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Abstract001

Large language models (LLMs) augmented002
with retrieval systems have significantly ad-003
vanced natural language processing tasks by004
integrating external knowledge sources, en-005
abling more accurate and contextually rich re-006
sponses. To improve the robustness of such007
systems against noisy retrievals, Retrieval-008
Augmented Fine-Tuning (RAFT) has emerged009
as a widely adopted method. However, RAFT010
conditions models to generate answers even011
in the absence of reliable knowledge. This012
behavior undermines their reliability in high-013
stakes domains, where acknowledging un-014
certainty is critical. To address this issue,015
we propose Divide-Then-Align (DTA), a post-016
training approach designed to endow RAG017
systems with the ability to respond with "I018
don’t know" when the query is out of the019
knowledge boundary of both the retrieved020
passages and the model’s internal knowledge.021
DTA divides data samples into four knowledge022
quadrants and constructs tailored preference023
data for each quadrant, resulting in a curated024
dataset for Direct Preference Optimization025
(DPO). Experimental results on three bench-026
mark datasets demonstrate that DTA effectively027
balances accuracy with appropriate abstention,028
enhancing the reliability and trustworthiness of029
retrieval-augmented systems. Code is available030
at: https://anonymous.4open.science/r/Divide-031
Then-Align032

1 Introduction033

Large language models (LLMs) have achieved re-034

markable success across various NLP tasks (Rad-035

ford et al., 2019; Brown et al., 2020; Bubeck et al.,036

2023; OpenAI, 2022). However, these models are037

constrained by their pretraining knowledge, which038

may become outdated or insufficient for domain-039

specific queries (Jiang et al., 2023; Shuster et al.,040

2021). Retrieval-Augmented Generation (RAG)041

(Izacard and Grave, 2021; Lewis et al., 2020) ad-042

dresses this limitation by combining LLMs with043
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Figure 1: Knowledge Boundary of RAG. A query can be
divided into four quadrants based on the model’s para-
metric knowledge boundary (KBparam) and the knowl-
edge boundary of the retrieval passages (KBr). The
queries that fall into ✘✘ should be answered with "I
don’t know" instead of generating potentially hallucina-
tory answers.

retrieval systems that access external knowledge 044

sources (Pasca, 2019; Jin et al., 2019) to provide 045

more accurate and contextually rich responses. 046

Despite its promise, RAG faces significant chal- 047

lenges due to the limitations of current retrieval 048

systems. In practice, retrieval systems often fail to 049

return entirely accurate passages, resulting in noisy 050

contexts that can contain irrelevant, conflicting, or 051

misleading information (Yoran et al., 2024; Fang 052

et al., 2024; Cuconasu et al., 2024). Yoran et al. 053

(2024); Fang et al. (2024); Liu et al. (2024b) pro- 054

pose Retrieval-Augmented Fine-Tuning (RAFT) 055

to mitigate this issue, which involves fine-tuning 056

LLMs with a combination of retrieved contexts, 057

both relevant and noisy, encouraging the models to 058

learn robustness to noisy inputs. 059

While RAFT has shown improvements in model 060

performance, it introduces a critical drawback: 061

RAFT conditions the model to answer questions 062

even when the retrieved contexts are entirely 063
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noisy. This behavior poses a significant risk for064

deploying LLMs in real-world applications, partic-065

ularly in high-stakes domains like medical (Raja066

et al., 2024), legal (Reji et al., 2024), and financial067

(Yepes et al., 2024) fields. As shown in Figure 1,068

the knowledge boundary of RAG systems is the069

union of the model’s parametric knowledge bound-070

ary and the retrieval knowledge boundary. When071

faced with queries for which neither the model’s072

parametric knowledge contains sufficient infor-073

mation to answer the query (✘), nor can useful074

information be found in the retrieved passages075

(✘), an ideal LLM should respond with "I don’t076

know" instead of generating potentially halluci-077

natory answers. However, our experiments reveal078

that RAFT models do not have this critical ability.079

Even when explicitly prompted to respond with "I080

don’t know". In such scenarios, the models tend081

to overfit to the training paradigm and generate082

hallucinatory answers.083

To address this limitation, we propose Divide-084

Then-Align (DTA), a systematic post-training ap-085

proach to enhance RAFT models. DTA operates086

in two key stages: ❶ Divide: First, we divide087

data samples from three benchmark datasets (Natu-088

ral Questions, TriviaQA, and WebQuestions) into089

four quadrants based on whether the answers lie090

within the LLM’s parametric knowledge boundary091

and the retrieval knowledge boundary. This divi-092

sion is crucial as different knowledge quadrants093

require distinct strategies for preference data con-094

struction. ❷ Align: For each category, we carefully095

construct preference data by specifying appropri-096

ate chosen and rejected responses based on the097

knowledge boundary division. This results in a098

curated training set of 10,000 preference samples.099

We then employ Direct Preference Optimization100

(DPO) (Rafailov et al., 2024) to endow the model101

with the ability to acknowledge uncertainty with102

"I don’t know" responses while maintaining the103

high accuracy achieved through RAFT training.104

To rigorously evaluate our approach, we develop a105

comprehensive knowledge quadrants based eval-106

uation framework with nine metrics that assess107

both the model’s overall performance and its ability108

to abstain from answering when queries fall outside109

both knowledge boundaries. Through careful anal-110

ysis across different quadrants, we demonstrate the111

effectiveness of our approach in balancing accuracy112

with principled abstention behavior.113

Our contributions can be summarized as follows:114

❶ Problem Identification: We first divide the RAG 115

samples into four quadrants based on whether 116

the answers lie within the LLM’s parametric 117

knowledge boundary and the retrieval knowledge 118

boundary. And we find that the RAFT model 119

is not able to abstain from answering when the 120

rag sample is out of both the LLM’s parametric 121

knowledge boundary and the retrieval knowledge 122

boundary. 123

❷ Proposed Solution: We propose DTA, a system- 124

atic approach that constructs quadrant-specific 125

preference data (10,000 samples) and leverages 126

DPO to enable principled abstention behavior 127

while preserving model performance. 128

❸ Experimental Validation: We evaluate our 129

method on three widely used datasets, demon- 130

strating its effectiveness in improving model reli- 131

ability and trustworthiness. 132

2 Preliminary 133

2.1 Knowledge Boundary of RAG 134

Let D denote the knowledge corpus. Let r : Q → 135

P be the retrieval function that maps a query q to 136

relevant passages P ⊆ D, where Q is the query 137

space and P is the passage space. We use M : Q× 138

P → A to represent the LLM function that takes 139

both the query and passages as input and generates 140

an answer from the answer space A. Let golden : 141

Q → A be the function that maps a query to its 142

ground truth answer, which represents the correct 143

response that should be generated for the query. 144

Let C(M(q, P )) denote the correctness evaluation 145

function. 146

For honest alignment of RAG systems, it’s cru- 147

cial to determine whether a query q lies within or 148

outside the system’s knowledge boundary KBrag. 149

Ideally: 150

• If q ∈ KBrag, the model should generate the 151

correct answer other than IDK. 152

• If q /∈ KBrag, the model should abstain from 153

answering. 154

2.2 Knowledge Quadrants 155

To better evaluate the knowledge boundary of RAG 156

systems, we consider that KBrag is composed 157

of two fundamental components: the parametric 158

knowledge boundary of the LLM (KBparam) and 159

the knowledge boundary of the retrieval passages 160

(KBr). Formally: 161
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KBparam = {q ∈ Q | C(M(q, ∅)) = True} (1)162

