noisy measurement of the state of the dynamical system, and yi ∈ Rn is
a noisy measurement of f(xi). Typically, this training set is obtained from observation of a few tra-
jectories of (1). The vectors yi could be either directly accessible (e.g., from sensor measurements)
or approximated using a finite-difference scheme on the state variables.

Finding a vector field fF that best agrees with the unknown vector field f among a particular
subspace F of continuously-differentiable functions amounts to solving a least-squares problem:

fF ∈ arg min
p∈F

∑
(xi,yi)∈D

‖p(xi)− yi‖2. (3)

While we work with the least-squares loss of simplicity, it turns out that our SDP-based approach
can readily handle other types of losses such as the `1 loss, the `∞ loss, and any loss given by an
sos-convex function (see [9] for a definition and also [12, Theorem 3.3]).

2.1. Side information
In addition to consistency with f , we desire for our learned vector field fF to also generalize well
in conditions that were not observed in the training data. Indeed, the optimization problem in (3)
only dictates how the candidate vector field should behave on the training data, which could easily
lead to over-fitting, especially if the function class F is large and the observations are limited. Let
us demonstrate this issue with a simple example.
Example 1 Consider the two-dimensional vector field f(x1, x2) := (−x2, x1)T . The trajectories
of the system ẋ = f(x) from any initial condition are given by circular orbits. In particular, if
started from the point x0 := (1, 0)T , the trajectory is given by x(t, x0) = (cos(t), sin(t))T . Hence,
for any function g : R2 → R2, the vector field h(x) := f(x) + (x21 + x22 − 1)g(x) agrees with
f on the sample trajectory x(t, x0). However, the behavior of the trajectories of h depend on the
arbitrary choice of the function g. If g(x) = x for instance, the trajectories of h starting outside of
the unit disk diverge to infinity.

To address the issues of over-fitting and scarcity of data, we would like to exploit the fact that in
many applications, one may have contextual information about the vector field f without knowing
f precisely. We call such contextual information side information. Formally, every side information
is a subset S of the set of all continuously-differentiable vector fields. Our goal is then to replace
the optimization problem in (3) with

min
p∈F∩S1∩···∩Sk

∑
(xi,yi)∈D

‖p(xi)− yi‖2, (4)

i.e., to find a vector field p ∈ F that satisfies the finite list of side information S1, . . . , Sk that f is
known to satisfy.

For arbitrary side information Si, it might be unclear how one could solve (4). Below, we
identify six types of side information that we believe are useful in practice (see, e.g., Section 4) and
can be tackled using semidefinite programming (see Sections 3 and 5).
• Interpolation at a finite set of points. For a set of points {(xi, yi) ∈ Rn × Rn}mi=1, we denote by

Interp({xi, yi}mi=1) the set of vector fields f ∈ C1 that satisfy f(xi) = yi for i = 1, . . . ,m. An
important special case of this is the setting where the vectors yi are equal to 0. In this case, the side
information is the knowledge of certain equilibrium points of the vector field f .

• Sign symmetry. For any two n × n diagonal matrices A and B with 1 or −1 on the diagonal,
we define Sym(A,B) to be the set of vector fields f ∈ C1 satisfying the symmetry condition
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f(Ax) = Bf(x) ∀x ∈ Rn. If I denotes the n× n identity matrix, then the set Sym(−I, I) (resp.
Sym(−I,−I)) is exactly the set of even (resp. odd) vector fields.

• Coordinate nonnegativity. For any sets Bi ⊆ Ω, i = 1, . . . , n, we denote by Pos({Di, Bi}ni=1)
the set of vector fields f ∈ C1 that satisfy fi(x)Di 0 ∀x ∈ Bi ∀i ∈ {1, . . . , n}, where Di stands for
≥ or ≤. These constraints are useful when we know that certain components of the state variables
are increasing or decreasing functions of time in some regions of the space.

