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Abstract

Pre-training Transformer models on self-supervised tasks and fine-tuning them on down-
stream tasks, even with limited labeled samples, have achieved state-of-the-art performance
across various domains. However, learning effective representations from complex tempo-
ral structured health data and fine-tuning for clinical risk predictions remains challeng-
ing. While self-attention mechanisms are powerful for capturing relationships within se-
quences, they can struggle to model intricate dependencies in event sequences, especially
when training data is limited. Existing solutions often rely on expensive modifications to
the pre-training phase. In this work, we propose a novel method, Smoothed Noise Injection
Self-attention Augmentation (SNSA), to augment Transformer models during the training.
Our approach encourages the self-attention mechanism to effectively learn complex depen-
dencies within input sequences. This is achieved by introducing noise to the self-attention
and then smoothing it via convolving with a 2D Gaussian kernel. The first term perturbs
the attention between events , encouraging the model to explore diverse attention patterns.
The Gaussian smoothing adaptively filters this noise, allowing the model to focus on more
relevant events within each sequence. With SNSA, we observe enhanced model performance
on downstream tasks. Furthermore, our method sheds light on the model’s ability to learn
complex relations within a sequence of medical events, providing valuable insights into its
behavior within the attention mechanism.

1 Introduction

Foundation models, deep neural networks pre-trained on broad unlabeled data using self-supervised methods,
have significantly impacted various aspects of our lives, including law, healthcare, education, and more
Bommasani et al. (2021); Guo et al. (2023); Wornow et al. (2023). These models typically acquire general
knowledge about the data through pre-training a variant of the Transformer network on a self-supervised
task like Masked Language Model (MLM), and then adapt this knowledge to downstream tasks with only a
few labeled samples during the fine-tuning process. Researchers showed that pre-training, even with limited
data, can improve Transformers’ performance significantly Amos et al. (2023).

Pre-training Transformers have been employed with various self-supervised objectives and domains. Common
objectives include corrupted text reconstruction tasks like MLM Devlin et al. (2018); Lewis et al. (2019); Lan
et al. (2019) and standard language models such as next-word prediction Radford et al. (2019); Brown et al.
(2020), which have been extensively utilized Liu et al. (2023). These models typically adopt a backbone
architecture inspired by the multi-head attention mechanism in Transformers Vaswani et al. (2017), known
for its effectiveness in modeling complex interaction between events (tokens) in a sequence (text). These
foundation models have been pre-trained on different domain data Lan et al. (2019); Radford et al. (2019),
including structured temporal health data as sequences of events Li et al. (2020); Rasmy et al. (2021); Pang
et al. (2021).

Modeling Electronic Health Records (EHRs) trajectories presents a critical opportunity for predicting health-
related outcomes, offering benefits like early intervention, cost reduction, and improved public health. This
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field has attracted significant attention from deep learning researchers Xiao et al. (2018); Amirahmadi et al.
(2023); Boll et al. (2024). Typically, healthcare specific foundation models are pre-trained on publicly
available, unlabeled EHR data, and adapting these models through fine-tuning consistently demonstrates
superior performance across various tasks Li et al. (2020); Rasmy et al. (2021); Pang et al. (2021); Ren et al.
(2021).

However, EHRs are often scarce, and training Transformers to learn the complex relationships between med-
ical events in longitudinal EHRs requires either large amounts of data, or advanced training techniques and
augmentations Dosovitskiy et al. (2020); Touvron et al. (2021); Hassani et al. (2021; 2023). Due to privacy
concerns and the scarcity of publicly available datasets, models often fail to learn the intricate dependencies
between events in a patient’s history. To address this, (Choi et al., 2020) proposed incorporating domain
knowledge into the attention mechanism, while (Zhu & Razavian, 2021) employed variational regularization.
Additionally, (Amirahmadi et al., 2024) suggested pre-training the Transformer on the MLM task and the
ordering of medical events in a patient’s history, and (Kim & Lee, 2024) proposed using learnable, adaptive
kernels in the attention matrices to improve contextual representations and enhance the learned struc-
ture through self-attention. Figures 1 and 4 illustrates how these various approaches impact self-attention
behaviors in leaning the relations between events. However, these methods often come with substantial
computational costs and require extra effort for implementation and design.

Data augmentation is another solution to tackle the data scarcity challenge. Augmenting data with discrete
data types, such as series of medical codes or tokens in text, is challenging because small perturbations can
drastically alter semantic meaning, and interpolation in discrete space is not feasible Chen et al. (2020). As
a result, researchers have proposed augmenting models during training as an alternative Jain et al. (2023);
Zehui et al. (2019); Wu et al. (2023).

In this study, we propose a simple two-step augmentation technique—Smoothed Noise Injection Self-
Attention (SNSA)—that perturbs attention scores by injecting adaptive Gaussian noise followed by smooth-
ing with a Gaussian kernel. Our investigation of attention distributions reveals that fine-tuned Transformers
tend to produce highly polarized attention scores—values clustering near the extremes (0 or 1), which re-
stricts the model’s capacity to explore diverse dependencies (see the bottom row of Figure 4). By introducing
controlled noise into attention scores during fine-tuning, we encourage exploration of alternative dependency
paths between events. The subsequent smoothing operation helps restore structural consistency while pre-
serving diversity, resulting in more balanced and informative self-attention maps.