KBr = {q ∈ Q | ∃p ∈ r(q) :163

contains(p, golden(q)) = True} (2)164

The overall knowledge boundary of the RAG165

system can be characterized as:166

KBrag = KBparam ∪KBr167

This formulation captures that a query can be an-168

swered correctly if it falls within either the model’s169

parametric knowledge or can be answered using170

retrieved information.171

Then we can divide the samples into quadrants172

based on KBparam and KBr:173

✔✔ : q ∈ KBparam ∩KBr174

✔✘ : q ∈ KBparam \KBr175

✘✔ : q ∈ KBr \KBparam176

✘✘ : q /∈ KBparam ∪KBr177

The details of the description of the four quad-178

rants can be found in the Appendix A.179

3 Methodology180

3.1 Knowledge Quadrants Division181

To divide queries into the four knowledge quadrants182

defined in Section 2, we need to determine whether183

a query q belongs to KBparam and/or KBr. We184

use three widely-used question answering datasets:185

Natural Questions (Kwiatkowski et al., 2019a),186

TriviaQA (Joshi et al., 2017a), and WebQuestions187

(Berant et al., 2013a).188

Determining q ∈ KBparam To determine whe-189

ther a query lies within the model’s parametric190

knowledge boundary (q ∈ KBparam), we sample191

N answers {a1, ..., aN} from the model without192

any retrieved context by evaluating C(M(q, ∅))193

with different random seeds. If the proportion194

of correct answers in these N samples exceeds195

a threshold196

δ =
1

N

N∑
i=1

1[C(ai) = True] > δ197

we consider q ∈ KBparam (✔). Otherwise, we198

consider q /∈ KBparam (✘).199

To determine whether a response is correct, 200

we directly using lexical matching, which checks 201

whether the golden answers appear in the responses 202

gnerated by the model. According to the results 203

shown in (Wang et al., 2024), applying lexical 204

matching yields a consisitency rate of approxi- 205

mately 90% when compared to human evaluation. 206

Therefore, we deem the lexical matching to be 207

a good enough way to determine whether the re- 208

sponse is correct. 209

Determining q ∈ KBr To determine whether a 210

query lies within the retrieval knowledge boundary 211

(q ∈ KBr), we use GPT-4o (gpt-4o-2024-08-06) 212

to evaluate whether the retrieved passages contain 213

or directly imply the correct answer. We prompt 214

GPT-4o with a specialized evaluation prompt (see 215

Appendix F) that returns a binary score indicating 216

whether the context sufficiently supports the an- 217

swer. If GPT-4o determines the context contains or 218

implies the correct answer (score = 1), we consider 219

q ∈ KBr (✔). Otherwise, we consider q /∈ KBr 220

(✘). 221

3.2 Preference Data Construction 222

Based on the knowledge quadrants, we construct 223

preference data for each quadrant as follows: 224

For ✔✔, we can directly use the ground truth as 225

the chosen response and use IDK as the rejected 226

response. 227

For ✔✘ samples, we select the ground truth as 228

the chosen response, while constructing two types 229

of rejected responses: (1) incorrect answers gener- 230

ated by the LLM when exposed to noisy context, 231

demonstrating the model’s vulnerability to noisy in- 232

formation; and (2) "I don’t know" responses, which 233

are overly conservative given the model’s inherent 234

knowledge. 235

For ✘✔ samples, the ground truth serves as the 236

chosen response, paired with three categories of 237

rejected responses: (1) incorrect answers result- 238

ing from the model’s failure to utilize the golden 239

information in the context; (2) incorrect answers 240

generated by the LLM without any context to sup- 241

press the wrong parametric knowledge; and (3) "I 242

don’t know" responses, which indicate an inability 243

to leverage available context. 244

For ✘✘ samples, where neither source contains 245

reliable information, we designate "I don’t know" 246

as the chosen response. The rejected responses 247

comprise: (1) incorrect answers generated by the 248

LLM without any context, (2) incorrect answers 249
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Figure 2: The pipeline of knowledge quadrants division and preference dataset construction. GT denotes the ground
truth answer; IDK represents “I don’t know” response; WA1 and WA2 are wrong answers generated by the LLM
(WA = Wrong Answer); “If Wrong” indicates the condition where the model generates an incorrect response.
The symbol “>” indicates a preference relationship where the left option is preferred over the right option. The
preference construction (right) shows how different response types (GT, IDK, WA1, WA2) are ranked based on the
knowledge quadrant the query falls into. KBparam means the LLM’s parametric knowledge boundary and KBr

means the retrieval knowledge boundary.

generated by the LLM with noisy context, and (3)250

the ground truth itself, as generating correct an-251

swers without supporting evidence may encourage252

unfounded speculation.253

I don’t know Response Our refusal to answer254

template is:255

This question is beyond the scope of my
knowledge and the references. I don’t know
the answer.