• Coordinate directional monotonicity. For any sets Bi,j ⊆ Ω, i, j = 1, . . . , n, we denote the set
of vector fields f ∈ C1 that satisfy ∂fi

xj
(x)Di,j 0 ∀x ∈ Bi,j ∀i, j ∈ {1, . . . , n}, where Dij stands as

before for ≥ or ≤, by Mon({Di,j , Bi,j}ni,j=1). An important special case of this is when Bij = Ω
and Dij is taken to be ≥ for all i 6= j. In this case, the side information is the knowledge of the
following property of the vector field f :

∀x0, x̃0 ∈ Ω [x0 ≤ x̃0 =⇒ x(t, x0) ≤ x(t, x̃0) ∀t ≥ 0].
Here the inequalities are interpreted elementwise, and the notation x(t, x0) for example denotes the
trajectory of the vector field f starting from the point x0.

• Invariance of a set. We say that a set B ⊆ Ω is invariant under a vector field f ∈ C1 if any
trajectory of the dynamical system ẋ = f(x) which starts in B stays in B forever. In particular, if
B = {x ∈ Rn | hi(x) ≥ 0, i = 1, , . . . ,m} for some C1 functions hi, then invariance of the set B
under the vector field f is equivalent to the following constraint:

∀i ∈ {1, . . . ,m} ∀x ∈ B [hi(x) = 0 =⇒ 〈f(x),∇hi(x)〉 ≥ 0]. (5)
The set of all C1 vector fields under which the set B is invariant is denoted by Inv(B).

• Gradient and Hamiltonian systems. The vector field f ∈ C1 is said to be a gradient vector field
if there exists a scalar-valued function V : Ω → R such that f(x) = −∇V (x) ∀x ∈ Ω. Typically,
the function V is interpreted as a potential or energy that decreases along the trajectories of the
dynamical system ẋ = f(x). The set of gradient vector fields is denoted by Grad. A dynamical
system is said to be Hamiltonian if the dimension n of the state space x is even, and there exists a
scalar-valued function H : Ω −→ R such that

fi(p, q) = −∂H
∂qi

(p, q) and fn
2
+i(p, q) =

∂H

∂pi
(p, q),

where p = (x1, . . . , xn
2
)T and q = (xn

2
+1, . . . , xn)T . The coordinates p and q are usually called

momentum and position respectively, following terminology from physics. Note that a Hamiltonian
system conserves the quantity H along its trajectories. The set of Hamiltonian vector fields is
denoted by Ham. For related work on learning Hamiltonian systems, see [7; 2].

3. Learning Polynomial Vector Fields Subject to Side Information
To completely define the optimization problem in (4), we still have to specify the function class F .
Among the possible choices are reproducing kernel Hilbert spaces [18; 19; 5], trigonometric func-
tions, and functions parameterized by neural networks [4; 7]. In this paper, we take F to be the
set

Pd := {p : Rn → Rn | pi is a (multivariate) polynomial of degree d for i = 1, . . . , n}.
Furthermore, we assume that the set Ω and all its subsets considered in Section 2.1 in the definitions
of side information (i.e., the sets Bi in the definition of Pos({Di, Bi}ni=1), the sets Bij in the
definition of Mon({Di,j , Bi,j}ni,j=1), and the set B in the definition of Inv(B)) are closed basic
semi-algebraic. We recall that a closed basic semialgebraic set is a subset of the Euclidean space of
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the form
Λ := {x ∈ Rn| gi(x) ≥ 0, i = 1, . . . ,m}, (6)

where g1, . . . , gm are polynomial functions.
These choices are motivated by two reasons. The first is that polynomial functions are expressive

enough to approximate a large family of functions. The second reason which shall be made clear in
this paper is that because of some connections between real algebra and semidefinite optimization,
several side information constraints that are commonly available in practice can be imposed on
polynomial vector fields in a numerically tractable fashion. We note that the problem of fitting a
polynomial vector field to data has appeared e.g. in [17], though the focus there is on imposing
sparsity of the coefficients of the vector field as opposed to side information. The closest work
in the literature to our work is that of Hall on shape-constrained regression [8, Chapter 8], where
similar algebraic techniques are used to impose constraints such as convexity and monotonicity on
a polynomial regressor. See also [6] for some statistical properties of these regressors and several
applications. Our work can be seen as an extension of this approach to a dynamical system setting.