The main contributions are summarized as follows:

1. We proposed a simple self-attention augmentation method that encourages the model to explore
and learn more complex attention patterns during fine-tuning. Importantly, this approach does not
modify the computational graph, making it easily applicable to any pre-trained Transformer.

2. We conducted several evaluations on various downstream tasks, examining the effect of the novel
method on model performance, model robustness with limited training samples,and the balance of
attention distribution between distant and nearby events. Our results demonstrate how it improves
the performance of pre-trained Transformers.

2 Preliminary

2.1 Transformer encoder and self-attention

The core back-bone of Transformers encoder is the multi-head self-attention. Each self-attention head is:

Qh = XW Q
h , Kh = XW K

h , Vh = XW V
h , (1)

Ah = softmax(QhKT
h√

dk

) (2)

Hh = Self-attention(X) = AhVh (3)
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(a) Transformer (b) GCT with guided
regularization

(c) Enc-dec Trans-
former

(d) VGNN Transformer

(e) Transformer (f) SAT (g) Pre-trained Trans-
former

(h) TOO-BERT

Figure 1: Visualization of attention score patterns for different models from previous studies and how
their proposed methods helping a more complicated structure in attention scores in Transformers. (a–b)
Transformer trained from random weights vs. Transformer trained with domain knowledge (Zhu & Razavian,
2021; Choi et al., 2020). (c–d) Encoder-decoder vs. VGNN using variational regularization (Zhu & Razavian,
2021). (e–f) Vanilla Transformer vs. SAT with temporal priors (Kim & Lee, 2024). (g–h) Transformer pre-
trained on MLM vs. MLM with trajectory order prediction (Amirahmadi et al., 2024). Panels (e–f) had no
color bars in the original papers.

Where, Q, K ∈ Rn×dk and V ∈ Rn×dv and n is the length of input sequence and dk and dv are dimenssion
of Key and Value. Ah is the attention score matrix and each Ai,j indicates how much attention token xi put
on xj . Transformer encoders, is built on concatenation of | h | number attention heads in parallel, so each
one has its own weights. Then, the concatenation is projected:

MultiHead(X) = Concat(H1...., H|h|)W O (4)

Where, W O ∈ R|h|×dv Multiple self-attention heads in parallel, help the model to attend to information from
different representation subspaces (Vaswani et al., 2017; Hao et al., 2021).

2.2 Pre-training, fine-tuning

Pretraining typically involves the model acquiring general knowledge, which is then used to initialize the
final network. Subsequently, the final network adjusts these weights to obtain optimized weights for specific
downstream tasks Chen et al. (2021). This approach has been extensively utilized for adapting foundation
models to downstream tasks Lan et al. (2019); Liu et al. (2023).

3 Related works

Advanced training techniques and data augmentation have been widely adopted to improve the performance
of Transformer models, especially in settings with limited labeled data. These methods aim to enhance the
generalizability and robustness of learned representations.

Several methods modify self-attention to better learn intricate local and global attentions between different
tokens. Hassani et al. (2023) introduced a sliding window attention mechanism to localize attention spans
and improve efficiency. Ding et al. (2023) reduced attention complexity by segmenting key, query, and value
inputs and sparsifying their interactions, allowing Transformers to better model both short- and long-range
dependencies. Positional encoding has also been a target for improvement: Su et al. (2024) and Press
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et al. (2021) enhanced distant token interaction by encoding absolute positions with rotation matrices or
distance-based penalties on query-key attention scores. While these methods are effective, they often require
structural changes to the attention mechanism, making them less compatible with pre-trained models and
harder to integrate into existing pipelines.

Data augmentation is another solution to tackle the data scarcity challenge, but it is particularly challenging
in discrete domains like medical codes or text, where small changes can drastically alter semantic meaning and
interpolation is not well-defined (Chen et al., 2020). To address this, researchers have proposed augmenting
models during training or fine-tuning by injecting noise into internal representations (Jain et al., 2023; Zehui
et al., 2019; Yuan et al., 2022; Wornow et al., 2023; Wu et al., 2023). Injecting Gaussian noise into activations
has been shown to help models converge to smoother minima, improving generalization, calibration, and
robustness to perturbations (Camuto et al., 2020). Zhu et al. (2019) enhanced the performance of BERT
(Devlin et al., 2018) and RoBERTa (Liu et al., 2019) by adding adversarial noise to word embeddings, a
technique later extended to graph neural networks by Kong et al. (2022) for improved out-of-distribution
generalization. In the self-attention space, Zehui et al. (2019) proposed DropAttention, which randomly
masks and expands attention scores to regularize focus. Similarly, Wu et al. (2023) introduced adversarial
structural biases to attention matrices, though at the cost of increased training complexity.

Wornow et al. (2023) injected Gaussian noise into the latent space of an encoder-decoder model for better
image captioning, while Yuan et al. (2022) perturbed hidden representations during fine-tuning to marginally
improve language model performance. Most notably, Jain et al. (2023) introduced NEFTune, which adds
calibrated uniform noise to embedding vectors during fine-tuning—resulting in significant improvements for
models like LLaMA-1 and LLaMA-2. Inspired by these efforts, we compare our method with NEFTune and
propose a new approach that directly perturbs the attention scores, encouraging the model to learn richer
contextual dependencies across sequences. Here, We investigate augmenting the self-attention scores—central
to modeling event dependencies —by injecting and smoothing adaptive Gaussian noise. Unlike prior meth-
ods that perturb embeddings or hidden states, our approach directly improves attention behavior without
changing the model architecture, enhancing the learned representation in a lightweight and effective way.