256

We use "I don’t know" to refer to this template257

in the paper.258

3.3 Post training using DPO259

In this section, we introduce how to post-train the260

RAFT model to enable it with the ability to abstain261

from answering.262

After the preference data is constructed, we em-263

ploy a multi-objective training approach combining264

three different losses.265

DPO Loss We utilize the standard DPO loss to266

learn from preference pairs of chosen and rejected267

responses. This helps the model learn to distin-268

guish between preferred and non-preferred outputs. 269

Given a chosen response yc and a rejected response 270

yr for a query q and retrieved context r(q), the 271

DPO loss is defined as: 272

LDPO = − log σ(τ(rθ(q, r(q), yc)− rθ(q, r(q), yr))) (3) 273

where rθ(q, r(q), y) represents the log probabil- 274

ity of generating response y given query q and 275

retrieved context r(q) under the model parameters 276

θ, τ is the temperature parameter, and σ is the 277

sigmoid function. Note that this reward score is de- 278

rived from the same language model being trained, 279

eliminating the need for a separate reward model. 280

SFT Loss Our empirical observations show that 281

DPO training tends to focus on reducing rejected 282

response rewards rather than improving the quality 283

of the chosen response. To address this limitation, 284

we incorporate supervised fine-tuning loss on the 285

chosen responses to explicitly enhance the model’s 286

ability to generate preferred outputs: 287

LSFT = −
T∑
t=1

log pθ(y
t
c|q, r(q), y<t

c ) (4) 288

where ytc represents the t-th token of the chosen 289

response, and T is the length of the response. 290
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Knowledge Quadrant Classification Loss We291

add a value head on top of the last token’s hidden292

state to predict which knowledge quadrant (0-3) a293

query belongs to. This classification task serves as294

an auxiliary objective that helps the model develop295

better awareness of its knowledge boundaries and296

improve its ability to determine when to abstain297

from answering. The classification loss is defined298

as:299

Lclass = −
3∑

k=0

yk log pθ(k | q) (5)300

where yk is the one-hot encoded ground truth la-301

bel for the knowledge quadrant, and pθ(k|q) is the302

predicted probability for quadrant k.303

The final training objective is a weighted combi-304

nation of these three losses:305

Ltotal = LDPO + βLSFT + γLclass, (6)306

where β, and γ are hyperparameters controlling the307

contribution of each loss component.308

4 Experiments309

4.1 Datasets310

We evaluate our approach on three standard open-311

domain question answering datasets: Natural Ques-312

tions (NQ) (Kwiatkowski et al., 2019b), TriviaQA313

(Joshi et al., 2017b), and WebQuestions (WebQ)314

(Berant et al., 2013b). For each dataset, we fol-315

low the setting of (Fang et al., 2024) and employ316

the retrieval model DPR (Karpukhin et al., 2020)317

as our retriever, which retrieves 3 passages from318

wikipedia for each query.319

To evaluate the model’s ability to make appropri-320

ate abstentions, we also divide each sample in the321

test sets into four quadrants based on knowledge322

boundaries(✔✔, ✔✘, ✘✔, ✘✘). The details the323

test set are presented in Appendix D.324

4.2 Baselines325

We evaluate our approach against three categories326

of baselines: (1) RAFT models that focus on han-327

dling retrieval noise (RAAT (Fang et al., 2024),328

Ret-Robust (Yoran et al., 2024), ChatQA (Liu329

et al., 2024b)), (2) calibration-based methods that330

detect potential hallucinations (P(True) (Kadavath331

et al., 2022), Logits (Guerreiro et al., 2023)) and332

(3) two widely-used baselines like in-context learn-333

ing (ICL (Wei et al., 2022)) and self-Consistency334

(Wang et al., 2022). Details of these baselines can335

be found in Appendix C and G.2.336

4.3 Evaluation Metrics 337

To systematically evaluate the performance of our 338

method, we propose a comprehensive evaluation 339

framework based on the knowledge quadrant di- 340

vision. The framework consists of four main as- 341

pects: Overall Quality (OQ), Answer Quality (AQ), 342

Retrieval Handling (RH), and Abstention Quality 343

(AbQ). Across these aspects, we define 9 distinct 344

metrics that thoroughly assess different dimensions 345

of model performance. The details and formula- 346

tions of these metrics are presented in Table 1. 347

4.4 Main Results 348

Main experimental results are shown in Table 2. 349

Our post-training strategy DTA achieves the best 350

performance on three llama architectures. Notably, 351

it achieves Acc (64.1, 64.8, 65.5), F1 (64.6, 66.6 352

65.8), AF1(63.3, 59.9, 64.7), surpassing baseline 353

methods by significant margins. Critically, DTA 354

uniquely balances robust answer generation with 355

precise abstention, addressing a key limitation of 356

existing approaches. 357

While RAFT variants (RAAT, Ret-Robust, 358

ChatQA) can improve answer quality of base 359

model, they uniformly fail to abstain properly. As 360

designed, RAFT models effectively enhance the 361

model answer quality. In addition, following its 362

training approach, RAAT did a good job of using 363

golden contexts to generate correct answers. Ret- 364

Robust can resist the most noisy retrieval and gen- 365

erate high-quality responses using model’s knowl- 366

edge. However, they all struggle with abstain qual- 367

ity. In both RAAT and Ret-Robust, none of the 368

test queries can be abstained. ChatQA has the abil- 369

ity to refrain from some queries, but the quality 370

is far from satisfactory. Post-hoc techniques, in- 371

cluding two calibration methods (P(true), Logits) 372

and consistency, are applied to RAFT models to 373

enhance abstain quality but impair the ability to 374

use model knowledge. And their answer quality is 375

also affected, which is not good for the overall per- 376

formance. ICL only improves the abstain quality 377

when the RAFT model has the ability to abstain, 378

but the improvement is not significant. 379

In stark contrast, DTA achieves highest AF1 with- 380

out compromising answer quality. DTA did this by 381

structurally aligning model behavior with knowl- 382

edge boundaries, enabling reliable and self-aware 383

QA systems. However, our method falls short in 384

terms of the DR and CUR metrics, which is related 385

to the trade-off with abstention. When appropri- 386
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Category Metric Formula Description

Overall
Quality Accuracy |Ë∩(✔✔∪✔✘∪✘✔)|+|○␣∩✘✘|

|✔✔∪✔✘∪✘✔∪✘✘|
Ratio of correct answers plus proper abstentions to total queries

Answer
Quality

Recall |Ë∩(✔✔∪✔✘∪✘✔)|
|✔✔∪✔✘∪✘✔|

Ratio of correct answers to all queries in KBrag

Precision |Ë∩(✔✔∪✔✘∪✘✔)|
|Ë|+|é|

Ratio of correct answers to attempted answers

F1 2·Prec·Rec
Prec+Rec The harmonic mean of precision and recall

Retrieval
Handling

Denoise Rate |Ë∩✔✘|
|✔✘|

Ability to ignore noisy retrieval

Context Utilization Rate |Ë∩✘✔|
|✘✔|

Ability to utilize golden information

Abstain
Quality

Abstain Recall |○␣∩✘✘|
|✘✘|

Ratio of correct abstentions to all queries in ✘✘

Abstain Precision |○␣∩✘✘|
|○␣|

Ratio of correct abstentions to all abstentions

Abstain F1 2·AbPrec·AbRec
AbPrec+AbRec The harmonic mean of abstain precision and abstain recall