With our choices, the optimization problem in (4) has as decision variables the coefficients of a
candidate polynomial vector field p. The objective function is a convex quadratic function of these
coefficients, and the constraints are twofold: (i) affine constraints in the coefficients of p, and (ii)
constraints of the form

q(x) ≥ 0 ∀x ∈ Λ, (7)
where Λ is a given closed basic semialgebraic set of the form (6), and q is a (scalar-valued) poly-
nomial whose coefficients depend affinely on the coefficients of the polynomial p. For example,
it is easy to see that membership to Interp({xi, yi}mi=1), Sym(A,B), Grad, or Ham is given
by affine constraints, while membership to Pos({Di, Bi}ni=1), Mon({Di,j , Bi,j}ni,j=1), or Inv(B)
can be cast as constraints of the type in (7). Unfortunately, imposing the latter type of constraints
is NP-hard already when q is a quartic polynomial and Λ = Rn, or when q is quadratic and Λ is a
polytope.

An idea pioneered to a large extent by Lasserre [11] and Parrilo [15] has been to write algebraic
sufficient conditions for (7) based on the concept of sum of squares polynomials. We say that a
polynomial h is a sum of squares (sos) if it can be written as h =

∑
i q

2
i for some polynomials qi.

Observe that if we succeed in finding sos polynomials σ0, σ1, . . . , σm such that the polynomial
identity

q(x) = σ0(x) +
m∑
i=1

σi(x)gi(x) (8)

holds, then, clearly, the constraint in (7) must be satisfied. When the degree of the sos polynomials
σi is bounded by an integer r, we refer to the identity in (8) as the degree-r sos certificate corre-
sponding to the constraint in (7). Conversely, a celebrated result in algebraic geometry [16] states
that if g1, . . . , gm satisfy the so-called “Archimedean property” (a condition slightly stronger than
compactness of the set Λ), then positivity of q on Λ guarantees existence of a degree-r sos certificate
for some integer r large enough.

The computational appeal of the sum of squares approach stems from the fact that the search
for sos polynomials σ0, σ1, . . . , σm of a given degree that verify the polynomial identity in (8)
can be automated via semidefinite programming. This is true even when some coefficients of the
polynomial q are left as decision variables. This claim is a straightforward consequence of the
following well-known fact (see, e.g., [14]): A polynomial h of degree 2d is a sum of squares if and
only if there exists a symmetric matrix Q which is positive semidefinite and verifies the identity
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h(x) = z(x)TQz(x), where z(x) here denotes the vector of all monomials in x of degree less than
or equal to d.

4. Illustrative Experiments
4.1. Diffusion of a contagious disease
The following dynamical system has appeared in the epidemiology literature (see, e.g., [3]) as a
model for the spread of Gonorrhea in a heterosexual population:

ẋ = f(x),where x ∈ R2 and f(x) =

(
−a1x1 + b1(1− x1)x2
−a2x2 + b2(1− x1)x2

)
. (9)

Here, the quantity x1(t) (resp. x2(t)) represents the fraction of infected males (resp. females) in the
population. The parameters ai and bi respectively denote the recovery and infection rates for males
when i = 1, and for females when i = 2. We take (a1, b1, a2, b2) = (0.05, 0.1, 0.05, 0.1), and we
plot the resulting vector field f in Figure 1a. We suppose that this vector field is unknown to us, and
our goal is to learn it from a few noisy snapshots of a single trajectory. More specifically, we have
access to the training data set

D :=

{(
x(ti, x0), f(x(ti, x0)) + 10−4

(
ε1i
ε2i

))}20

i=1

,

where x(t, x0) is the trajectory obtained when the flow in (9) is started from the initial condition
x0 = (0.7, 0.3)T , the scalars ti := i/20 represent a uniform subdivision of the time interval [0, 1],
and the scalars ε1i , ε

2
i are independent standard normal variables.

