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Abstract

Estimating associations between spatial covariates and responses — rather than
merely predicting responses — is central to environmental science, epidemiology,
and economics. For instance, public health officials might be interested in whether
air pollution has a strictly positive association with a health outcome, and the mag-
nitude of any effect. Standard machine learning methods often provide accurate
predictions but offer limited insight into covariate-response relationships. And we
show that existing methods for constructing confidence (or credible) intervals for
associations can fail to provide nominal coverage in the face of model misspecifi-
cation and nonrandom locations — despite both being essentially always present
in spatial problems. We introduce a method that constructs valid frequentist confi-
dence intervals for associations in spatial settings. Our method requires minimal
assumptions beyond a form of spatial smoothness and a homoskedastic Gaussian
error assumption. In particular, we do not require model correctness or covariate
overlap between training and target locations. Our approach is the first to guarantee
nominal coverage in this setting and outperforms existing techniques in both real
and simulated experiments. Our confidence intervals are valid in finite samples
when the noise of the Gaussian error is known, and we provide an asymptotically
consistent estimation procedure for this noise variance when it is unknown.

1 Introduction

Scientists and social scientists often seek to understand the direction and magnitude of associations in
settings where variables vary spatially. And since these associations are often used to inform policy,
communicating uncertainties is crucial. Example associations of interest include the relationship
between aerosol concentrations and regional precipitation changes [76], the link between proximity to
major highways and the prevalence of dementia [35], and the link between air pollution exposure and
birth weight [34]. In each case, the covariates (e.g., aerosol concentrations, proximity to highways,
and air pollution) may be viewed as functions of spatial location. Moreover, scientists often have
data at some spatial locations but want to infer associations at others. For instance, a country might
measure birth weight and air pollution at the municipal level for some municipalities and wish to
understand their relationship in municipalities without data.

Our goal in the present work is to provide valid and useful confidence intervals for an estimator of
these associations when (i) the underlying model may be misspecified and (ii) inference is needed at
spatial locations that may differ from those in the observed data. First we argue that existing methods
do not already solve this problem. In particular, we make this argument in turn for modern flexible
machine learning methods, linear methods, spatial regression methods, and debiasing approaches.
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Flexible Machine Learning Methods. A priori, we might expect a nonlinear relationship between
air pollution (as a covariate) and birth weight (as the response). A natural idea is to fit a flexible model
— such as a (deep) Gaussian process [52, 15], transformer [70, 33], or XGBoost [10]. These methods
can achieve high predictive accuracy, but the methods on their own often lack interpretability and
do not immediately yield conclusions about covariate-response associations [57, 17]. Researchers
have proposed a number of post hoc interpretability methods, such as Shapley values [61, 38], LIME
[53], partial dependence plots [20] and Accumulated Local Effects plots [3]. These methods work
directly with the fitted model and can be used to describe associations between individual covariates
and model predictions. And because they are interpreting the fitted model (rather than the response
itself), there is no need (or mechanism) to quantify uncertainties due to insufficient data. When the
fitted model closely approximates the true response, one can view the output of these interpretability
methods as describing the relationship between the covariates and response.

In many applications (e.g., in engineering, advertising, and marketing), the available data often
contains enough information to be confident that the highly flexible machine learning model ap-
proximates the response everywhere of interest. Conversely, in many applications in the sciences
and social sciences (such as those cited above), there is often insufficient data to confidently fit a
nonparametric or high-dimensional model closely to the true (latent) response everywhere relevant.
In particular, in many spatial problems, there is often not enough information for a flexible method
to reconstruct the response well in many spatial locations of interest. Nonetheless, we might think
there could still be sufficient data to capture associations — and, by quantifying uncertainty, we can
check our confidence in any conclusions. The discrepancy between applications that are data-rich
and data-poor in this sense can help explain the phenomenon observed by Rudin [57]: that post hoc
approximations of black-box models may be worse than fitting interpretable models directly. For
example, as illustrated in a real-life recidivism case, a linear model used to approximate a black-box
model can seriously misrepresent key relationships — including that between race and recidivism.

Ordinary Least Squares. So it seems natural to choose an appropriate interpretable model (rather
than post hoc method) and quantify its uncertainty. Buja et al. [7] demonstrated that (directly-fit,
not post hoc) linear models can be used to interpretably summarize associations even in the face of
potentially nonlinear relationships (i.e., under misspecification). This observation helps explain why
all of the applied studies cited above use linear regression.2 Moreover, ordinary least squares (OLS)
comes equipped with classical confidence intervals. However, when the linear model is misspecified,
Buja et al. [7] notes that the OLS estimator depends on the covariate values, and it follows that
classical confidence intervals are valid only at the observed (training) values. Since we’re interested
in valid intervals at other locations, which will have different covariate values, we need another
approach. The sandwich estimator [30, 77, 78, 7] offers valid intervals under misspecification, but
only if all covariates are drawn from a single distribution, which isn’t the case in our setting where we
want to draw inferences at different locations from where we observe data. Thus, even though OLS
provides interpretable estimates, it does not solve our key challenge: constructing valid confidence
intervals in the common scenario where both (i) the linear model is misspecified and (ii) inference is
needed at spatial locations that may differ from those in the observed data.

Spatial Regression Methods. One might hope that a method specifically tailored for spatial
regression could address these issues. Generalized least squares (GLS) regression [2] is designed to
handle spatial correlation in residuals [13, pp. 22–24], but it does not address the bias introduced by
misspecification and nonrandom locations. Bayesian spatial models, such as those based on Gaussian
processes, are also common, but their credible intervals tend to underestimate uncertainty in the
presence of both misspecification and nonrandom locations [74, 42].

Debiasing Approaches. Another natural idea is to construct a debiased estimator of the association,
and then account for the variance of this debiasing procedure. Importance weighting methods from
the covariate shift literature [62] pursue this goal by reweighting each observation according to an
estimated density ratio between target and source covariate distributions, aiming to remove bias from
distribution shift. Semiparametric inference in partially linear models (e.g., [55, 54, 11]) takes a
related approach: it first fits a flexible model to capture variation explained by a “nuisance” parameter
(in our case, the spatial location) and then constructs a debiased estimator of the target association
by regressing out the variation explained by this nuisance, so that the remaining signal reflects the

2In fact, Castro Torres and Akbaritabar [9, Figure 1] surveyed quantitative methods in papers up to 2022 and
found that over half of those in fields such as agricultural science, social sciences, and health sciences reported
results from a linear model.
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direct relationship between the covariate and the response. However, these methods face two key
limitations. First, they assume that the debiasing step can perfectly remove bias, which need not be
true (especially in finite samples). Second, their validity relies on the assumption that observations
are drawn independently and identically. And this assumption rarely holds in spatial applications,
where locations are fixed and often spread unevenly due to physical, logistical, or policy constraints.
We discuss these and related approaches in more detail in Appendix A.

Our Contribution. In what follows, we show through real and simulated experiments (Section 4)
that existing approaches can yield confidence intervals with coverage far below the nominal level. Our
principal contribution is to introduce the first method for constructing confidence intervals in spatial
associations that guarantees frequentist coverage at the nominal level even when the underlying
model is misspecified and inference is required at fixed, nonrandom locations that differ from those
observed. We are able to account for misspecification and nonrandom locations simultaneously by
making more spatially appropriate assumptions than prior work. In particular, prior work relies on
a (spatially inappropriate) assumption of independent and identically distribution data; we instead
assume the response is a smooth function of space observed with homoskedastic Gaussian noise.
When the variance of this noise is known, our confidence intervals are valid in finite samples. To
address the common case where the variance is unknown, we provide an asymptotically consistent
estimator for it. In our experiments, our method is the only one that consistently attains nominal
coverage (or even comes close).

2 Problem Setup

We start by describing the available data. After reviewing well-specified linear regression, we set up
the misspecified case with different target and source data, and we establish our estimand in this case.

Data. Following the covariate-shift literature [4, 47, 14], we refer to our fully observed (training)
data as the source data; likewise, we let target data denote the (test) locations and covariates where
we do not observe the response but would like to understand the association between covariates and
response. In particular, the source data consists of N triplets (Sn, Xn, Yn)

N
n=1, with spatial location

Sn ∈ S , covariate Xn ∈ RP , and response3 Yn ∈ R. Here S represents geographic space; we assume
S is a metric space with metric dS . We collect the source covariates in the matrix X ∈ RN×P and the
source responses in the N -long column vector Y . The target data consists of M pairs (S⋆

m, X⋆
m)Mm=1,

with S⋆
m ∈ S, X⋆

m ∈ RP . The corresponding responses Y ⋆
m ∈ R, 1 ≤ m ≤M are unobserved. We

collect the target covariates in X∗ ∈ RM×P and responses in column vector Y ∗ ∈ RM .

Review: Well-specified Linear Model. Though we will focus on the misspecified case, we start by
reviewing the classic well-specified case for comparison purposes. In the classic well-specified setup,
we have Yn = θTOLSXn + ϵn and Y ⋆

m = θTOLSX
⋆
m + ϵ⋆m with column-vector parameter θOLS ∈ RP

and ϵn, ϵ
⋆
m

iid∼ N (0, σ2) for some (unknown) σ2 > 0. For any fixed set of source data points (and
assuming invertibility holds as needed), we can recover the parameter exactly as

θOLS = arg min
θ∈RP

E
[ 1
N

N∑
n=1

(Yn − θTXn)
]
= E[XTX]−1E[XTY ] = (XTX)−1XTE[Y ]. (1)

An analogous formula holds for target points; θOLS is constant across covariate values in any case.
Since the population expectation is unknown, analysts typically estimate θOLS via maximum likeli-
hood. The standard estimator (θ̂OLS,p) and confidence interval at level α (IOLS,p) for the pth coefficient
(θOLS,p) are

θ̂OLS,p = eTp (X
TX)−1XTY, IOLS,p = θ̂OLS,p ± zαρ, (2)

where ρ2 = σ2eTp (X
TX)−1ep, zα is the α-quantile of a standard normal distribution, and ep denotes

the P -dimensional vector with a 1 in entry p and 0s elsewhere. Under correct specification, the
confidence interval is valid: that is, it provides nominal coverage. E.g., a 95% confidence interval
contains the true parameter at least 95% of the time under resampling. The noise variance σ2 in ρ
used in Eq. (2) is typically replaced with an estimate σ̂2.

3We propose possible extensions to multivariate responses in Appendix C. But we leave the multivariate-
response case largely as an area for future work.
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Misspecified Spatial Setup: Data-Generating Process. In what follows, we assume the data is
generated as Yn = g(Xn, Sn) + ϵn and Y ⋆

m = g(X⋆
m, S⋆

m) + ϵ⋆m, for a function g that need not have
a parametric form and with ϵn, ϵ

⋆
m

iid∼ N (0, σ2) for some (unknown) σ2 > 0.

We assume that source and target covariates are fixed functions of spatial location. Recall that all
of the covariates in our examples (aerosol concentrations, proximity to highways, and air pollution)
can be expected to vary spatially and be measured with minimal error. We similarly expect meteoro-
logical variables such as precipitation, humidity, and temperature to be reasonably captured by this
assumption.4

Assumption 1. There exists a function χ : S → RP such that X⋆
m = χ(S⋆

m) for 1 ≤ m ≤M and
Xn = χ(Sn) for 1 ≤ n ≤ N .

Under Assumption 1, our data-generating process simplifies.
Assumption 2. There exists a function f : S → R such that ∀m ∈ {1, . . . ,M}, Y ⋆

m = f(S⋆
m) + ϵ⋆m

and ∀n ∈ {1, . . . , N}, Yn = f(Sn) + ϵn, where ϵ⋆m, ϵn
iid∼ N (0, σ2).

We emphasize that we are still allowing the response to be a function of both the covariates and the
spatial location. But we need not state the dependence on the covariates explicitly in Assumption 2 due
to Assumption 1. Formally, let g be the function satisfying E[Y | X,S] = g(X,S). By Assumption 1,
X = χ(S), and so E[Y | X,S] = g(χ(S), S). Define f : S → R by f(s) = g(χ(S), S). In other
words, the response can be a function of the covariates, but because the covariates are a fixed function
of space, we can also write the response as a function of space alone.

Our Estimand. At a high level, our goal is to capture the relationship between a covariate and the
response variable at target locations using data from source locations, while taking into account that
these two sets of locations may differ. From this perspective, we can define our estimand as the
parameter of the best linear approximation to the response, where “best” is defined by minimizing
squared error over the target locations.

