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Abstract

It is common in deep learning to warm up the learning rate η, often by a linear1

schedule between ηinit = 0 and a predetermined target ηtrgt. In this paper, we2

show through systematic experiments using SGD and Adam that the overwhelming3

benefit of warmup arises from allowing the network to tolerate larger ηtrgt by forcing4

the network to more well-conditioned areas of the loss landscape. The ability to5

handle larger ηtrgt makes hyperparameter tuning more robust while improving6

the final performance. We uncover different regimes of operation during the7

warmup period, depending on whether training starts off in a progressive sharpening8

or sharpness reduction phase, which in turn depends on the initialization and9

parameterization. We also suggest an initialization for the variance in Adam which10

provides benefits similar to warmup.11

1 Introduction12

One of the most important choices to make in gradient-based optimization is the learning rate (step13

size) η. If η is too small, then learning may take place too slowly or the model might get stuck in14

unfavorable regions of the loss landscape. If η is too large, training will typically diverge. In practice,15

it is common to pick a dynamical learning rate schedule ηt [2, 4, 39, 26]. Modern learning rate16

schedules for deep learning typically consist of a warmup period where ηt is increased linearly from17

zero to a target value ηtrgt over a warmup time Twrm [13, 33]. After the warmup period, it is common18

to eventually decay the learning rate, for example via a cosine decay schedule [33, 26, 39].19

Given that warmup is standard in the practitioner’s toolkit, it is important to understand it deeply and20

identify improvements. In modern settings, perhaps the earliest work to use warmup was [14], which21

used a small constant learning rate for the first few epochs of training and then switched to a larger22

learning rate. A linear warmup schedule was later introduced in [13]. The intuition given was that to23

scale the minibatch size in SGD by a factor of k, it is natural to also scale the learning rate by a factor24

of k, provided the model is not changing too rapidly and successive gradients are roughly aligned.25

However at the beginning of training, the model is changing rapidly, so it is natural to start with a26

lower learning rate and gradually increase it to the target value after the network has stabilized. Other27

explanations suggest that since the network is initialized randomly, the gradient steps at the beginning28

of training are not meaningful, and thus it would be harmful to take large steps in such directions [39],29

so it makes sense to take smaller steps early in training. The analysis by [12] suggests that warmup30

primarily limits the magnitude of weight updates in the deeper layers, preventing large instabilities. It31

has also been suggested that the key benefit of warmup arises for adaptive optimizers, such as Adam:32

[23] argues that the variance of the adaptive learning rate is large during early training because the33

network has seen too few training samples; it is asserted that this large variance is harmful, and that34

warmup acts as a variance reduction method by allowing the network to collect accurate statistics of35

the gradient moments before using larger learning rates. Alternatively, it is also sometimes stated that36

the initialization may start the model off at places in parameter space that are unstable, difficult to37

optimize, and easily lead to divergence, and that warmup can help alleviate this [39].38
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Figure 1: Training loss and sharpness trajectories of FCNs trained on a 5k subset of CIFAR-10 with
MSE loss using GD. The dashed lines in the sharpness figures illustrate the instability thresholds 2/ηt.
(top) µP with ηtrgt = 1/λH

0 , (bottom) SP with ηtrgt = 32/λH
0 . Similar mechanisms are observed across

different architectures, loss functions, and mini-batch sizes, as shown in Appendix E.

The above explanations are varied and do not clearly demonstrate why and to what extent warmup is39

necessary. A loss landscape perspective was given in [10] (and summarized in [26] Ch. 8), which40

argued that an important effect of warmup is to gradually reduce the sharpness (the top eigenvalue41

of the Hessian of the loss), thus causing the model to leave poorly conditioned areas of the loss42

landscape and move towards flatter regions which can tolerate larger learning rates. They argue that43

the mechanism for this is similar to the dynamical stability (catapult) mechanisms studied in [34, 22].44

Our contributions. In this paper, we perform extensive studies on the effect of learning rate45

warmup across a variety of architectures, initializations and parameterizations, datasets, and for46

both SGD and Adam optimizers. We demonstrate through systematic experiments that by far the47

primary benefit of learning rate warmup is to allow the network to tolerate larger learning rates than48

it otherwise would have. This builds on the observations of [10] by showing that any other benefits49

are marginal, disentangling the effect of warmup duration and target learning rate, and by extending50

the empirical evidence to include adaptive optimizers and Transformers.51

2 Notations and Preliminaries52

Sharpness: The sharpness is defined as the maximum eigenvalue of the Hessian of the loss53

λH
t := λmax(∇2

θL) at training step t. For adaptive optimizers with pre-conditioner P , λP−1H :=54

λmax(P
−1∇2

θL) denotes the pre-conditioned sharpness. For details on Adam’s pre-conditioner, see55

Appendix D.3.56

Linear Warmup: This is defined by the schedule ηt = ηinit + (ηtrgt − ηinit)
(

t
Twrm

)
. Unless otherwise57

specified, we set ηinit = 0 when referring to linear warmup.58

Parameterizations in Neural Networks: The mechanism of warmup and its effectiveness is heavily59

influenced by the network parameterization (see Sections 3 and 4). Standard Parameterization (SP)60

[32] is a staple in common libraries [27, 3]. Another notable parameterization is the Neural Tangent61

Parameterization (NTP) [17], which along with SP resides in the kernel learning class at infinite62

width. Ref. [36] proposed Maximal Update Parameterization (µP) which exhibits feature learning at63

infinite width. Neural network parameterizations significantly impact training dynamics [19].64

3 Warmup Mechanisms of Gradient and Adaptive Methods65

This section analyzes the underlying mechanism of warmup through the lens of training instability.66

A key finding is a dichotomy between cooperative versus competitive dynamics based on how the67

natural evolution of the sharpness interplays with the training instability.68
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3.1 Stochastic Gradient Descent (SGD)69

Learning rate warmup is intrinsically tied to sharpness dynamics, as sharpness determines the70

instability threshold ηc. As the learning rate is increased during warmup, these instabilities induce71

a temporary increase in the loss and a decrease in the sharpness to restore stability through the72

self-stabilization mechanism. Ultimately this allows the model to adapt to the increased learning73

rate. In other words, the primary goal of warmup is to gradually reduce sharpness, guiding training74

towards flatter regions that can accommodate training at higher learning rates [10].75

However, digging deeper, we find that training has a ‘natural’ preference for sharpness evolution76

throughout the training course [19]. Before exceeding the instability threshold (η < ηc), training77

naturally experiences either a progressive increase or decrease in sharpness, as observed in Figure 1,78

which is unrelated to warmup. Here, the natural sharpness evolution can be defined as the change in79

sharpness experienced by gradient flow. The interplay between this natural sharpness evolution and80

the deliberate intervention of warmup to reduce sharpness can result in completely distinct dynamics.81

Below, we detail these cases and describe the conditions that typically exhibit them.82

