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ABSTRACT

Graph Neural Networks (GNNs) have shown exceptional performance in learning
node representations for node-level tasks such as node classification. However,
traditional message-passing mechanisms solely based on graph structure in GNNs
make them vulnerable to adversarial attacks. Attention-based GNNs have been
utilized to improve the robustness of GNNs due to their capabilities to selectively
emphasize informative signals over noisy or less relevant ones. However, existing
works on robust graph attention methods do not realize the correlation between
improved robustness and better adherence to the IB principle of attention-based
GNN:s. In this work, we find that the IB loss of attention-based GNNss is a strong
indicator of their robustness against variant graph adversarial attacks. Attention-
based GNNs with lower IB loss learn node representations that correlate less to
the input training data while aligning better with the target outputs. Due to bet-
ter adhering to the IB principle, attention-based GNNs with lower IB loss usually
show stronger robustness against graph adversarial attacks. Inspired by such ob-
servation, we propose a novel graph attention method termed Robust Graph Atten-
tion inspired by Information Bottleneck, or RGA-IB, which explicitly minimizes
the IB loss of a multi-layer GNN through a carefully designed graph attention
mechanism. Extensive experiment results on semi-supervised node classification
under variant graph adversarial attacks show that GNNs equipped with RGA-IB
exhibit lower IB loss, which indicates better adherence to the IB principle, and
show significantly improved node classification accuracy under graph adversarial
attacks compared to existing robust GNNs. The code of RGA-IB is available at
https://anonymous.4open.science/r/RGA-IB-A47F/.

1 INTRODUCTION

As generalizations of Deep Neural Networks (DNNs), Graph Neural Networks (GNNs) have
emerged as popular tools for machine learning on graph-structured data (Kipf & Welling, 2017;
Bruna et al., 2014; Hamilton et al., 2017; Xu et al., 2019b). Most prevailing GNNs (Kipf & Welling,
2017; Hamilton et al., 2017) follow the message-passing scheme and learn the representation of each
node by iteratively transforming and propagating the information within its neighborhood. Bene-
fiting from such merits, GNNs show dominant performance on various graph learning tasks, such
as node classification (Ding et al., 2023), link prediction (Zhang & Chen, 2018), and graph classi-
fication (Zeng & Xie, 2020). Among different graph learning tasks, semi-supervised node classifi-
cation, aiming at predicting the labels for a set of unlabeled nodes in a partially labeled attributed
graph (Kipf & Welling, 2017), benefits the most from the message-passing scheme as it allows in-
formation from labeled nodes to propagate and influence the predictions for unlabeled nodes. How-
ever, the message-passing scheme also makes GNNs vulnerable to adversarial attacks (Ziigner et al.,
2018). Recent works (Ziigner & Giinnemann, 2019; Sun et al., 2020) have shown that by carefully
perturbing only a small number of edges or nodes in the graph, adversarial attacks can catastrophi-
cally reduce the performance of GNNs in predicting the labels on either all unlabeled nodes (Ziigner
& Giinnemann, 2019) or only a small targeted set of unlabeled nodes (Ziigner et al., 2018) in the
semi-supervised node classification task. Some efforts have been devoted to improving the robust-
ness of GNNs by adversarial training (Feng et al., 2019; Li et al., 2022), graph pre-processing (Wu
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et al., 2019; Entezari et al., 2020; Jin et al., 2020; Lei et al., 2022), and model robustification (Zhao
et al., 2023; Song et al., 2022; Jia et al., 2023).

Adaptively assigning weights to the neighbors of a node in the message-passing scheme, graph at-
tention modules (Veli¢kovié et al., 2018; Zhang & Zitnik, 2020; Yang et al., 2021b; Feng et al., 2021;
Fountoulakis et al., 2023; Wu et al., 2023a) have recently drawn increasing attention in improving
the robustness of GNNs among model robustification methods. Early graph attention methods, such
as GAT (Velickovi¢ et al., 2018), assign weights to edges in the graph by either estimating the un-
certainties of edges (Feng et al., 2021; Yang et al., 2021b) or the similarities between neighboring
nodes (Velickovi¢ et al., 2018; Zhang & Zitnik, 2020). Recent advancements of Transformer-based
GNNs (Wu et al., 2023b; Fountoulakis et al., 2023; Wu et al., 2023a) such as Difformer (Wu et al.,
2023a) have introduced mechanisms that extend beyond immediate neighbors to capture the dense
correlations among all the nodes in the graph. By focusing on the most relevant and reliable infor-
mation within the graph structure, graph attention networks dynamically modulate the influence of
the neighbors of each node, improving the resilience of the GNNs against malicious graph structures
and features. For example, RGCN (Zhu et al., 2019) and GAR (Fountoulakis et al., 2023) design
novel graph attention modules to improve the robustness of GNNs against graph adversarial attacks.
However, the attention modules in existing attention-based GNNs are often empirically designed
and lack theoretical support.

Understanding Robust Graph Attention from the Information Bottleneck (IB) perspective. In
this work, we understand the robust graph attention mechanism from the Information Bottleneck
(IB) principle. The IB principle (Tishby et al., 2000) encourages maximizing the mutual informa-
tion between the node representation and input features while minimizing the mutual information
between the node representation and class labels. Let X be the random variable representing the
input features and Z be the random variable representing the node representations to be learned by
the GNNSs. Let Y be the ground truth training labels for the node classification task. The IB principle
is to maximize the mutual information between Z and Y while minimizing the mutual information
between Z and X, that is, the IB loss IB(Z, X,Y) = I(Z,X) — I(Z,Y). Lower IB loss indi-
cates better adherence to the IB principle. As a result, learned GNNs adhering to the IB principle
naturally avoid overfitting to the inputs and become more robust to adversarial attacks in the input
graph data. Recent works find that minimizing the IB loss can improve the adversarial robustness of
DNNs (Wang et al., 2021; Kuang et al., 2023) and GNNs (Wu et al., 2020). We provide new insights
into the underlying connection between the IB principle (Tishby et al., 2000) and the robustness of
GNNs with graph attention modules which has not been revealed in the graph learning literature.
The graph attention operation selectively aggregates informative signals over noisy or less relevant
ones. Such selective focus leads to more relevant and compact node representations which correlate
less to the input graph data while aligning better with the training class labels, thereby adhering
better to the IB principle with a lower IB loss. This targeted refinement of node representations
through the attention mechanism results in an efficient compression of information, which enhances
the generalization capabilities of the GNNs with graph attention.

Existing methods do not realize the connection between the graph attention mechanism and the
IB principle. As evidenced in Table 5, there is a strong correlation between the IB loss and node
classification accuracy under adversarial attacks for graph attention methods. IB loss can be regarded
as an indicator of the robustness of the graph attention models, as the graph attention methods
showing better robustness usually feature lower IB loss. Motivated by such observations, we propose
a novel graph attention method, Robust Graph Attention inspired by Information Bottleneck, or
RGA-IB, to explicitly reduce IB loss of GNNs with carefully designed robust graph attention layers,
termed the RGA-IB layers.

1.1 CONTRIBUTIONS

Our contributions are presented as follows.

First, we introduce a novel graph attention method termed Robust Graph Attention inspired by In-
formation Bottleneck, or RGA-IB. RGA-IB is motivated by the connection between the principle
of Information Bottleneck (IB) and the robustness of graph attention methods against adversar-
ial attacks. The superior robustness of various GNNs with graph attention mechanisms, such as
GAR (Fountoulakis et al., 2023), as shown in Table 5, can be explained by their better adherence
to the IB principle evidenced by their lower IB loss compared to other graph attention methods.
Although graph attention operation has been applied to improve the robustness of GNNs by se-
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Figure 1: Comparisons on the frequency and cumulative frequency of the number of adversarial
neighbors in the attacked graph and the RGA-IB attention graph on Cora and Citeseer. Nettack
with an attack budget of 5 is adopted for this experiment. For each node in the attacked graph
or the RGA-IB attention graph, we count its adversarial neighbors which are the perturbed nodes
within two hops of that node. This is because node representations in existing IB based works,
including GIB (Wu et al., 2020), RG-GIB (Dai et al., 2023b), and UGRL (Wang et al., 2023b), are
limited by a two-hop neighborhood. The RGA-IB attention graph is created such that two nodes are
connected only when the attention weight between them is larger than 0.2. The figures illustrate that
most nodes of the RGA-IB attention graph have much fewer adversarial neighbors compared to the
attacked graph. For example, more than 90% of nodes in the RGA-IB attention graph have less than
20 adversarial neighbors in Cora. In contrast, only 60% of nodes in the attacked graph have less
than 20 adversarial neighbors in Cora. Such observations demonstrate that the dense graph attention
in RGA-IB significantly mitigates the propagation of adversarial information on the attacked graph.
Details on the calculation of the frequency and cumulative frequency of the number of adversarial
neighbors in the attacked graph and the RGA-IB attention graph are deferred to Section C.2 of the
appendix. Results on Pubmed and Polblogs are deferred to Figure 3 in Section C.2 of the appendix.
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lectively capturing node-wise correlations, all existing robust graph attention methods (Feng et al.,
2021; Zhu et al., 2019; Fountoulakis et al., 2023) do not explicitly reduce the IB loss. As shown
in Table 5 in Section 4.3, attention-based GNNs with lower IB loss show improved robustness to
adversarial attacks than attention-based GNNs with higher IB loss. To further reduce the IB loss,
we propose RGA-IB, which explicitly minimizes the IB loss of a GNN through a carefully designed
graph attention.