Table 1: Evaluation Metrics based on the knowledge quadrant division. Let Ë denote correct answers, é denote
incorrect answers, and ○␣ denote abstentions ("I don’t know" responses). For any category (e.g., ✔✘), |Ë ∩ ✔✘|
represents the count of correct answers within the ✔✘ category.

ately enhancing the model’s abstention capability387

to promote the growth of overall quality, a signifi-388

cant portion of the ✔✘ and ✘✔ data is also rejected.389

On the contrary, a significant reduction in the pro-390

portion of ✘✘ during training leads to a notable391

surge in both DR and CUR scores. Further discus-392

sion is shown in hyperparamter experiments.393

An interesting observation is that the Original394

LLM achieves remarkably high DR scores. While395

RAFT models are specifically trained to utilize396

context and rely more heavily on retrieved passages397

for generating answers, recent research (Tan et al.,398

2024; Bi et al., 2024) suggests that base models399

tend to prioritize their parametric knowledge while400

being less dependent on provided context. Since401

all contexts in the DR category are noisy, excessive402

reliance on context would only lead to degraded403

performance.404

To better understand the impact of knowledge405

quadrant division, we conducted experiments using406

single knowledge boundaries (KBr or KBparam)407

instead of the full quadrant approach. For these408

experiments, we used ground truth answers when409

queries fell within the knowledge boundary and410

abstention responses when queries fell outside it,411

while keeping all other hyperparameters identical412

to DTA. As shown in Table 4, using single knowl-413

edge boundaries led to notably worse performance414

across metrics, demonstrating the importance of415

our fine-grained quadrant-based approach for prop-416

erly modeling RAG system knowledge boundaries.417

4.5 Ablation Study 418

We conducted comprehensive ablation experiments 419

to analyze the contribution of each component in 420

our DTA framework based on the DTA results of 421

RAAT. The results in Table 3 demonstrate the im- 422

portance of each component from multiple aspects: 423

Training Objectives Without DPO loss, the 424

model shows significantly degraded performance 425

in answer quality (Rec drops from 63.7% to 38.8%) 426

while maintaining high abstention rates (ARec: 427

78.6%). However, the abstain precision decreases 428

substantially from 61.7% to 43.1%. This indicates 429

that although the RAG system learns to abstain, it 430

becomes overly cautious and lacks confidence in 431

answering queries that it should be able to handle. 432

Without SFT loss, the model exhibits a dramatic 433

decline in overall quality (Acc drops from 63.7% 434

to 38.8%) and severely degraded abstention quality 435

(AF1 drops from 63.3% to 6.7%). These results 436

validate our hypothesis that the SFT loss plays a 437

crucial role in teaching the model how to make ab- 438

stention. The removal of classification loss shows 439

relatively minor impact across metrics, with slight 440

decreases in both answer quality (F1 drops from 441

64.6% to 63.4%) and abstention quality (AF1 drops 442

from 63.3% to 62.6%). This suggests that while 443

knowledge quadrant classification serves as a help- 444

ful auxiliary task, it is not critical to the model’s 445

core capabilities. 446
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OQ AQ RH AbQ

Model Name Acc Rec Prec F1 DR CUR ARec APrec AF1

Llama-2-7b

Original 42.2 64.1 42.2 50.9 85.8 49.9 0.00 0.00 0.00
RAAT 46.2 70.2 46.2 55.7 76.3 61.7 0.00 0.00 0.00

+ P(true) 45.0 65.0 46.0 53.8 68.9 57.4 6.71 32.1 11.0
+ Logits 49.2 58.8 50.5 54.3 69.8 47.0 30.9 45.1 36.6
+ Consistency 51.4 69.0 50.7 58.5 82.1 58.8 16.3 58.4 25.4
+ ICL 46.8 71.2 46.8 56.5 84.4 60.2 0.00 0.00 0.00
+ DTA 64.1 63.7 65.5 64.6 68.9 52.8 65.0 61.7 63.3

Llama-2-13b

Original 48.1 66.3 48.1 55.8 82.1 40.7 0.00 0.00 0.00
Ret-Rrobust 51.6 71.0 51.6 59.8 90.0 44.5 0.00 0.00 0.00
+ P(true) 50.9 56.0 58.5 57.2 74.8 29.7 37.5 33.6 35.4
+ Logits 53.6 70.0 53.6 60.7 87.9 43.4 10.0 52.9 16.9
+ Consistency 53.9 71.8 54.0 61.7 89.6 46.4 6.30 52.5 11.2
+ ICL 52.0 71.6 52.0 60.3 89.1 46.6 0.00 0.00 0.00
+ DTA 64.8 67.9 65.3 66.6 76.8 45.5 56.7 63.5 59.9

Llama-3-8b

Original 43.9 62.0 43.9 51.4 76.0 42.0 0.00 0.00 0.00
ChatQA 46.1 60.9 45.0 51.8 54.5 46.8 10.2 71.8 17.8

+ P(true) 50.1 45.2 55.6 49.9 46.2 29.1 61.9 42.6 50.5
+ Logits 46.6 57.8 46.8 51.7 51.0 44.8 19.3 44.9 27.0
+ Consistency 46.5 61.0 46.7 52.9 58.7 46.6 11.3 44.0 18.0
+ ICL 43.3 55.0 41.4 47.2 50.3 40.7 15.1 75.4 25.1
+ DTA 65.5 64.5 67.2 65.8 62.8 48.9 67.9 61.8 64.7

Table 2: Main results on the benchmark consisting of three datasets. OQ: Overall Quality (Acc: Accuracy);
AQ: Answer Quality (Rec: Recall, Prec: Precision); RH: Retrieval Handling (DR: Denoise Rate, CUR: Context
Utilization Rate); AbQ: Abstain Quality (ARec: Abstain Recall, APrec: Abstain Precision, AF1: Abstain F1).