(C1) Natural Progressive Sharpening (top row of Figure 1): The combined effect of the network83

naturally increasing sharpness while the learning rate is also being increased results in a “head-on84

collision" at which the network reaches the instability threshold ηc. This causes the loss to increase,85

leading to a decrease in sharpness and facilitating a return to stability. As training proceeds, both86

sharpness and learning rate continue to increase, again surpassing the instability threshold. This87

results in a persistent catapult cycle, characterized by ηt ≈ 2/λH
t ≈ ηc, for the remainder of the88

warmup period, as seen in Figure 1(b).89

(C2) Natural Sharpness Reduction (bottom row of Figure 1): The network is naturally already90

reducing its sharpness during early training. However, if the learning rate is increased sufficiently91

quickly, eventually the instability threshold will be reached (akin to a “rear-end collision"), causing92

the loss to increase. For small enough learning rates, the increased loss induces a dramatically more93

pronounced decrease in sharpness than would naturally occur, ultimately restoring stability. To94

exceed the instability threshold again, the learning rate must significantly increase to account for95

the decreased sharpness, potentially requiring considerable training steps. Consequently, training96

experiences one or more separated catapults during the warmup phase, as seen in Figure 1(c, d). This97

contrasts with the progressive sharpening case, where training enters a continuous catapult cycle after98

reaching the instability threshold for the first time. Notably, training may eventually reach a very99

flat region of the landscape during warmup, with gradients pointing towards increasing sharpness100

(e.g., Twrm = 64 in Figure 1(d)). Upon reaching such a region, the dynamics aligns with the natural101

progressive sharpening scenario.102

3.1.1 A Toy Model for Understanding the Warmup Mechanisms103

These two scenarios can be interpreted as cooperative or competitive dynamics between warmup104

and the natural evolution of sharpness. When training inherently undergoes sharpness reduction, it105

cooperates with warmup in decreasing sharpness. Conversely, if the natural trajectory of training is106

towards increasing sharpness, it opposes the warmup’s effort, leading to a persistent cycle of catapults.107

We can understand these mechanisms by analyzing a model of self-stabilization derived by [8].108

The model assumes that the top eigenvector u changes slowly through training and can be treated109

as constant. Next, consider a cubic approximation of the dynamics along a reference point θ∗. The110

dynamics along the projection xt := uT (θt − θ∗) is given by two coupled non-linear equations:111

xt+1 = (1− ηtλ
H
t )xt, λH

t+1 = λH
t + ηt(α− βx2

t ),

where α := −∇λH · ∇L(θ) quantifies the instantaneous change in sharpness and β := ∥∇λH∥2112

controls to the non-linear change in sharpness. Ref. [8] considered a constant learning rate η113

and assumed progressive sharpening (α > 0). Here, in contrast, we consider a time-dependent114

learning rate and allow α to attain both positive and negative values. In this model, an instability115

arises when ηtλ
H
t > 2. During instability, xt continues to increase until the higher order term in116

the sharpness update equation causes a significant decrease in sharpness. Once the sharpness has117

decreased sufficiently, the stability is restored (ηtλ2
t < 2), and training continues.118
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Figure 2: Training loss and sharpness trajectories of FCNs trained on the entire CIFAR-10 dataset
with MSE loss using full batch Adam. (top) simple-µP (for details, see Appendix D.2.1) with
ηtrgt = 0.003 and (bottom) SP with learning rate ηtrgt = 0.001. The dashed lines in the sharpness
figures illustrate the instability thresholds (2+2β1)/ηt(1−β1). Similar mechanisms are observed for
different architectures, loss functions, and smaller batch sizes as detailed in Appendix E.

Next, we consider the two natural sharpness evolution scenarios:119

(C1) Natural Progressive Sharpening (α > 0): The combined effect of naturally increasing120

sharpness (α > 0) and the increasing learning rate from warmup leads to instability (ηtλH
t > 2).121

Resultantly, xt increases until the higher order term in the sharpness update cause a decrease in122

sharpness (x2
t > α

β ). Once the sharpness has decreased appreciably so that ηtλH
t < 2 , stability is123

restored and the training continues. As training proceeds, both progressive sharpening and increasing124

learning rate cause instability, resulting in a persistent catapult cycle characterized by ηtλ
H
t ≈ 2.125

(C2) Natural Sharpness Reduction (α < 0): In this case, sharpness is naturally decreasing during126

training (α < 0). If the learning rate is increased quick enough relative to decreasing sharpness, an127

instability occurs (ηtλH
t > 2). The increase in xt causes a more pronounced decrease in sharpness128

than it would have occurred naturally, restoring instability. To exceed the instability threshold again,129

the learning rate must significantly increase to account for the decreased sharpness. This results in130

one or more separated catapults.131

3.1.2 The Effect of Warmup Duration132

Given a fixed target learning rate ηtrgt, increasing the warmup duration Twrm delays the point at which133

training exceeds the instability threshold ηc, allowing the sharpness to evolve freely before reaching134

this point. In the sharpness reduction case, sharpness can significantly decrease by the time this135

threshold is reached, lowering the need for warmup to decrease sharpness actively. Consequently,136

increasing Twrm results in catapults that are both delayed and smaller in magnitude, as seen in137

Figure 1(d). As the catapults become less intense on increasing the warmup duration, the model138

can train at higher learning rates without diverging, pushing the divergence boundary. For extended139

warmup durations, warmup may not actively reduce sharpness in these sharpness reduction cases and140

instead “piggy-backs” on the inherent sharpness decrease.141

In the progressive sharpening case, increasing Twrm allows the sharpness to naturally increase. As a142

result, training exceeds the instability threshold for the first time at a relatively lower learning rate143

compared to the constant learning rate case. Although warmup has to now undertake more work in144

decreasing sharpness, it does so in a more gradual manner since increasing the warmup duration145

amounts to a lower warmup rate ηtrgt/Twrm. As a result, the fluctuations observed on exceeding the146

instability threshold are much smaller in magnitude, as seen in Figure 1(a, b).147

3.1.3 Small vs. Large Initializations148

So far, we have outlined different warmup mechanisms without describing specific conditions that149

typically exhibit them. Small initializations, such as those using maximal update parameterization150

(µP) [36] or appropriately using normalizing layers (e.g. standard Transformer architectures, see151

Figure 14 in Appendix E.5), are characterized by a small initial network output. Such initializations152

start in flat regions where gradients point toward increasing sharpness [19], placing them in the153
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Figure 3: Test accuracy heatmaps of WideResNets (WRNs) trained on CIFAR-10 using different
parameterizations and loss functions using SGD: (a) µP and MSE loss, (b) µP and cross-entropy
loss, (c) SP and MSE loss, and (d) SP and cross-entropy loss. Empty cells correspond to training
divergences. Additional results are provided in Appendix F.

progressive sharpening category (C1). As we will see in Section 4, such initializations may not154

significantly benefit from warmup as they already start in a flat region. In contrast, large initializations,155

such as FCNS, CNNs, ResNets with Standard Parameterization (SP) initialized at criticality [28, 30]156

or Transformers with the last layer-norm removed, undergo an early sharpness reduction, categorizing157

them into sharpness reduction category (C2). As the primary effect of warmup is to reduce sharpness,158

we expect such large initializations to considerably benefit from warmup. Notably, large initializations159

can eventually undergo progressive sharpening at later training stages [18, 19] and adhere to the160

second mechanism, especially for prolonged warmups. Instances of constant sharpness (C3) typically161

arise in models operating near the lazy regime [5], such as wide networks in NTP or SP.162

SGD with momentum: The warmup mechanism of SGD with momentum, while at its core is163

similar to that of vanilla SGD, has a few subtleties. We discuss it in detail in Appendix E.2.164