4 Methods

4.1 Smoothed Noise Injection Self-attention Augmentation

In this subsection, we introduce, Smoothed Noise Injection Self-attention Augmentation (SNSA), a simple yet
effective two-step augmentation technique designed to improve the learned representations in Transformer
models by directly augmenting the attention scores during fine-tuning (Algorithm 1). This method enhances
attention dynamics without modifying the computational graph, making it compatible with any pre-trained
Transformer encoder.

SNSA operates by first injecting adaptive Gaussian noise into the attention score matrix and then applying
a smoothing operation using a Gaussian kernel. This process encourages the model to explore the attention
patterns and strengthens context modeling. The augmented attention is computed as:

SNSA =
(
(Ah+ ∼ N (µ, σ2

GN )) ∗ nσeh

)
V (5)

Here, the Gaussian noise N (µ, σ2
GN) is computed adaptivly based on the learned attention during training:

µ = 1
n2

n−1∑
i=0

n−1∑
j=0

Ai,j (6)

σGN =

√√√√ 1
n− 1

n−1∑
i=0

n−1∑
j=0

(Ai,j − µ)2 (7)

The smoothing kernel nσeh [i, j] is a 2D Gaussian distribution:

nσeh [i, j] = 1
2πσ2

eh
e

− 1
2

(
i2+j2

σ2
eh

)
(8)
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Figure 2: Smoothed Noise injection Self-attention Augmentation (SNSA) mechanism

Algorithm 1 A Transformer Encoder with SNSA
Input: Dfine-tuning = {(Xi, yi)}N

1 tokenized dataset, embedding layer emb(·), attention score matrix Ah,
normal noise N (µ, σ2

GN), two-dimensional Gaussian noise nσeh , rest of the model f(·)
Parameter: Normal noise µ, σ2

GN calculated from Ah, event horizon hyperparameter σeh based on the data
charecterstic needs to adjust the smoothing noise

1: Initialize θ from a pre-trained model
2: repeat
3: Sample (Xi, yi) ∼ Dfine-tuning
4: Xemb ← emb(Xi)
5: for each Attention Head Ah in Transformer Block do
6: Ah(Xattn)← Ah(Xemb) +N (µ, σ2

GN)
7: Ah(Xattn)← Convolve(Ah(Xattn), nσeh)
8: Hh(Xattn)← Ah(Xattn)V
9: end for

10: MultiHead(H)← concat(H0(Xattn), . . . , Hh(Xattn))
11: ŷi ← f(MultiHead(H))
12: θ ← opt(θ, loss(ŷi, yi))
13: until Stopping criteria met or maximum iterations reached

where σeh is a tunable hyperparameter representing the event horizon, controlling and adjusting the extent of
the smoothing. The convolution operation ∗ applies this kernel over the noise-augmented attention matrix:

f [i, j] ∗ nσ[i, j] = 1
2πσ2

k∑
m=1

k∑
n=1

e
− 1

2

(
m2+n2

σ2

)
f [i−m, j − n] (9)

where k = 2πσ is the kernel size.

This smoothing step modulates the added noise, reinforcing stronger attention patterns while allowing for
broader exploration in attentions space. The noise parameters µ and σGN are computed independently for
each attention head to preserve head-specific attention dynamics during training. Figure 2 illustrates the
full SNSA mechanism.

Adding adaptive Gaussian noise ∼ N (µ, σ2
GN ) to the attention scores helps the model escape sub-optimal

solutions and promotes learning more diverse interactions between events. The subsequent Gaussian convo-
lution adjusts the magnitude and distribution of the injected noise, encouraging the model to focus on more
meaningful and effective attention patterns. A detailed mathematical justification of how this augmentation
promotes richer and more flexible attention modeling is provided in Appendix A.5.

During inference, stochasticity from the added noise is removed by replacing it with its expected value µ,
ensuring deterministic predictions:

SNSA = ((Ah + µ) ∗ nσeh
)V (10)
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The computational complexity of SNSA is O(n2) (for more details, see the technical appendix A.9), and
since it’s primarily used during fine-tuning with limited labeled samples, the additional cost is negligible.

5 Experiments

5.1 Datasets

In our study, we utilized medical data from two sources: the MIMIC-IV Johnson et al. (2020) hosp module
and the Malmö Diet and Cancer Cohort (MDC) Berglund et al. (1993) dataset, approved by the Ethics
Review Board of Sweden (Dnr 2023-00503-01). Each EHR trajectory represents a sequence of temporally
structured health events. The MIMIC-IV dataset includes 173,000 patient records across 407,000 visits from
2008 to 2019, with 10.6 million medical codes. The MDC dataset, from a cohort study in Sweden, comprises
30,000 individuals with 531,000 visits from 1992 to 2020, offering a more extended patient history—257
codes per patient on average, compared to MIMIC-IV’s 61. To ensure consistency, we used only ICD and
ATC codes, the only types available in MDC at the beginning, aligning with prior work like Med-BERT on
diagnosis codes for risk prediction.