Knowledge Boundary Components Removing447

✔✔ samples from training leads to decreased per-448

formance across all metrics, particularly in context449

utilization (CUR drops to 43.9%), highlighting the450

importance of learning from samples where correct451

information is available in the context. Without452

✔✘ samples, the model shows reduced ability to453

handle retrieved information (DR: 47.9%), indicat-454

ing that exposure to noisy samples during train-455

ing is crucial for developing robust retrieval han-456

dling capabilities. Without ✘✔ samples, the model457

shows an interesting trade-off: while the denoise458

rate (DR) improves to 72.1%, the context utiliza-459

tion rate (CUR) drops to 45.6%. This suggests that460

without training on samples where the model needs461

to rely on retrieved context, it becomes overly con-462

servative with retrieval usage, preferring to rely on463

its parametric knowledge even when helpful con- 464

text is available. This leads to degraded overall 465

accuracy (58.6%), highlighting the importance of 466

these samples for teaching the model when to effec- 467

tively leverage retrieved information. Without ✘✘ 468

samples, the model completely loses its abstention 469

capability (AbQ metrics all 0.0) while showing 470

artificially high recall (73.3%) and DR (84.5%), 471

indicating that training with examples where ab- 472

stention is appropriate is essential for developing 473

proper abstention behavior. 474

Wrong Answer Types The impact of removing 475

wrong answer types (w/o WA1, w/o WA2) reveals 476

an interesting trade-off in model behavior. Without 477

the suppression of wrong answers, the model be- 478

comes more inclined to generate responses rather 479

than abstain, leading to higher recall (68.8% for 480
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OQ AQ RH AbQ

Model Name Acc Rec Prec F1 DR CUR ARec APrec AF1

DTA 64.1 63.7 65.5 64.6 68.9 52.8 65.0 61.7 63.3

w/o DPO 52.4 38.8 67.8 49.4 52.1 28.7 78.6 43.1 55.7
w/o SFT 37.1 54.6 36.5 43.8 58.9 45.2 3.50 76.6 6.7
w/o CLS 63.1 63.5 63.3 63.4 63.9 53.6 62.4 62.7 62.6

w/o ✔✔ 57.0 54.6 59.0 56.7 57.1 43.9 61.5 53.9 57.5
w/o ✔✘ 61.7 53.4 67.3 59.5 47.9 44.5 77.7 55.7 64.9
w/o ✘✔ 58.6 58.5 59.8 59.1 72.1 45.6 58.7 56.5 57.6
w/o ✘✘ 48.2 73.3 48.2 58.2 84.5 64.0 0.00 0.00 0.00

w/o WA1 61.8 68.8 59.0 63.5 75.3 58.8 48.4 71.2 57.6
w/o WA2 61.5 66.2 59.1 62.4 68.5 56.4 52.4 68.2 59.3

w/o WA1∪WA2 58.2 68.5 53.8 60.3 71.7 59.4 38.5 80.6 52.1

Table 3: Ablation results.

OQ AQ RH AbQ

Knowledge Boundary Acc Rec Prec F1 DR CUR ARec APrec AF1

DTA 64.1 63.7 65.5 64.6 68.9 52.8 65.0 61.7 63.3
KBr 58.9 49.4 62.9 55.3 43.4 41.7 77.3 54.7 64.1

KBparam 45.8 32.6 42.6 36.9 39.3 23.1 71.1 49.0 58.0

Table 4: Experimental results on different knowledge boundary.

w/o WA1, 66.2% for w/o WA2) and improved re-481

trieval handling metrics. However, this increased482

response rate comes at the cost of precision, drop-483

ping from 65.5% to around 59%, as the total num-484

ber of attempted answers grows significantly. The485

model’s abstention capability is also compromised,486

with lower abstention recall but higher abstention487

precision, indicating more conservative use of "I488

don’t know" responses. These results demonstrate489

that wrong answer samples play a crucial role in490

training by helping the model establish appropri-491

ate decision boundaries between answering and492

abstaining, ultimately contributing to better overall493

performance when both types are included.494

4.6 Hyperparameter495

Experiments are conducted on preference dataset496

size, multi-objective loss weights and IDK-ratio for497

the preference dataset. The experimental results498

are shown in Appendix E.499

5 Conclusion500

In this paper, we propose a novel framework501

for honest alignment of retrieval-augmented lan-502

guage models based on knowledge boundary quad- 503

rants. We first identify that the knowledge bound- 504

ary of RAG systems consists of two fundamental 505

components: the parametric knowledge boundary 506

(KBparam) and the retrieval knowledge boundary 507

(KBr). Based on this insight, we divide RAG sam- 508

ples into four knowledge quadrants. To address the 509

critical limitation of RAFT models regarding their 510

inability to abstain from answering when queries 511

fall outside both knowledge boundaries (✘✘), we 512

construct a comprehensive preference dataset that 513

captures the desired behavior for each quadrant. 514

Using this dataset, we employ DPO training with 515

a multi-objective approach combining DPO loss, 516

SFT loss, and knowledge quadrant classification 517

loss to align the model’s behavior with the knowl- 518

edge boundary constraints. Furthermore, we in- 519

troduce a systematic evaluation framework with 9 520

metrics to assess both response quality and absten- 521

tion capabilities. Experiments conducted on three 522

benchmark datasets demonstrate that our approach 523

effectively improves the model’s ability to make 524

appropriate abstention decisions while maintaining 525

strong performance on answerable queries. 526
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Limitations527

While our work presents a promising approach for528

honest alignment of RAG systems, following limi-529

tations should be noted:530

Knowledge Boundary Determination : Our531

method for determining whether a query belongs to532

KBparam relies on sampling from the base model533

without context, which is used by a lot of previ-534

ous works (Xu et al., 2024a; Cheng et al., 2024).535

However, this approach may not perfectly capture536

the true parametric knowledge boundary, as model537

performance can vary across different prompting538

strategies. And we think this is a potential research539

direction for future work.540

Specific Domain : Our evaluation focuses on541

three general-domain open QA datasets (NQ, Triv-542

iaQA, WebQ). While these datasets provide a good543

foundation for testing, they may not fully repre-544

sent the challenges and nuances specific to special-545

ized domain applications. The effectiveness of our546

approach in highly specialized domains requires547

further investigation.548

Ethical Considerations549

Our work improves the refusal capability of RAG550

systems to reduce the risk of generating harmful or551

incorrect information. Nevertheless, the model may552

still produce low-quality or hallucinated responses,553

when faced with ambiguous or out-of-distribution554

queries. Additionally, since our model has not555

undergone safety alignment, it may still generate556

inappropriate content when faced with adversarial557

or malicious queries.558
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A The Details of the Knowledge905