3.2 Adaptive Gradient Methods (Adam)165

Figure 2 shows the training loss, pre-conditioned sharpness, and sharpness trajectories for full batch166

Adam. These results suggest that the local stability of adaptive optimizers is determined by the167

largest eigenvalue of the pre-conditioned Hessian, denoted by λP−1H , rather than the sharpness itself168

(also, see Ref. [7] for late time instability). In these figures, sharpness is significantly smaller than169

its instability threshold (2+2β1)/ηt ≈ 4000, indicating that sharpness does not determine stability.170

Instead, loss catapults are associated with λP−1H exceeding its corresponding instability threshold.171

The pre-conditioned sharpness starts high for both progressive sharpening (simple-µP) and sharpness172

reduction (SP) scenarios considered in the previous section. For simplicity, we considered a simpler173

version of µP, detailed in Appendix D.2.1. In particular, for µP models, λP−1H
0 ∼ 105 despite being174

initialized in a flat region as measured by sharpness, while for SP models, λP−1H
0 ∼ 106. These large175

initial values of λP−1H
0 can lead to training failures. We put forward strategies to improve Adam’s176

initialization in Section 5; here we continue characterizing the warmup mechanisms of Adam.177

Given that the pre-conditioned sharpness consistently starts high and decreases during early training,178

this behavior can be viewed as an extreme example of the natural sharpness reduction scenario (C2)179

described in the previous section. Training Adam at high initial learning rates without warmup can180

cause large catapults, as seen in Figure 2(d), potentially leading to training failures. Increasing the181

warmup duration allows the pre-conditioned sharpness to naturally decrease. This prevents the loss182
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from spiking during early training and avoids training failures. In the later stages of training, the183

pre-conditioned sharpness may continue reducing or exhibit progressive sharpening. From here on,184

the dynamics follows the warmup mechanisms discussed in the previous sections, with sharpness185

replaced with pre-conditioned sharpness. Similar to the momentum case, Adam’s stability threshold186

at late training times significantly decreases for smaller batch sizes [7], also shown in Appendix E.4.187

4 Impact of Warmup on Training and Generalization188

Here we investigate the impact of warmup on training and generalization by disentangling the role of189

ηtrgt and Twrm. Our key findings are that generalization capability is primarily determined by ηtrgt and190

that Adam is particularly sensitive to large learning rates (specifically, large catapults). The role of191

increasing Twrm is to (i) allow the network to tolerate larger ηtrgt, and (ii) move the network further192

away from the divergence (failure) boundary, leading to a marginal improvement in generalization.193

For experimental details, see Appendix D.194

4.1 Stochastic Gradient Descent (SGD)195

Figure 3 presents heatmaps that show the best test accuracy achieved during training, plotted in the196

ηtrgt-Twrm plane for different parameterizations and loss functions. These phase diagrams of warmup197

also show the convergence-divergence boundary, with empty cells indicating training divergences,198

illustrating the interplay between warmup duration and the maximum trainable ηtrgt. Below, we199

discuss the crucial insights these results provide into warmup’s role in training dynamics.200

Longer Warmup Facilitates Training at Higher Learning Rates: These phase diagrams reveal201

that an extended warmup duration facilitates training at higher target learning rates. This benefit is202

particularly noticeable for large initializations (like SP) and MSE loss. In contrast, the advantage is203

less pronounced when using cross-entropy loss and smaller initializations (like µP). The diminished204

benefit for µP is likely due to its initialization in a relatively flat region of the loss landscape, which205

can already facilitate training at higher learning rates at initialization. This consistent increase in206

maximum ηtrgt with warmup durations can be understood through the lens of warmup mechanisms207

described in the previous section. As observed in Figure 1, when the warmup duration is increased,208

loss catapults occurring on surpassing the instability thresholds become milder. This effectively209

pushes the divergent boundary to higher learning rates.210

Final Performance Primarily Depends on the Target Learning Rate: A closer look into these211

phase diagrams reveals that, slightly away from the divergent boundary, the test accuracy primarily212

depends on the target learning rate and nominally on the warmup duration. Based on the model213

performance, we can categorize these phase diagrams into two distinct cases: (i) models that fail214

to achieve optimal performance when trained with a constant learning rate (e.g., Figure 3(c)),215

and (ii) models that attain optimal performance without warmup (e.g., Figure 3(b)). The first216

scenario corresponds to models with large initializations. Increasing the warmup duration improves217

performance by facilitating training at higher learning rates. Yet, similar performance is observed218

for different warmup durations, suggesting that the primary gain comes from the target learning rate,219

rather than the duration itself. The second case arises for flat initializations, which can already train220

at large learning rates, and resultantly the optimal performance is already achieved without warmup.221

While increasing warmup duration facilitates training at even higher learning rates, it does not enhance222

performance. Nevertheless, it does broaden the range of optimal learning rates, reducing the need for223

precise tuning of the target learning rate, and making training more practical and robust. We conclude224

that warmup can serve two key purposes: (i) it can significantly improve model performance in large225

initialization cases, and (ii) extend the range of optimal target learning rates for small initializations,226

making it easier to tune the target learning rate. In Appendix F.2, we demonstrate that these results227

hold on incorporating momentum and employing cosine learning rate decay.228

4.2 Adam229

The warmup phase diagrams for Adam, as shown in Figure 4(a), exhibit characteristics similar to the230

sharpness reduction case of SGD, with notable differences. Increasing the warmup duration enables231

training at higher learning rates by allowing the pre-conditioned sharpness to decrease naturally,232

thereby reducing the severity of catapults. These large catapults, which may persist in Adam’s233
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Figure 4: Test loss heatmaps of Pre-LN Transformers in SP trained on WikiText-2 with cross-entropy
loss using (a) Adam, and (b) GI-Adam (introduced in Section 5).

memory, can lead to performance degradation and training failures. Thus, in addition to facilitating234

training at higher rates similar to SGD, warmup further improves Adam’s performance by addressing235

its vulnerability to large catapults, justifying its widespread use with Adam. Below, we discuss the236

distinct properties of Adam phase diagrams in detail.237

Training Failures of Adam: Remarkably, we find that models trained with Adam always exhibit238

training failures rather than divergences where the loss grows without bound, as further demonstrated239

in Appendix G. In cases of training failure, we often observed that certain layers or residual blocks240

output zero, leading to vanishing gradients. This implies that the model gets stuck at a critical point241

and is unable to train further. Understanding this unexpected phenomenon requires further study,242

which we leave to future work.243

Performance Degradation prior to Failure Boundary: Test accuracy in these phase diagrams244

declines well before the failure boundary, in stark contrast to SGD where optimal learning rates are245

observed near the divergence boundary. This discrepancy stems from Adam’s property of retaining246

a memory of gradient magnitudes. At large learning rates, along with the loss, the gradients spike247

during early training, as seen in Figure 23 in Appendix G. While the gradients decrease after a few248

training steps, the second moment of gradients v remains large for an extended period, leading to249

a small effective learning rate ηP−1. As a result, training struggles to escape high-loss regions.250

Therefore, a longer warmup is more beneficial for Adam compared to SGD, as it is crucial to stay251

away from the failure boundary.252

5 GI-Adam: Improving Adam’s Initialization253

In Section 3.2, we observed that the pre-conditioned sharpness for Adam starts at a high value, even254

for low sharpness initializations like µP, and can lead to training failures at large learning rates.255