Second, to explicitly reduce the IB loss of a GNN with graph attention, we view the GNN with
multiple RGA-IB layers as an iterative process for the reduction of the IB loss by gradient descent,
and each RGA-IB layer simulates one-step gradient descent on the IB loss. Inspired by this un-
derstanding, the attention weight matrix at the current layer is generated from the attention weight
matrix at the previous layers, and the input node features at the current layer, following the formula
of gradient in Equation (1) in Section 3.2. As a result, the RGA-IB network with RGA-IB layers
enjoys reduced IB loss compared to existing graph attention methods, which is evidenced in Table 5
in Section 4.3. As evidenced by results in Table 4 in Section 4.3, RGA-IB gradually reduces the
IB loss to a lower level at deeper layers compared to existing graph attention methods. In addition,
extensive evaluation results on public graph benchmarks for semi-supervised node classification un-
der different categories of graph adversarial attacks in Section 4.2 demonstrate the effectiveness of
explicitly reducing IB loss with RGA-IB for improving robustness.

It is worthwhile to mention that RGA-IB is significantly different from existing robust GNNs de-
signed by the IB principle. GIB (Wu et al., 2020) proposes to learn minimal sufficient node rep-
resentations for node classification under graph adversarial attacks by explicitly minimizing the
variational upper bound of the IB loss, adhering closely to the IB principle. Although GIB shows
improved robustness against graph adversarial attacks, the node representations learned by GIB are
limited by a local dependency assumption where the representation of a node can only depend on the
features of neighboring nodes within two hops. More recent superior GNNs such as Difformer (Wu
et al., 2023b) find that node representations that capture all-pair node correlations beyond neighbor-
ing nodes demonstrate better performance for node-level learning tasks such as node classification.
Following such observations, we design the RGA-IB layer, which learns node representations with
dense graph attention to capture the correlation between all pairs of nodes in the graph for reducing
the IB loss. Not limited by the local dependency assumption, the RGA-IB network demonstrates
significantly better robustness against adversarial attacks for semi-supervised node classification.
Experiment results in Table 8 in Section C.1 of the appendix compare RGA-IB with ablation model,
RGA-IBjqcal, that only captures local node correlations further evidence that global correlation learn-
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ing in RGA-IB is beneficial for reducing the IB loss of robust attention-based GNNs. Moreover,
Figure 1 illustrates that the dense graph attention by RGA-IB considerably mitigates the propaga-
tion from the adversarial neighbors, which are the nodes perturbed by graph adversarial attack, to
a target node. In addition, UGRL (Wang et al., 2023b) and RG-GIB (Dai et al., 2023a) also adopt
the IB principle to improve the adversarial robustness of node representation learning. However,
both UGRL and RG-GIB adopt the conventional neighborhood aggregation scheme of GNNs on the
original input graph, thus exposing additional vulnerabilities to attacks on the graph structures. In
contrast, RGA-IB reduces the IB loss by graph attention operation using dense node correlations,
thus adaptively aggregating informative features from the potential new neighbors of a node which
are not present in the given graph for learning robust node representation.

2 RELATED WORKS
2.1 GRAPH ADVERSARIAL ATTACKS AND DEFENSE

Despite the success of Graph Neural Networks (GNNs) in various applications (Kipf & Welling,
2017; Zhang & Chen, 2018) on the graph-structured data, recent works have shown that GNNs
are vulnerable to adversarial attacks. Graph adversarial attacks (Dai et al., 2022) aim to degrade
the performance of GNNs by injecting deliberate perturbations into the graph dataset. Based on
whether the goal of the attacker is to reduce the performance of the GNN on a set of target instances
or reduce the overall performance of the GNN model on the targeted datasets, threat models can
also be categorized as: (1) targeted attack (Ziigner et al., 2018), which aims to fool a GNN model to
misclassify a set of target nodes, and (2) untargeted attack (Ziigner & Giinnemann, 2019; Sun et al.,
2020), which aims to reduce the overall performance of the GNN model on the target dataset. To
address the vulnerability of GNNs to adversarial attacks, various robust learning methods have been
put forward, which can be categorized into three classes: Adversarial Training, Graph Processing,
and Model Robustification. Adversarial training methods (Feng et al., 2019; Li et al., 2022) train
robust models on a training set augmented with handcrafted adversarial samples. Graph processing
methods (Wu et al., 2019; Entezari et al., 2020; Jin et al., 2020; Lei et al., 2022) aim to purify the
graph data and remove adversarial perturbations. For example, Pro-GNN (Jin et al., 2020) learns a
clean graph structure by preserving sparse and low-rank properties in the adjacency matrix, as well as
feature smoothness during training. Model robustification methods (Xie et al., 2023; Chamberlain
et al., 2021; Rusch et al., 2022; Song et al., 2022; Zhao et al., 2023; Jia et al., 2023) refine the
GNN models to prepare against potential adversarial threats. For example, G-RNA (Xie et al.,
2023) adopts graph neural architecture methods to search for robust architectures for GNNs. More
recently, GCORNs (Abbahaddou et al., 2024) proposes to improve the robustness of GNNs against
adversarial attacks by orthonormalization of the weight matrices.

2.2 ATTENTION-BASED GRAPH NEURAL NETWORKS

In the graph domain, Graph Attention Networks (GAT) (Velickovi¢ et al., 2018) firstly adopts an
attention mechanism in designing GNNs and shows improved performance in node classification.
In addition, GAT is found to be more robust to various types of graph adversarial attacks (Ziigner &
Gilinnemann, 2019; Sun et al., 2020) attributed to the capability of attention mechanism in learning
robust representations (Goyal et al., 2023; Zhou et al., 2022). Following that, GNNGuard (Zhang
& Zitnik, 2020) proposes a novel attention module that estimates neighbor importance based on the
assumption that nodes with similar structural roles are more likely to interact than dissimilar nodes.
TWIRLS (Yang et al., 2021b) introduces an attention mechanism that weights the edges in GNN
with an energy function measuring the edge uncertainty. At the same time, UAG (Feng et al., 2021)
also proposes an uncertainty-aware graph attention model that dynamically adjusts the impact of
one node towards its neighboring nodes based on its Bayesian uncertainty. Following the design
of self-attention modules in transformers (Vaswani et al., 2017), NodeFormer (Wu et al., 2022)
explores layer-wise message passing over latent graphs potentially connecting all nodes in attention-
based transformer networks. SGFormer (Wu et al., 2023b) proposes a simple yet effective attention-
based transformer architecture to capture all-pair influence beyond neighboring nodes. Recently,
GAR(Fountoulakis et al., 2023) proves that graph attention modules exhibit strictly better robustness
against structural noise in the graph over both the graph convolution and linear classifier.

2.3 INFORMATION BOTTLENECK AND ITS APPLICATION FOR GNNSs

The Information Bottleneck (IB) (Tishby et al., 2000) principle aims to learn latent representations of
data that retain information relevant to the target task while minimizing redundant information from
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the input. Deep VIB (Alemi et al., 2017) firstly introduces the IB principle as the objective for the
training of deep neural networks. Inspired by the IB principle, (Lai et al., 2021) proposes a spatial
attention module that minimizes the IB loss on the attention-modulated representation. Following
that, (Zhou et al., 2022) proves that self-attention can be interpreted as an iterative optimization of
the IB objective. To justify the benefits of minimizing IB loss in deep learning, recent works (Amjad
& Geiger, 2020; Kawaguchi et al., 2023) theoretically prove that controlling IB loss is one way to
control generalization errors in deep learning. In addition, recent works also find that (Wang et al.,
2021; Kuang et al., 2023) minimizing the IB loss can improve the adversarial robustness of DNNs.