θ⋆OLS = arg min
θ∈RP

E
[ M∑
m=1

(Y ⋆
m − θ⊤X⋆

m)2|S⋆
m

]
. (3)

As in [78, 7], since the data-generating process may be non-linear, θ⋆OLS is no longer constant like the
well-specified case; instead it is a function of the target locations.

Before solving the minimization in Eq. (3), we argue that covariate shift, as commonly defined,
does not solve the problem of interest in this paper. Instead of using our estimand above, one might
instead treat the source and target locations as random draws from separate distributions, drop the
conditioning on S⋆

m (in Eq. (3)), and rely on covariate-shift methods. Yet to the best of our knowledge
these methods currently offer no finite-sample confidence intervals, leaving the question of valid
confidence intervals unresolved. Moreover, in the spatial applications we study, locations are rarely
i.i.d.: for example, the United States Environmental Protection Agency (EPA) places monitoring
stations strategically, and the targets of interest may be only a few municipalities — or even a single
one — with missing data. In such settings, it is unclear that a meaningful population-level distribution
of locations exists. We therefore condition on the training and target locations in Eq. (3), i.e. we treat
the locations as deterministic. Alternatively, we can view our setting as a special case of covariate
shift in which the training and target distributions are the respective fixed sets of locations, and
therefore have disjoint support. However, under this view, standard covariate-shift estimators are
inapplicable.

To solve the minimization in Eq. (3), it will be convenient to assume invertibility, as for OLS.
Assumption 3. X⋆TX⋆ is invertible.

With Assumptions 1 and 3, we can solve the minimization in Eq. (3) to find

θ⋆OLS = (X⋆TX⋆)−1X⋆TE[Y ⋆|S⋆]. (4)

See Appendix F.1 for a derivation. To the best of our knowledge, the target-conditional estimand in
Eq. (4) has not been previously proposed or analyzed in spatial linear regression.

4Conversely demographic covariates may more reasonably be thought of as noisy functions of space, and
further work is needed to handle the noisy case.
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In order to estimate E[Y ⋆ | S⋆] sufficiently well to in turn estimate θ⋆OLS well, we need to make
regularity assumptions. In classical and covariate-shift settings, these take the form of i.i.d. and
bounded-density-ratio assumptions. Since we’ve seen that the classic assumptions are inappropriate
in this spatial setting, we instead assume f is shared across source and target (Assumption 2) and not
varying so quickly in space as to be difficult to learn from limited data.
Assumption 4. The conditional expectation, f , is L-Lipschitz as a function from (S, dS)→ (R, | · |).
That is, for any s, s′ ∈ S, |f(s)− f(s′)| ≤ LdS(s, s

′).

As an illustration of how this assumption might be satisfied, consider χ an L1-Lipschitz function of
the spatial domain, and f(s) = βTχ(s) + h(s) with h a fixed, L2-Lipschitz function of S. Then f
is a (∥β∥2L1 + L2)-Lipschitz function of the spatial domain. A similar assumption was recently
considered in Burt et al. [8] to derive a consistent estimator for prediction error in spatial settings.

Recall (from the discussion of g vs. f after Assumption 2) that we ultimately allow our response to
be a function of both the covariates and the spatial location. But, using our assumption that f covers
both dependencies (Assumption 2), we impose our smoothness restrictions on the average response
as a function of space alone. We think it is often easier to reason about smoothness in physical space,
rather than in a (potentially high-dimensional) space of covariates.

3 Lipschitz-Driven Inference

We next provide a confidence interval for θ⋆OLS,p, the pth coefficient of the target-conditional least
squares estimand (Eq. (4)). We support its validity with theory (in the present section) and experiments
(in Section 4). To that end, we start by providing an efficiently-computable point estimate. We end by
discussing the role and choice of the Lipschitz constant L.

Lipschitz-Driven Point Estimation. Since the target covariates are known, the key challenge in
estimating Eq. (4) is estimating the unknown quantity E[Y ⋆|S⋆].

For our first approximation, recall that, by Assumption 4, f varies smoothly in space. Since the
conditional distribution of the responses given the spatial locations is the same function for both target
and source data (Assumption 2), we can approximate E[Y ⋆|S⋆] by a weighted average of E[Y |S]
values for locations S near S⋆. Concretely, let Ψ ∈ RM×N be a (non-negative) matrix of weights.
If Ψ assigns weight mostly to source locations near each corresponding target location, then by the
Lipschitz assumption (Assumption 4), E[Y ⋆|S⋆] ≈ ΨE[Y |S]. E[Y |S] is also unobserved, so we next
approximate it by observed values of Y (at each source location in S): ΨE[Y |S] ≈ ΨY. Together,
these two approximations yield the estimator: θ̂Ψp = eTp

(
X⋆TX⋆

)−1
X⋆TΨY. In our experiments,

we construct Ψ as follows.
Definition 5 (Nearest-Neighbor Weight Matrix). Define the 1-nearest neighbor weight matrix by

Ψmn =

{
1 Sn = closest source location to S⋆

m

0 otherwise
. We break ties uniformly at random. (5)

While this simple construction works well in our present experiments, we discuss the potential
benefits of other constructions in Appendix B.1. This point estimation approach is closely related to
KNN imputation [66], used for missing data. But KNN imputation does not account for repeated use
of training responses or bias in estimation due to imputation, problems we address in the next section.
We provide a more complete discussion of KNN imputation in Appendix A.

Lipschitz-Driven Confidence Intervals. We detail how to efficiently compute our proposed con-
fidence interval for θ⋆OLS,p in Algorithm 1 (Appendix B). We prove its validity in Theorem 7 be-
low. Before stating our result, we establish relevant notation and intuition for how our method
works. First, we show the difference between our estimand and the estimator is normally dis-
tributed. Toward that goal, we start by writing θ⋆OLS,p − θ̂Ψp =

∑M
m=1 wmf(S⋆

m) −∑N
n=1 v

Ψ
n Yn,

for w := eTp
(
X⋆TX⋆

)−1
X⋆T ∈ RM and vΨ := wΨ ∈ RN . By Assumption 2 and the previous

equation,

θ⋆OLS,p − θ̂Ψp =

M∑
m=1

wmf(S⋆
m)−

N∑
n=1

vΨn f(Sn)︸ ︷︷ ︸
bias

−
N∑

n=1

vΨn ϵn︸ ︷︷ ︸
randomness

. (6)
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That is, Eq. (6) expresses θ⋆OLS,p − θ̂Ψp as the sum of (i) a bias term due to differing locations between
the source and target data and (ii) a mean-zero Gaussian randomness term due to observation noise.

Since the spatial locations are fixed, the bias term is not random and can be written as b ∈ R. It
follows that θ⋆OLS,p − θ̂Ψp ∼ N (b, σ2∥vΨ∥22) since the variance of the randomness term is the sum of
the variances of its (independent) summands.

Our strategy from here will be to (1) bound b, (2) establish a valid confidence interval using our
bound on b while assuming fixed σ2, and (3) estimate σ2 consistently (as N →∞).

To bound the bias b, we use Assumption 4 to write

|b| ≤ sup
g∈FL

∣∣∣∣∣
M∑

m=1

wmg(S⋆
m)−

N∑
n=1

vΨn g(Sn)

∣∣∣∣∣ , (7)

where FL is the space of L-Lipschitz functions from S → R. In Appendix F.3, we show that it is
possible to use Kantorovich–Rubinstein duality to restate the right side of Eq. (7) as a Wasserstein-1
distance between discrete measures. This alternative formulation is useful since it can be cast as a
linear program [49, Chapter 3]; see Appendix F.3. Let B denote the output of this linear program.

Given B ≥ |b|, the following lemma (with proof in Appendix F.4) allows us to construct a confidence
interval for θ⋆OLS,p centered on θ̂Ψp . We discuss the benefits of this construction over alternative
approaches in Appendix B.5.
Lemma 6. Let b ∈ [−B,B], c̃ > 0, and α ∈ (0, 1). Then the narrowest 1− α confidence interval
that is symmetric and valid for allN (b, c̃2) is of the form [−B− c̃∆, B+ c̃∆] where ∆ is the solution
of Φ (∆)− Φ (−2B/c̃−∆) = 1− α with Φ the cumulative density function of a standard normal
distribution. Also, the ∆ satisfying this inequality is ∆ ∈ [Φ−1(1− α),Φ−1(1− α

2 )].

The resulting confidence interval appears in Algorithm 1. We next establish its validity. So far, we
have covered only the known σ2 case. We handle the unknown σ2 case after the following theorem.
Theorem 7. Suppose (S⋆

m, X⋆
m, Y ⋆

m)Mm=1 and (Sn, Xn, Yn)
N
n=1 satisfy Assumptions 1 to 4 with

known σ2. Define the (random) interval IΨ as in Algorithm 1 using the known value of σ2. Then with
probability at least 1− α, θ⋆OLS,p ∈ IΨ. That is, IΨ has coverage (conditional on the test locations)
at least 1− α.

In Appendix F.2, we prove validity of our confidence interval for a generic choice of weight matrix
Ψ. Theorem 7 is an immediate corollary of that result.

Consistent Estimation of the Noise Variance σ2. Generally, the noise variance σ2 is unknown,
so we will substitute an estimate for σ2 in the calculation of the confidence interval IΨ (Step 5 in
Algorithm 1). In Corollary 9 below, we show that the resulting confidence interval has asymptotically
valid coverage. To that end, we first show that the estimator in Eq. (10) is consistent for σ2.
Proposition 8. Suppose the spatial domain S = [−A,A]D for some A > 0, D ∈ N. Take
Assumptions 2 and 4. For any sequence of source spatial locations (Sn)

∞
n=1, take σ̂2

N as in Eq. (10).
Then σ̂2

N → σ2 in probability as N →∞.

See Appendix F.5 for a proof. For intuition, recall that the conditional expectation minimizes expected
squared error over all functions. Since the conditional expectation is L-Lipschitz (Assumption 4),

σ2 = inf
g∈FL

E
[ 1
N

N∑
n=1

(Y − g(Sn))
2
∣∣∣S]. (8)

The empirical version of Eq. (8) is Eq. (10), which we show is a good estimate for σ2 for large N .

When S is a subset of Euclidean space or a subset of the sphere, the minimization in Eq. (10) yields a
quadratic program for computing σ̂2

N . We provide implementation details in Appendix B.7.

Given Proposition 8, it follows from Slutsky’s Lemma that the resulting confidence interval is
asymptotically valid. We provide a formal statement below, and a proof in Appendix F.5
Corollary 9. For S as in Proposition 8, with the assumptions and notation of Theorem 7, but with σ2

unknown, the confidence interval IΨ from Algorithm 1 has asymptotic (with fixed M and as N →∞)
coverage at level 1− α.
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Figure 1: Coverages (left) and confidence interval widths (right) for our method as well as 5 other
methods (3 methods in the lower experiment). In the upper experiment, our method and GP BCIs
consistently achieve the nominal coverage (95%); the GP BCIs line (dashed blue) overlaps with ours
(solid black) for most shifts. Of the two methods with correct coverage, our method yields much
narrower intervals. In the lower experiment, only our method achieves the nominal coverage. The
shaded region for coverage is a (conservative) 95% confidence interval while the shaded region for
CI width is ±2 standard deviations; for more detail, see Appendix D.1.

Choice of the Lipschitz Constant L. The Lipschitz assumption allows us to make inferences about
the target data from the source data. The Lipschitz constant subsequently enters our intervals in two
principal ways: via B and via σ̂2

N . Intuitively, larger values of L (allowing for less smooth responses)
lead to our algorithm constructing confidence intervals with larger bounds (B) on the bias but smaller
estimated residual variance (σ̂2

N ). We depict this trade-off in a concrete example in Section 4 (Fig. 2).

Ultimately the choice of Lipschitz constant must be guided by domain knowledge. We give one
concrete example describing our choice of the Lipschitz constant in our real-data experiment on tree
cover (Section 4). We give a second concrete example of how to select the Lipschitz constant in
Appendix B.3; in this case, the response is annual average PM2.5 over California. In our simulated
experiments, we know the minimum value for which Assumption 4 holds; call it L0. So we first
choose L = L0. Then we perform ablation studies in both simulated and real data showing that we
essentially maintain coverage while varying L over an order of magnitude around our initial choices.
We show that further decreasing L can decrease coverage and discuss why it is useful to err on the
side of conservatism (i.e., a larger L). However, we expect even small values of L to improve upon
classical confidence intervals in terms of coverage, since classical confidence intervals do not account
for bias at all; our method similarly ignores bias when L = 0.