Quadrants906

✔✔ represents the most ideal but trivial scenario,907

where both the model’s parametric knowledge and908

retrieved passages contain the correct information.909

✔✘ occurs when q ∈ KBparam but q /∈ KBr,910

indicating that while the model has the necessary911

parametric knowledge, the retriever fails to find912

relevant passages. In such cases, retrieval is unnec-913

essary and the model should rely on its parametric914

knowledge. Many adaptive RAG methods (Jeong 915

et al., 2024; Asai et al., 2024) focus on identifying 916

and handling this scenario. 917

✘✔ represents the core scenario that RAG sys- 918

tems are designed to handle, where q ∈ KBr but 919

q /∈ KBparam. Here, while the model lacks the 920

necessary parametric knowledge, the retrieved pas- 921

sages contain the correct information. However, 922

even with the correct information present in the 923

retrieved passages, the model may fail to utilize it 924

effectively due to issues such as "lost in the middle" 925

(Liu et al., 2024a). 926

RAFT acctually enhances the RAG system’s an- 927

swer accuracy across both ✔✘ and ✘✔ scenarios 928

by addressing their distinct challenges: For ✔✘: 929

RAFT teaches the model to rely on its parametric 930

knowledge when retrieved passages are noisy. For 931

✘✔: RAFT helps the model better utilize infor- 932

mation from retrieved passages. So the RAFT get 933

some emprical success in a some previous work 934

(Fang et al., 2024; Yoran et al., 2024; Zhang et al., 935

2024b; Liu et al., 2024b). 936

In the ✘✘ case (q /∈ KBparam ∪ KBr), neither 937

the model’s parametric knowledge nor the retrieved 938

passages contain the correct information. In such 939

case, the model should ideally abstain from answer- 940

ing to maintain faithfulness and avoid hallucination. 941

However, current RAFT-trained models are condi- 942

tioned to always generate an answer, even when 943

the query is out of KBrag. This leads to an overly 944

aggressive response pattern that prioritizes answer 945

generation over honesty, potentially producing mis- 946

leading or entirely fabricated responses. While 947

RAFT approaches may improve surface-level met- 948

rics like answer accuracy, it fundamentally compro- 949

mises the system’s reliability and trustworthiness. 950

In this work, we specifically focus on addressing 951

this critical gap by developing methods that enable 952

models to recognize when a query falls outside 953

of KBrag and appropriately respond with "I don’t 954

know". This capability is essential for deploying 955

RAG systems in high-stakes applications where the 956

cost of hallucination and misinformation can be 957

severe. 958

B Related works 959

B.1 Retrieval-Augmented Generation 960

RAG (Lewis et al., 2020; Borgeaud et al., 2022; 961

Izacard and Grave, 2021; Zhang et al., 2024b) is 962

a widely adopted paradigm for augmenting large 963

language models (LLMs) with external knowledge. 964
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By integrating a retrieval system, RAG enables965

models to access and utilize external knowledge966

sources during generation, overcoming the limita-967

tions of static, parameterized knowledge in LLMs.968

This approach has shown significant promise in969

tasks requiring factual accuracy, domain-specific970

knowledge (Zhang et al., 2024b), and up-to-date971

information (Li et al., 2024). Despite its advan-972

tages, the effectiveness of RAG heavily depends973

on the quality of the retrieved passages. Current re-974

trieval systems often fail to guarantee complete rel-975

evance, introducing noisy contexts into the genera-976

tion process. To address this challenge, Retrieval-977

Augmented Fine-Tuning (RAFT) (Zhang et al.,978

2024b; Fang et al., 2024; Liu et al., 2024b) has979

been proposed. RAFT fine-tunes models with a980

mixture of retrieved contexts, including both clean981

and noisy passages, encouraging robustness to im-982

perfect retrieval results.983

However, RAFT-trained models exhibit a crit-984

ical limitation: they are conditioned to answer985

queries even when provided with entirely noisy986

contexts. This over-reliance on retrieved informa-987

tion increases the risk of generating hallucinated988

or misleading responses, especially in high-stakes989

applications. Our work builds on this understand-990

ing by addressing the overlooked issue of enabling991

RAFT-trained models to acknowledge uncertainty992

and respond with “I don’t know” when appropriate.993

B.2 Honest Alignment in Large Language994

Models995

Honesty is a foundational principle in aligning996

large language models (LLMs) with human val-997

ues. It requires models to accurately express their998

knowledge, recognize their limitations, and avoid999

misleading users when uncertain. Honesty encom-1000

passes two critical components: self-knowledge1001

and self-expression. Self-Knowledge refers to1002

the model’s ability to discern what it knows and1003

doesn’t know, enabling it to explicitly admit uncer-1004

tainty (e.g., responding “I don’t know”) when nec-1005

essary. This capability is crucial for mitigating hal-1006

lucinations and ensuring model reliability in high-1007

stakes applications. Current methods to improve1008

self-knowledge include: Training-free approaches:1009

These leverage predictive probabilities (Duan et al.,1010

2024), prompting strategies (Zhou et al., 2023; Ka-1011

davath et al., 2022; Zhao et al., 2024) (e.g., Chain-1012

of-Thought reasoning), and sampling/aggregation1013

techniques to elicit calibrated confidence from mod-1014

els (Tian et al., 2023; Guo et al., 2017; Xiong et al.,1015

2024). While effective in some contexts, these 1016

approaches often struggle with free-form genera- 1017

tion and require significant computational overhead. 1018

Training-based approaches: Methods such as super- 1019

vised fine-tuning and reinforcement learning aim 1020

to teach models to abstain from answering uncer- 1021

tain queries or provide confidence scores alongside 1022

responses (Yang et al., 2023; Zhang et al., 2024a; 1023

Jiang et al., 2024; Zhou et al., 2023; Gao et al., 1024

2024; Xu et al., 2024b; Stengel-Eskin et al., 2024). 1025

However, these works only consider the LLM’s 1026

parametric knowledge boundary, and ignore the 1027

knowledge boundary of the retrieval system. 1028

Our work builds on these foundations, endow- 1029

ing the retrieval-augmented models with the ability 1030

to acknowledge uncertainty under noisy contexts 1031

based on the preference training on the four knowl- 1032

edge quadrants. 1033

Comparison with the existing works: Most of 1034

the current raft work (Yoran et al., 2024; Fang et al., 1035

2024; Liu et al., 2024b) and rag work (Asai et al., 1036

2023; Lewis et al., 2020) try to improve the model’s 1037

ability on the accuracy of response and ignore the 1038

faithfulness of the response. And we have shown 1039

that the success of the current raft work is built 1040

on the sacrifice of the faithfulness of the response. 1041

The model actually becomes an aggressively om- 1042

niscient model. Cheng et al. (2024); Feng et al. 1043

(2024); Xu et al. (2024a) align the model to abstain 1044

when the model can not answer the query. These 1045

work actually only focus on the knowledge bound- 1046

ary of the LLM itself. But in the RAG scenario, the 1047

knowledge boundary is actually the combination 1048

of the LLM knowledge boundary and the retrieval 1049

knowledge boundary. Song et al. (2024); Thakur 1050

et al. (2024) align the model to refuse answer when 1051

the retrieved passages are noisy. But they ignore the 1052

knowledge boundary of the LLM itself. Our work 1053

is the first work that simultaneously considers 1054

the knowledge boundary of the LLM itself and 1055

the retrieval knowledge boundary and aligns the 1056

model to refuse answer only when the query is out 1057

of the both knowledge boundaries. 1058

C Baseline Methods 1059

We compare our approach against several state-of- 1060

the-art baselines and corresponding Llama family 1061

base models. 1062

Base Models: 1063

• Llama2-7B (Touvron et al., 2023): A member 1064
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of Llama2 family with 7 billion parameters,1065