We propose Gradient Initialized Adam (GI-Adam), which initializes the second moment using the256

gradient squared, v0 = g2
0 . In Appendix H.2, we show that a bias correction is not required when the257

second moment is initialized using the gradients. As a result, GI-Adam can be viewed as standard258

Adam with an automated warmup given by ηt = ηtrgt
√
1− βt

2.259

This simple trick reduces the initial pre-conditioned sharpness by around two orders of magnitude260

(more precisely by a factor of
√
1− β2) at initialization, preventing large catapults, as illustrated261

in Figure 25 of Appendix H.1 (c.f. Figure 2(d-f)). Moreover, it consistently shows improvement262

over standard Adam across datasets and prevents training failures by pushing the training failure263

boundary to higher ηtrgt, as shown in Figure 4(b). We provide additional results for different datasets264

in Appendix F.3. To further assess that the primary cause of instability during early training is the265

large pre-conditioned sharpness, we randomly initialize v0 but with the same norm as the gradients at266

initialization. Like GI-Adam, this also results in improved performance as shown in Appendix H.3.267

6 Discussion268

Our analysis provides new insights into the role of warmup across optimizers and parameterizations.269

We found compelling evidence that the primary effect of warmup is to facilitate training at higher270

learning rates and stabilizing the training dynamics by keeping it away from the failure (divergence)271

boundary. Looking under the hood, we found a variety of underlying mechanisms, which also272

suggested several improvements for hyperparameter initialization. In Appendix A we provide273

practical guidance for practitioners on choosing the warmup duration.274
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A Practical Guidance for Practitioners383

How to Select the Warmup Duration? Given a target learning rate ηtrgt, if the training loss during384

the warmup period exhibits large instabilities (loss spikes), the warmup duration Twrm should be385

increased until such instabilities are sufficiently small. This effectively moves training away from the386

divergent / failure boundary, as illustrated in Figure 3. This is particularly crucial for Adam, as large387

instabilities can be detrimental and lead to considerable performance degradation without divergence,388

as discussed in Section 4.2.389

How to Select the Target Learning Rate? As the primary effect of warmup is to anneal sharpness390

by increasing the learning rate beyond the instability threshold, it suggests that the target learning391

rate should be at least greater than the instability threshold at initialization.392

When to Decay the Learning Rate? Figure 18 suggests that employing learning rate decay at393

small learning rates can result in performance degradation for a fixed training budget. Therefore, the394

learning rate should be decayed at large target learning rates only. The underlying intuition is that we395

use large target learning rates to train in a flat region of the landscape. However, these large learning396

rates restrict training to go into sharper regions of the basin and learning rate decay helps.397

Leveraging µP for Effecient Training: Our analysis suggests that the primary role of warmup398

facilitates training at higher learning rates by gradually reducing sharpness. Given this perspective,399

beginning training with flat initializations, such as µP, is advantageous. These initializations might400

allow for achieving optimal performance without the need for warmup, as observed in Figure 3.401

B Overview of Training Instabilities and the Self-Stabilization Mechanism402

The underlying mechanism of warmup is intimately tied to training instabilities. These training insta-403

bilities, often referred to as ‘catapults’ [22, 6], arise when the learning rate η exceeds a critical thresh-404

old ηc, where both η and ηc generally change with time. When the instability threshold is exceeded405

(η > ηc), two cases arise: (i) if the learning rate is higher than the instability threshold but smaller406

than a maximum stable learning rate (which varies with time), i.e., ηc < η < ηmax, training stabilizes407

through a self-stabilization process and training continues, (ii) if the learning rate exceeds this maxi-408

mum stable learning rate η > ηmax, training experiences severe instabilities. For SGD, these can result409

in training divergence, characterized by the loss increasing to infinity, whereas for Adam, training may410

cease, resulting in a training failure, where the loss fails to improve significantly over its initial value.411

For vanilla GD, the critical threshold is related to sharpness as ηc ≈ 2/λH 1, and the self-stabilization412

mechanism can be described as a four-step process [22, 8]. To illustrate this, consider the Twrm = 64413

1This relationship holds for the MSE loss and simple settings only. For an overview of instability thresholds
in various settings and different optimizers, see Appendix C.1.
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trajectories depicted in Figure 1(c, d). In the sharpness plot, the dashed lines represent the 2/ηt curves,414

and when λH
t is above these curves, training exceeds the instability threshold (η > ηc). The four415

steps of the self-stabilization mechanism are:416

(1) Approaching instability: Due to increasing learning rate and/or progressive sharpening,417

training approaches the instability threshold η = ηc. In Figure 1(d), this occurs within the418

first 10 steps due to increasing learning rate.419

(2) Loss increases: The loss begins to rise when the instability threshold is exceeded (η > ηc),420

as seen in Figure 1(c).421

(3) Sharpness reduction: For small enough learning rates, the increasing loss causes an abrupt422

decrease in sharpness, as observed in Figure 1(d). If the sharpness fails to decrease over423

extended steps, it may result in training divergence (e.g., see Twrm = 1 trajectories in the424

same figure).425

(4) Return to stability: The reduction in sharpness causes ηc = 2/λH to increase, restoring426

stability (η < ηc) and allowing for an eventual loss decrease.427

While the self-stabilization process for more complex optimizers, such as SGD with momentum or428

Adam, remains poorly understood, a qualitatively similar mechanism is observed in practice, as we429

will see in the later sections.430

The critical learning rate ηc is influenced by a variety of factors, including the choice optimizer431

[6, 7], mini-batch size [34, 7], and model properties such as depth, width, parameterization, and432

initialization [18, 19]. For a detailed overview of instability thresholds, see Appendix C.433

C Instability Thresholds434

C.1 Overview of Instability Thresholds435

Lewkowycz et al. [22] showed that for wide networks in NTP/SP trained with MSE loss and SGD,436

this critical learning rate is 2/λH
0 early in training. Further investigation by Kalra and Barkeshli437

[18] demonstrated that sharpness reduction during early training causes ηc to increase with depth438

and 1/width. In such scenarios, ηc can be as large as 40/λH
0 . Cohen et al. [6] demonstrated that439

sharpness at late training times for GD with momentum coefficient β oscillates above (2+2β)/η,440

suggesting ηc ≳ (2+2β)/λH
t at late training times. Expanding on this, Cohen et al. [7] analyzed441

adaptive optimizers and found that for Adam, the pre-conditioned sharpness λP−1H oscillates around442
(2+2β1)/η(1−β1) at late training times. The instability threshold also depends on the mini-batch size443

[34] and is often observed to be smaller than their full batch counterparts [6, 7].444

D Experimental Details445

This section provides additional experimental details. All models were implemented using the JAX446

[3], and Flax libraries [15]. The key results can be reproduced using the GitHub repo: https:447

//github.com/dayal-kalra/why-warmup.448

Experimental Setup for Section 4: We consider WideResNets (WRNs) and Transformers (LM)449

parameterized in either SP or µP. WRNs are trained on standard classification tasks such as CIFAR-10,450

CIFAR-100, and Tiny-ImageNet, employing data augmentation. Transformers are trained on the451

next token prediction task using the WikiText-2 dataset. These models are trained with MSE or452

cross-entropy (xent) loss functions using SGD or Adam optimizers for a fixed training budget of453