4 Experiments

In simulated and real data experiments, we find that our method consistently achieves nominal
coverage, whereas all the alternatives dramatically fail to do so. We also provide ablation studies to
evaluate the effect of varying the Lipschitz constant in both simulated and real settings.

Baselines. We compare to five alternative constructions.

Ordinary Least Squares (OLS). We treat the noise variance as unknown and estimate it as the average
squared residual, with a correction for the number of degrees of freedom and a t-statistic instead of a
z-statistic [24, pp. 50–52].

Sandwich Estimator. The sandwich estimator [30, 77, 78] uses the same point estimate as OLS
but a different variance estimate. We take the variance estimate from MacKinnon and White
[39, Equation 6]: 1

N−P eTp (X
TX)−1(XTRX)(XTX)−1ep, where R is a diagonal matrix with the

squared residuals as entries.
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Figure 2: Left: the confidence interval width of our method as a function of shift for each Lipschitz
constant L. All L yield coverage of 1.0. Middle and right: the confidence interval width (solid line
with dot marker) as a function of the Lipschitz constant for shift = 0 (middle) and shift = 0.8 (right).
The vertical axis is shared across all three plots. The bias contribution to the width (dashed line, x
marker) is monotonically increasing in L. The randomness contribution (dashed line, square marker)
is monotonically decreasing.

Importance Weighted Least Squares (KDEIW). As suggested by Shimodaira [62, Section 9], we
calculate importance weights via kernel density estimation (KDE). We select the bandwidth parameter
with 5-fold cross validation; see Appendix B.9. Given the KDE weights, we use the point estimate
and confidence interval from weighted least squares.

Generalized Least Squares (GLS). We maximize the likelihood of Y ∼ N (θTX,Σ), with Σ specified
by an isotropic Matérn 3/2 covariance function and a nugget, to select the parameters of the covariance
function and nugget variance. Then we use the restricted spatial-regression framework [29]; since we
project the spatially-correlated error term onto the orthogonal complement of the covariates, the point
estimate coincides with OLS.

Gaussian Process Bayesian Credible Intervals (GP BCIs). We use the model Y (S) = θTX(S) +
h(S) + ϵ, with θT ∼ N (0, λ2IP ), h ∼ GP(0, kγ), kγ an isotropic Matérn 3/2 kernel function with
hyperparameters γ, and ϵ ∼ N (0, δ2). We select {λ, γ, δ} by maximum likelihood. We report
posterior credible intervals for θp.

Single Covariate Simulation. In our first simulation, the source locations are uniform on S =
[−1, 1]2 (blue points in Fig. 4 left plots). The target locations are uniform on [−1+shift

1+|shift| ,
1+shift
1+|shift| ],

where shift controls the degree of distribution shift between source and target (orange points in Fig. 4
left plots). In this experiment, the single covariate X = χ(S) = S(1) + S(2) (Fig. 4, third plot).
And the response is Y = X + 1

2 ((S
(1))2 + (S(2))2) + ϵ, with ϵ ∼ N (0, 0.12). Fig. 4, fourth plot,

shows the conditional expectation of the response given location. We can compute the ground truth
parameter in closed form because we have access to the conditional expectation of the response
(Eq. (4)). We vary shift ∈ [0,±0.2,±0.4,±0.6,±0.8] and run 250 seeds for each shift.

Figure 1, top left, shows that only our method and the GP consistently achieve nominal coverage.
Given correct coverage, narrower (i.e., more precise) confidence intervals are desirable; Fig. 1, top
right, shows that our method yields narrower intervals than the GP. KDEIW comes close to achieving
nominal coverage when there is no shift. But under shift with limited data, it is not able to fully debias
the estimate, and coverage drops. For large M (here M = 100), we expect the sandwich estimator to
achieve nominal coverage at shift = 0 since it is guaranteed to cover the population under first-order
misspecification without distribution shift [30, 78]. But under any of the depicted non-zero shifts, the
sandwich, OLS, and GLS achieve zero coverage. The extreme narrowness of the OLS, sandwich,
KDEIW, and GLS intervals (Fig. 1, top right) suggests that the problem with these methods is exactly
their overconfidence. Because these approaches assume that the estimator is unbiased (or can be
debiased), and that errors are independent and Gaussian, their intervals contract far too quickly, even
with small amounts of data (here, N = 300). Essentially, these methods’ reliance on strong modeling
assumptions leads to non-robust coverage.

We note that the confidence intervals and coverages for each method have (approximately) the same
values for either ±shift in this experiment (Fig. 1, top right) because the covariate is symmetric
around the line S(1) = S(2); see the middle right plot of Fig. 4 in Appendix D. So positive and
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Figure 3: Coverages (upper) and confidence interval widths (lower) for our method as well as 5
other methods. Each column represents a parameter in the tree cover experiment. Only our method
consistently achieves the nominal coverage.

negative shift values move the source and target locations symmetrically across the S(1) = S(2) line.
We do not expect such a symmetry for general covariates and will not see it in our next simulation
(Fig. 1, bottom right).

Simulation with Several Covariates. Our second simulation generates locations as in the previous
experiment. Now we use N = 10,000 and M = 100. And we generate 3 covariates, X(1) =
sin(S(1)) + cos(S(2)), X(2) = cos(S(1)) − sin(S(2)) and X(3) = S(1) + S2. The response is
Y = X(1)X(2) + 1

2 ((S
(1))2 + (S(2))2) + ϵ with ϵ ∼ N (0, 0.12). We focus on inference for the first

coefficient. Calculation of σ̂2
N scales poorly with N due to needing to solve a quadratic program. So

here we instead estimate σ2 using the squared error of leave-one-out 1-nearest neighbor regression fit
on the source data. See Appendix B.8 for details. We compare against the same set of methods except
we do not include GLS or GP BCIs since these require further approximations to scale for this N .

We again find that our method achieves coverage while the other methods do not (Fig. 1, bottom left).
In this experiment, no other method achieves coverage over 30% across any shift value (even 0). As
before, competing methods are overconfident, with very small CI widths (Fig. 1, bottom right).

For methods besides our own, coverage levels at 0 are generally lower in this experiment at shift = 0
than in the previous experiment. The difference is that N is much larger here (making confidence
intervals narrower and exacerbating overconfidence), while M is the same. The sandwich estimator
covers the analogue of θ⋆OLS,p where spatial locations are treated as random. So it has good coverage
at shift = 0 when M ≫ N , but not when M ≪ N .

Effect of Lipschitz Constant on Confidence Intervals in Simulation Experiment. Above, we know
and use the minimum value (L0) for which Assumption 4 holds; that is, L = L0 (L0 = 2

√
2 and 3

√
2,

respectively). Now we repeat the first simulation but vary L ∈ {0.1, 0.5, 1.0, 2.0, 3.5, 5, 7.5, 10}. All
of these L values yield coverage of 1.0 for our method, above the nominal coverage of 0.95, even
though coverage is not guaranteed by our theory for L ≤ 2

√
2 ≈ 2.8.

We next show that the confidence interval width reflects a bias-randomness trade-off as L varies.
If the noise were known, the confidence interval would be monotonically increasing in L. Since
the noise is unknown, only the bias contribution to the interval width (2B, Step 4 in Algorithm 1)
increases (Fig. 2, middle and left, ×). Conversely, smaller values of L yield larger values for σ̂2

N ,
so the randomness contribution to the interval width (2c, Step 5 in Algorithm 1) increases (Fig. 2,
middle and left, □). The full confidence interval width, 2B + 2c∆(α), is not monotonic in L.

Tree Cover Linear Regression. We use a linear regression model YTree Cover % =
∑

p∈P θpXp to
quantify how tree cover percentage in the contiguous United States (CONUS) in the year 2021 relates
to three variables, P = {Aridity_Index, Elevation, Slope}. We use the 983 data points from Lu et al.
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[37], who in turn draw on [68, 65, 43]. We define our target region in the West portion of CONUS as
locations with latitude in the range (25, 50) and longitude in the range (-125, -110). Out of all points
in this region, we designate 50% — totaling 133 sites — as target data. Next, we select the source
data by taking a uniform random sample of 20% of the remaining spatial locations, repeated over
250 random seeds to assess coverage performance. Each seed yields 170 source locations. Fig. 7
illustrates the spatial split between source and target data for a representative seed. We discuss the
data and our pre-processing in detail in Appendix E.

We compare coverage for confidence intervals of the three parameters,
θAridity_Index, θElevation, and θSlope. We discuss how we evaluate coverage in Appendix E.3. In
the top row of Fig. 3, we see that our method is the only one to achieve the 95% nominal coverage
for all three parameters. Conversely, for the Slope parameter, every other method achieves coverage
at most 54%. In the bottom row of Fig. 10, we again see that alternative methods fail to provide
coverage due to their overconfidence (small widths); see also Fig. 10, which shows all methods’
constructed confidence intervals across all three parameters for 7 of the 250 seeds. In Appendix B.4,
we further discuss how our intervals are the narrowest intervals among those that maintain validity.
In Appendix E.5, we conduct a similar analysis but with target locations in the Southeast, rather than
West, of CONUS. The results align with our discussion here.

Choice of Lipschitz Constant in the Tree Cover Experiment. For the tree cover experiment, we
leverage domain knowledge to set the Lipschitz constant to L = 0.2, in units of percent tree cover
per kilometer (km). This choice implies that a 1% change in tree cover corresponds to moving
1/0.2 = 5 km. To arrive at this choice, we observe that in certain regions of the U.S., such as the
Midwest, tree coverage remains relatively uniform over several kilometers, so smaller Lipschitz
constants (e.g., L = 0.02, corresponding to a 1% change over 50 km) would be appropriate. However,
in other regions — such as the western U.S., where elevation changes are more pronounced (e.g.,
the Rockies, California, and the Pacific Northwest) — tree cover can change sharply over short
distances. To account for these variations conservatively, we choose L = 0.2. More generally, for
real-world applications, we recommend the following strategy: (i) use domain knowledge to select
a reasonable Lipschitz constant for the response variable, and (ii) inflate the Lipschitz constant to
ensure a conservative estimate (which is more likely to satisfy Assumption 4).

Effect of Lipschitz Constant on Confidence Intervals in Tree Cover Experiment. In Fig. 9, we
show the coverage and width of our confidence intervals across three orders of magnitude of Lipschitz
constants (L from 0.001 to 1). For L varying between 0.1 and 1 (a single order of magnitude variation
around our chosen value of 0.2), we find that coverage is always met except in one case (Aridity Index
with L = 0.1), where it is very close to nominal (89% instead of 95%). For Slope and Elevation,
coverage is met or very nearly met for all L values. For Aridity Index, coverage is low for L ≤ 0.1.
Meanwhile, confidence intervals become noticeably wider for L > 0.5 while remaining relatively
stable for smaller values. These results support our intuition to err on the side of larger L values to be
conservative and maintain coverage.

5 Discussion

We propose a new method for constructing confidence intervals for spatial linear models. We show
via theory and experiments that our intervals accurately quantify uncertainty under misspecification
and covariate shift. In experiments, our method is the only method that consistently achieves (or
even comes close to) nominal coverage. We observe that, very commonly in spatial data analyses,
covariates and responses may be observed at different, nonrandom locations in space. Since our
method does not actually use the source covariate values in inference for θ⋆OLS, it can be applied in
this common missing-data scenario. Though it requires additional work, we believe the ideas here
will extend naturally to the widely used class of generalized linear models.
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A Extended Related Work

In this section, we discuss related work on bias in linear regression in spatial settings, local approaches
to regression that often rely on data-borrowing strategies similar to our nearest neighbor approach,
and covariate shift.

Bias in Spatial Regression. Linear models with a Gaussian process random effect — that is, models
of the form

Y (S) = θTX(S) + g(S) + ϵ, (9)

with g a Gaussian process and ϵ independent and identically distributed noise — are a classic tool in
spatial regression and remain widely used in applications [75, 23, 26]. Whether to treat the covariates
as fixed functions of spatial location or random is a topic of significant debate. In order for the
model to be identifiable, it is generally necessary for the covariates to be thought of as random [21,
Proposition 1]. However, Paciorek [45] observed it may be more reasonable to think of covariates as
fixed (the perspective we also take). If X and g are not independent (in the random case) or close to
orthogonal in the fixed case, Paciorek [45] illustrates that bias is introduced into the estimation of θ.
And that the degree of this bias depends on the relative scales over which X and g vary. He gives a
closed form for this bias under strong linear-Gaussian assumptions that depend on parameters that
would generally be unknown. Page et al. [46] builds on the result of Paciorek [45], and shows that
bias in predictions made by the spatial model due to confounding may be small, despite biases in
parameter estimation. Hodges and Reich [29] proposed using restricted spatial regression, essentially
explaining as much of the variation in the response as possible by the covariates to reduce bias
in estimation due to spatially-correlated error. We take this approach in the GLS baseline used in
our experiments. Nobre et al. [44] extended earlier work about bias due to spatial confounding
by considering the case when multiple observations are available at the same spatial location with
independent noise. They showed that spatial regression models can still be biased with repeated
observations due to confounding.