which is released in July 2023.1066

• Llama2-13B (Touvron et al., 2023): A mem-1067

ber of Llama2 family with 13 billion parame-1068

ters, which is released in July 2023.1069

• Llama3-8B (Meta-AI, 2024): A member1070

of Llama3 family with 8 billion parameters,1071

which is released in April 2024.1072

RAFT Models:1073

• RAAT (Fang et al., 2024): A model that em-1074

ploys adaptive adversarial training to handle1075

three types of retrieval noises (relevant, irrel-1076

evant, and counterfactual). During training,1077

it dynamically selects the most challenging1078

noise type based on the model’s current per-1079

formance and uses multi-task learning to en-1080

hance noise awareness.1081

• Ret-Robust (Yoran et al., 2024): A model that1082

trains with a mixture of relevant and irrelevant1083

retrieved contexts. For each training example,1084

it retrieves either top-1, low-ranked, or ran-1085

dom passages with equal probability to teach1086

the model when to use or ignore retrieved in-1087

formation.1088

• ChatQA (Liu et al., 2024b): A two-stage in-1089

struction tuning approach that outperforms1090

GPT-4 on retrieval-augmented generation and1091

conversational QA tasks. It first performs1092

supervised fine-tuning to enhance basic in-1093

struction following capabilities, then conducts1094

context-enhanced instruction tuning specifi-1095

cally for dialogue QA and RAG tasks.1096

Calibration Methods: These methods use post-1097

hoc techniques to predict whether the retrieved pas-1098

sages are relevant to the question or if the model is1099

likely to hallucinate, which can trigger a refusal to1100

answer.1101

• P(True) (Kadavath et al., 2022): Uses prompt-1102

based evaluation to assess the correctness of1103

model generations, leveraging the observation1104

that LLMs are relatively well-calibrated in1105

self-evaluation tasks.1106

• Logits: Implements various methods from1107

previous studies (Guerreiro et al., 2023; Kada-1108

vath et al., 2022; Varshney et al., 2023; Huang1109

Dataset ✔✔ ✔✘ ✘✔ ✘✘

LLaMA-2-7B

NQ 204 40 2,125 1,241
TriviaQA 2,225 1,109 4,391 3,588
WebQ 202 76 882 872

LLaMA-2-13B

NQ 451 105 1,877 1,172
TriviaQA 3,669 1,978 2,809 2,652
WebQ 258 105 826 843

LLaMA-3-8B

NQ 442 122 1,887 1,159
TriviaQA 3,229 1,721 3,387 2,976
WebQ 224 94 860 854

Table 5: Statistics of the test set across different model
architectures and datasets. The columns show the distri-
bution of samples across the four knowledge quadrants.

et al., 2023) that aggregate output token prob- 1110

abilities or logits to score LLM confidence for 1111

error detection. 1112

We also include two widely-used baseline ap- 1113

proaches: 1114

• ICL: We implement in-context learning us- 1115

ing a prompt template with three carefully cu- 1116

rated demonstration examples: one showing 1117

appropriate abstention for out-of-knowledge- 1118

boundary queries, and two showcasing correct 1119

answer generation for in-boundary queries. 1120

This balanced demonstration set helps the 1121

model learn both when to answer and when to 1122

abstain. 1123

• Consistency (Wang et al., 2022): Uses the 1124

consistency of the model’s responses to deter- 1125

mine whether it should abstain from answer- 1126

ing. 1127

D Dataset Statistics 1128

We determine whether a query belongs to the 1129

LLM’s parametric knowledge (KBparam) based 1130

on the performance of vanilla model (LLaMA-2- 1131

7b, etal.), and evaluate retrieval knowledge (KBr) 1132

based on whether the top-3 retrieved passages con- 1133

tain the correct answer. This division approach 1134

allows us to analyze both the RAFT model’s im- 1135

provements over the base model across different 1136

knowledge quadrants and its abstention capabilities. 1137
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Figure 3: Experiments across DPO data size. (IDK ratio=0.7, loss weights β=1.0, γ=0.5)