Information Bottleneck for GNNs. More recently, the IB principle has been successfully adapted
to different graph learning tasks (Wu et al., 2020; Sun et al., 2022; Xu et al., 2021; Yu et al., 2022;
Miao et al., 2022; Liu et al., 2023a; Dai et al., 2023a) to learn more representative and robust rep-
resentations. Graph Information Bottleneck (GIB) (Wu et al., 2020) first extends the IB principle
to learn adversarial robust node representations under a local dependency assumption where the
representation of a node can only depend on the features of neighboring nodes within two hops.
UGRL (Wang et al., 2023b) proposes to learn robust node representations against adversarial pertur-
bations in unsupervised node classification. RG-GIB (Dai et al., 2023a) show that the IB principle
can benefit both the membership privacy and adversarial robustness of GNNs by regularizing the
predictions on labeled samples. InfoGCL (Xu et al., 2021) reduces the mutual information between
contrastive parts while keeping task-relevant information for contrastive graph representation learn-
ing. HGIB (Yang et al., 2021a) adopts the IB principle for unsupervised representation learning on
heterogeneous graphs. In addition, the IB principle is also widely used for the graph-level learning
tasks such as graph classification (Yu et al., 2022; Miao et al., 2022; Sun et al., 2022; Seo et al., 2023;
Wang et al., 2023a), graph-level anomaly detection (Liu et al., 2023b), graph reconstruction (Zhou
etal., 2023), and graph condensation (Fang et al., 2024). For example, PGIB (Seo et al., 2023) incor-
porates prototype learning with the IB principle for explainable graph classification. VIB-GSL (Sun
et al., 2022) learns sparse graph structures that are both informative and robust for graph classifica-
tion guided by the IB principle. IB principle has also been employed to improve the performance of
temporal GNNs. For instance, DGIB (Yuan et al., 2024) and TGIB (Seo et al., 2024) propose to in-
corporate the IB principle for temporal link prediction. However, both DGIB and TGIB suffer from
the local dependency assumption as they adopt the same IB minimization framework as GIB (Wu
et al., 2020). Our work focuses on studying the effectiveness of the IB principle for robust node
classification. Therefore, we do not compare with works employing the IB principle for graph-level
learning tasks and temporal graph learning tasks surveyed above in our experiments.

3 METHODS

In this section, we propose a novel graph attention module inspired by the Information Bottleneck
(IB) principle, termed Robust Graph Attention (RGA-IB). In Section 3.1, we detail the notations of
the attributed graph and introduce the formulation of RGA-IB. Next, we present how the attention
weight matrix of RGA-IB is generated to reduce IB loss in Section 3.2.
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Figure 2: Overall framework of GNN with multiple Robust Graph Attention (RGA-IB) layers and
the detailed structure of the RGA-IB layer. An RGA-IB network generates the node representations
given the normalized adjacency matrix A and node features X. Given the output features of the
previous layer, the attention weight matrix B(~1) of the previous layer, and the normalized adja-
cency matrix A, an RGA-IB layer first computes the latent node features F'. Next, the attention
weight matrix B! is generated by Equation (1). After obtaining the attention weight matrix B(),
the attention augmented node features are computed Z = B(®) F'. Detailed formulation of RGA-IB
can be found in Section 3.1.
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3.1 ROBUST GRAPH ATTENTION INSPIRED BY INFORMATION BOTTLENECK (RGA-IB)

We begin by formally defining the notations used for an attributed graph. Subsequently, we present
the detailed formulation of Robust Graph Attention inspired by Information Bottleneck, or RGA-IB.

Attributed Graph. An attributed graph with N nodes is formally denoted as G = (V, X, A), where
V = {v1,v9,...,vN} represents the nodes and £ C V x V represents the edges. The node attributes
are represented by X € RV*P where each row X; € RP corresponds to the attributes of node 4
and D is the attribute dimension. The adjacency matrix A € {0, 1}V *¥ defines the connections in
the graph G, with A;; = 1 if and only if there is an edge (v;,v;) € €. The adjacency matrix with

self- loops 1ncluded is given by A = A+ 1, and the corresponding diagonal degree matrix is D.
A= D=3 AD% is the normalized graph Laplacian.

Robust Graph Attention inspired by Information Bottleneck (RGA-IB). In this work, we aim to
propose a novel graph attention operation, termed Robust Graph Attention inspired by Information
Bottleneck (IB), or RGA-IB, which can be incorporated into multi-layer GNN5s for semi-supervised
node classification. We first introduce the setup of graph attention operation in GNNs. Let X €
RN D be the input feature matrix to the graph attention operation. The output features of a GNN

layer with graph attention operation are then calculated by Z = Bo (AX W) , where W € RP*D’

is the weight matrix for the linear transformation of the input. D’ is the hidden dimension of the
linear transformation. B € RV*N s the attention weight matrix, where B;; denotes the feature
correlation between node v; and node v;. o(-) is a non-linear activation function such as ReLU. Let

F = O’(AX W) € RP " be the latent node features before applying the graph attention operation.
The output features of a GNN layer with graph attention operation can be denoted as Z = BF..

Graph attention operation has been widely studied for designing Graph Neural Networks (GNNs)
that adaptively model the feature correlation between nodes in a graph (Lee et al., 2019; Velickovi¢
et al., 2018). The major differences between different graph attention operations lie in how the
attention weight matrix B is computed. For instance, GAT (Velickovic et al., 2018) concatenates
the node features of different nodes and applies a linear transformation to compute their similarity.
Difformer (Wu et al., 2023a) adopts the dot-product operation widely used in the self-attention oper-
ation in transformers (Vaswani et al., 2017) to capture pair-wise similarities among nodes in a graph.
Although the graph attention operation has been widely studied, all existing graph attention meth-
ods do not realize that the graph attention operation can reduce the IB loss of GNNs by enhancing
the correlation of learned features with class labels while reducing their correlation with the input.
The enhanced robustness of GNNs with graph attention is attributed to the capabilities of the graph
attention modules to enhance informative signals while diminishing noise or less pertinent details.
The selective attention mechanism produces node representations that are less correlated with the
input training data, which might contain adversarial noises, and more aligned with the desired out-
puts, adhering more closely to the Information IB principle. Inspired by the observation that graph
attention can reduce the IB loss of GNNs, we propose RGA-IB that explicitly reduces the IB loss
via graph attention operations at consecutive layers. Similar to existing graph attention methods, a
linear layer followed by a non-linear activation function is first applied to the input features at each
RGA-IB layer to obtain the latent node features F'. At the /- th RGA-IB layer in a multi-layer RGA-

IB network, the output features are computed by Z = Bg (AX W) where B is the graph

attention weight matrix of the /-th RGA-IB layer. As illustrated in Figure 2, the graph attention
weight matrix B(®) of the /-th RGA-IB layer is generated by the attention weight matrix B¢~1 of
the previous layer and the latent node features F', which is motivated by reducing the IB loss and
detailed in Section 3.2. The attention weight matrix B(!) for the first layer of the RGA-IB network
is generated from the input node feature X with a GAT layer (Velickovic et al., 2018).

3.2 GENERATING ATTENTION WEIGHT MATRIX OF RGA-IB BY REDUCING THE IB L0OSS

In this section, we detail the process of generating the attention weight matrix for an RGA-IB layer
inspired by reducing the Information Bottleneck (IB) loss. We first describe the configuration in
which the IB loss for a GNN is specified.

Given the training data {Xi,yi}iil, where X; € RP is the i-th input node feature,
and y; is the corresponding class label, we first specify how to compute the IB loss,
IB(Z,X,Y) = I(Z,X) — I(Z,Y), where X is a random variable representing the input
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features, which takes values in {X,}f\;l Y is a random variable representing the class label,
which takes values in {y,}i\[:1 Z is a random variable representing the node representations, which

takes values in {Zi}f\il with Z; € RP being the node representation of node v;. I(-,-) denotes
the mutual information. To compute the mutual information, we first calculate the class centroids

N C
on {Z;}Y, and {X;}Y,, resulting in class centroids {C,}<_, and {Cb} for representation
space and input feature space respectively, where C' is the number of classes. Then we define the

N
probability that node representation Z belongs to class a as Pr[Z € a] = % 3 ¢(Z;, a), where
i=1

eXP( HZi—CaHS)
Zf 1exp( HZi*Ct”g).

d(Z;,a) = Similarly, we define the probability that the input node feature X

7|12
b 2

’
vt

N
over, the joint probabilities are calculated by Pr[Z €a,X €b] = % Y ¢(Z;,a)p(X;,b)
i=1

n exp
belongs to class b as Pr[X € b] = = > ¢(X;,b), with ¢(X;,b) = (
i=1

> exp<7 2) . More-
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and Pr(Ze€aY =yl = %3 &(Z,a)ly,—,. where Ty is an indicator func-
i=1

tion. As a result, the mutual information I(Z,X) and I(Z,Y) can be computed by
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and the IB loss IB(Z, X, Y") can be computed by

A C

A
Pr(Z €a, X €} _ Pr{Z €aY =y
B(Z,X,Y) ;;Pr[ZEa,Xeb]lnm ;;Pr[ZEa,ny]lnPr[Zea]Pr[Y:y].