T = 105 steps unless otherwise specified. Training begins with a linear warmup phase from ηinit = 0454

to ηtrgt over Twrm steps. After the warmup phase, training continues at ηtrgt for the remaining training455

budget. In some cases, following the warmup period, we gradually decrease the learning rate using456

cosine decay [24]. Target learning rates are sampled exponentially until divergence or a ‘training457

failure’ is observed. Here, training failure refers to instances where the performance at the end of the458

training fails to improve significantly compared to its initial value. For example, if the final training459

accuracy for a classification task is less than 1.5 times the accuracy of a random guess, we consider it460

as a training failure. We refer to the transition between convergence and training failure as the failure461

boundary. Further details are provided in Appendix D.462
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D.1 Datasets Details463

D.1.1 Image Classification Tasks464

We consider standard image classification datasets such as CIFAR-10, CIFAR-100 [21], and Tiny-465

ImageNet [1]. The images are normalized to have zero mean and unit variance. For MSE loss, we466

use one-hot encoding for the labels.467

Data augmentation: For various image classification tasks, we employ data augmentation techniques,468

applied in the following order: random horizontal flips, random cropping, and mixup [40].469

D.1.2 Language Modeling Tasks470

We consider the next token prediction task on the Wikitext-2 dataset [25], consisting of ∼ 2M tokens.471

We use Byte Pair Encoding (BPE) tokenizer [31] with a Whitespace pre-tokenizer. Due to the high472

computational cost associated with hyperparameter tuning, we restrict to smaller models with ∼ 2M473

parameters. Furthermore, we restrict the vocabulary size to 4096 to ensure that embedding parameters474

do not dominate the total number of parameters in the model.475

D.2 Model Details476

This section describes the models considered, including their parameterization and initialization477

details. We adopt parameterizations outlined in Table 9 of Ref. [37]. Unless otherwise specified, we478

employ ReLU non-linearities and initialize the weights with a truncated normal distribution 2, with a479

variance σ2
w = 2.0 in appropriate parameterizations (details below), except for the last layer, which480

has a weight variance of σ2
w = 1.0. All biases are initialized to zeros.481

D.2.1 Parameterizations482

Standard Parameterization (SP): For SP, the weights are initialized with truncated Gaussian483

distribution N (0, σ
2
w/fanin) and the biases are initialized to zero.484

Maximal Update Parameterization (µP): For µP, different schemes are employed for the inter-485

mediate and last layers. The intermediate layers are initialized using N (0, σ
2
w/fanout) and the layer486

outputs are scaled by the factor
√

fanout/fanin. In comparison, the layer weights are initialized with487

N (0, σ
2
w/fanin), and the final output is rescaled by the factor

√
1/fanin. Conveniently, for SGD, the488

learning rate does not scale with width in the above µP formulation. In comparison, for Adam,489

the learning rate corresponding to input, intermediate, and output layers are rescaled by the factors490
1/

√
fanout, 1/

√
fanin and 1/fanin. Since we are utilizing µP only to obtain flat initializations, we omit the491

additional scaling of the learning rate for Adam in some experiments (e.g., Figure 2). As a result, the492

instability threshold is only dependent on the target learning rate ηtrgt during late training, rather than493

on the largest learning rate across layers. We refer to this parameterization as ‘simple-µP’ for Adam.494

D.2.2 Architectures495

Fully Connected Networks (FCNs): We consider fully connected networks with a constant width496

of n and a depth of d layers. These networks are denoted by FCN-d-n. Unless specified, we497

considered d = 4 layer FCNs with width n = 512.498

WideResNets (WRNs): We consider WideResNets [38] with d layers, S stages, and a widening499

factor of k, denoted by WRN-d-k. The number of channels in each stage s ∈ [0, S) is given500

by 2s × 16 × k, with the input layer having 16 channels. For example, WRN-16-4 consists of501

S = 3 stages, each with [2, 2, 2] layers, and the corresponding number of channels in each stage is502

[64, 128, 256]. In all our experiments, we use LayerNorm instead of BatchNorm.503

Transformers: We consider Transformers with GPT-2 style architecture [29]. These models use504

sinusoidal positional embeddings [33] and are implemented in the Standard Parameterization (SP)505

2for details, see https://jax.readthedocs.io/en/latest/_autosummary/jax.nn.initializers.
truncated_normal.html
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with GELU activation [16]. We initialize all layers using the σ2
w/fanin scheme, except for the embedding506

layers, as they do not involve matrix multiplication [9]. We consider both Pre-LN [35] and Post-LN507

[33] Transformer variants. We denote a Transformer with d blocks and an embedding dimension of n508

as LM-d-n. Unless specified, the model has d = 4 blocks, embedding dimension n = 128, context509

length Tcntxt = 64 and are trained for 104 steps.510

D.3 Optimization Details511

D.3.1 Optimizers512

SGD(-M): Given gradients gt at step t, Stochastic Gradient Descent with momentum (SGD-M)513

updates the parameters θt using learning rate ηt and momentum mt with coefficient β. The update514

equations are:515

mt = gt + βmt−1, (1)
θt+1 = θt − ηtmt. (2)

Here, β = 0 corresponds to SGD. In all experiments incorporating momentum, the default value of516

the coefficient is set to β = 0.9.517

Adam: Given gradients gt at step t, Adam [20] updates the parameters θt using learning rate ηt518

and the first two moments of the gradient mt and vt with their coefficients β1 and β2, respectively.519

The equations governing the updates are:520

mt = β1mt−1 + (1− β1)gt, (3)

vt = β2vt−1 + (1− β2)g
2
t , (4)

θt+1 = θt − ηt
m̂t√
v̂t + ϵ

, (5)

where m̂t =
mt

1−βt
1

and v̂t =
vt

1−βt
2

are the bias-corrected moments, and ϵ is a small scalar used for521

numerical stability. The pre-conditioner for Adam is given by:522

Pt = (1− βt
1)

[
diag

(
vt

1− βt
2

)
+ ϵI

]
. (6)

In all experiments, the default values are set to β1 = 0.9, β2 = 0.999, and ϵ = 10−8, unless otherwise523

specified.524

D.3.2 Linear Warmup525

Warmup linearly increases the learning rate from an initial value ηinit to a target value ηtrgt over Twrm526

training steps. The learning rate ηt at step t is given by:527

ηt = ηinit + (ηtrgt − ηinit)

(
t

Twrm

)
. (7)

Here, α :=
(ηtrgt−ηinit)

Twrm
is referred to as the rate of warmup. Under the above definition, constant528

learning rate training corresponds to Twrm = 1. Twrm = 1 corresponds to constant learning rate.529

Unless otherwise specified, we set ηinit = 0 when referring to linear warmup.530

D.3.3 Learning Rate Decay531

In several experiments, we employ learning rate decay following the warmup phase. Specifically, we532

use cosine learning rate decay, which is detailed below.533
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Cosine Decay: Towards the end of training, it is typical to reduce the learning rate to a small value.534

Cosine decay is a commonly used method for decaying the learning rate from an initial value of ηtrgt535

down to a value ηmin over Tcos steps, according to the rule:536

ηt = ηtrgt + (ηmin − ηtrgt)