After division, we randomly select 3000 queries1138

from three datasets to evaluate all methods.1139

To balance the model’s ability to answer ques-1140

tions and abstain when appropriate, we introduce1141

a hyperparameter called IDK-ratio, which controls1142

the proportion of training examples where the pre-1143

ferred response is "I don’t know" (IDK). Specifi-1144

cally, IDK-ratio determines the fraction of ✘✘ sam-1145

ples in the training set. Importantly, we maintain1146

the natural distribution of queries across all four1147

quadrants in the test set without any manipulation,1148

ensuring evaluation reflects real-world conditions1149

and provides a more generalizable assessment of1150

model performance.1151

Table 5 shows the distribution of test queries1152

across the four knowledge quadrants. A substantial1153

portion of queries fall into the ✘✘ quadrant. This1154

represents a critical scenario where models should1155

abstain from answering, yet traditional RAFT ap-1156

proaches force a response. The distribution high-1157

lights why defining KBrag through the combina-1158

tion of both KBparam and KBr is crucial. Relying1159

solely on KBr (Liu et al., 2024b; Song et al., 2024)1160

would incorrectly exclude ✔✘ queries from the1161

model’s knowledge boundary (for example, 1,9781162

TriviaQA queries for LLaMA-2-13B where the1163

model has parametric knowledge). Similarly, us-1164

ing only KBparam (Cheng et al., 2024; Feng et al.,1165

2024; Xu et al., 2024a) would mistakenly omit ✘✔1166

queries (such as 2,125 NQ queries for LLaMA-1167

2-7B) that RAG systems can effectively handle1168

through retrieval. Our dual-boundary approach en-1169

ables more precise identification of true knowledge 1170

gaps (✘✘ cases) where abstention is warranted, 1171

while allowing optimal knowledge source selection 1172

in other cases. 1173

E Hyper-parameter experiments 1174

Multi-Objective Loss Adjusting the weights 1175

of the multi-objective loss significantly impacts 1176

model’s overall quality. As shown in Figure 4, in- 1177

creasing the weight of the SFT loss generally leads 1178

to steady improvements, which is in line with our 1179

hypothesis. The experiments confirm that SFT ef- 1180

fectively assists in aligning with the chosen data, 1181

demonstrating strong auxiliary alignment effects. 1182

Meanwhile, the classification loss (CLS) is not 1183

without merit; it plays a critical role when com- 1184

bined with the SFT loss, achieving optimal perfor- 1185

mance within the weight range of 0.5 to 0.7. This 1186

highlights the synergistic interplay between the two 1187

loss components under balanced configurations. 1188

Data Size Statistics in Figure 3 show that 5k 1189

DPO preference data achieves competitive perfor- 1190

mance in terms of overall quality(OQ Acc), answer 1191

quality(AQ F1), and abstain quality(AbQ F1). Re- 1192

ducing data to 20% sharply degrades the outcomes, 1193

which indicates the significance of sufficient train- 1194

ing data. However, when data size grows to 10k, 1195

it seems increased noise-potentially introduced by 1196

scaling without rigorous quality control-lead to per- 1197

formance degradation. This pattern emphasizes 1198

the importance of the quality of data in preference 1199

optimization. 1200
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IDK Ratio Varying the ratio of IDK-labeled data1201

reveals a nuanced and interesting trade-off. Higher1202

ratios (0.1-0.7) intuitively improve AbQ F1 as the1203

model learns to master the ability to abstain. How-1204

ever, too much IDK chosen data can lead to overly1205

abstention resulting in decrease in overall abstain1206

quality. Answer quality increases in sync with ab-1207

stain quality showing an interesting balance. As1208

the IDK ratio increases, the quality of correct re-1209

sponses does not decline significantly compared1210

to the sharp rise in the model’s refusal to answer.1211

While the recall decreases as a result of fewer cor-1212

rectly answered questions, this way improves the1213

precision of correct responses, ultimately enhanc-1214

ing the overall F1. However, when the model be-1215

gins to overuse IDK (e.g., at extremely high ratio),1216

this strategy ceases to work, as excessive abstention1217

undermines correct answer coverage and utility. In1218

addition, both DR and CUR scores consistently1219

decrease as the IDK ratio increases, primarily due1220

to the reduction in the proportion of ✔✘ and ✘✔1221

training data. The results suggest that moderate1222

IDK ratios strike an optimal balance between pre-1223

cision and robustness, while aggressive reliance on1224

IDK triggers diminishing returns.1225

F Prompts1226

F.1 Context Evaluation Prompt1227

The following prompt is used to evaluate whether1228

a context contains or implies the correct answer to1229

a query:1230

You are an expert at evaluating whether a
context contains the correct answer to a ques-
tion. You should:
1. Check if the given answer can be found
or directly implied by the context
2. Return a score of 1 if the context contains
or directly implies the answer
3. Return a score of 0 if the context does not
contain or support the answer
4. Provide a brief explanation for your deci-
sion
Respond in the following JSON format:
{
"score": 0 or 1,
"explanation": "your explanation here"
}

1231

G Implementation Details 1232

G.1 Our Method Implementation 1233

For our proposed approach, we train the model 1234

for 3 epochs using a cosine learning rate scheduler 1235

with an initial learning rate of 5e-5 and a warmup 1236

ratio of 0.1. The β and γ are set to 1.0 and 0.5 re- 1237

spectively for all experiments. The training process 1238

employs the Paged AdamW optimizer with 32-bit 1239

precision and a weight decay of 0.05. To balance 1240

computational efficiency and memory constraints, 1241

we set the batch size to 16 per device with 2 gra- 1242

dient accumulation steps, allowing for effective 1243

training on larger datasets while maintaining mem- 1244

ory efficiency. The threshold δ used for KBparam 1245

to sample N(= 10) responses is 1.0. Moreover, ex- 1246

periments are conducted on NVIDIA A100 GPUs 1247

with 80G of memory. Fixed random seed of 0 1248

is used and the experimental results are reported 1249

within a single run. The versions of the libraries 1250

used in this work are as follows: accelerate ver- 1251

sion 0.34.2, transformers version 4.46.3, trl version 1252

0.12.1 and vllm version 0.6.1.post2. And the dpo 1253

training process costs approximately 6 GPU hours. 1254

G.2 Baselines Implementation 1255

We implement several baseline detection methods 1256

for comparison: 1257

• P(True): Following Kadavath et al. (2022), 1258

we prompt the LLM to evaluate the correct- 1259

ness of its own answer. The prompt presents 1260

the original question and the model’s pro- 1261

posed answer, asking for a binary True/False 1262

classification. We experiment with multiple 1263
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Figure 5: Experiments across IDK ratio. (DPO data size=5k, loss weights β=1.0, γ=0.5)

confidence thresholds (0.3, 0.5, 0.7, 0.9) to1264

determine the optimal cutoff for each experi-1265

mental setting.1266

Question: [Question]
Proposed Answer: [Predictions]
Is the proposed answer:
(A) True
(B) False
The proposed answer is:

1267

• Logits: We implement three baselines using1268

different logprob statistics of the output to-1269

kens: minimum (Min), mean (Mean), and last1270

token (Last). The Min baseline, which uses1271

the minimum logprob across all output tokens,1272

is the only one reported in the paper as the1273

other two approaches proved ineffective at en-1274

abling model abstention. We experiment with1275

multiple logtis thresholds (-2.0, -1.0, 0.0) to1276

determine the optimal cutoff for each experi-1277

mental setting.1278

• Self-Consistency: We generate multiple re-1279

sponses (n=10) for each question and measure1280

consistency among the generated answers.1281

The system proceeds with answering if the1282

most frequent response receives more than 51283

votes; otherwise, it abstains. This approach1284

helps identify cases where the model exhibits1285

high uncertainty through response variability.1286

• ICL: We implement in-context learning us-1287

ing a prompt template with three carefully cu- 1288

rated demonstration examples: one showing 1289

appropriate abstention for out-of-knowledge- 1290

boundary queries, and two showcasing correct 1291

answer generation for in-boundary queries. 1292

This balanced demonstration set helps the 1293

model learn both when to answer and when to 1294

abstain. 1295

H Licensing 1296

Llama2-7B and Llama2-13B are released under 1297

the Meta Llama 2 Community License Agreement. 1298

Llama3-8B is released under the Meta Llama 3 1299

Community License Agreement. All of them are 1300

accessible for academic usage and consistent with 1301

their intended use. 1302

And three open-domain QA datasets, Natural 1303

Questions (NQ), TriviaQA, and WebQuestions 1304

(WebQ) are publicly available for academic re- 1305

search purposes, which is also consistent with their 1306

intended use. 1307
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