In our work, we focus on bias in estimation of the target conditional OLS. Because we do not assume
the model is well-specified, there is no ‘true’ value of the parameter to estimate. Instead, our goal
is to estimate the ‘best’ (in a least squares sense) linear approximation to the response. We focus
on the case when X is a fixed function of location (Assumption 1) and make weak non-parametric,
smoothness assumptions (Assumption 4). This contrasts with prior works that generally assume the
covariates are random and make linear-Gaussian assumptions to calculate the bias [45, 46]. Our work
shows how to directly incorporate bias into confidence intervals for θ under our weak assumptions,
but does not address issues of (non-)identifiability in the estimation problem.

Gilbert et al. [21] showed that despite finite-sample bias in estimation of θ under spatial confounding,
consistent estimation of θ is possible in the identifiable case when X is random under infill asymp-
totics. This is essentially orthogonal to our work, as we focus on (finite-sample valid) confidence
intervals in the case when X is fixed.

Local Versus Global Regression Estimates. An alternative perspective on regression in spatial set-
tings, referred to as geographically weighted regression (GWR), focuses on estimating the association
between the response and covariates at each location in space [6, 19]. For this regression problem to
be well-defined, the covariates at each spatial location must be treated as random variables. Like our
method, this approach uses nearest neighbors or local smoothing approaches to estimate the local
coefficients at each location in space. And — as in our work — because of this “data-borrowing”
from nearby locations, bias is introduced into the estimation of these local regression coefficients.
The confidence intervals reported for GWR typically do not account for this bias [79]. While Yu
et al. [79] provide a formula for the bias introduced by “data-borrowing”, their formula relies on the
assumption that the model is well-specified and depends on unobservable parameters.

We focus on the estimation bias in the estimation of global parameters. Although local parameter
estimates are often of interest in spatial analyses [19, Chapter 1], global estimates are also useful
as summary statistics for making decisions that impact regions or multiple localities. And we
characterize the bias in these estimates under weak, non-parametric assumptions and incorporate
it into our confidence intervals. Extensions of our approach to GWR coefficients are a promising
direction for future research. However, this extension is not simple, as it involves accounting for
randomness in the covariates.
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Covariate Shift and Importance Weighting. Differences between the source locations (with
observed responses) and the target locations (at which we want to study the relationship between
variables) can be seen as an instance of covariate shift [56, 67, 75]. Covariate shift is often dealt with
by importance weighting, reweighting each training example to account for differences in the density
of the source and target distributions. Prior work in spatial machine learning has generally focused
on addressing covariate shift in the context of estimating a method’s prediction error. However, these
approaches can, in principle, be extended to parameter estimation in OLS, mirroring the broader
covariate shift literature [62].

While in the main text we focused on density ratio estimation using kernel density estimation [62],
many other approaches for density ratio estimation can be used [63, 31, 25, 51, 64]. Importance
weighting de-biases the estimator, but can only be used if the distribution of the source data is
supported on a region containing the test data. And the confidence intervals obtained by importance
weighting with estimated weights do not account for errors in estimation of the density ratio (if this
exists). These confidence intervals are therefore not guaranteed to achieve the nominal coverage
rate. And they are not applicable in cases where extrapolation is required, as the estimator cannot
necessarily be de-biased in these cases.

In contrast, our approach ensures nominal coverage even when de-biasing the estimate via importance
weighting is not possible. This advantage comes at the cost of an additional regularity assumption
(Assumption 4), as well as often empirically wider confidence intervals.

Comparison to Semiparametric Inference for Partially Linear Model. Partially linear models
take the form

E
[
Y |X,S| = βTX + g(S)E[X | S] = χ(S)

where β is the parameter of interest, S is a nuisance (or control) variable, X is the covariates,
and g is an unknown and possibly complicated function. These models are widely studied in the
semiparametric literature. Among many others, Robins et al. [54], Robinson [55], Chernozhukov et al.
[11] focus on estimation of β, under the assumption that the triples (Sn, Xn, Yn) are independent and
identically distributed across data indices n.

In many spatial applications, it isn’t reasonable to think of the nuisance variable (geographic space)
as sampled independently and identically, or even at regularly spaced locations. Observational data
are often collected in a highly non-uniform way — densely in some regions, sparsely or not at
all in others — due to physical constraints, accessibility, or policy decisions. This non-uniformity
introduces distribution shifts when attempting to generalize inferences from one region to another.
In the present work, we focus on inference with fixed spatial locations and do not impose regularity
conditions on the sampling design. This setup allows us to quantify uncertainty in associations in
cases where extrapolation to poorly-sampled geographic areas is required, or in cases with heavily
clustered training locations and more uniform target locations.

A notable exception to the assumption of fully i.i.d. data in the semiparametric literature is Heckman
[27]. Heckman [27] considered time as a nuisance variable, and assumed this nuisance variable was
one-dimensional and sampled densely and in a sufficiently regular way. In contrast, we allow for
multiple spatial dimensions and do not require regularity assumptions about the sampling design.

Comparison to KNN Imputation. Our estimator is closely related to KNN imputation [66]. The
1-Nearest Neighbor point estimate we consider is equivalent to 1NN imputation for the response,
but using only the spatial coordinates — not the covariate values — as features when performing
imputation. Directly applying KNN imputation to fill in the target response and then calculating
standard confidence intervals would not lead to correct estimates of the variance because of repeated
use of training data when imputing missing values — we calculate the variances accounting for
potential repeated use of these responses. Additionally, using our smoothness assumptions, we are
able to quantify additional uncertainty due to potential bias introduced when imputing the missing
response values at the target locations. Because our confidence intervals account for potential
bias and calculate the variance accounting for the weight assigned to each training example, our
confidence intervals are guaranteed to be conservative, whereas confidence intervals calculated after
data imputation need not be.
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Algorithm 1 Lipschitz-Driven CI for θ⋆OLS,p

input {(Sn, Xn, Yn)}Nn=1, {(S⋆
m, X⋆

m)}Mm=1, Lipschitz constant L, confidence level 1− α, σ2 (op-
tional)

output A (1− α)-confidence interval IΨ for θ⋆OLS,p

1: Ψ← 1-NN({Sn}Nn=1, {S⋆
m}Mm=1) (Definition 5)

2: θ̂Ψp ← e⊤p
(
X⋆⊤X⋆

)−1
X⋆⊤ ΨY

3: w ← e⊤p
(
X⋆⊤X⋆

)−1
X⋆⊤, vΨ ← wΨ

4: B ← supg∈FL

∣∣∑M
m=1 wm g(S⋆

m)−∑N
n=1 v

Ψ
n g(Sn)

∣∣∣. Compute with linear program (Ap-
pendix B.2).

5: If σ2 unknown, solve for the following estimator via quadratic program (Appendix B.7):

σ2 := σ̂2
N ← inf

g∈FL

1

N

N∑
n=1

(
Yn − g(Sn)

)2
(10)

6: c← σ ∥vΨ∥2
7: Find ∆(α) satisfying Φ

(
∆(α)

)
− Φ

(
−2B/c−∆(α)

)
= 1− α, by root finding algorithm

(Appendix B.6).
8: IΨ ←

[
θ̂Ψp −B − c∆(α) , θ̂Ψp +B + c∆(α)

]
.

B Implementation Details

In this section, we describe the implementation details of our method. Particularly, this involves
computing the upper bound on the bias, computation of ∆ in Lemma 6 and computation of σ̂2

N from
Eq. (10). To summarize our method, we state it as an algorithm.

B.1 Selecting the Matrix Ψ.

In the main text we selected Ψ by using the nearest source location to each target location. We now
provide additional discussion about alternative choices of Ψ and possible trade-offs.

A generalization of the 1-nearest neighbor approach is to consider a Ψ matrix determined by K-
nearest neighbors.
Definition 10 (Nearest-Neighbor Weight Matrix). Define the K-nearest neighbor weight matrix by

Ψmn =

{
1
K Sn ∈ {K closest source locations to S⋆

m}
0 otherwise

. (11)

For definiteness, we assume that, if multiple sources are the same distance from a target, ties are
broken uniformly at random.

When using a K-nearest neighbor matrix, there is an inherent bias–variance trade-off in choosing
K. Increasing K broadens the geographic range of source observations used, hence the bias will
increase; however, it also lowers the variance by averaging over more responses. The degree to
which increasing K introduces additional bias depends on the density of data relative to the Lipschitz
constant — the benefit of smoother weighting schemes (e.g. K > 1) generally becomes more
pronounced as the density of spatial sampling increases since smoother weighting schemes naturally
leverage multiple nearby points, reducing variance while controlling bias effectively. We do not
investigate this trade-off in detail. In the experiments we ran, we found 1-nearest neighbor to work
well. This is consistent with results in the mean estimation literature suggesting that if source and
target distributions overlap substantially, the variance term remains manageable, even when using
1-nearest neighbor approaches [50].

B.2 Implementation of the Wasserstein Bound Calculation

We show in Appendix F.3 how Eq. (7) reduces to computing a Wasserstein-1 distance between
empirical measures. To implement the Wasserstein distance calculation, we rely on the Python
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Optimal Transport library [18]. For the simulated experiments, we compute the cost matrix using
Euclidean distances between spatial locations. For the real-world experiment, we use the Haversine
distance to account for Earth’s curvature.

B.3 Choice of Lipschitz Constant Based on Prior Research: Example for Air Pollution

As a concrete example of a selecting the Lipschitz constant based on domain-expertise, we consider
the problem of selecting a Lipschitz constant in an analysis where the response is annual average
PM2.5 over California. Chow et al. [12] claim that “Zones of representation for PM2.5 varied from
5–10km for the urban Fresno and Bakersfield sites, and increased to 15–20km for the boundary and
rural sites” where “[t]he zone of representation is defined as the radius of a circular area in which a
species concentration varies by no more than ±20% as it extends outward from the center monitoring
site.” The annual PM2.5 concentrations in the study area do not exceed 30µg/m3. The combination
of a zone of representation between 5–20km, and a variation of not more than 30 µg/m3 within this
zone of representation suggests a range of possible Lipschitz constants: 0.25–1.2(µg/m3)/km. The
authors also point out that topographical and meteorological phenomena contribute to this scale of
variation. So we would not expect this proposed constant to be “universal” for problems related to
PM2.5, but we might expect that this range of Lipschitz constants is a reasonable starting point for
other studies involving annual average PM2.5 with similar weather and topography to California. We
showed in our real-data analysis that a range of Lipschitz constants can still produce qualitatively
similar results (Figure 9) and correct coverage. To err towards the side of a conservative analysis, we
would recommend a user selects the largest Lipschitz constant in this range (i.e. 1.2(µg/m3)/km).

B.4 Confidence-Interval Widths

In some experiments, most notably the tree-cover analysis in Fig. 3, our confidence intervals can ap-
pear wide. This increased width arises naturally from our explicit control of bias under extrapolation:
when test locations differ substantially from training locations, the Wasserstein-based bias bound
enlarges, yielding intervals that faithfully represent genuine uncertainty rather than methodological
conservatism. By contrast, existing methods (e.g., OLS, sandwich, and importance-weighted ap-
proaches) produce much narrower intervals but fail to achieve nominal coverage, often approaching
zero coverage in Fig. 1 and Fig. 2. Our method therefore yields the narrowest intervals among those
that do maintain validity. Producing still-narrower intervals would be trivial if one were willing to
sacrifice coverage—after all: a zero-width interval achieves minimal size but no inferential mean-
ing. Finally, we note that our intervals are typically informative in practice: in many settings they
remain sufficiently tight to exclude zero, providing clear conclusions about the sign and magnitude of
associations.

In practice, interval width also reflects the spatial density of available training data. When observations
are closely spaced relative to the smoothness scale implied by the Lipschitz constant, the bias bound
remains small and the resulting intervals are narrow. As the spacing grows, the bound naturally
increases, producing wider intervals that correctly reflect the added uncertainty from extrapolation.
Thus, even when data are sparse, the width of our intervals provides a meaningful indication of the
reliability of inferences under the assumed smoothness level.