Following our approach in Section 3, we parameterize our candidate vector field p : R2 → R2

as a polynomial of degree d. Note that the true vector field f is a polynomial of degree 2. In this
experiment, we pretend that f is unknown to us and consider an over-parameterized model of the
true dynamics by taking d = 3. In absence of any side information, one could solve the least-squares
problem

min
p∈P3

∑
(xi,yi)∈D

‖p(xi)− yi‖2 (10)

to find a cubic polynomial that best agrees with the training data. The solution to problem (10) is
plotted in Figure 1b. Observe that while the learned vector field replicates the behavior of the vector
field f on the observed trajectory, it differs significantly from f on the rest of the unit box. To
remedy this problem, we leverage the following side information that are available from the context
without knowing the exact structure of f .
• Equilibrium point at the origin (Interp). The disease cannot spread if no male or female is

infected. This side information corresponds to our vector field p having an equilibrium point at the
origin, i.e., p(0, 0) = 0. We simply add this linear constraint to problem (10) and plot the resulting
vector field in Figure 1c. Note from Figure 1b that the least-squares solution does not satisfy this
side information.

• Invariance of the box [0, 1]2 (Inv). The state variables (x1, x2) of the dynamics in (9) represent
fractions, and as such, the vector x(t) should be contained in the box [0, 1]2 at all times t ≥ 0.
Mathematically, this corresponds to the four (univariate) polynomial nonnegativity constraints

p2(x1, 0) ≥ 0, p2(x1, 1) ≤ 0 ∀x1 ∈ [0, 1], p1(0, x2) ≥ 0, p1(1, x2) ≤ 0 ∀x2 ∈ [0, 1],
which imply that the vector field points inwards on the four edges of the unit box. We replace each
one of these four constraints with the corresponding degree-2 sos certificate of the type in (8). For
instance, we replace the constraint p2(x1, 0) ≥ 0 ∀x1 ∈ [0, 1] with the linear constraints obtained
from equating the coefficients of the two sides of the polynomial identity p2(x1, 0) = x1s0(x1) +
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(a) The vector field in (9) (b) no side information (c) Interp (d) Interp∩ Inv (e) Interp∩ Inv∩Mon

Figure 1: (Figure 1a) Streamplot of the true and unknown vector field in (9) that is to be learned from a single trajectory starting
from (0.7, 0.3)T . (Figures 1b to 1e) Streamplots of the polynomial vector fields of degree 3 returned by our SDPs as more side
information constraints are added. In each case, the trajectory of the learned vector field starting from (0.7, 0.3)T is also plotted.

(1 − x1)s1(x1). Here, the new decision variables s0 and s1 are (univariate) quadratic polynomials
that are constrained to be sos. Obviously, this algebraic identity is sufficient for nonnegativity of
p2(x1, 0) over [0, 1]; In this case, it also happens to be necessary [13]. The output of the SDP which
imposes the invariance of the unit box and the equilibrium at the origin is plotted in Figure 1d.

• Coordinate directional monotonicity (Mon). We expect that if the fraction of males infected rises
in the population, the rate of infection of females should increase. Mathematically, this amounts
to the constraint that ∂p2

∂x1
(x) ≥ 0 ∀x ∈ [0, 1]2. Similarly, by changing the roles played by males

and females, we obtain the constraint ∂p1
∂x2

(x) ≥ 0 ∀x ∈ [0, 1]2. Note that [0, 1]2 is a closed basic
semialgebraic set, so in the same spirit as the previous bullet point, we replace each one of these
constraints with its corresponding degree-2 sos certificate (see (8)). The resulting vector field is
plotted in Figure 1e.

Note from Figures 1b to 1e that as we add more side information, the learned vector field
respects more and more properties of the true vector field f . In particular, the learned vector field
in Figure 1e is quite similar qualitatively to the truth in Figure 1a even though only a single noisy
trajectory is used for learning.

4.2. The simple pendulum

`
θ

gravity

Figure 2: The simple pendulum
and its phase portrait.