Both datasets use ICD and ATC codes for disease and medication classification. We randomly split each
cohort into 70% for pre-training, 20% for fine-tuning, and 10% for testing. After preprocessing, MIMIC-IV
had 2,195 unique ICD-9 and 137 ATC-5 codes, while MDC had 1,558 ICD-10 and 111 ATC-5 codes. To
assess the generalizability and robustness of our results, the fine-tuning dataset was split into 5 folds. The
model was fine-tuned on 4 folds with early stopping on the remaining fold, repeated 5 times with different
validation sets. We reported the mean and standard deviation of the AUC on the unseen test dataset. For
details, refer to the dataset availability, specifications and implementation details in the technical appendix
A.4,A.2.

5.2 Problem Formulation

Each dataset D comprises a set of patients P , D = {P 1, P 2, . . . , P |D|}. In our study, we considered a total
of |D| = 172, 980 patients for MIMIC-IV and |D| = 29, 664 patients for the MDC cohort. We represent
each patient’s longitudinal medical trajectory through a structured set of visit encounters as a sequence
of events. This representation is denoted as P i = {V i

1 , V i
2 , . . . , V i

O}, where O represents the total number
of visit encounters for patient i. Each visit V i

j = Ij ∪Mj is the union of all diagnosis codes Ij ⊂ I and
prescribed medications Mj ⊂ M that are recorded for the P i at visit V i

j . To reduce sparsity, we excluded
less frequently occurring medical codes and retained only the initial 4 digits of ICD and ATC codes.

To guide the model in understanding changes in encounter times and the structure of each patient’s tra-
jectory, similar to BERT, we employed special tokens. A [CLS] token is placed at the beginning of each
patient’s trajectory, while a [SEP ] token is inserted between visits. Each visit represents a set of di-
agnoses and medications recorded within a specific time span, and the [SEP ] token separates the sets
of medical codes from one visit to the next. Consequently, each patient’s trajectory is represented as
P i = {[CLS], V i

1 , [SEP ], V i
2 , [SEP ], . . . , V i

O, [SEP ]}, providing the model with valuable context for anal-
ysis and prediction.

Here, we evaluated our models on 3 downstream tasks edt (Heart Failure (HF), Alzheimer Disease (AD),
Prolonged Length of Stay on the next visit (PLS) predictions), where the model predicts the incidence of the
first HF (IN=HF ) or AD (IN=AD) ICD codes or the presence of PLS (PLSN = 1) on the N th visit, given
the patient’s previous history of medical codes, [V i

1 : V i
N−1], as a sequence of temporally structured health

events:

P(edt ∈ V N | P i = {[CLS], V i
1 , [SEP ], V i

2 , [SEP ], . . . , V i
N−1, [SEP ]}) (11)

For each patient’s trajectory, if there were no occurrences of the target events edt, it is considered a negative
case; otherwise, we exclude the first visit with the target and all subsequent visits and consider it a positive
case. All ATC codes related to HF treatment are excluded to avoid timing-related noise and non-trivial
predictions. Initially, models exhibited bias toward longer visit histories, confounding risk predictions. To
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address this, we excluded trajectories with fewer than 30 visits in the MDC dataset and fewer than 10 visits in
the MIMIC-IV dataset. This ensured balanced visit histories between positive and negative cases, resulting
in averages of 19 visits in the MDC dataset and 9 visits in the MIMIC-IV dataset, aligning with their overall
dataset averages prior to preprocessing. Table 1 summarizes the number of positive and negative cases after
these preprocessing steps.

Table 1: Number of positive and negative labeled samples in each downstream task.

Task #Positive labels #Negative labels
PLS prediction 2,429 6,360
HF prediction on the MIMIC IV 243 641
AD prediction 245 2,628
HF prediction on the MDC 103 301

5.3 List of Models

To thoroughly investigate the impact of the proposed SNSA augmentation, we compared the performance
of following conventional and deep learning models on downstream tasks of HF, AD, and PLS prediction
using both the MDC and MIMIC-IV datasets. These models were trained either from scratch or initiated
from pre-trained weights, fine-tuned on the fine-tuning dataset, and evaluated on the test dataset. We set
the tunable event horizon parameter to σeh = 1.0 (kernel size = 6) for the SNSA on the MDC dataset and
σeh = 0.33 (kernel size = 2) on the MIMIC IV after fine-tuning on the fine-tuning dataset. Except fir HF
prediction in the MDC, different σeh, slightly changes the SNSA performance. For more details see technical
appendix A.3.

Models with Proposed NSA/SNSA

• Transformer with SNSA: This model incorporates SNSA into all self-attention heads of a ran-
domly initialized Transformer.

• Transformer pre-trained on MLM with Noise Injection Self-attention Augmentation
(NSA): In this approach, N (µ, σ2

GN ) (normal noise with adaptive parameters) is added to all self-
attention heads of a pre-trained Transformer. This experiment allows us to isolate the impact of the
noise injection from the smoothing effect of Gaussian convolution.

• Transformer pre-trained on MLM with SNSA: This model incorporates SNSA into all self-
attention heads of the pre-trained Transformer.

Baseline model details are provided in Appendix A.11.