B.5 Use of Confidence Interval Lemma 6

In all experiments, we construct confidence intervals as in Lemma 6. A simpler alternative, which
guarantees 1 − α coverage for all Gaussian distributions N (b, c2) with b ∈ [−B,B], is to form
two-sided confidence intervals for each b ∈ [−B,B] and then take their union. This produces an
interval of the form

[−B − cΦ−1
(
1− α

2

)
, B + cΦ−1

(
1− α

2

)
]

However, the confidence intervals from Lemma 6 are never longer than this union-based approach,
and the root-finding step required to compute them adds negligible overhead. Consequently, we opt
for the intervals in Lemma 6 in all our experiments.

19



B.6 Computation of ∆ for Lemma 6

Define g(∆) = Φ(∆) − Φ(− 2B
c − ∆) − 1 + α. Our goal is to find a root of g in the interval

[Φ−1(1− α),Φ−1(1− α/2)]. We first show that g is monotonic, that a root exists in this interval,
and that the root is unique.

Differentiating, we see g′(∆) = ϕ(∆) + ϕ(− 2B
c −∆), where ϕ denotes the Gaussian probability

density function. This is strictly positive, and so g is strictly monotone increasing.

Also,

g(Φ−1(1− α)) = 1− α− Φ

(
−2B

c
− Φ−1(1− α)

)
− 1 + α < 1− α− 1 + α = 0. (12)

by non-negativity of the CDF. And,

g(Φ−1(1− α/2)) = 1− α/2− Φ

(
−2B

c
− Φ−1(1− α/2)

)
− 1 + α (13)

= α/2−
(
1− Φ

(
2B

c
+Φ−1(1− α/2

))
. (14)

We used symmetry of the Gaussian in the second equality. Then,

Φ

(
2B

c
+Φ−1(1− α/2)

)
≥ 1− α/2, (15)

and so g(Φ−1(1− α/2)) ≤ 0. We conclude that g has a root in the interval. By strict monotonicity
of g, this root is unique.

We use Brent’s method [5] as implemented in Scipy [72] to compute this root numerically.

B.7 Computation of σ̂2
N via quadratic programming

To estimate the noise parameter, we need to solve the minimization problem

σ̂2
N = inf

g∈FL

1

N

N∑
n=1

(Yn − g(Sn))
2. (16)

The first obstacle is that the infimum is taken over an infinite-dimensional space. However, by the
Kirszbraun theorem [32, 69], every L-Lipschitz function defined on a subset of RD or SD can be
extended to an L-Lipschitz function on the whole domain. Since our objective function depends only
on the values of g at the source spatial locations, we only need to enforce the Lipschitz condition
between all pairs of source spatial locations, not over the entire domain. Enforcing the Lipschitz
condition at these N source locations amounts to N(N − 1)/2 linear inequality constraints.

Particularly, if we define G = (g(S1), g(S2), . . . g(Sn)), then we have the constraints

AG ≤ Lvec(Γ) (17)

where L is the Lipschitz constant, Γ ∈ RN2−N is the matrix of pairwise distances between distinct
points in S, and A ∈ R(N2−N)×N is a sparse matrix with exactly one 1 and one −1 in distinct rows
of each column, representing all such pairs in its rows.

The objective is a symmetric, positive-definite quadratic form since it is a sum of squares. Therefore,
the optimization problem is a quadratic program.

In practice, we use the Scipy sparse matrix algebra [72] and the CLARABEL solver [22] through the
CVXPY optimization interface [16, 1] to solve this quadratic program.

B.8 Scalable Estimation of σ2

The quadratic programming approach for estimating σ2 outlined in the main text (Eq. (10)) and
described in detail in the previous section does not scale well to large numbers of source locations.
Therefore, for our synthetic experiment with N = 10,000, we take a different approach.
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For 1 ≤ n ≤ N , let η(n) = argminn′ ̸=n dS(Sn, S
′
n). That is η(n) is the index of the nearest point

to Sn. Define the estimator,

σ̃2
N =

1

2N

∑
n=1

(Yn − Yη(n))
2. (18)

Then as long as dS(Sn, S
′
n) ≈ 0, by the Lipschitz assumption, Yn − Yη(n) ≈ ϵn − ϵη(n), and so

σ̃2
N ≈

1

2N

N∑
n=1

(ϵn − ϵη(n))
2 =

1

2N

(
N∑

n=1

ϵn −
N∑

n=1

ϵnϵη(n) +

N∑
n=1

ϵ2η(n)

)
. (19)

Then,

E[σ̃2
N ] = σ2. (20)

In general, we expect the estimate to concentrate around its expectation, provided that no single point
in the source data is the nearest neighbor of too many other points in the source data.

B.9 Implementation of Baseline Methods

We now describe the details of the implementation of the baseline methods.

Ordinary Least Squares. We use the ordinary least squares implementation from statsmodel [60].
We use the default implementation, which calculates the variance as the average sum of squared
residuals with a degrees-of-freedom correction, as in Eq. (2). We use a t-statistic to compute the
corresponding confidence interval, which is again the default in statsmodel [60].

Sandwich Estimator. We use the sandwich estimation procedure included in ordinary least squares
in statsmodels [60]. We use the HC1 function, which implements the sandwich estimator with
the degrees-of-freedom correction from Hinkley [28], MacKinnon and White [39]. That is, the
variance is estimated as 1

N−P eTp (X
TX)−1(XTRX)(XTX)−1ep. We use the default settings in

statsmodels, which use a z-statistic with the sandwich estimator to compute the corresponding
confidence interval.

Importance Weighted Least Squares. We use the scikit-learn [48] implementation of kernel
density estimation to estimate the density of test and train point separately. We use a Gaussian kernel
(the default) and perform 5-fold cross validation to select the bandwidth parameter, maximizing the
average log likelihood of held-out points in each fold. For the simulation experiments, we performed
cross-validation to select the bandwidth parameters over the set {0.01, 0.025, 0.05, 0.1, 0.25, 0.5}.
We selected this set of possible bandwidths to span several orders of magnitude from very short
bandwidths, to bandwidths on the same order as the entire domain. We select the bandwidths for
the source and target density estimation problems separately. For the real data experiments, the
bandwidths was selected from the set {0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1}. This range
was selected since the maximum Haversine distance between points in the spatial domain of interest
is approximately 1. Once density estimates are obtained, we evaluate the ratio of the density function
on the training locations, and use these as weights to perform weighted least squares. Weighted least
squares is performed using the default settings in statsmodels [60].

Generalized Least Squares. We perform generalized least squares in a two-stage manner. We first
approximate the covariance structure with a Gaussian process regression model. Then we use this
approximation to fit a generalized least squares model with restricted spatial regression [29].

More precisely, first we optimize the maximum likelihood of a Gaussian process regression model
with a linear mean function depending on the covariates including an intercept and Matérn 3/2 kernel
defined on the spatial source locations. We use the GPFlow [40] implementation of the likelihood,
and L-BFGS [36] for numerical optimization of the likelihood. The optimization is initialized using
the GPFlow default parameters for the mean and covariance functions.

Once the maximum likelihood parameters have been found, we use the found prior covariance function
for defining the covariance between datapoints to be used in the generalized least squares routine. We
use restricted spatial regression [29], and so the covariance matrix is defined as PKP +λ2IN , where
λ2 is the noise variance selected by maximum likelihood in the GP model, K is the N ×N matrix
formed by evaluating the Matérn 3/2 kernel with the maximum likelihood kernel parameters on the
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source locations, and P is the orthogonal projection onto the orthogonal complement of the covariates
(including intercept), i.e. P = IN − X(XTX)−1XT. This covariance matrix PKP + λ2IN is
passed to the GLS method in statsmodel, and confidence intervals as well as point estimates are
computed using the default settings.

Gaussian Process Bayesian Credible Intervals.

We first optimize the maximum likelihood of a Gaussian process regression model with Matérn 3/2
kernel defined on the spatial source locations summed with a linear kernel defined on the covariates.
This has the same likelihood as having a linear mean function in the covariates with a Gaussian prior
over the weights, see Rasmussen and Williams [52, Page 28]. We use the GPFlow [40] implementation
of the likelihood, and L-BFGS [36] for numerical optimization of the likelihood. The optimization
is initialized using the GPFlow default parameters for the mean and covariance functions. Once we
have calculated the maximum likelihood parameters, we compute the posterior credible interval for θ.
The posterior over θ is Gaussian and has the closed form,

θpost ∼ N (Σ−1
postX

TΣ−1Y,Σpost) (21)

where

Σpost =

(
XTΣ−1X +

1

λ2
IP

)
, (22)

where λ2 is the prior variance of θ, Σ = K + δ2IN , where δ2 is the variance of the noise, and K is
the N ×N kernel matrix formed by evaluating the Matérn 3/2 kernel on the source spatial locations.
The posterior for eTp θpost is therefore also Gaussian,

eTp θpost ∼ N (eTpΣ
−1
postX

TΣ−1Y, eTpΣpostep). (23)

Credible intervals are then computed using z-scores together with this mean and variance.

C Extension To Multivariate Responses

We focus on a scalar response Yn ∈ R. We expect similar machinery can be adapted to confidence
intervals for each coordinate of Yn ∈ RD. Namely, we can treat each component Y (d)

n ∈ RD as a
separate univariate problem, and apply our Lipschitz-based bias bound and variance calibration to each
coordinate. If one desires simultaneous coverage over all D outputs, a straightforward Bonferroni
correction (i.e. defining α′ = α/D and applying our method to construct 1− α′ confidence intervals
for each coordinate) or another family-wise error control can be used. An exploration of improvements
of this Bonferroni correction approach for multivariate responses would be an interesting direction
for future work.

D Simulations Additional Details

In this section, we present figures to visualize the data generating process for simulation experiments.
In all experiments, an intercept is included in the regression as well as the covariates described. All
simulation experiments were run on a Intel(R) Xeon(R) W-2295 CPU @ 3.00GHz using 36 threads.
The total time to run all simulation experiments was under two hours. The single covariate experiment
took 9-10 minutes to run; the three covariate experiment took around 80 minutes to run, and the
Lipschitz ablation study took around 70 minutes to run.

D.1 Reported Uncertainty in Simulation Experiments

In Fig. 1, we provide error bars for the empirical coverage as well as a point estimate. The upper side
of the confidence interval indicates the largest value of the (true) coverage such that with probability
97.5%, the empirical coverage would be less than or equal to the observed value. Conversely, the
lower edge of the confidence interval indicates the smallest value of the (true) coverage such that
with probability 97.5%, the empirical coverage would be greater than or equal to the observed value.
This is therefore a (conservative) 95% confidence interval for the true coverage.

To calculate the upper and lower bounds, we observe that the empirical coverage is a binomial random
variable, with parameters equal to the number of seeds and the true coverage. We then numerically
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Figure 4: Spatial sites for the source (blue) and target (orange) data are shown in the left most plots
for different values of shift used in generating the data. More extreme values of the shift parameter
lead to larger biases in parameter estimation from the training data without adjustment. The third
plot from the left shows the covariate surface, while the fourth shows the expected response at each
spatial location.

invert the binomial cumulative mass function to calculate the upper and lower bounds by performing
bisection search on the probability parameter.

We also provide ±2 standard deviation error bars on the confidence interval width. As the confidence
interval width is not necessarily normal this may not be a 95% confidence interval for the confidence
interval width. But is meant as an indicator of spread of confidence interval widths each method
obtains.

D.2 Data Generation for the Single Covariate Experiment

We show example datasets used in the simulation experiment with a single covariate and the simulation
experiment in which we investigated the impact of Lipschitz constant on confidence interval width
and coverage in Fig. 4. The left most two panels show the distribution of source (blue) and target
(orange) locations for two values of the shift parameter. Large positive values of the shift parameter
lead to target distributions clustered to the top right, values close to zero lead to the target locations
being approximately uniformly distributed and large negative values lead to target locations clustered
to the bottom left. The third panel from the left in Fig. 4 shows the covariate plotted as a function of
spatial location,

χ(S(1), S(2)) = S(1) + S(2). (24)

The right most panel shows the conditional expectation of the response plotted as a function of spatial
location,

E[Y ⋆|S⋆ = (S(1), S(2))] = S(1) + S(2) +
1

2
((S(1))2 + (S(2))2). (25)

The gradient of this conditional expectation is,[
1 + S(1)

1 + S(2)

]
(26)

which has norm √
(1 + S(1))2 + (1 + S(2))2. (27)

This obtains a maximum of 2
√
2 on [−1, 1]2, and so this is the Lipschitz constant of f(S) = E[Y |S].