In this subsection, we consider the simple pendulum system, i.e., a mass m hanging from a mass-
less rod of length ` (see Figure 2). The state variables of this system are given by x = (θ, θ̇), where
θ is the angle that the rod makes with the vertical axis and θ̇ is the time derivative of this angle.
By convention, the angle θ ∈ (−π, π] is positive when the mass is to the right of the vertical axis,
and negative otherwise. By applying Newton’s second law of motion, the equation θ̈ = −g/` sin θ
for the pendulum may be obtained, where g is is the local acceleration of gravity. This is a one-
dimensional second-order system that we convert to a first-order system as follows:

ẋ =

(
θ̇

θ̈

)
= f(θ, θ̇) :=

(
θ̇

−g
` sin θ

)
. (11)

We take the vector field in (11) to be the ground truth with g = ` = 1, and we observe from
it a noisy version of two trajectories x(t, x0) and x(t, x̃0) sampled at times ti = 1/5, 2/5, . . . , 1,
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with x0 = (π4 , 0)T and x̃0 = (9π10 , 0)T (see Figure 2). More precisely, we assume that we have the
following training data set:

D :=
{
(θ(ti, x0), θ̇(ti, x0), θ̈(ti, x0)) + 10−2ε1i

}5

i=1

⋃{
(θ(ti, x̃0), θ̇(ti, x̃0), θ̈(ti, x̃0)) + 10−2ε2i

}5

i=1
, (12)

where the εki (for k = 1, 2 and i = 1, . . . , 5) are independent 3× 1 standard normal vectors.
We are interested in learning the vector field f over the set Ω = [−π, π]2 from the training data

in (12) and the side information below, which could be derived from contextual knowledge without
knowing f . We parameterize our candidate vector field p as a degree-5 polynomial. Note that
p1(θ, θ̇) = θ̇, just from the meaning of our state variables. The only unknown is therefore p2(θ, θ̇).
• Sign symmetry (Sym). The pendulum system in Figure 2 is obviously symmetric with respect to

the vertical dotted axis. Then, our candidate vector field p needs to satisfy the same symmetries.
p(−θ,−θ̇) = −p(θ, θ̇) ∀(θ, θ̇) ∈ Ω.

Note that this is an affine constraint in the coefficients of the polynomial p.

• Coordinate nonnegativity (Pos). The only external force applied on the pendulum system is that
of gravity; see Figure 2. This force pulls the mass down and pushes the angle θ towards 0. This
means that the angular velocity θ̇ decreases when θ is positive and increases when θ is negative.
Mathematically, we must have

p2(θ, θ̇) ≤ 0 ∀(θ, θ̇) ∈ [0, π]× [−π, π] and p2(θ, θ̇) ≥ 0 ∀(θ, θ̇) ∈ [−π, 0]× [−π, π].
We replace each one of these constraints with their corresponding degree-4 sos certificate (see (8)).
(Note that, because of the previous symmetry side information, we actually only need to impose the
first of these two constraints.)

• Hamiltonian (Ham). The system in (11) is Hamiltonian. Indeed, in the simple pendulum model,
there is no dissipation of energy (through friction for example), so the total energy

E(θ, θ̇) =
m

2
θ̇2 +

1

2

g

l
(1− cos(θ)) (13)

is conserved. This energy is a Hamiltonian associated with the system. The two terms appearing
in this equation can be interpreted physically as the kinetic and the potential energy of the system.
Note that neither the vector field in (11) describing the dynamics of the simple pendulum nor the
associated Hamiltonian in (13) are polynomial functions. In our learning procedure, we use only
the fact that the system is Hamiltonian, i.e., that there exists a function H such that p1(θ, θ̇) =
−∂H

∂θ̇
(θ, θ̇), and p2(θ, θ̇) = ∂H

∂θ (θ, θ̇), but not the exact form of this Hamiltonian in (13). Since we
are parameterizing the candidate vector field p as a degree-5 polynomial, the function H must be a
(scalar-valued) polynomial of degree 6. The Hamiltonian structure can thus be imposed by adding
affine constraints for example on the coefficients of p.