[
1

2

(
1 + cos

(
πt

Tcos

))]ρ
, (8)

where ρ governs the rate of decay, with ρ = 1 being the standard. Note that with ρ = 0, the learning537

rate is not decayed and instead maintained at ηtrgt. In the above expression, t counts the steps from538

the initiation of cosine decay and not the current training step. As per standard practice, we consider539

ρ = 1 and decay the learning rate to ηmin = ηtrgt/10.540

D.3.4 Target Learning Rate Sampling for Phase Diagrams541

For SGD, target learning rates ηtrgt are exponentially sampled using the initial sharpness λH
0 . Starting542

with ηtrgt = 1/λH
0 , subsequent rates are sampled until divergence as 2x/λH

0 for values of x increased543

in integer steps starting from zero. For WRNs trained with Adam, we sample target learning rates544

exponentially as ηtrgt = 2x × 10−5, where x is incremented in integer steps starting from zero until545

training failure. For Transformers, we sample the learning rate in a similar fashion but starting from546

10−4 and increment x in steps of 0.5.547

D.4 Sharpness and Pre-conditioned Sharpness Measurement548

We measured sharpness / pre-conditioned sharpness using the JAX implementation of the LOBPCG549

sparse eigenvalue solver with the tolerance set to 10−9 and maximum number of iterations to niter =550

1000. In most cases, the solver converges within 40 iterations. We performed these computations in551

float64, as the solver would not converge with float32 in some cases.552

In certain instances, the pre-conditioned sharpness computation did not converge within 1000 solver553

iterations. Moreover, we observed that the solver converges on restarting it with a new initial guess554

of the eigenvector within 40 iterations. To address these edge cases, we employed the following555

method: if the solver did not converge within 100 iterations, we restarted it with a new initial guess556

for the eigenvector. We allowed for at most 10 restarts with the maximum number of iterations set to557

niter = 1000 in the last attempt. In all reported cases, the solver converges using this method.558

D.5 Additional Figure Details559

Figure 1: Training trajectories of 4-layer FCNs with width n = 512, trained on a 5k subset of560

CIFAR-10 using MSE loss and GD in (top) µP with ηtrgt = 1/λH
0 , where λH

0 ≈ 0.05, and (bottom) SP561

with ηtrgt = 32/λH
0 , where λH

0 ≈ 50.562

Figure 2: Training loss and sharpness trajectories of 4 layer FCNs with width n = 512, in (top) µP563

with learning rate ηtrgt = 0.003 and (bottom) SP with ηtrgt = 0.001 trained the CIFAR-10 dataset with564

MSE loss using full batch Adam with β1 = 0.9, β2 = 0.999 and ϵ = 10−8. In these experiments, we565

use data augmentation as described in Appendix D.1.1.566

Figure 3: Test accuracy heatmaps of WRN-16-4 trained on CIFAR-10 using different parameter-567

izations and loss functions using SGD with a batch size B = 128: (a) SP and MSE loss, (b) µP568

and cross-entropy loss (c) SP and cross-entropy loss. All models are trained for 105 steps. In these569

experiments, we use data augmentation as described in Appendix D.1.1.570

Figure 4: Test loss heatmaps of Pre-LN Transformers in SP trained on WikiText-2 with cross-571

entropy loss using (a) Adam, and (b) GI-Adam (introduced in Section 5) over Adam. The Transformer572

models have d = 4 blocks, embedding dimension n = 128, a context length of Tcnxt = 64. These573

experiments also employ cosine decay, as described in Appendix D.3.3.574
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Figure 5: Training loss and sharpness trajectories of FCNs trained on CIFAR-10 with MSE loss using
SGD with a batch size B = 512. The dashed lines in the sharpness figures illustrate the instability
thresholds 2/ηt. (top) µP with learning rate 1/λH

0 , (bottom) SP with learning rate 32/λH
0 .

D.6 Estimation of Computational Resources575

The phase diagram experiments typically required about an hour on per run on an A100 GPU.576

Consequently, each phase diagram consumed approximately 100 A100 hours of computational time.577

With a total of 16 phase diagrams, this equates to 1600 A100 hours dedicated solely to phase diagram578

computations. Additionally, the warmup mechanism experiments, which were conducted over 2000579

steps, required sharpness estimation. The FCN experiments required approximately 1200 A100 hours,580

while the WRN mechanism experiments consumed 1600 A100 hours. The experiments concerning581

the initial learning rate took about 20 A100 hours. This brings the total computational time amounted582

to approximately 4500 A100 hours. Preliminary experiments took about 1000 A100 hours. Hence,583

we estimate the total computational cost to be around 5500 A100 hours.584

E Additional Results for Mechanisms of Warmup585

This section presents additional trajectories for warmup mechanisms discussed in Section 3 covering586

various architectures, loss functions, and optimizers.587

E.1 Stochastic Gradient Descent588

Figure 5 shows that the warmup mechanisms for full batch GD are also observed in the SGD with a589

batch size B = 512. The results for other optimizers in the mini-batch setting are discussed in their590

respective sections.591

E.2 Stochastic Gradient Descent with Momentum592

While the warmup mechanisms of SGD with momentum are fundamentally similar to those of vanilla593

SGD, three key differences arise, as discussed below.594

During early training, the loss may decrease non-monotonically on incorporating momentum, even595

at small learning rates. Such oscillations are also observed when quadratic loss functions are596

optimized using GD with momentum [11]. These oscillations make it challenging to differentiate597

between warmup-induced catapults and fluctuations in loss due to the intrinsic effects of momentum.598

Nevertheless, we can still observe loss spikes correlated with an abrupt decrease in sharpness at large599

learning rates, as detailed in Appendix E.2.600
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Figure 6: Training loss and sharpness trajectories of FCNs trained on 5k subset of CIFAR-10 using
MSE loss and full batch GD with momentum β = 0.9: (top) µP with learning rate 1/λH

0 (middle) SP
with learning rate 1/λH

0 , and (bottom) SP with learning rate 32/λH
0 . The dotted lines in the sharpness

figures correspond to the (2+2β)/ηt curves, while dashed lines show the 2/ηt for reference.

Additionally, the instability threshold ηc itself evolves differently during training. It changes from601
2/λH

0 at initialization to (2+2β)/λH
t later in training. Moreover, the late-time instability threshold is602

significantly influenced by the batch size, exhibiting a much smaller value than SGD for the same603

batch size. These properties make it more challenging to analyze the training dynamics of SGD with604

momentum. Nonetheless, the fundamental warmup mechanisms closely mirror the vanilla SGD case.605

We leave a more detailed analysis of the early training dynamics of SGD-M for future studies.606

Besides these differences, we note that the warmup mechanisms of SGD with momentum are similar607

to the vanilla SGD case. We leave a thorough analysis of the early sharpness dynamics of SGD with608

momentum for future works.609

E.3 Stochastic Gradient Descent and Cross-entropy Loss610

The warmup mechanisms for models trained with cross-entropy loss exhibit trends similar to those611

observed with MSE loss with one crucial difference. Near convergence, sharpness first increases and612

then abruptly decreases. The decrease in sharpness towards the end of training is observed in previous613

studies analyzing SGD with fixed learning rate [6]. Additionally, we observe higher fluctuations614

compared to the MSE loss case. Figure 8 shows trajectories of FCNs under different parameterizations615

trained on CIFAR-10 with cross-entropy loss using vanilla SGD. Meanwhile, Figure 9 shows the loss616

and sharpness trajectories of FCNs in SP trained on CIFAR-10 with cross-entropy loss using full617

batch GD with and without momentum.618
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Figure 7: Training loss and sharpness trajectories of FCNs trained on CIFAR-10 with MSE loss
using SGD with a batch size B = 512 and momentum β = 0.9: (top) µP with learning rate 1/λH

0 ,
and (bottom) SP with learning rate 32/λH

0 . The dotted lines in the sharpness figures correspond to the
(2+2β)/ηt curves, while dashed lines show the 2/ηt for reference. Similar mechanisms are observed
for cross-entropy loss with a decrease in sharpness at late training times, as detailed in Appendix E.3.
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Figure 8: Training loss and sharpness trajectories of FCNs trained on CIFAR-10 with cross-entropy
loss using SGD with a batch size B = 512. (Top row) µP with learning rate 1/λH

0 (Bottom row) SP
with learning rate 32/λH

0 .