D.3 Data Generation for the Three Covariate Experiment

In Fig. 5 we show data generated for the three covariate shift experiment. Source and target locations
are generated as in the one covariate simulation, but with N = 10,000 (M = 100 is still used). These
are not shown in Fig. 5.
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Figure 5: The first 3 plots from the left show the covariate surfaces, while the fourth shows the
expected response at each spatial location for the second simulated experiment. The source and target
locations (not shown) are the same as in Fig. 4, though with N = 10,000.

The covariates are, from left to right in Fig. 5

X(1) = sin(S(1)) + cos(S(2)) (28)

X(2) = cos(S(1))− sin(S(2)) (29)

X(3) = S(1) + S(2). (30)

The conditional expectation of the response (right most panel in Fig. 5) is

E[Y |S = (S(1), S(2)] = X(1)X(2) +
1

2
((S(1))2 + (S(2))2) (31)

= (sin(S(1)) + cos(S(2)))(cos(S(1))− sin(S(2))) +
1

2
((S(1))2 + (S(2))2).

(32)

The gradient of this conditional expectation is[
cos(2S(1))− sin(S(1) + S(2)) + S(1)

− cos(2S(1)) + sin(S(1) − S(2)) + S(2)

]
. (33)

We see that both arguments of this gradient are less than 3 in absolute value, and therefore the norm
of this Lipschitz constant is less than or equal to

√
32 + 32 = 3

√
2.

E Tree Cover Experiment Additional Details

In this section we provide additional details for the real data tree cover experiment, as well as figures
to visualize the data and additional experimental results. The tree cover experiments was run on a
Intel(R) Xeon(R) W-2295 CPU @ 3.00GHz using 36 threads. The total time to run the experiment
was under 5 minutes. The Lipschitz ablation study also took less than 5 minutes to run.

E.1 Tree Cover Data

Our analysis draws on data from Lu et al. [37], who manually labeled 983 high-resolution Google
Maps satellite images for tree cover percentage. While no license is specified, we used this data with
permission of the authors. These images were selected from random locations within the 2021 USFS
Tree Canopy Cover (TCC) product [68]. This dataset is public domain. We follow Lu et al. [37] and
use three covariates:

1. Global Aridity Index (1970–2000): Averaged at a 30 arc-seconds resolution [65]. This index
is calculated as the ratio of precipitation to evapotranspiration, with lower values indicating
more arid conditions.

2. Elevation: Provided by NASA’s 30-meter resolution dataset [43].
3. Slope: NASA’s 30 m Digital Elevation Model. Also provided by NASA’s 30-meter resolution

dataset [43]. While we could not find specific license information, as the Slope and Elevation
datasets are produced by a US government agency (NASA), we understand this data to be
public domain following section 105 of the Copyright Act of 1976.
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Figure 6 provides a visual overview of both the tree cover and covariates. As a preprocessing step,
we convert the (latitude, longitude) coordinates of each data point into radians. This allows us to use
the Haversine formula to compute distances in kilometers for the Wasserstein-1 cost and the nearest
neighbor weighting procedure.

Elevation and slope are important factors influencing tree cover worldwide. Generally, areas at lower
elevations tend to have more tree cover, often due to higher temperatures [41], and sloped terrains also
support greater tree coverage [59]. As done in Lu et al. [37], we focus on these three covariates and
did not include additional factors that might affect tree cover. This decision was made because our
primary objective is to demonstrate uncertainty quantification rather than to provide a comprehensive
explanation of tree cover dynamics.

Figure 6 provides a visual overview of the distribution for both the tree cover and covariates.

Figure 6: Tree cover response and covariates. The dots represent the 983 locations considered. Top
left: distribution of tree cover percentage. Top right: Average Aridity Index, measured as the ratio of
precipitation to evapotranspiration. Bottom left: Elevation, measured in meters. Bottom right: Slope,
measured in degrees.

E.2 Source and Target Data Split and Spatial Preprocessing

We define our target region to be the Western portion of the Continental United States. In particular,
we consider locations that have latitudes between 25◦ and 50◦ and longitudes between −125◦ and
−110◦. Within spatial locations in this defined region, we pick 50% of all spatial locations — totaling
133 sites — as target data.

To select the source data, we perform the following steps:

1. Consider all the remaining spatial locations, i.e. exclude the 133 target points from the pool
of 983 spatial points. This leaves us with 850 points.

2. Since we are interested in evaluating whether our method and the baselines achieve nominal
coverage, uniformly randomly sample 20% of the remaining locations across 250 different
random seeds. By doing this, for each random seed we have 170 source locations.

Fig. 7 visually represents the spatial distribution of the source and target locations for one representa-
tive random seed.

As a preprocessing step, we also convert the geographical coordinates (latitude and longitude) of
each data point from degrees to radians. This conversion is essential because it allows us to apply
the Haversine formula, which calculates the great-circle distance between two points on the Earth’s
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Figure 7: Split of the tree cover dataset in a target distribution in the West of the United States. Target
locations are shown in orange, while source locations are shown in blue.

surface in kilometers, to compute distances in kilometers for the Wasserstein-1 cost and the nearest
neighbor weighting procedure.

E.3 Estimating the Ground Truth Parameters to Evaluate Coverage

In order to evaluate coverage, we repeat the data subsampling process described above 250 times.
Ideally, we would estimate the coverage as the proportion of these seeds in which the estimand θ⋆OLS,p
falls inside the confidence interval we construct for each method. However, we cannot evaluate θ⋆OLS,p
directly, even though we have access to the target responses. To account for sampling variability, we
use our method and each baseline to construct a confidence interval for the difference,

θ̂⋆p − θ̂p (34)

where θ̂⋆p = eTp (X
⋆TX⋆)−1X⋆TY ⋆ is the estimated parameter using the target data (which our

method and baselines don’t have access to) and θ̂p is the estimated parameter we compute with
each method using the source responses. If this confidence interval contains 0, we count the
method as having covered the true parameter, while if it doesn’t we count the method as not having
covered the true parameter. We estimate the variance of θ̂⋆p using the model-trusting standard errors
σ̂2 = 1

N−P

∑N
n=1 r

2
n where rn are the residuals of the model fit on the training data. We expect this

to inflate our estimate of the standard variance of the target OLS estimate if the response surface is
nonlinear, as the residuals will be larger due to bias. By possibly overestimating and incorporating
this sampling variability into confidence intervals, we expect the calculated coverages to overestimate
the true coverages. The resulting coverages are shown in the top row of Fig. 3.

In Fig. 8 we also report confidence intervals by calculating the proportion of times that θ̂⋆p is contained
in each confidence interval. θ̂p is an unbiased estimate for θ⋆OLS,p whether or not the model is well-
specified. However, we might expect that the coverages reported with this approach underestimate the
actual coverage of each method’s confidence intervals due to not accounting for sampling variability
in θ̂⋆p .

E.4 Experiment with Varying Lipschitz Constant

In this section, we provide an additional experiment with these real data where the focus is to
assess how varying the underlying Lipschitz constant in Assumption 4 changes coverage and
interval width. For this experiment we consider 9 different values for the Lipschitz constant,
L ∈ {0.001, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1}. This range of values is a reasonable range
of values that a practitioner with domain knowledge in the tree cover field might be willing to specify.
Indeed, the smallest Lipschitz constant considered, 0.001, corresponds to assuming that to have a 1%
increase in tree cover we need to move 1/0.001 = 1000 kilometers. This is quite an extreme value,
but in some parts of arid regions such as New Mexico and Arizona it can be true. On the other hand,
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Figure 8: Coverages for the difference (upper), coverages for the point estimate (middle), and
confidence interval widths (lower) for our method as well as 5 other methods for the West US data.
Each column represents a parameter in the tree cover experiment. Only our method consistently
achieves the nominal coverage.

the largest Lipschitz constant considered, 1, corresponds to assuming that to have 1% increase in tree
cover we need to move 1 kilometer. This is also extreme, but in regions in the US where elevation
changes are very pronounced (e.g. in the Colorado Rockies), tree cover can vary sharply over very
short distances.

In Fig. 9, we present the results of this experiment. We find that varying the Lipschitz constant within
this range does not significantly impact coverage. Specifically, for slope and elevation, coverage
remains consistent across all constants except L = 0.001. For aridity index, coverage is low for
L ≤ 0.1 but exceeds 95% for L ≥ 0.2. Meanwhile, confidence intervals become noticeably wider
for L > 0.5 while remaining relatively stable for smaller values.

E.5 Additional Experiment: Target South-East US

In this experiment, we define our target region in the Southeastern portion of CONUS at locations
with latitude in the range (25, 38) and longitude in the range (-100, -75). Out of all spatial points in
this region, 50% — totaling 118 sites — are designated as target data. Next, we select the source
data by taking a uniform random sample of 20% of the remaining spatial locations, repeated over
250 random seeds to assess coverage performance. Each seed yields 173 source locations. Fig. 11
illustrates the spatial split between source and target data for a representative seed. As before, as a
preprocessing step we convert the (latitude, longitude) coordinates of each data point into radians.

Results. We report the results for the confidence interval coverage and width in Fig. 12. As before,
our method consistently achieves or exceeds 95% nominal coverage for all parameters. All competing
methods but KDEIW here achieves 95% nominal coverage (or close to 95% nominal coverage)
for the aridity index and slope parameter when considering the coverage for the θ̂⋆p − θ̂p (top row).
All competing methods fall short of the nominal threshold for the elevation parameter. The wider
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Figure 9: Coverage and average confidence interval widths over 250 seeds for 9 different values for
the Lipschitz constant L ∈ {0.001, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1}. The horizontal axis is
shared across all plots.

intervals produced by our method (last row) reflect the trade-off between achieving reliable coverage
and maintaining narrower intervals.

In the middle row we show the coverage for the point estimate θ̂⋆p . Here we see how our method is the
only one that achieves nominal coverage for all the parameters. In particular, all the other methods do
not achieve nominal coverage for any of the parameters.

Varying Lipschitz constant. Finally, we report also for this experiment results when varying the
assumed Lipschitz constant. As explained in Appendix E.4, we consider 9 different values for the
Lipschitz constant, L ∈ {0.001, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1}. We report the results in
Fig. 14. As before, we find that varying the Lipschitz constant within this range does not significantly
impact coverage. Specifically, here we see that for aridity index and elevation, coverage remains
consistent across all constants above L = 0.01. For slope, 95% nominal coverage is achieved for
L ≥ 0.05. And — as before — confidence intervals become noticeably wider for L > 0.5 while
remaining relatively stable for smaller values.
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Figure 10: Confidence intervals for different seeds for the West US. Each row shows confidence
intervals for the various methods over the three parameters for a given seed. The dashed vertical lines
represent the true parameters (black is the point estimate, orange is a 95% confidence interval). The
blue dots the point estimates for the different methods, and the blue lines are the confidence intervals.
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Figure 11: Spatial sites for the source (blue) and target (orange) data. The target data are chosen from
the south-eastern part of the CONUS, whereas the source data cover the whole region.

0.0

0.5

1.0

C
ov

er
ag

e

Aridity Index

0.0

0.5

1.0
Elevation

0.0

0.5

1.0
Slope

0.0

0.5

1.0

C
ov

er
ag

e
(o

f
p

oi
n
t

es
ti

m
at

e)

Aridity Index

0.0

0.5

1.0
Elevation

0.0

0.5

1.0
Slope

G
LS

G
P

BCIs

K
D
EIW O

LS

Sa
nd

wich
O
ur

s
0.0

200.0

A
ve

ra
ge

C
I

W
id

th

G
LS

G
P

BCIs

K
D
EIW O

LS

Sa
nd

wich
O
ur

s
0.0

0.2

G
LS

G
P

BCIs

K
D
EIW O

LS

Sa
nd

wich
O
ur

s
0.0

5.0

Figure 12: Coverages for the difference (upper), coverages for the point estimate (middle), and
confidence interval widths (lower) for our method as well as 5 other methods for the Southeast US
data. Each column represents a parameter in the tree cover experiment. Only our method consistently
achieves the nominal coverage.
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Figure 14: Coverage and average confidence interval widths over 250 seeds for 9 different values for
the Lipschitz constant L ∈ {0.001, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1}.
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F Proofs

F.1 Derivation of Target-Conditional Ordinary Least Squares

We derive the OLS (Ordinary Least Squares) estimand for the given optimization problem:

θ⋆OLS = arg min
θ∈RP

E

[
M∑

m=1

(Y ⋆
m − θ⊤X⋆

m)2
∣∣∣S⋆

m

]
, (35)

where Y ⋆
m is unobserved, and X⋆

m is observed and a fixed function of S⋆
m.