5.4 Evaluation on downstream tasks

The results are summarized in Table 2 and suggest that adding SNSA improves the AUC of pre-trained
Transformers, potentially positioning them as one of the state-of-the-art methods for outcome prediction on
temporal structured health data. Specifically, on the MDC dataset, the AUC for HF and AD prediction
increased to 74.5% and 73.2%, respectively, while on the MIMIC-IV dataset, the AUC for HF prediction
reached 87.2%. The addition of SNSA resulted in statistically significant improvements for HF prediction
on both the MDC and MIMIC-IV datasets for the MLM pre-trained Transformer. Furthermore, the im-
provement in AD prediction was considerable, showcasing the effectiveness of SNSA augmentation. However,
incorporating SNSA did not significantly alter the performance of PLS prediction. Additionally, applying
GLA to randomly initialized Transformers boosted the AUC for PLS prediction to 60.2%, with negligible
effects on other downstream tasks. To delve deeper into the impact of each noise injection and smoothing
augmentation term, we solely added the normal noise to the pre-trained Transformer. This experiment
revealed that the noise injection alone had a more pronounced effect on downstream tasks in the MIMIC
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(a) AUC values for HF prediction across various fine-
tuning sample sizes on the test dataset in MIMIC IV.

(b) AUC values for HF prediction across various fine-
tuning sample sizes on the test dataset in the MDC.

Figure 3: SNSA’s impact on HF prediction across fine-tuning sample sizes in MIMIC IV and MDC datasets.

dataset, whereas the combined (SNSA) terms exhibited greater impacts on the downstream tasks in the
MDC dataset, particularly associated with its longer sequences.

Table 2: Average AUC values (%) and standard deviation for different methods for the HF prediction, AD
prediction, and PLS prediction downstream tasks on the test datasets.

Model / Downstream Task HF predic-
tion (MDC)

AD predic-
tion (MDC)

HF pre-
diction
(MIMIC-IV)

PLS pre-
diction
(MIMIC-IV)

Transformer 71.4 (0.5) 70.5 (0.8) 84.2 (1.4) 54.4 (0.8)
Transformer+ SNSA 72.1 (2.7) 70.4 (0.6) 83.2 (2.5) 60.2 (1.2)
Transformer pre-trained on MLM 72.2 (2.5) 72.2 (1.1) 85.2 (1.1) 60.3 (1.3)
Transformer pre-trained on
MLM+ NSA

72.6 (1.9) 71.4 (1.0) 86.5 (1.2) 60.7 (0.6)

Transformer pre-trained on
MLM+ SNSA

74.5 (2.9) 73.2 (0.3) 87.2 (0.4) 60.3 (0.7)

5.5 Performance boost on data insufficiency

One of the advantages of using pre-trained Transformers is their robustness and performance in situations
of data insufficiency, observed in both NLP (Brown et al., 2020) and temporal health data (Rasmy et al.,
2021). Here, we investigated the effect of applying SNSA on model performance for HF prediction with
reduced data sample sizes. We decreased the fine-tuning sample size to 50%, 20%, and 10%, respectively.
The performance of the pre-trained Transformer with and without SNSA, was compared on both the MDC
and MIMIC-IV datasets. Figure 3a shows that SNSA improves the model performance by around 3% in
HF prediction on the MIMIC-IV dataset across all data sample sizes. Similarly, Figure 3b demonstrates
that SNSA consistently outperforms the baseline in HF prediction on the MDC dataset, even with a 50%
reduction in training samples. However, its superiority diminishes with less data.

5.6 VS Hidden Representation Augmentation

We first compared SNSA with other hidden representation augmentation methods proposed for augmenting
different layers of pre-trained Transformers. Specifically, we assess the impact of injecting noise into various
components of the network, such as hidden layers and feedforward modules, as explored in works like HyPe
(Yuan et al., 2022) and Neftune (Jain et al., 2023). Our objective is to evaluate whether augmenting self-
attention scores, where contextual dependencies are explicitly encoded, is more effective than augmenting
other internal representations.
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As shown in Table 3, although NefTune Jain et al. (2023) enhances the performance of pre-trained Transform-
ers in HF prediction across both datasets, SNSA consistently outperforms both NefTune and feedforward
noise augmentation in predicting outcomes. While SNSA demonstrates superior performance in this con-
text, NefTune has the advantage of being computationally lighter. However, since both methods are applied
during fine-tuning, the computational demands are not a significant concern.

5.7 VS Naive masking

Randomly masking the attention score matrix during training can be seen as an extreme form of NSA
augmentation. Instead of adding normal noise to perturb relationships between events in a sequence, naive
masking directly disrupts these relationships by summing each element with 0 or −Ahi,j , effectively breaking
the connections between tokens. We compared our method with naive self-attention masking, as described
by Wu et al. (2023), which introduces a bias in the structure of self-attentions:

Ah = softmax
(

QhKT
h√

dk

+ M

)
, M ∈ {0,−∞}N×N , (12)

where Mi,j = −∞ with p = 0.2, optimized based on performance on the fine-tuning dataset. We ex-
tended it to DropAttention (Zehui et al., 2019), which expands the mask with a span length ω and we set
ω = Kernel size. However, neither naive masking nor DropAttention improved the performance of the pre-
trained Transformer for HF prediction on the MDC and MIMIC-IV datasets. Instead, these methods only
increased the number of training iterations required for convergence (see Table 3). While these techniques can
help mitigate overfitting, their overly aggressive regularization often disrupts critical dependencies within
sequences, leading to unstable training and poorer overall performance, especially on complex healthcare
prediction tasks. In contrast, SNSA introduces controlled perturbations that balance the attention distri-
bution and prevent over-reliance on specific patterns, thereby preserving essential relationships in the data
and promoting more robust and effective representations (see Appendix A.7 for a justification of SNSA as a
structured variant of dropout).