E.4 Warmup Mechanisms of Adam619

As discussed in Section 3.2, the instability threshold for Adam is determined by the pre-conditioned620

sharpness λP−1H and not by the sharpness itself. Moreover, training dynamics falls under the621

sharpness reduction case as the pre-conditioned sharpness starts off large and reduces considerably622

during the first few training.623

17



100 101 102 103

step

10−2

100

102

T
ra

in
in

g
lo

ss

Twrm

1

64

256

1024

(a)

100 101 102 103

step

100

101

102

103

λ
H t

Twrm

1

64

256

1024

(b)

100 101 102 103

step

10−4

10−2

100

102
T

ra
in

in
g

lo
ss

Twrm

1

64

256

1024

(c)

100 101 102 103

step

100

102

104

λ
H t

Twrm

1

64

256

1024

(d)

Figure 9: Training loss and sharpness trajectories of FCN-4-512 in SP trained on 5k subset of
CIFAR-10 with cross-entropy loss using full batch GD with learning rate 32/λH

0 with momentum
coefficient (top) β = 0.0 and (bottom) β = 0.9.
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Figure 10: Training loss and sharpness trajectories of FCN-4-512 in (top) µP and (bottom) SP
trained on CIFAR-10 with MSE loss using Adam with learning rate η = 0.001, batch size B = 512,
β1 = 0.9 and β2 = 0.999. The dashed lines in the sharpness figures illustrate the instability thresholds
(2+2β1)/ηt(1−β1).

Figure 10 shows the training trajectories of FCNs trained with Adam in the same setting as in624

Figure 2 but with a batch size of B = 512. Similar to the SGD with momentum case, the late625

time sharpness oscillates far below the instability threshold ((2+2β1)/ηt(1−β1)), suggesting that the626

instability threshold heavily decreases with a smaller batch size. We note similar findings by Ref. [7].627

Next, Figure 11 show the warmup mechanism of FCNs trained with cross-entropy loss using Adam628

under the full-batch setting. Similar to the SGD case, the pre-conditioned sharpness decreases towards629

the end of training.630
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Figure 11: Training loss and sharpness trajectories of FCNs in (top) µP and (bottom) SP trained on
CIFAR-10 with cross-entropy loss using full-batch Adam with learning rate η = 0.001, β1 = 0.9
and β2 = 0.999. The dashed lines in the sharpness figures illustrate the instability thresholds
(2+2β1)/ηt(1−β1).

E.5 Different Architectures and Datasets631
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Figure 12: WRN-16-1 trained on CIFAR-10 with MSE loss using vanilla SGD with batch size
B = 512: (top) µP with ηtrgt = 1/λH

0 and (bottom) SP with ηtrgt = 32/λH
0 .

In the previous sections, we confined our analysis to FCNs to thoroughly explore the effects of632

different optimizers and loss functions. This section expands on those results by demonstrating633

that the observed warmup mechanisms apply to ResNets and Transformers as well. The Resnet634

experiments also employ data augmentation as detailed in Appendix D.1.635

Figures 12 and 13 show the training trajectories of WideResNets (WRNs) trained on CIFAR-10 with636

MSE and cross-entropy loss using SGD. These trajectories generally reflect the warmup mechanisms637

discussed in Section 3. However, certain additional features obscure the clarity of these mechanisms.638
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Figure 13: WRN-16-1 trained on CIFAR-10 with cross-entropy loss using vanilla SGD with batch
size B = 512: (top) µP with ηtrgt = 1/λH

0 and (bottom) SP with ηtrgt = 32/λH
0 .

Notably, we observed a significant sharpness spike on the first training step when using longer639

warmup durations, which automatically resolves in the subsequent step. The magnitude of this spike640

increases with longer warmup periods. Further analysis revealed that this phenomenon is associated641

with an initial increase in the first LayerNorm parameters, which also resolves automatically by the642

second step. Beyond this observation, the training trajectories align with the warmup mechanisms643

described in the main text.644
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Figure 14: LM-4-128 trained on the WikiText-2 dataset with cross-entropy loss using SGD with a
batch size B = 512 and a context length Tcntx = 64. The top row shows the warmup mechanisms
of a Pre-LN Transformer with ηtrgt = 5.65/λH

0 , while the bottom row shows the results for the same
Pre-LN Transformer but with the last LayerNorm removed and a learning rate of ηtrgt = 8/λH

0 .

Figure 14 illustrates the warmup mechanisms of Pre-LN Transformers trained on the WikiText-2 with645

SGD. The Pre-LN Transformer (top row) starts in a flat landscape region (λH
0 ∼ 5) and experiences646
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Figure 15: Pre-LN LM-4-128 trained on the WikiText-2 dataset with cross-entropy loss using Adam
with a target learning rate ηtrgt = 0.003, a batch size B = 512 and a context length Tcntx = 64.

progressive sharpening right from initialization. In contrast, when the last LayerNorm (just before the647

final linear layer) is removed (bottom row), the model starts training in a significantly sharper region,648

with the initial sharpness 100 times larger than the standard Pre-LN Transformer. This modified649

Pre-LN Transformer experiences a reduction in sharpness during the early stages of training.650

Figure 15 presents the warmup mechanisms of Pre-LN Transformers trained on WikiText-2 using the651

Adam optimizer. Consistent with the results in the main text, the pre-conditioned sharpness exhibits a652

reduction early in training, despite the model initializing in a very flat region.653

These experiments demonstrate that Transformers trained on language modeling tasks exhibit warmup654

mechanisms consistent with those discussed in the main text.655

F Additional Phase Diagrams656

This section presents further results related to the phase diagrams of warmup shown in Section 4.657

F.1 Phase Diagrams for different Models and Datasets658

Figure 16 shows the test accuracy heatmaps of WRN-16-4 trained on CIFAR-100 and Tiny-ImageNet.659

These models are trained using cross-entropy loss using SGD with a batch size of B = 128.660