First, expand the squared term inside the expectation:

(Y ⋆
m − θ⊤X⋆

m)2 = (Y ⋆
m)2 − 2Y ⋆

mθ⊤X⋆
m + (θ⊤X⋆

m)2. (36)

Substitute this back into the expectation:

E

[
M∑

m=1

(Y ⋆
m − θ⊤X⋆

m)2
∣∣∣S⋆

m

]
= E

[
M∑

m=1

(Y ⋆
m)2 − 2Y ⋆

mθ⊤X⋆
m + (θ⊤X⋆

m)2
∣∣∣S⋆

m

]
(37)

Since the expectation is linear, we can separate the terms:

E

[
M∑

m=1

(Y ⋆
m)2

∣∣∣S⋆
m

]
− 2E

[
M∑

m=1

Y ⋆
mθ⊤X⋆

m

∣∣∣S⋆
m

]
+ E

[
M∑

m=1

(θ⊤X⋆
m)2

∣∣∣S⋆
m

]
(38)

Now we can simplify each of the terms as follows:

• The first term,
∑M

m=1 E
[
(Y ⋆

m)2
∣∣∣S⋆

m

]
, does not depend on θ, so it can be treated as a constant

with respect to the optimization problem

• The second term, −2E
[∑M

m=1 Y
⋆
mθ⊤X⋆

m

∣∣∣S⋆
m

]
, can be rewritten using the linearity of

expectation, the fact that θ is not random, and Assumption 1:

−2θ⊤
M∑

m=1

X⋆
mE

[
Y ⋆
m

∣∣∣S⋆
m

]
(39)

• The third term, E
[∑M

m=1(θ
⊤X⋆

m)2
∣∣∣S⋆

m

]
, is non-random by Assumption 1 and can be

rewritten as:
M∑

m=1

(θ⊤X⋆
m)2 (40)

The optimization problem then becomes

θ⋆OLS = arg min
θ∈RP

{
constant− 2θ⊤

M∑
m=1

X⋆
mE

[
Y ⋆
m

∣∣∣S⋆
m

]
+

M∑
m=1

(θ⊤X⋆
m)2

}
. (41)

And since the constant term does not affect the optimization, we can drop it to get

θ⋆OLS = arg min
θ∈RP

{
−2θ⊤

M∑
m=1

X⋆
mE

[
Y ⋆
m

∣∣∣S⋆
m

]
+

M∑
m=1

(θ⊤X⋆
m)2

}
(42)

To find the minimizer, we take the derivative of the objective function with respect to θ and set it to
zero:

∂

∂θ

{
−2θ⊤

M∑
m=1

X⋆
mE

[
Y ⋆
m

∣∣∣S⋆
m

]
+

M∑
m=1

(θ⊤X⋆
m)2

}
= 0 (43)

−2
M∑

m=1

X⋆
mE

[
Y ⋆
m

∣∣∣S⋆
m

]
+ 2

M∑
m=1

X⋆
m(X⋆

m)⊤θ = 0 (44)
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And by inverting this and using the fact that we assumed that X⋆TX⋆ is invertible

θ⋆OLS =

(
M∑

m=1

X⋆
m(X⋆

m)⊤θ

)−1 M∑
m=1

X⋆
mE

[
Y ⋆
m

∣∣∣S⋆
m

]
(45)

which in matrix form can be written as

θ⋆OLS = (X⋆TX⋆)−1X⋆TE[Y ⋆|S⋆]. (46)

as in Eq. (4).

F.2 Proof of Theorem 7

In the main text, we stated our confidence interval for the 1NN choice of Ψ. We now state version for
general non-negative matrices with columns summing to 1.

Theorem 11. Suppose (S⋆
m, X⋆

m, Y ⋆
m)Mm=1 and (Sn, Xn, Yn)

N
n=1 satisfy Assumptions 1 to 4. Define

w as in Algorithm 1. For any Ψ ∈ RM×N , a matrix with non-negative entries with columns summing
to 1, define vΨ = wΨ. As in the main text, take θ̂Ψp = eTp

(
X⋆TX⋆

)−1
X⋆TΨY . Define c = σ∥vΨ∥2,

with σ2 the variance of the additive noise from Assumption 2. Define the (random) interval IΨ as
in Algorithm 1 with known σ2. Then with probability at least 1− α, θ⋆OLS,p ∈ IΨ. That is, IΨ has
coverage (conditional on the test locations) at least 1− α.

Proof. We being as in the main text. We show the difference between our estimand and estimator is
normally distributed. To that end, we decompose the difference between our estimand and estimator
into a bias term and a mean-zero noise term.

θ⋆OLS,p − θ̂Ψp =

M∑
m=1

wmf(S⋆
m)−

N∑
n=1

vΨn Yn, (47)

for w := eTp
(
X⋆TX⋆

)−1
X⋆T ∈ RM and vΨ := wΨ ∈ RN . By Assumption 2, the righthand side

of Eq. (47) can be written

∑M

m=1
wmf(S⋆

m)−
∑N

n=1
vΨn Yn

M∑
m=1

wmf(S⋆
m)−

N∑
n=1

vΨn f(Sn)︸ ︷︷ ︸
bias

−
N∑

n=1

vΨn ϵn︸ ︷︷ ︸
randomness

. (48)

Since the spatial locations are fixed, the bias term is not random and can be written as b ∈ R. We can
calculate the variance directly,

V[θ⋆OLS,p − θ̂Ψp ] = V[
N∑

n=1

vΨn ϵn] =

N∑
n=1

(vΨn )
2V[ϵn] = σ2∥vΨ∥22. (49)

We used the ϵn are independent and identically distributed with variance σ2 (Assumption 2).

It follows that

θ⋆OLS,p − θ̂Ψp ∼ N (b, σ2∥vΨ∥22) (50)

To bound the bias b, we use Assumption 4 to write

|b| ≤ sup
g∈FL

∣∣∣∣∣
M∑

m=1

wmg(S⋆
m)−

N∑
n=1

vΨn g(Sn)

∣∣∣∣∣ . (51)

We can therefore apply Lemma 6 to complete the proof.
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F.3 Computing an Upper Bound on the Bias of Our Estimand with Wasserstein-1 Distance

First of all observe that if
∑M

m=1 wm = 1,
∑N

n=1 v
Ψ
n = 1, vΨn ≥ 0 for 1 ≤ n ≤ N , and wm ≥ 0

for 1 ≤ m ≤ M then the supremum in Eq. (7) would be equal to a Wasserstein-1 distance by
Kantorovich-Rubinstein duality [71, Theorem 5.10, Case 5.16].

Next, consider what happens if
∑M

m=1 wm −
∑N

n=1 v
Ψ
n ̸= 0. We show that the right-hand side

of Eq. (7) is infinite. Assume by contradiction that there exists a C > 0 that upper bounds this
supremum. Because

∑M
m=1 wm −

∑N
n=1 v

Ψ
n ̸= 0 and all constant functions are L-Lipschitz, for any

γ > 0, taking, for all S, g(S) = G = C+γ∑M
m=1 wm−

∑N
n=1 vΨ

n

sup
g∈FL

∣∣∣∣∣
M∑

m=1

wmg(S⋆
m)−

N∑
n=1

vΨn g(Sn)

∣∣∣∣∣ ≥
∣∣∣∣∣

M∑
m=1

wmG−
N∑

n=1

vΨnG

∣∣∣∣∣
= C + γ. (52)

This contradicts the assumption that C is an upper bound on the supremum. Because C was arbitrary,
the right hand side of Eq. (7) is infinite, as desired.

Our assumption that Ψ is a non-negative matrix whose columns sum to 1 avoids this situation. We
formalize our upper bound on the bias in the following proposition.

Proposition 12. Suppose that
∑N

n=1 Ψm,n = 1 for all m. Let w ∈ RM and vΨ = (wΨ)T ∈ RN .

sup
g∈FL

∣∣∣∣∣
M∑

m=1

wmg(S⋆
m)−

N∑
n=1

vΨn g(Sn)

∣∣∣∣∣
= ALW1

(∑
m∈I

wm

A
δS⋆

m
+
∑
n∈I′

−vΨn
A

δSn
,
∑
m∈J

−wm

A
δS⋆

m
+
∑
n∈J′

vΨn
A

δSn

)
, (53)

where I = {1 ≤ i ≤M : wi ≥ 0}, I ′ = {1 ≤ i ≤ N : vΨi < 0}, J = {1 ≤ j ≤M : wj < 0} and

J ′ = {1 ≤ j ≤ N : vΨj ≥ 0} and A = 1
2

(∑M
m=1 |wm|+

∑N
n=1 |vΨn |

)
.

Proof. First, observe that
∑N

n=1 v
Ψ
n =

∑N
n=1(wΨ)n =

∑N
n=1

∑M
m=1 wmΨm,n =∑M

m=1 wm

∑N
n=1 Ψm,n =

∑M
m=1 wm.

Next, we normalize the weights to sum in absolute value to 2, and rescale the function class to consist
of 1-Lipschitz function. Define A = 1

2

(∑M
m=1 |wm|+

∑N
n=1 |vΨn |

)
. Then

sup
g∈FL

∣∣∣ M∑
m=1

wmg(S⋆
m)−

N∑
n=1

vΨn g(Sn)
∣∣∣= sup

g∈F1

∣∣∣∣∣
M∑

m=1

wmLg(S⋆
m)−

N∑
n=1

vΨn Lg(Sn)

∣∣∣∣∣ (54)

= AL sup
g∈F1

∣∣∣∣∣
M∑

m=1

wm

A
g(S⋆

m)−
N∑

n=1

vΨn
A

g(Sn)

∣∣∣∣∣ (55)

where we have used that a function is L-Lipschitz if and only if it can be written by scaling a
1-Lipschitz function by L.

Define I = {1 ≤ i ≤M : wi ≥ 0}, I ′ = {1 ≤ i ≤ N : vΨi < 0}, J = {1 ≤ j ≤M : wj < 0} and
J ′ = {1 ≤ j ≤ N : vΨj ≥ 0}. Then

AL sup
g∈F1

∣∣∣∣∣
M∑

m=1

wm

A
g(S⋆

m)−
N∑

n=1

vΨn
A

g(Sn)

∣∣∣∣∣ (56)

= AL sup
g∈F1

∣∣∣∣∣∑
m∈I

wm

A
g(S⋆

m) +
∑
n∈I′

−vΨn
A

g(Sn)−
(∑

m∈J

−wm

A
g(S⋆

m) +
∑
n∈J′

vΨn
A

g(Sn)

)∣∣∣∣∣
(57)

35



Because
∑N

n=1 v
Ψ
n =

∑M
m=1 wm and I and J partition the index sets,∑
m∈I

wm +
∑
n∈I′

−vΨn =
∑
m∈J

−wm +
∑
n∈J′

vΨn . (58)

And because the set I, I ′, J, J ′ sort the indices into positive and negative parts

∑
m∈I

wm +
∑
m∈J

−wm +
∑
n∈I′

−vΨn +
∑
n∈J′

vΨn =

M∑
m=1

|wm|+
N∑

n=1

|vΨn | = 2A. (59)

Therefore, ∑
m∈I

wm

A
δS⋆

m
+
∑
n∈I′

−vΨn
A

δSn and
∑
m∈J

−wm

A
δS⋆

m
+
∑
n∈J′

vΨn
A

δSn (60)

are probability measures. We can apply Kantorovich-Rubinstein duality to write,

B ≤ ALW1

(∑
m∈I

wm

A
δS⋆

m
+
∑
n∈I′

−vΨn
A

δSn
,
∑
m∈J

−wm

A
δS⋆

m
+
∑
n∈J′

vΨn
A

δSn

)
. (61)

where W1 denotes the 1-Wasserstein distance.

We compute the Wasserstein-1 distance by linear programming, see discussion in Appendix B.2.
Scalable upper bounds could also be computed by exhibiting a coupling between the measures (for
example by solving an entropy regularized optimal transport problem). See [49, Chapters 3 and 4]
for details on computation of Wasserstein distances.

F.4 Proof of Lemma 6

Proof of Lemma 6. We aim to prove that the interval [−B −∆, B +∆] is the narrowest 1− α confi-
dence interval that is valid for all b ∈ [−B,B] where ∆ is the solution of Φ (∆)−Φ (−2B/c̃−∆) =
1− α.

Ensuring Coverage Probability. Suppose that Xb ∼ N(b, c̃2) for b ∈ [−B −∆, B +∆]. Then,

Pr(Xb ∈ [−B −∆, B +∆]) = Φ

(
B +∆− b

c̃

)
− Φ

(−B −∆− b

c̃

)
,

To construct a valid confidence interval for any b ∈ [−B,B], we require that

Pr(Xb ∈ [−B −∆, B +∆]) ≥ 1− α, ∀b ∈ [−B,B].