Theorem 3.1. Suppose Z = BF', with B being the attention weight matrix and F being the hidden
node feature before applying the graph attention operation. For simplicity, we denote IB(Z, X,Y)
or IB(BF, X,Y) by IB(B). At step ¢ of gradient descent on IB(B) = I(BF,X) — I(BF,Y), we
have

BO — gle=1) _ nVBIB(B“_l)) — =1 _ 77Q(é’—l) CFT. (1)

where 7 is the learning rate. QU~Y = V I(ZU~"V X) — VzI1(Z“ 1Y), where Z¢~1) =
BY~VDF. Formulas of VzI(Z, X) and VzI(Z,Y) are deferred to Lemma A.1 and Lemma A.2 in
Section A of the appendix.

The proof of Theorem 3.1 is deferred to Section A of the appendix. Inspired by Theorem 3.1, we can
understand a GNN with graph attention operations at multiple layers as an interactive process which
reduces IB(B) by gradient descent. The ¢-th graph attention layer simulates one step of gradient
descent on IB(B) according to Equation (1). Based on the gradient descent formulation, we design
the formulation of the RGA-IB network, whose attention weight matrix BW® at the ¢-th RGA-IB
layer is generated from B(“~1), the attention weight matrix of the previous RGA-IB layer. Figure 2
illustrates the overall framework of an RGA-IB network and the structure of the RGA-IB layer. We
present the training algorithm of the RGA-IB network in Algorithm 1, where L denotes the number
of RGA-IB layers.

4 EXPERIMENTS

In this section, we perform empirical evaluations of RGA-IB on public graph benchmarks Cora,
Citeseer, Pubmed (Sen et al., 2008), and Polblogs (Adamic & Glance, 2005) for semi-supervised
node classification under graph adversarial attacks. Implementation details of our experiments are
presented in Section 4.1. Experiment results for semi-supervised node classification under adver-
sarial attacks are presented in Section 4.2. Comprehensive ablation studies on IB loss at different
layers of RGA-IB and the effects of RGA-IB in reducing IB loss are presented in Section 4.3 of
the appendix. In addition, further implementation details on datasets, training settings, and attack
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Algorithm 1 Training Algorithm of the RGA-IB network

Input: The number of training epochs Zin, the number of warm-up epochs twarm,
Output: The weights WV of the RGA-IB network.

: Initialize the weights of the RGA-IB network by W = W(0).
L
: Initialize the attention weight matrices {B ® } of all RGA-IB layers to identity matrices.

if t < twam then
Perform gradient descent by a standard step of SGD on the cross-entropy loss to update the weights
in the RGA-IB network with fixed attention weight matrices.

1
2
3: for t < 1 to tyain do
4
5

6: else
7: Update ¢(Z;, a) for all the clusters a € [C,] and i € [N].
L
8: Forward step: compute the attention weight matrices {B“)} for all the RGA-IB layers by
=1
c
Equation (1) using the updated {C((Lt) } , and compute {Z; } ;.
=1
9: Backward step: perform gradient descent by a standard step of SGD on the cross-entropy loss to
update the weights in the RGA-IB network.
10: Compute the class centroids {CS"}$_; with the updated node representations { Z; }\ ;.
11:  endif
12: end for

13: return The trained weights W of the RGA-IB network.

Table 1: Node classification performance (Accuracy+Std) under non-targeted attack Metat-
tack (Ziigner & Giinnemann, 2019). The best result is highlighted in bold, and the second-best
result is underlined. This convention is followed by all the tables in this paper. The results of
RGA-IB are followed by the improvements over the best baselines.

Dataset | Ptb Rate (%) GCN GAT RGCN UAG Hang GIB URGL RG-GIB__ Difformer GAR CORNs  Pro-GNN_ RGA-IB (Ours)
0 835104 83.91£0.6 83.0£0.4 82.0£0.5 80.0£03 822+0.6 82.1+0.6 82.1+£0.6 849+0.6 832+0.6 825104 829102 85.0(f0.1)*£1.3
5 755404  77.04£0.7 750413 762412 769412  758+12 753+1.2 768+12 77.04£13 75.6+1.1 759418  77.6+£1.9 79.2(1 1.6) £1.9
Cora 10 720£13  741+18 73.1£13  76.0+£1.8 76.8+1.5 T74.0£18 73.0+1.8 759+18 74.0+1.6 T737+£13 746420 77.3£19 79.1(11.8) £12
- 15 69.4+1.7 70.6+2.7 71.6+13 749+13 75.6+1.6 729+1.5 724+15 743+1.5  728+13  T1.8+1.7 725+1.2 754413 769 (1 1.3) £1.7
20 67.6+1.0 68.8423 679422 719422 722+13 70.0£18 69.6£1.8 72.0£1.8 70.6+£2.2 719424 71.9+1.5 T71.3+1.8  74.2(12.0) £1.1
25 64.8+1.1 655425 66.0424 68.0424 69.1+13 679422 672422 689422 663+2.1 68.7+2.8 694429 68.7+1.5 7L0(T1.6) +1.1
0 71.9£05 732408 712408 72.1+£0.6 732103 71.510.1 71.8%0.1 725+0.1 733+07 73.1+£03 72.6+04 732406 74.4(T1.1)£1.0
5 68.0£0.6 682409 682408 71.3+£0.8 694422 68.7+£13 67.7£13 69.5+£13 69.8+1.5 68.6+0.8 68.1+1.6 71.2+1.1 727 (1 1.5) £2.0
Citeseer 10 64.1£13 66714  659+19 679+1.9 675422 66.6£14 65.6+1.4 68.0+£14 66.6+£20 65.6+1.4 662415 68.2+1.1 69.7(1 1.5) £1.7
: 15 61114  63.6+£1.5 64617 664+1.7 669420 65912 64.9+1.2 669+12 654+13 64918 654420 67.0+1.9 68.5(11.6)£1.7
20 603114 61914 629420 64.0+£20 664420 64714 645£14 653+14 64.0+14 648+25 655+1.5 659423 67.4(11.0)+1.9
25 59.0+14 59.1422  60.9424 629424 651428 632422 63.5422 642422 63.0+23 64.8+23 652422 649+1.7  66.7 (1 1.5 +£1.9
0 956403 953102 952+0.1 90.1£22 947+1.0 954+08 955£0.8 952+0.8 957+0.2 955+0.1 953+0.8 93.2+0.6 96.5 (T 0.8) 1.1
5 87.7404 884402 89.240.1 90.3+£0.1 903£13 902402 90.5£0.2 90.0+£0.2 90.0+2.2 90.5+0.2 89.3+0.3  90.9+1.4 92.0(t1.1)+1.2
Polblogs 10 84.6+1.7 859+14 859419 87.0+19 86.7+1.3 86.0+£13 858+1.3 86.6+1.3 85.6+1.7 87.3+1.7 87.14+1.4 89.1(1 1.8) £1.4
88 15 71.6£1.7  72.0£1.1 72.1+18 81.9+1.8 823+1.6 79.5+1.9 79.2+1.9 821419 79.9+18 82.0+1.4 833%+1.9 85.0(11.6)£1.3
20 65.0+1.0 67.1£12 67312 71.5£1.2 72.642.1 69.4+13 692+13 694+13 71318 69 2 699+12 725£17 738(11.2)£1.3
25 64.0424  64.242.1  66.142.1  69.042.1 70.8423 672414 652414 682414 684420 67.5+1.9 66.5+2.7 694420 719 (1 1.1) +1.6
0 87.12£0.0 83.7+04 86.1£0.1 87.0£0.0 85.0+£0.2 85.6+0.1 853%0.1 84.6+0.1 873+0.1 872+0.2 86.4+0.7 873+0.1 883 (T 1.0)x1.2
5 79.240.1 80.7+04 80.2402 824402 822420 814402 812402 824402 80.0+03 81.6+0.6 829+0.8 83.1+1.7 84.2(11.1)+1.9
Pubmed 10 754+14  769+1.6 779414 80.5+1.4 80.6+1.8 803+13 80.1+1.3 80.8+1.3 784+1.7 804+1.6 80.7£1.6 81.3+1.6 825(11.2)£17
15 72.0£1.6  72.3%1.6 758+1.6 769+1.6 773+14 752+12 76.0+£12 769412 T740+18 T75.7+12 76.8+1.8 71423 787 (1 1.4) £1.2
20 68.5+0.7 69.0£1.7 70.0£1.5 71.6£15 732428 720£15 722£15 73.0£15 713%£26 728+1.8 T1.2+1.5 729421 746 (1 1.4) 1.0
25 69.042.0 682410 69.0422 709422 727421 71.04£23 71.5+23 728423 70.0+2.5 716425 707428 71.7427 739 (1 1.2) +1.3

settings are deferred to Section B of the appendix. Additional ablation study on the effectiveness of
global node correlation learning in RGA-IB are deferred to Section C.1 of the appendix.