Table 3: Comparing SNSA with naive masking and other hidden representation augmentation methods. The
table shows the average AUC values (%) and standard deviation across HF prediction tasks on the MDC
and MIMIC-IV datasets.

Model / Downstream Task HF Prediction (MDC) HF Prediction (MIMIC-IV)
Transformer pre-trained on MLM 72.2 (2.5) 85.2 (1.1)
Transformer pre-trained on MLM+ Naive masking 70.00 (1.5) 85.1 (0.7)
Transformer pre-trained on MLM+ DropAttention 69.7 (1.1) 84.9 (1.3)
Transformer pre-trained on MLM+ NEFTune(α =
5)

73.6 (3.2) 85.2 (0.7)

Transformer pre-trained on MLM+ NEFTune(α =
10)

73.1 (1.7) 85.5 (0.4)

Transformer pre-trained on MLM+ noise in the
feedforward(α = 5)

73.7 (2.2) 85.0 (1.2)

Transformer pre-trained on MLM+ noise in the
feedforward(α = 10)

72.5 (4.4) 84.5 (0.8)

Transformer pre-trained on MLM+ SNSA 74.5 (2.9) 87.2 (0.4)

5.8 Effect of SNSA on self-attention behavior

Analyzing self-attention weights and attention score matrices can highlight how Transformers prioritize
relationships between events, shedding light on their internal logic and behavior (Clark et al., 2019; Kovaleva
et al., 2019; Hao et al., 2021). To assess the effect of SNSA and compare it with normal noise injection (NSA),
we analyzed attention score distributions in models fine-tuned on all downstream tasks.
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We plotted histograms of attention scores across all heads and samples from the test split, scaling each
head’s scores to the [0, 1] range (Figure 4). In the bottom row of the figure, we observe that attention scores
from the fine-tuned vanilla Transformer tend to cluster near 0 or 1, forming a near-binary (binomial-like)
distribution. This pattern suggests overconfidence and limited exploration of dependencies across tokens.

In contrast, the middle row shows that NSA—injecting Gaussian noise during training—broadens the dis-
tribution, encouraging attention heads to explore more diverse and weaker connections. This leads to over-
lapping attention patterns and increased representation diversity. A mathematical explanation for this
phenomenon is provided in Appendix A.5.

The top row demonstrates the effect of SNSA, which combines noise injection with Gaussian smoothing.
This operation retains the diversity introduced by noise while stabilizing the attention pattern, restoring
smoother and more informative distributions. The smoothing step dampens extreme noise while allowing
the model to refine its exploration of differnt interactions.

To further investigate, we visualized the attention score matrices from models fine-tuned on a representative
test sample from the HF prediction task on the MDC dataset (Figure 5). Comparing the original and
smoothed attention scores, we observe that SNSA promotes broader attention coverage, with activation
scores scaled to the [0, 1] range. Figure 5 illustrates an attention head from the first layer, confirming that
SNSA leads to more distributed attention patterns. Additional examples from the MIMIC-IV dataset are
provided in the appendix A.10.

5.8.1 Effect of SNSA on the Receptive Field

The self-attention mechanism is designed to capture both long and short-range dependencies effectively. To
quantitatively assess the impact of NSA and SNSA on the receptive field, we plot the median values of
attention score matrix Ah for each event with respect to all previous and subsequent events (i − j, Ahi,j )
-i, j are positions of ei, ej in the sequence of events- across all test samples for HF and AD predictions
on the MDC (Figures 6). Transformers pre-trained on MLM typically allocate more attention weight to
recent events, often in a monotonous fashion. Incorporating NSA regularization reduces the steepness of
this attention distribution, allowing events to receive more balanced attention, not solely based on their
proximity to recent events. Ultimately, applying SNSA, preserves the benefits of NSA by providing a more
equal distribution of attention within a local neighborhood, while simultaneously reducing the emphasis on
very distant past events. However, it is important to note that raw self-attention values do not fully reveal
Transformer behavior, as they are not directly interpretable and require further processing for accurate
attribution (Hao et al., 2021; Jain & Wallace, 2019; Serrano & Smith, 2019).

6 Conclusion

In this work, we introduced Smoothed Noise Injection Self-Attention Augmentation (SNSA), a simple yet
effective method for enhancing the fine-tuning of pre-trained Transformers on temporally structured health-
care data. SNSA directly augments the self-attention scores with adaptive Gaussian noise and applies a
smoothing convolution using a Gaussian kernel, encouraging the model to explore more diverse attention
patterns while preserving critical dependencies.

We demonstrated that pre-trained Transformers, when fine-tuned on limited EHR datasets, often converge to
overly sharp attention distributions—overfitting to local patterns and failing to capture broader contextual
relationships. Our approach addresses this limitation by injecting controlled stochasticity and smoothing,
leading to improved generalization and robustness. Extensive experiments on multiple clinical prediction
tasks showed that SNSA consistently outperforms conventional regularization and augmentation techniques.