Observe from Figure 3 that as more side information is added, the behavior of the learned vector
field gets closer to the truth. In particular, the solution returned by our SDP in Figure 3d is almost
identical to the true dynamics in Figure 2 even though it is obtained only from 10 noisy samples
on two trajectories. Figure 4 shows the benefit of adding side information even for predicting the
future of a trajectory which is partially observed.

5. Approximation Results
In this section we present some density results for polynomial vector fields that obey side informa-
tion. The proof of these results can be found in [1].
Theorem 1 Fix a compact set Ω ⊂ Rn, a time horizon T > 0, and a desired accuracy ε > 0.
Let f : Ω → Rn be a C1 vector field that satisfies exactly one of the following side informa-
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(a) no side information (b) Sym (c) Sym∩Pos (d) Sym∩Pos∩Ham

Figure 3: Streamplots of the polynomial vector fields of degree 5 returned by our SDPs for the simple pendulum as
more side information constraints are added. In each case, the trajectories of the learned vector field starting from
(π4 , 0)T and ( 9π

10 , 0)T are plotted in black.

0 10

−π
4

0

π
4

t

θ
(t
)

0 10t

Training Data
Ground truth

Learned vector field

Figure 4: Comparison of the trajectory of the simple pendulum in (11) (dotted) starting from (π4 , 0)T with
the trajectory from the same initial condition of the least-squares solution (left) and the vector field obtained
from Sym∩Pos∩Ham (right).

tion constraints (see Section 2.1) (i) Interp({xi, yi)mi=1}, (ii) Sym(A,B), (iii) Pos({Di, Bi}ni=1),
(iv) Mon({Di,j , Bi,j}ni,j=1), (v) Inv(B), where B = {x ∈ Rn | hi(x) ≥ 0, i = 1, . . . ,m} for
some C1 concave functions hi that satisfy hi(x0) > 0, i = 1, . . . ,m, for some x0 ∈ Ω, (vi) Grad
or Ham. Then there exists a polynomial vector field p : Rn → Rn such that p satisfies the same side
information as f , and the trajectories of p and f starting from the same initial condition together
with their first time derivatives remain within ε for all time t ∈ [0, T ].

A natural question is whether the previous theorem could be generalized to allow for polynomial
approximation of vector fields satisfying combinations of side information. It turns out that the an-
swer is negative in general [1]. For this reason, we introduce the following notion of approximately
satisfying side information.

Definition 1 (δ-satisfiability) For any δ > 0 and any side information S presented in Section 2.1,
we say that a vector field f δ-satisfies S if for any equality constraint a = b (resp. inequality
constraint a ≤ b) appearing in the definition of S, the vector field f satisfies the modified version
|a− b| ≤ δ (resp. a ≤ b+ δ).

Example 2 A vector field f δ-satisfies the side information Interp({xi, yi}mi=1) if ‖f(xi)−yi‖ ≤ δ
for i = 1, . . . ,m, and δ-satisfies the side information Pos({≥, Bi}ni=1) if fi(x) ≥ −δ ∀x ∈ Bi for
i = 1, . . . , n.

The assumption of δ-satisfiability is reasonable because most optimization solvers return an
approximate solution anyway. The following theorem shows that polynomial vector fields can ap-
proximate any vector field f and satisfy the same side information as f (up to an arbitrarily small
error tolerance δ).

Theorem 2 Fix a compact set Ω ⊂ Rn, a time horizon T > 0, a desired accuracy ε > 0, and a
tolerance for error δ. Let f : Ω→ Rn be a C1 vector field that satisfies any combination of the six
side information presented in Section 2.1. Then there exists a polynomial vector field p : Rn → Rn
such that the trajectories of p and f starting from the same initial condition together with their first
time derivatives remain within ε for all time t ∈ [0, T ], and p δ-satisfies the same combination of
side information as f . Moreover, δ-satisfiability of side information comes with a sum of squares
certificate of the form in (8).
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