4.1 IMPLEMENTATION DETAILS

Following the settings in existing works on graph adversarial attacks (Jin et al., 2020; Zhao et al.,
2023), we evaluate our method and competing baselines on the largest connected component (LCC)
of the graph datasets. Details on the statistics of the datasets are deferred to Table 6 in Section B.1
of the supplementary. In our experiments, we randomly choose 10% of nodes for training, 10%
of nodes for validation, and the remaining 80% of nodes for testing following (Jin et al., 2020) on
Cora, Citeseer, Polblogs, and Pubmed. For the training of the RGA-IB network, we first warm up
the training of the network parameters for 100 epochs by only optimizing the weights of the linear
layers and fixing the attention weight matrices as identity matrices. Following that, we train all the
network weights in the RGA-IB network for 500 epochs. Adam is used as the optimizer for the
training. Additional training settings and implementation details are deferred to Section B.2 of the
appendix.

4.2 SEMI-SUPERVISED NODE CLASSIFICATION UNDER ADVERSARIAL ATTACKS

In our experiments for semi-supervised node classification under graph adversarial attacks, RGA-IB
is compared with GCN (Kipf & Welling, 2017), GAT (Velickovi¢ et al., 2018), RGCN (Zhu et al.,
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Table 2: Node classification performance (Accuracy+Std) under targeted attack Nettack (Ziigner
et al., 2018). The results of RGA-IB are followed by the improvements over the best baselines.

Dataset | Attack Budget GCN GAT RGCN UAG Hang GIB URGL RG-GIB__ Difformer GAR GCORNs __ Pro-GNN RGA-IB (Ours)
0 82.1x1.1 81.3%1.6 823f1.1 80.8+13 81.9+28 8I3%1.8 83.1£22 849£18 83307 82.6+04 84.8%0.6 86.1(T1.2)=l.1
1 76.0+£2.1  76.8+1.7 81.8+12 77.0+#32 80.2+2.8 80.0+1.5 80.6+2.3 80.3+1.6 813+1.2 81.0%l.1 83.840.5 855(1 1.7) 1.4
Cora 2 702414 71.0£1.1  78.0£1.8 765426 772422 759422 779413 785+17 759413  784+1.3 78.74£0.7  80.7 (1 2.0) £1.2
3 655+£1.3  66.5+1.6 72.5+1.1 731429 729434 719414 729411 73.1+£15 73.541.1 731407 724405 747(11.2) £1.4
4 617409 593427 703+25 725421 69.94£2.1 709421 705+12  705+12  709£1.2 712406  70.1+0.7  73.6 (1 1.1) £1.2
5 583420 553417 663+12  68.8+2.6 664424 644424 679424 674+£1.5 672+12 668410 66.9+0.7  69.9 (1 1.1) £1.8
0 823+2.0 80.3+1.1 S8L3£I.1 S8L.I1+1.1  80.6£3.0 80.6+1.0 81.6+3.0 82.3+12 814+1.3 S81.9%I.1 82.1+0.8 834 (T 1.1) £1.7
1 81.3+1.4 783407 80.3%£0.7 79.1+1.4 79.1£28 79.04+2.8 80.1+28 80.84+2.5 80.4+2.8  80.7+0.8 81.840.8 82.9(t1.1)£19
Citeseer 2 774449 754420 79442.0 779423 783432 782412 793+14 794402 799409  79.642.8 81.3+1.0 82.5(11.2)£14
3 60.94£3.0 603+12 783+12 77.0+£25 787433 781413 787+15 770422 779426 78.1420 797420 81.0(T1.3) £1.6
4 61.6£4.6 55518 77.5+1.8  784+£1.6 777465 774425 78.1+2.1 692434 69.4+£39 77.7£1.6  77.8%2. 79.5 (1 1.1) £1.6
5 55.6+46.3 47.442.0 714420 735435 71.0+4.6 705425 720£1.6 692423  69.7+2.6 71.6+2.7 71.3£50 74.6(t1.1)*1.9
0 97.3£03 97.0£0.1 97.1£0.1 974405 972+£0.8 97.3£03 973+£0.8 972404 97.4+0.8 975402 97.1£02 98.2(T0.7) £1.6
1 972403  97.0£0.1  96.0+0.1 974404 97.1£03 97.1403 972405 974402 97.5£04  97.6£0.5 96.8+0.1  98.1(10.5) £1.9
Polblogs 2 96.14£0.7 959402 97.0+£02  96.9+0.2 953407 953405 959+03 97.1+£0.2  959+0.3  96.04:0.4 97.8 (1 0.6) 1.5
3 95.8+0.6 95.6+0.3 96.6+0.3  96.7+0.2 95.4+0.1 9544+0.1 959+0.1 96.9+0.9 953+0.7 95.6+1.0 97.5(10.6) £1.1
4 94.8+0.7 94.440.3  96.1+£03  96.3+0.5 94.9+0.6 94.9+0.6 953405 96.8+£0.6 94.1+0.2  94.4+0.5 97.4 (1 0.5) £1.3
5 93.3+1.4 932404  95.6+£04 959403 932404 932404 94.6+04 95.14£0.8 93.6+0.7  93.4+0.8 97.2(11.1) £1.5
0 87.0+1.1 849+f14 873114 854112 859+1.1 B854+%l.1 B86.8Efl1.1 874%18 846115 845£13 89.6 (t 1.1) £1.9
1 85.0+2.1 83.8+1.7 86.6+£1.7 844420 84.6+29 845+1.6 855+29 86.0+23 83.8+1.6 83.8+19 88.8(11.2) +14
Pubmed 2 83.9+1.4 842+1.1 852+1.1 84.443.1 843435 84.1+35 853425 86.0£22 843+1.5  84.4+1.7 87.0 (1 1.0) £1.3
3 81.3+1.3 82.5+1.6 83.9+1.6 84.0+3.1 849433 843433 84.2+1.3 81.8+35 823+I.1 82.2+1.4 85.6 (1 1.2) £1.9
4 78.5+£0.9 80.04£2.7 80.0£23  79.7433 794432 78.04£32 799412 774424  80.042.1 81.042.7 81.6 (1 1.6) £1.2
S 743420 751437 752414  70.644.3  70.241.6 712416 70.6+1.6 713422 751434  752+41.1 76.8 (1 1.6) £1.3

2019), UAG (Feng et al., 2021), HANG (Zhao et al., 2023), Pro-GNN (Jin et al., 2020), GIB (Wu
et al., 2020), UGRL (Wang et al., 2023b), RG-GIB (Dai et al., 2023a), Difformer (Wu et al., 2023a),
GAR (Fountoulakis et al., 2023), and GCORNSs (Abbahaddou et al., 2024). Among all the compared
methods, GAT, RGCN, UAG, Difformer, and GAR are attention-based GNNs, and RGCN, UAG,
and GAR are specifically designed for semi-supervised node classification under graph adversarial
attacks. GIB, UGRL, and RG-GIB are robust learning methods designed by the IB principle.