Additional phase diagrams for Adam are presented in Appendix F.3.661

Figure 17(a) shows the test loss heatmaps of Pre-LN Transformer trained on the WikiText-2 dataset662

using SGD with a batch size B = 64. Figure 17(b) shows the Pre-LN Transformer under the same663

setup except for the last layer LayerNorm removed. The standard Pre-LN Transformer starts off with664

a small sharpness, while the version without the last LN starts off with 100 times higher curvature665

and requires warmup to achieve good performance.666

F.2 The Effect of Momentum and Learning Rate Decay667

Figure 18 shows that incorporating momentum and cosine decay (for details, see Appendix D.3.3)668

minimally affects the warmup phase diagrams. While the conclusions regarding warmup presented in669

the main text remain unaffected, we note a few interesting observations.670

First, the divergent boundary shifts leftward on incorporating momentum, indicating that momentum671

permits smaller target learning rates without warmup, and warmup helps SGD-M more. Meanwhile,672

cosine decay has a minimal effect on the divergent boundary.673

Additionally, we observe a performance enhancement by incorporating momentum, especially at674

small learning rates. In contrast, a decaying learning rate beyond warmup degrades performance675

at small learning rates while improving at higher ones. Finally, incorporating both momentum and676

cosine decay leads to further enhancement, indicating a synergistic interaction between the two.677
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Figure 16: Test accuracy heatmaps of WideResNets (WRNs) in SP trained on (a) CIFAR-100 and (b)
Tiny ImageNet with cross-entropy loss using SGD with batch size B = 128.
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Figure 17: Test loss heatmaps of LM-4-128 in SP trained on WikiText-2 with cross-entropy loss
using SGD with a batch size B = 64: (a) Pre-LN Transformer and (b) Pre-LN Transformer without
the last LayerNorm.

F.3 Phase Diagrams of Adam and GI-Adam678

Figures 20 to 22 compare the warmup phase diagrams of Adam and GI-Adam of WRNs trained on679

CIFAR-100, Tiny-ImageNet and of Transformers trained on WikiText-2 dataset. Similar to the results680

shown in the main text, GI-Adam enhances performance over standard Adam by pushing the failure681

boundary.682
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Figure 18: Test accuracy heatmaps of WideResNets (WRNs) in SP trained on CIFAR-10 with cross-
entropy loss using SGD with batch size B = 128: (top row) no cosine decay (a) no momentum, (b)
momentum with β = 0.9, and (bottom row) with cosine decay (c) no momentum, and (d) momentum
with β = 0.9. The setting of (a) is the same as in Figure 3(c) but with a different mini-batch sequence.
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Figure 19: Test accuracy heatmaps of WRN-16-4 trained on CIFAR-100 with cross-entropy loss
using (left) standard Adam, and (right) GI-Adam with batch size B = 128.

G Non-divergence of Adam683

Figure 23 shows that, despite experiencing catastrophic instabilities during early training, Adam684

does not diverge well beyond the training failure boundary. While Adam can recover from these685
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Figure 20: Test accuracy heatmaps of WRN-16-4 trained on CIFAR-100 with cross-entropy loss
using (left) standard Adam, and (right) GI-Adam with batch size B = 128.
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Figure 21: Test accuracy heatmaps of WRN-16-4 trained on Tiny-ImageNet with cross-entropy loss
using (left) standard Adam, and (right) GI-Adam with batch size B = 128.
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Figure 22: Test loss heatmaps of LM-4-128 in SP trained on WikiText-2 with cross-entropy loss
using (a) standard Adam, and (right) GI-Adam with batch size B = 64.

instabilities, the model’s performance is severely impacted, resulting in training failures rather than686

convergence to a reasonable minimum.687
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Figure 23: Training trajectories of WRNs trained on CIFAR-10 using Adam with cross-entropy
loss and varying learning rates. The setup is identical to the Twrm = 1 row of Figure 4, but without
employing cosine learning rate decay. The first training failure is observed at a learning rate of
ηtrgt = 0.02048. To investigate the behavior beyond the training failure boundary, learning rates are
sampled from ηtrgt = 0.01024 (just below the failure boundary) up to ηtrgt ≈ 150.

These large loss catapults cause the gradients g to spike during early training, leading to a substantial688

increase in its second moment v. While the gradients return to a lower value after a few training689

steps, the second moment remains large in magnitude for a prolonged period. These large values of690

v result in a small effective learning rate, which hinders training to escape these high-loss regions.691

Consequently, the models remain stuck in a suboptimal state rather than converging. We refer to this692

as a training failure.693

Upon closer examination of the individual layers during training failures, we found that certain layers694

or residual blocks output zero. This results in vanishing gradients except for the last layer bias and695

training halts. We defer the detailed analysis of Adam’s failures to future work.696

H Additional Results on GI-Adam697

This section presents additional results for GI-Adam. We provide further insights into the mechanisms698

and interpretations of GI-Adam.699

H.1 Warmup Mechanisms of GI-Adam700

Figure 24 shows the training trajectories of FCNs with different parameterizations trained with701

GI-Adam. Notably, the pre-conditioned sharpness starts at significantly lower values than standard702

Adam. Specifically, for the µP model, the initial pre-conditioned sharpness λP−1H is around 2000703

instead of the value 105 observed for Adam (c.f. Figure 2). Remarkably, this almost eliminates initial704

sharpness reduction. Similarly, the pre-conditioned sharpness for the SP model starts around 104705

instead of 106. Notably, in the SP scenario, there is no initial spike in the Twrm = 1 (c.f. Figure 2),706

demonstrating that this simple modification effectively reduces instabilities during the early training.707

H.2 GI-Adam as an Automated Warmup708

In this section, we show that a bias correction is not required when the second moment is initialized709

with the gradients at initialization in GI-Adam. Therefore, employing a bias correction as in the710

original Adam algorithm in this case serves as an automated warmup given by ηt = ηtrgt
√

1− βt
2.711
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Figure 24: Training loss and sharpness trajectories of FCNs in (top) µP and (bottom) SP. The
experimental setup is identical to Figure 2 but with GI-Adam instead of standard Adam.

The moving average of the second moment is given by:712

vt = (1− β2)

t−1∑
i=0

βi
2g

2
t−i + βt

2v0, (9)

where v0 = g2
0 . Following standard assumptions, we assume that the second moment of the gradient713

is constant during early training E[g2
t ] = σ2. Taking the expectation of the above equation over the714

gradient distribution yields715

E[vt] = (1− β2)

t−1∑
i=0

βi
2E[g2

t−i] + βt
2E[v0]. (10)

Simplifying the above equation, we have716

E[vt] = (1− β2)σ
2 1− βt

2

1− β2
+ βt

2σ
2 = σ2. (11)

This result demonstrates that when the second moment is initialized with the gradients at initialization,717

it does not require bias correction, as the expected value of the second moment is equal to the constant718

σ2. If we apply the usual bias correction on top of initializing the second moment with the gradients,719

we effectively downscale the second moment by a factor
√
1− βt

2. Assuming small enough ϵ, this720

can be viewed as a multiplicative factor to the learning rate. As a result, GI-Adam is equivalent to721

having a natural warmup given by ηt = ηtrgt
√
1− βt

2.722

H.3 The Primary benefit of GI-Adam results from the magnitude of the second moment at723

initialization724

To further assess if the primary cause of instability during early training is the large λP−1H , we725

randomly initialize v0 but with the same norm as the gradients at initialization. We refer to this as726

Randomly Initialized Adam (RI-Adam). Like GI-Adam, this also results in improved performance as727

shown in Figure 25.728
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Figure 25: Comparison of test accuracy trajectories of WRNs trained with different Adam variants for
two target different learning rates: (a) ηtrgt = 0.020480, and (b) ηtrgt = 0.040960. For Adam+warmup,
the warmup duration is set to Twrm = 1024.
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