SNSA offers a plug-and-play augmentation mechanism that operates entirely within the attention computa-
tion, requiring no modification to the model architecture or computational graph. This makes it particularly
suitable for integration with existing pre-trained models.
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(a) Pre-trained Trans-
former+Smoothed noise

(b) Pre-trained Trans-
former+ SNSA

(c) Pre-trained Trans-
former+ SNSA

(d) Pre-trained Trans-
former+ SNSA

(e) Pre-trained Trans-
former+ NSA

(f) Pre-trained Trans-
former+ NSA

(g) Pre-trained Trans-
former+ NSA

(h) Pre-trained Trans-
former+ NSA

(i) Pre-trained Trans-
former

(j) Pre-trained Trans-
former

(k) Pre-trained Trans-
former

(l) Pre-trained Trans-
former

HF
prediction

(MDC)

AD
prediction

(MDC)

HF
prediction

(MIMIC-IV)

PLS
prediction

(MIMIC-IV)

Figure 4: Comparison of the impact of SNSA on self-attention score distributions in fine-tuned models.
Attention scores from each head are individually scaled to the [0, 1] range before plotting their distributions.
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A Appendix

A.1 Implementation Details

The code compatible with the public MIMIC-IV dataset is provided in the Code Appendix.

The Transformer encoder was tuned on the MLM pretraining task based on the HF prediction results on the
validation dataset. We experimented with different hyperparameter configurations, including the number of
attention heads set to 1, 3, 5, and 8, hidden dimensions of 16, 36, and 64, and Transformer encoder layers
set to 1, 4, and 8. The best-performing configuration consisted of five attention heads, a hidden dimension
of 36, and a single Transformer encoder layer.

For MLM pretraining, we followed the approach in Poulain et al. (2022), where 15% of medical tokens were
randomly selected for modification. Of these masked tokens, 80% were replaced with the [MASK] token, 10%
were replaced with a randomly selected different medical token, and the remaining 10% were left unchanged.

A.1.1 Pretraining on MLM

For pretraining, we used the pretraining splits for each cohort as described in Section A.2. The input sequence
length was determined as the 0.7 percentile of the distribution of sequence lengths in the pretraining dataset,
which resulted in 131 tokens for the MDC dataset and 65 tokens for the MIMIC-IV dataset. A sliding window
approach with a stride of one was used to augment data during the MLM pretraining phase. This resulted in
approximately 313,000 training samples and 33,000 validation samples for MDC, while MIMIC-IV contained
around 1.245 million training samples and 140,000 validation samples. The vocabulary sizes were 1,675 for
MDC and 2,338 for MIMIC-IV. The models were pre-trained for 50 epochs, after which the training and
validation losses plateaued, as shown in Figure 7.

A.1.2 Training and Fine-Tuning on Downstream Task Prediction

For fine-tuning, token representations were aggregated using a GRU layer before being fed into a classifier.
The optimizer and the learning rate and coefficient, warm up steps and dropout were optimized from [SGD,
Adam, AdamW], [1e-5,2e-5,5e-5,7e-5], co=[1,.95,.9,.8] and warmup=[0,.05,.1,.2]*total steps and dropout=[0,
.1, .2,.4].The model was trained using the Adam (for 1 layer and ADAMW for 4 and 8 layer) optimizer with
a layer-wise learning rate decay coefficient of 0.9 and an initial learning rate of 6×10−5. The input sequence
length was set to 200 medical codes.
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(a) MLM training loss for MIMIC-IV (b) MLM validation loss for MIMIC-IV

(c) MLM training loss for MDC (d) MLM validation loss for MDC

Figure 7: MLM training and validation loss for MIMIC-IV and MDC datasets during training.

A.1.3 Cross-Validation

For model evaluation, five-fold cross-validation was conducted. The dataset was divided into five folds, and
the model was fine-tuned on four folds while early stopping was applied using the remaining fold. This
process was repeated five times with different validation sets, and the reported results include the mean and
standard deviation of the AUC on the unseen test dataset.

A.2 Dataset specifications

We used medical data from two sources: the Medical Information Mart for Intensive Care IV (MIMIC-
IV) Johnson et al. (2020) hosp module, and the Malmö Diet and Cancer Cohort (MDC) Berglund et al.
(1993) dataset, approved by the Ethics Review Board of Sweden (Dnr 2023-00503-01). Each EHR trajectory
represents a sequence of events of temporal structured health data. The MIMIC-IV hosp module is a
comprehensive collection of inpatient EHR trajectories, containing approximately 173,000 patient records
documented during 407,000 visits spanning from 2008 to 2019. This dataset includes a total of 10.6 million
medical codes representing diagnoses and medications.

On the other hand, the MDC dataset originates from a prospective cohort study conducted in Sweden.
It consists of around 30,000 individuals residing in Malmö between 1991 and 1996, with records of both
inpatient and outpatient visits spanning from 1992 to 2020, resulting in a total of 531,000 visits. While the
MDC dataset has fewer overall samples, it provides a more extensive patient history, with an average of 257
codes per patient compared to MIMIC-IV’s 61.