In this section, we summarize the experiment results of our proposed RGA-IB by comparing the
semi-supervised node classification accuracy between the baseline methods and our proposed RGA-
IB under different types of graph adversarial attacks with different attack strengths. Detaisl on
the attack settings are deferred to Section B.3 of the appendix. The results for Metattack (Ziigner
& Giinnemann, 2019), Nettack (Ziigner et al., 2018), and Topology Attack (Xu et al., 2019a) are
shown in Table 1, Table 2, and Table 3, respectively. We run all experiments ten times and report
the mean and standard deviation of the node classification accuracy. It is observed from the results
that RGA-IB significantly outperforms existing robust graph learning methods under different ad-
versarial attacks. For instance, the average improvements of RGA-IB over the second-best methods
across different attack budgets on Pubmed for Metattack, Nettack, and Topology Attack are 1.46%,
1.54%, and 1.48%, demonstrating that RGA-IB successfully reduces the negative effects of both
noisy edges and nodes by reducing the IB loss with the robust graph attention design.

Table 3: Node classification performance (Accuracy=+Std) under Topology Attack (Xu et al., 2019a).
The results of RGA-IB are followed by the improvements over the best baselines.

Dataset | Ptb Rate (%) GCN GAT RGCN UAG Hang GIB URGL RG-GIB  Difformer GAR CORNs Pro-GNN RGA-IB (Ours)
0 835104 84.0£0.7 83.1£0.4 82.1£0.5 80.1£03 822+0.7 82.1x0.7 832+0.7 849+0.7 833x07 B826+04 83.0£02 85.0(f0.1) %13
5 755404 77.0£0.7 750413 762+12 769+12 758%12 753%12 768%12 77.0£13 75.6x1.1 759+1.8 77.6+£1.9 79.6 (1 2.0) £1.9
Cora 10 720413  74.1£18 73.1413 76.0+£18 76.8+15 740+£18 73.0£18 759+1.8 740+1.6 737+13 746420 T773+1.9 79.3(12.0)+1.2
h 15 69.4+1.7 706427 71.6+13 749+13 756416 729+15 724+15 743+15  728+13  T18+1.7 725412 754+13 769 (1 1.3) £1.7
20 67.6+1.0 68.8+23 679422 719422 722413 70.0£18 69.6+1.8 72.0+1.8 70.6+£22 T71.9+24 719415 713418 T45(12.3)£1.1
25 64.8+1.1  655+25 66.0+24 68.0+24 69.14+1.3 679422 67.2+22 689422 66.3+2.1 687428 694429 687415 710(11.6) £1.1
0 72.0+£0.6 733+0.8 712+08 72.1+0.6 73.3+04 715402 71.4+02 725402 733408 73.1+£03 72.7+05 733407 745(11.2) £1.0
5 68.0+£0.6 682409 68.2408 71.3+£0.8 694422 68.7£13 67713 69.5£13 69.8+1.5 68.6+0.8 68.1+1.6 T1.2+1.1 727 (1 1.5) £2.0
Citeseer 10 641113  66.7+14 659419 67.9+£19 67.5£22 66.6E14 65614 68.0+£1.4 66.6+£2.0 65.6+1.4 662+1.5 682+1.1 69.7 (1 1.5) +1.7
15 61.1+14  63.6+15 64.6+1.7 664+£17 669+£20 65912 64912 669+£1.2 654+13 649+1.8 654420 67.0+£1.9 68.5(1 1.5 +1.7
20 60314  61.9+1.4 629420 64.0+£2.0 664420 647+£14 64.5+14 653+£14 64014 648+25 655415 659423 674 (1 1.0)£19
25 59.0£14  59.14£2.2 60.9+24 629424 65.14£2.8 632422 63.5£2.2 642422 63.0+23 64.8+23 652422 64.9+1.7 66.7 (T 1.5) £1.9
0 95.7£04 954£0.2 952+0.1 90.1+22 948+1.1 954408 953+0.8 951+0.8 957+02 95.6+£02 953+0.8 9324+0.6 96.5(70.8) £1.1
5 877404 884402 89.240.1 90.3£0.1 90.3%13 902402 90.5£0.2 90.0+0.2 90.0+2.2 90.5+0.2 89.3+0.3 90.9+1.4 92.0(t1.1)x1.2
Polblogs 10 84.6+1.7 859+14 859419 87.0+£19 86713 86.0+£13 858+13 86.6+1.3 85.6+1.7 863+14 873+1.7 87.1+1.4 89.1(11.8) 1.4
< 15 71.6+1.7 720£1.1 721418 81.9+1.8 823+1.6 795+£19 792+19 82.1+1.9 79.9+1.8 834417 820+14 833+19 85.0(f 1.6) £1.3
20 65.0£1.0 67.1+£1.2 673£1.2 715412 72.6+2.1 694+13 69.2+13 694413 71.3£18 69.8+1.2 699412 725417 73.8(11.2)£1.3
25 64.0£2.4  64.242.1  66.1+2.1  69.0£2.1 708423 672414 652+14 682414 684420 67.5+£19 665427 694420 71.9(t1.1)+1.6
0 872+0.1 837104 86.2+02 87.1+£0.1 85.1£0.2 857+0.1 854x0.1 86.7+£0.1 87.3+0.2 87.3+£0.2 86.4+0.7 873102 88.4(T1.1)=£I13
5 79.240.1  80.7£0.4 80.240.2 824402 822420 81.4+02 81.2+02 824+02 80.0+03 81.6+0.6 829+0.8 83.1x1.7 84.2(11.1)x19
Pubmed 10 754+14 769+1.6 779414 80.5+14 80.6+18 803+£13 80.1£13 80.8+13 784+1.7 804+1.6 80.7+1.6 813+1.6 825(11.2)+1.7
15 72.0£1.6 72316 758+1.6 769+1.6 77314 752412 76.0£12 769+12 740+1.8 757+12 76.8+1.8 77.1+£23 787 (1 1.4)+1.2
20 68.5+0.7 69.0£1.7 70.0£1.5 71.6+£1.5 732428 720+£15 722415 73.0£15 713426 728+1.8 712415 729421 74.6(T 1.4)£1.0
25 69.04£2.0 68.2+1.0 69.04£22 709422 727421 71.04£23 71.5+£23 728423 70.0+£25 71625 707428 71.742.7  73.9(11.2)£13

4.3 ABLATION STUDY

Study on the IB Loss at Different Layers of RGA-IB. To study how the IB loss IB(B) decreases
with respect to layer index ¢ of an RGA-IB network, we calculate IB(B) across different RGA-IB
layers in the RGA-IB network. The study is performed on Cora and Citeseer under Metattack with
a perturbation rate of 25% with both a 2-layer RGA-IB network and a 4-layer RGA-IB network.
We also calculate the IB loss at different layers of 2-layer Difformer, 4-layer Difformer, 2-layer
GAR, and 4-layer GAR. It is observed from the results in Table 4 that the IB loss decreases in
deeper layers with a larger layer index for both the 2-layer RGA-IB network and the 4-layer RGA-
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IB network. This observation suggests that node features in deeper layers of RGA-IB networks
correlate more closely with the class labels and less with the input node attributes, adhering to the
IB principle. Moreover, the RGA-IB networks reduce the IB loss to lower levels in deeper layers
compared to Difformer and GAR, demonstrating the superiority of RGA-IB over the existing state-
of-the-art graph attention method and robust graph attention method. In addition, we observe that
the 2-layer RGA-IB network already decreases the IB loss of node features to the same level as
the 4-layer RGA-IB network, leading to similar node classification performance. Therefore we use
2-layer RGA-IB networks for all our experiments in this work as the 2-layer RGA-IB network costs
less computational resources while enjoying the same level of effectiveness in reducing IB loss.

Table 4: Ablation study comparing the IB loss at different layers for RGA-IB. The study is per-
formed on Cora and Citeseer under Metattack with a perturbation rate of 25%.

Cora Citeseer
Methods  Layer Number IB Loss ACC IB Loss ACC
Layer I Layer2 Layer3 Layer4 Layer I Layer2 Layer3 Layer4

Difformer 2 -0.096  -0.115 - - 61.68 | -0.088 -0.118 - - 63.57
Difformer 4 -0.077  -0.095  -0.099  -0.122 | 62.32 | -0.070 -0.082  -0.103  -0.117 | 64.33
GAR 2 -0.089  -0.138 - - 65.50 | -0.074  -0.130 - - 67.22
GAR 4 -0.065  -0.092 -0.116 -0.132 | 6496 | -0.070 -0.112 -0.125 -0.125 | 66.40
RGA-IB 2 -0.134  -0.214 - - 71.43 | -0.096 -0.189 - - 70.94
RGA-IB 4 -0.125  -0.179  -0.195 -0.208 | 71.38 | -0.082 -0.146  -0.175  -0.190 | 70.92

Study on the Effects of RGA-IB in Reducing the IB Loss. In this section, we evaluate the ef-
fectiveness of RGA-IB in minimizing the IB loss. We calculate the IB loss for both RGA-IB and
baseline graph attention methods, including GAT (Velickovié et al., 2018), UAG (Feng et al., 2021),
RGCN (Zhu et al., 2019), Difformer (Wu et al., 2023a), and GAR (Fountoulakis et al., 2023) on Cora
and Citeseer under Metattack with different perturbation rates. The results are shown in Table 5. It
is observed from the results that the IB loss of graph attention methods correlates closely with the
node classification accuracy under adversarial attacks, and the two methods with the lowest two IB
losses always enjoy the top two best robust accuracies. Graph attention methods with lower IB loss
better adhere to the IB principle. Moreover, the IB loss can be further decreased to a considerable
extent by optimizing the IB loss explicitly in RGA-IB.