This ensures 1− α coverage over all possible values of b in [−B,B].

Reduce the problem to Worst-Case Coverage. To find the narrowest interval, we identify the
worst-case value of b that minimizes the coverage probability. Let

C(b; ∆) = Φ

(
B +∆− b

c̃

)
− Φ

(−B −∆− b

c̃

)
,

denote the coverage probability of the interval [−B −∆, B + ∆] for Xb ∼ N (b, c̃2). In order to
ensure the interval is valid for all b coverage, we want to bound below.

inf
b∈[−B,B]

C(b; ∆)

The interval [−B − ∆, B + ∆] is symmetric about 0, and the Probability Density Function for a
Gaussian of mean b is symmetric about b. Thus, the coverage probabilities at b = −B and b = B are
equal. Consequently, it suffices to consider b ∈ [0, B].

Moreover, observe that C(b; ∆) is a strictly decreasing function of b on [0, B] since (i) Φ
(
B+∆−b

c̃

)
decreases as b increases (because B+∆− b decreases and Φ(z) is monotonic) and (ii) Φ

(−B−∆−b
c̃

)
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also decreases as b increases (because −B −∆ − b becomes more negative). Thus, C(b; ∆) is a
strictly decreasing function of b on [0, B]. The minimum value of C(b; ∆) occurs at b = B.

Ensuring coverage in the worst case. At the worst-case value b = B, the coverage probability is:

C(B; ∆) = Φ

(
∆

c̃

)
− Φ

(−2B −∆

c̃

)
.

To ensure that the interval [−B −∆, B +∆] achieves at least 1− α coverage for all b ∈ [−B,B],
we solve:

Φ

(
∆

c̃

)
− Φ

(−2B −∆

c̃

)
= 1− α. (62)

This guarantees that the interval is valid for all b and achieves the desired coverage level.

Narrowest interval. The narrowest interval corresponds to the smallest ∆ that satisfies the Eq. (62).
By construction, any smaller ∆ would fail to achieve the required coverage for b = ±B, violating
the validity condition.

F.5 Proof of Proposition 8

In this section, we prove Proposition 8. For simplicity of exposition, we prove the result for
S = [0, 1]D. The result generalizes to any spatial domain which is a compact metric space.

Proof of Proposition 8. Using Assumption 2 and expanding the quadratic form (ϵn + (f(Sn) −
g(Sn)), we have

σ̂2
N − σ2 = ZN + ζN , (63)

where ζN = infg∈FL

1
N

∑N
n=1(f(Sn) − g(Sn))

2 + 1
N

∑N
n=1 ϵn(f(Sn) − g(Sn)) and ZN =

1
N

∑N
n=1 ϵ

2
n − σ2. Since ZN is an average of independent and identically distributed variable,

and since E[ZN ] = 0, the law of large numbers (LLN) implies ZN → 0 in probability. Because
ZN → 0, if ζN → 0 in probability we can conclude by Slutsky’s Lemma that σ̂2

N → σ2 in probability.
Therefore, the remainder of the proof involves showing ζN → 0 in probability.

Define fN to be the empirically centered version of f , that is fN = f − 1
N

∑N
n=1 f(Sn). Then since

the space of Lipschitz functions is invariant to shifts by constant functions

ζN = inf
g∈FL

1

N

N∑
n=1

(fN (Sn)− g(Sn))
2 +

1

N

N∑
n=1

ϵn(fN (Sn)− g(Sn)). (64)

Define the process,

τN (g) =
1

N

N∑
n=1

(fN (Sn)− g(Sn))
2 +

1

N

N∑
n=1

ϵn(fN (Sn)− g(Sn)), (65)

so that ζN is the infimum of τN . τN (fN ) = 0. Therefore, for ζN ≤ 0 almost surely. It remains to
show that for any δ < 0, limN→∞ Pr(ζN < δ)→ 0.

The essential challenge to showing that for any δ < 0, limN→∞ Pr(ζN < δ) → 0 is the infimum
over the space of Lipschitz functions. Our proof has three steps. First, we show that it suffices to
consider a subset of the space of Lipschitz functions with bounded infinity norm. Second, we show
that this space is compact as a subset of L∞. Third, we show that because the infimum is then over a
compact set, it can be well-approximated by a minimum over a finite set of functions. And then a
union bound suffices to prove the claim.

Step 1: It’s Enough to Consider a Bounded Subset of Lipschitz Functions.

Because fN has empirical mean 0 and is continuous, by the intermediate value theorem it takes on
the value 0 somewhere on [0, 1]D. Because fN is L-Lipschitz and defined on a set of diameter

√
D,

and 0 somewhere inside this set, ∥fN∥∞ ≤ L
√
D.
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Define the setFL = FL∩B∞(2L
√
D+2σ2), where B∞(r) denotes the space of functions uniformly

bounded by constant r on [0, 1]D. By subadditivity of measure, for any δ < 0

Pr(ζN < δ) ≤ Pr

(
inf

g∈FL

τN (g) < δ

)
+ Pr

(
inf

g∈FL\FL

τN (g) < δ

)
(66)

≤ Pr

(
inf

g∈FL

τN (g) < δ

)
+ Pr

(
inf

g∈FL\FL

τN (g) < 0

)
. (67)

We first consider the second term in this sum and show it tends to 0. We apply a crude Cauchy-Schwarz
bound to the second term in Eq. (65) so that for any g,

τN (g) ≥

√√√√ 1

N

N∑
n=1

(f(Sn)− g(Sn))2


√√√√ 1

N

N∑
n=1

(f(Sn)− g(Sn))2 −

√√√√ 1

N

N∑
n=1

ϵ2n

 . (68)

Therefore, τ(g) < 0 implies

1

N

N∑
n=1

ϵ2n ≤
1

N

N∑
n=1

(fN (Sn)− g(Sn))
2. (69)

For any g ∈ FL \ FL because g takes on a value at least 2L
√
D+ 2σ2 and is L-Lipschitz, g is larger

than L
√
D + 2σ2 over the entire unit cube. And because ∥fN∥ ≤ L

√
D, fN (Sn)− g(Sn) ≥ 2σ2

for all n. Therefore for all g ∈ FL \ FL

1

N

N∑
n=1

(fN (Sn)− g(Sn))
2 ≥ 2σ2. (70)

We conclude that

lim
N→∞

Pr

(
inf

g∈FL\FL

τN (g) < 0

)
≤ lim

N→∞
Pr

(
1

N

N∑
n=1

ϵ2n ≥ 2σ2

)
= 0. (71)

where the final inequality is the law of large numbers.

FL is a Compact Subset of the Space of Bounded Functions with Sup Norm. All that remains to
show is that for any δ < 0,

Pr

(
inf

g∈FL

τN (g) < δ

)
→ 0. (72)

The idea (following standard arguments made with empirical processes) is that we can take a cover
of FL of finite size, such that each element of τN (g) is almost constant over elements of this cover.
This essentially lets us approximate the infimum with a minimum over a finite set, up to small error.
And once the problem is reduced to a minimum we can apply a union bound and the law of large
number. We will formalize this in the next paragraph, but we first show that FL is compact.

Because every Lipschitz continuous function is equicontinuous, functions in FL are pointwise
bounded by 2L

√
D + 2σ2, and [0, 1]D is compact, we may apply Arzela-Ascoli [58, Theorem

7.25] to conclude that FL with the sup norm is sequentially compact. It is therefore compact, as a
sequentially compact metric space is compact.

Step 3: Reduction to a Minimum over a Finite Set and a Union Bound.

For any δ′ < 0 and any g ∈ FL,

lim
N→∞

Pr(τN (g) < δ′) ≤ lim
N→∞

Pr

(
1

N

N∑
n=1

ϵng(Sn) < δ′

)
= 0 (73)

where the final equality is the law of large numbers.
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Therefore, for any finite set C ⊂ FL,

lim
N→∞

Pr(min
g∈C

τN (g) < δ′) ≤ lim
N→∞

∑
g∈C

Pr

(
1

N

N∑
n=1

ϵng(Sn) < δ′

)
(74)

=
∑
g∈C

lim
N→∞

Pr

(
1

N

N∑
n=1

ϵng(Sn) < δ′

)
= 0. (75)

We used countable subadditivity in the inequality.

Now for any γ > 0, there exists a finite set of functions Cγ ⊂ FL such that for any g ∈ FL, there
exists a g′ ∈ Cγ with ∥g − g′∥∞ ≤ γ. And since τN (g) is pathwise uniformly (in N ) continuous on
FL equipped with sup norm,

inf
g∈FL

τN (g) ≥ min
g∈Cγ

τN (g)− ρ(γ) (76)

where is a nonnegative function such that limγ→0 ρ(γ) = 0. Therefore, for any δ < 0, we can find a
γ such that ρ(γ) ≤ − δ

2 . For this γ, applying Eq. (74) with δ′ = δ
2 allows us to conclude that

lim
N→∞

Pr( inf
g∈FL

τN (g) ≤ δ) = 0. (77)

This is a uniform law of large number for the class of Lipschitz and bounded functions. More
quantitative results are likely possible using empirical process theory, see Wainwright [73, Chapter
5].

Proof of Asymptotic Coverage (Corollary 9). We now prove Corollary 9. We begin by recalling
the definition of an asymptotically valid confidence interval.
Definition 13. We say a sequence of (random) intervals (IN )∞N=1 has asymptotically valid coverage
of θ at level (1− α) if

lim
N→∞

Pr(θ ∈ IN ) = 1− α (78)

Corollary 9 follows from Theorem 7 and Proposition 8 by the following lemma, which is a special
case of Slutsky’s lemma.
Lemma 14. Let σ2 > 0. Suppose that θ⋆OLS,p − θ̂Ψp − bN ∼ N (0, σ2) where (bN )NN=1 is a fixed
sequence. Suppose σ̂2

N converges in probability to σ2. Then,
1

σ̂2
N

(
θ⋆OLS,p − θ̂Ψp − bN

)
→ N (0, 1) (79)

where convergence is in probability.

Proof. The result is a special case of Slutsky’s lemma, using σ̂2
N → σ2 > 0.

Proof of Corollary 9. Define bN =
∑M

m=1 wmf(S⋆
m) −∑N

n=1 v
Ψ
n f(S

⋆
n). Because θ⋆OLS,p − θ̂Ψp ∼

N (b, σ2∥vΨ∥22),
(θ⋆OLS − θ̂Ψp − bN ) ∼ N (0, σ2). (80)

If σ2 = 0, then σ̂2
N = 0 for all N , because the conditional expectation is an L-Lipschitz function

leading to 0 squared error in the minimization algorithm used to calculate σ̂2
N . Therefore, the resulting

confidence interval has coverage (1− α) for all N by Theorem 7.

For σ2 > 0 we apply Lemma 14 to conclude that
1

σ̂2
N

(
θ⋆OLS,p − θ̂Ψp − bN

)
→ N (0, 1) (81)

where convergence is in probability.

Convergence in probability implies convergence in distribution, and therefore convergence of quantiles
at continuity points. The Gaussian CDF is continuous. Therefore, the quantile computation in
Lemma 6 using σ̂2

N in place of σ2 produces an asymptotically valid confidence interval in the limit as
N →∞.
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parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
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Justification: All experimental details are described in Section 4 and Appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: For the simulation experiments, we provide confidence intervals for the
coverage and confidence interval width. Interpretation of these error bars is in Appendix D.1.
In the real-world experiment, we took into account sampling variability in estimation of the
ground truth parameter, but did not report the confidence intervals for the empirical coverage
or confidence interval widths.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We describe computation times for the simulation experiments and the com-
puting environment used in Appendix D. For the real-world experiment, computational
resources are described in Appendix E.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
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• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We do not use or introduce datasets involving human subjects. Datasets used
are publicly available. The method developed does not present significant and specific social
concerns.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The introduction motivates the importance of (reliable) uncertainty quantifica-
tion in making scientific inference trustworthy. We see this as the primary societal impact of
our work.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper focuses on quantification of associations in spatial data through a
linear modeling framework. This does not pose a high risk for misuse.
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Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: A description of the dataset used, including citations to the relevant data
sources and license information, are provided in Appendix E.1. Relevant code packages are
cited within the implementation details section (Appendix B).

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The code released contains a readme file with instructions on how to recreate
experiments, as well as a setup file indicating dependencies.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
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Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA] .
Justification: No human subjects were used.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA] .
Justification: No human subjects were used.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA] .
Justification: LLMs were not used in the core method development for this paper.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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