Table 5: Ablation study on the effects of RGA-IB in reducing the IB loss compared to the existing
graph attention methods. Node classification accuracy for all methods on all the datasets is attached
in parentheses after the IB loss.

Dataset ‘ Attack Budget ‘ GAT RGCN UAG Difformer GAR RGA-IB (Ours)
0 -0.105 (83.90) -0.084 (83.04) -0.103 (82.03) -0.114 (84.90) -0.096 (83.23)  -0.127 (85.03)

5 -0.110 (80.40)  -0.094 (77.42) -0.105(79.13) -0.109 (79.42) -0.117 (80.22)  -0.128 (83.82)

Cora 10 -0.102 (75.61)  -0.101(72.22) -0.110(75.10) -0.118 (77.55) -0.122 (77.94) -0.144 (80.14)
15 -0.105 (69.73)  -0.102 (66.82)  -0.105 (71.03)  -0.117 (73.46)  -0.125 (75.14)  -0.179 (77.42)

20 -0.109 (59.94) -0.105 (59.17)  -0.110 (65.71) -0.115(65.97) -0.133 (68.72)  -0.186 (74.59)

25 -0.114 (54.70)  -0.100 (50.51)  -0.119 (60.82) -0.122 (62.35) -0.138 (65.50)  -0.214 (71.43)

0 -0.110 (73.23)  -0.080(71.20) -0.093 (72.10) -0.124(73.34) -0.115(73.13)  -0.133 (74.43)

5 -0.102 (72.79)  -0.082 (70.50)  -0.090 (70.51) -0.114 (70.40) -0.119 (73.04)  -0.141 (74.42)

Citeseer 10 -0.095 (70.63)  -0.084 (67.71)  -0.092 (69.54) -0.088 (69.33) -0.130(71.53)  -0.153 (73.60)
15 -0.115 (69.02) -0.110 (65.59) -0.100 (65.93) -0.091 (68.70) -0.119 (70.70)  -0.172 (73.22)

20 -0.104 (61.04) -0.108 (62.39) -0.098 (59.30) -0.112(67.67) -0.145(69.43)  -0.176 (72.21)

25 -0.102 (61.83)  -0.092 (55.33) -0.110(59.22) -0.117 (64.32) -0.130(67.22)  -0.189 (70.94)

5 CONCLUSION

In this work, we find that the IB loss of attention-based GNNs is a strong indicator of their robustness
against graph adversarial attacks, and attention-based GNNs with lower IB loss learn node represen-
tations that correlate less with the input training data while aligning better with the target outputs.
Due to better adhering to the IB principle, attention-based GNNs with lower IB loss usually show
stronger robustness against graph adversarial attacks. Inspired by such observation, we propose a
novel graph attention method termed Robust Graph Attention inspired by Information Bottleneck, or
RGA-IB, which explicitly minimizes the IB loss of a multi-layer GNN through a carefully designed
graph attention mechanism. Extensive experiment results show that RGA-IB networks exhibit lower
IB loss and show significantly improved node classification accuracy under variant graph adversarial
attacks compared to existing robust GNNs and robust attention-based GNNs.
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A PROOF OF THEOREM 3.1

We need the following two lemmas before the proof of Theorem 3.1. It is noted Z = BF, with B
being the attention weight matrix and F' being the hidden node feature before applying the graph
attention operation. We abbreviate IB(Z, X,Y") as IB(B).

Lemma A.1.

Vel(Z,X)=V4I(Z,X) F'. )
Lemma A.2.

VI(Z,Y)=VzI(Z,Y) -F'. 3)
Proof of Theorem 3.1. We note that IB(B) = I(Z,X) — I(Z,Y). Then VgIB(B) =

Vel(Z,X)—VgEI(Z,Y). With Lemma A.l and Lemma A.2, we have
VBIB(B) = VpI(BF,X) — VgI(BF,Y)
=V I(Z,X)-F' —=V4I(Z,Y) - F"
= (VzI(Z,X) - VzI(Z,Y))-F'.

Let QU =V I1(Z¢V X))~ VzI(Z¢VDY), we get VEIB(BY~1) = Q=Y . FT. There-
fore, at step ¢ of gradient descent on IB(B), we have

BWY = glt=1) _ poU=1 . pT,

Proof of Lemma A.1.

A n n n n
1(Z,X) = % SN <Z O(Zi, a)p( X, b)) Inn -+ ¢(Z;,a)p(X;,b) —In Y ¢(Zk,a) —In > ¢(Xm,b)
, k=1 m=1

j=1
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Let Gi, = ¢(Zi,a), and Z;, = ¢(X;, b), then

A B n n n n
%ZZ (ZGZGZ’Lb> lnn-i-anlGjaZjb—lnkZlG,m —In lemb
J= = m=

a=1b=1

Next, we have

1 A B n n n n Z U, U,
Vz,1(Z2,X)= =33 | ZisUia [Inn+In> GjaZjp —In D> Gra—In > Zmsp | + (Z szib> ( = meZ - = ‘“G )
™ a=1b=1 j=1 k=1 m=1 i=1 j=1GiaZjy k=1 Gra
1 A B n n n ZL=1 GiaZib
= — Z Z ZivUiq | Inn + In Z GjaZj, —In Z Gia — In Z Zmp | +Uia | Zib — 57— I .
L =1 k=1 m=1 > k=1 Gra

(C))

where V z, [(Z, X) is the i-th row of VzI(Z, X). Define G;, as ¢(Z;,a), Z;, as ¢(X;, b), and Uy,
as Vz,Gi,. Let S, = exp (—HZZ- — C’a||2), U, can be computed by

_ —2(Z; — C4)Siq 22,4:1 Siv — Sia 2?21 —2(Z; — Cy)Sip
- 2
(ZbA:l Sib)

Sia(Z; — Cq) Sia = Sin(Zi — Cy)
=2 A T A Z A
Zb:l Sib Zb:l Sib b=1 25:1 Sic

A
= -2 (Gia(Zi —Cy) — Giq Z Giv(Zi — Cb))

b=1

A
= —2Giq <Zi —Cy — ZGib(Zi - Cb)>

(&)

ia

b=1

Taking the value of U, back to Equation (4), we can get V2, I(Z, X). Note that Vz,I(Z,X) €
R4V ,1(Z,X) € R"*4, where the i-throw of VzI(Z, X)is Vz,1(Z, X). Giventhat Z = BF,
we have

Vel(Z,X)=Vz1(Z,X) F'. (6)
O

Proof of Lemma A.2.

A C n n
=->% (Z (Zi, )Ly, _,,}) Inn+ qua a)llgy,—p) — mZ $(Zr,a) —In Y Mgy, —o
m=1

a=1c=1 j=1

3\»—

By replacing the value of Z;, with Z;, = 1y, —;), we can get the value of VgI(Z,Y) following
the formulation of VpI(Z, X).

Let Gy = ¢(Z;,a), then

A B n
% Z Z (Z Gwﬂ{y —b}) Inn + lnz GJQ]I{U =b} — In Z Gre — In Z ]I{’L/'rn*b}

a=1b=1
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Next, we have

B n n n
1
Vz1(2,Y)= - ZZ (H{yi—b}Ui(z <lnn + lnz Gjaﬂ{yj:b} — anGka —1In Z ]I{ym_b}>>
a=1b=1 j=1 1 ot
A B n
1 Ty, by Uia Uia
+ — GiaZip L —
n;; ((; > (Zjl GijaZjp Ek:1 Gra
B " i B
1
=~ Z Z <]I{yi—b}Uia <lnn + lnz Gja]l{yj:b} —In» Gra—1In Z ]I{ym_b}>>
a=1b=1 j=1 b1 =

1 A B n G, I[{ b
= Uia [ Try —py — % , 7
2 (e (o~ g ®
where Uy = V,Gia = Vz.6(Zisa) = —2Gia (Zi —Co = G2 — Cb)). Taking the

value of U;, back to Equation (7), we can get Vz I(Z,Y). Note that Vz, I(Z,Y) € R*4

VzI(Z,Y) € R"™ where the i-th row of VzI(Z,Y) is Vz,I(Z,Y). Given that Z = BF,
we have

VI(Z,Y)=VzI(Z,Y) - F'. )

O

B MORE EXPERIMENT SETTINGS

B.1 DATASETS

Following previous works on adversarial attacks and defense of GNNs (Jin et al., 2020; Ziigner &
Giinnemann, 2019; Entezari et al., 2020), we evaluate RGA-IB on four public benchmark datasets
for node classification, including three citation graphs, which are Cora, Citeseer, and Pubmed, and
one blog graph, that is, Polblogs. Following previous works on graph adversarial attacks, we eval-
uate our method and baselines on the largest connected component (LCC) of the graphs. We show
the statistics of the datasets in Table 6.

Table 6: Statistics of Cora, Citeseer, Polblogs, and Pubmed.

| #Node #Edge Classes Features

Cora 2,485 5,069 7 1,433
Citeseer | 2,110 3,668 6 3,703
Polblogs 1,222 16,714 2 1,222
Pubmed | 19,717 44,338 3 500

B.2 ADDITIONAL IMPLEMENTATION DETAILS

In our experiments for semi-supervised node classification, we search for the optimal values of
different hyper-parameters, including learning rate, weight decay, hidden dimension, and dropout
rate, by 5-fold cross-validation on the training data of each dataset. We search for the learning rate
from {1 x 1074, 5x 1074, 1x1073,5x 1073, 1 x 1072,3 x 1072,6 x 1072,1 x 107%,5 x 1071 }.
We search for weight decay from {1 x 1075,5 x 107°,1 x 10745 x 1074,1 x 1073,5 x 1073}
We search for the hidden dimension from {32, 64, 128, 256, 512}. The dropout rate is selected from
{0.3,0.4,0.5,0.6,0.7}. Values leading to the lowest validation loss are selected for each dataset.
Selected values of learning rate, weight decay, hidden dimension, and dropout rate on different
datasets are shown in Table 7. All experiments in this paper are performed on a single NVIDIA
Tesla A100 80G GPU.

B.3 ATTACK SETTINGS

Non-targeted Adversarial Attacks (Metattack) (Ziigner & Giinnemann, 2019). We first eval-
uate the robustness of our method against the non-targeted adversarial attack method Metattack.
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Table 7: Selected values of learning rate, weight decay, hidden dimension, and dropout rate.

Hyper-parameters Cora Citeseer PubMed Polblogs

Learning Rate 3x107%2 3x107% 1x107® 6x1072

Weight Decay 5x 107 5x107* 5x107* 5x107°
Hidden Dimension 96 128 64 128

Dropout Rate 0.5 0.5 0.7 0.4

Metattack treats the graph as a hyperparameter to optimize and uses meta-gradients to solve the
bilevel optimization problem, which minimizes the accuracy of node classification. We follow the
implementation in (Ziigner & Giinnemann, 2019). As Metattack has several variants, we follow (Jin
et al., 2020) and adopt the most destructive attack version, Meta-Self, on Cora, Citeseer, and Pol-
blogs datasets. On Pubmed, we adopt the approximate version of Meta-Self, A-Meta-Self, to avoid
memory and time overhead following the settings in (Jin et al., 2020). We measure the strength of
the attack by the perturbation rate, which is the ratio of perturbed edges among all the edges in the
graph. We evaluate our method and all baselines with perturbation rates ranging from 0 to 25% with
a step of 5%.

Targeted Adversarial Attack (Nettack) (Ziigner et al., 2018). We adopt Nettack as the targeted
attack method in evaluating the robustness of our method. Nettack manipulates the graph structure
and node features to degrade the classification accuracy on target nodes while minimizing the change
in the graph’s degree distribution and feature co-occurrences. We use the default attack settings in
the original implementation in (Ziigner et al., 2018). The nodes in the test set whose degree is larger
than 10 are set as target nodes in the attack. In Nettack, the number of perturbations made on every
targeted node is defined as the attack budget. Following (Jin et al., 2020), we evaluate our method
and all baselines with attack budgets ranging from 1 to 5 with a step size of 1. Following the settings
in (Jin et al., 2020), we only sample 10% of the target nodes for the evaluation on Nettack.

C MORE EXPERIMENT RESULTS

C.1 STUDY ON THE EFFECTIVENESS OF GLOBAL NODE CORRELATION LEARNING IN
RGA-IB

Our proposed RGA-IB learns node representations with dense graph attention to capture the cor-
relations between all pairs of nodes in the graph for reducing the IB loss, which is not limited by
the local dependency assumption enforced in GIB (Wu et al., 2020). To verify the effectiveness
of global node correlation learning in RGA-IB, we compare RGA-IB with ablation models, named
RGA-IBjq,1, that only capture local node correlations. Each attention weight matrix B® in the

RGA-IBjocqt models is replaced with B®) = B® o sgn (Zle Al), where function sgn(-) applies

element-wise to its input matrix, returning 1 for elements greater than 0 and returning O for elements
equal to 0. As a result, only the attention weights between nodes that are connected within L-hops
will be considered by B®, Then, a two-layer RGA-IB only considers 2L-hops local graph struc-
ture. We perform the ablation study for L € {1,2,4, 8,16} on Cora, Citeseer, and Pubmed under
Metattack with a perturbation rate of 25%. It is observed from the results in Table 8 that RGA-
IB with more dense attention usually achieves better performance. For example, RGA-IBjqc, With
L = 16 outperforms RGA-IBjoc, with L = 1 by 1.64% on Cora. In addition, RGA-IB)o, models
with more dense attention also features lower IB loss, showing that the dense graph attention better
adheres to the IB principle, such that the learned node representations are less related to the input
graph data while being more correlated to the class labels.

C.2 STUDY ON THE RGA-IB ATTENTION GRAPH

To study the effectiveness of the dense graph attention in RGA-IB on reducing the propagation of
adversarial information in the attacked graph, we compare the attacked graph with the RGA-IB at-
tention graph, which is created by connecting only pairs of nodes whose attention weights are larger
than 0.2. Nettack with an attack budget of 5 is adopted for this experiment. We compare the fre-
quency and cumulative frequency of the number of adversarial neighbors in the attacked graph and
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Table 8: Ablation study on the effectiveness of global node correlation learning in RGA-IB. The
study is performed on Cora, Citeseer, and Pubmed under Metattack with a perturbation rate of 25%.

Datasets | | RGA-IBiocal RGA-IB
\ | L=1 L=2 L=4 L=8 L=16
Cora IB Loss | —0.160 —0.175 —0.180 —0.196 —0.205 -0.214
ACC 69.82 70.03 71.32 71.39 71.42 71.43
Citeseer IBLoss | —0.158 —0.164 —0.179 —0.183 —0.188 -0.189
) ACC 68.84 69.14 70.55 70.89 70.91 70.94
Pubmed IB Loss | —0.167 —0.175 —0.187 —0.190 —0.192 -0.197
ACC 85.55 86.48 87.32 87.58 87.84 87.92

the RGA-IB attention graph. The number of adversarial neighbors of a node in the attacked graph
and the RGA-IB attention graph is computed by counting the number of nodes which have been
altered by the Nettack within the two-hop neighborhood of that node. The frequency at a particular
number of adversarial neighbors p is the number of nodes which have p adversarial neighbors with
a two-hop neighborhood. The cumulative frequency at a particular number of adversarial neighbors
p is the fraction of the nodes which have p or less adversarial neighbors in a two-hop neighborhood.
The frequency and the cumulative frequency are illustrated in blue for the attacked graph and in
red for the RGA-IB attention graph. The comparisons on Pubmed and Polblogs are illustrated in

Figure 3.
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Figure 3: Comparisons on the frequency and cumulative frequency of the number of adversarial
neighbors in the attacked graph and the RGA-IB attention graph for Pubmed and Polblogs. Nettack
with an attack budget of 5 is adopted for this experiment. Only adversarial neighbors, which are
perturbed nodes within two hops of a node, are counted as existing works GIB (Wu et al., 2020),
RG-GIB (Dai et al., 2023b), and UGRL (Wang et al., 2023b) are limited by the two-hop local

dependency assumption.
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