Both datasets use the International Statistical Classification of Diseases and Related Health Problems (ICD)
and Anatomical Therapeutic Chemical Code (ATC) for disease and medication classification, respectively,
in a hierarchical format.
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To facilitate our self-supervised pre-training, supervised fine-tuning, and final testing, we partitioned the
extracted cohort randomly into three subsets: 70%, 20%, and 10%, respectively. Despite being characterized
by extensive sparsity, preprocessing resulted in 2,195 unique ICD-9 and 137 unique ATC-5 codes for the
MIMIC-IV dataset and 1,558 unique ICD10 and 111 unique ATC-5 codes for the MDC dataset.

Table 4: MIMIC-IV dataset summary statistics.

Pre-
training
dataset

Fine-
tuning
dataset

Test
dataset

Total
dataset

#patients 121 K 36 K 16 K 173 K
#visits 285 K 86 K 37 K 408 K
#Medical
codes

7.451
M

2.234
M

937 K 10.622
M

Table 5: MDC dataset summary statistics.

Pre-
raining
dataset

Fine-
tuning
dataset

Test
dataset

Total
dataset

#patients 21 K 6 K 3 K 30 K
#visits 373 K 107 K 52 K 531 K
#Medical
codes

5.339
M

1.554
K

741 K 7.634
M

A.3 Effect of Varying σeh

Table 6 shows the AUC scores on the validation split for each downstream task using a range of σeh values
and their corresponding Gaussian kernel sizes. Overall, SNSA shows robust performance across different
σeh values, with optimal results achieved consistently within each dataset. Notably, for the MDC dataset,
performance on the HF prediction task is more sensitive to changes in σeh, while other tasks remain relatively
stable.

Table 6: Effect of different σeh values (and corresponding kernel sizes) on validation split AUC across four
downstream tasks.

Task / σeh 0.3
(k=2)

0.6
(k=4)

1.0
(k=6)

1.5
(k=10)

3.1
(k=20)

6.5
(k=40)

13.4
(k=80)

20.0
(k=120)

HF prediction
(MDC)

0.791 0.790 0.841 0.822 0.771 0.792 0.811 0.802

AD prediction
(MDC)

0.800 0.788 0.804 0.782 0.791 0.803 0.796 0.778

HF prediction
(MIMIC-IV)

0.923 0.910 0.914 0.914 0.901 0.910 0.918 0.914

PLS prediction
(MIMIC-IV)

0.603 0.598 0.591 0.603 0.599 0.588 0.597 0.596

A.4 Data availability

The MIMIC-IV data is available on https://physionet.org/content/mimiciv/2.2/. The MDC dataset
is available upon application and with permission of the Malmo Population-Based Cohorts Joint Database
https://www.malmo-kohorter.lu.se/malmo-cohorts
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A.5 Mathematical Justification: Impact of Normal Noise on Self-Attention distribution

A.5.1 Effect of Noise on Self-Attention

As shown in the bottom row of Fig. 4, attention scores in pre-trained Transformers often converge to extreme
values—either close to 0 or 1—after fine-tuning. This suggests that the model makes sharp, deterministic
decisions regarding which tokens to attend to. To introduce stochasticity and encourage more flexible
learning of dependencies, we inject Gaussian noise into the attention scores during training. In this section,
we analyze how this perturbation affects the distribution of attention scores.

A.5.2 Original Distribution of Attention Scores

From empirical observations in Fig. 4, we approximate the attention score distribution as bi-
modal—concentrated at 0 and 1. This can be modeled as a mixture of two Dirac delta functions:

p(Ah) = αδ(Ah − 0) + (1− α)δ(Ah − 1)
where α is the weight for the peak at 0, and 1− α is the weight for the peak at 1.

The mean and variance of this distribution are:

E[Ah] = (1− α)
E[A2

h] = (1− α)

Thus, the variance of the attention scores is:

Var(Ah) = E[A2
h]− (E[Ah])2 = (1− α)− (1− α)2 = α(1− α)

This gives the standard deviation:

std(Ah) =
√

α(1− α)

A.5.3 Effect of Gaussian Noise Injection

We inject Gaussian noise into the attention scores during training:

A′
h = Ah + ϵ where ϵ ∼ N (µ, std(Ah)2)

The noise ϵ is drawn from a normal distribution with µ mean and variance std(Ah)2 = α(1− α).

Thus, the perturbed distribution becomes:

A′
h =

{
N (µ, α(1− α)), if Ah = 0,

N (1 + µ, α(1− α)), if Ah = 1.

Thus, the original binary peaks at 0 and 1 are smoothed into overlapping Gaussian centered at µ and 1 + µ
respectively.

A.5.4 Effect on the Distribution of Attention Scores

This transformation shifts the attention distribution from discrete to continuous, promoting diversity in
attended interactions:

• When Ah = 0, the perturbed attention score A′
h will follow a normal distribution centered at µ .

18



Under review as submission to TMLR

• When Ah = 1, the perturbed attention score A′
h will follow a normal distribution centered at 1 + µ .

As shown in the middle row of Fig. 4, this noise increases overlap between previously distinct peaks. When
rescaled between 0 and 1, the distribution appears more centralized and continuous. Notably, the variance
is maximized when α = 1

2 , which results in the greatest overlap and diversity.

A.5.5 Conclusion

Injecting Gaussian noise shifts the attention score distribution from deterministic and binary to probabilistic
and continuous, encouraging the model to explore alternative dependencies. The overlap of noised distribu-
tions allows the model to escape rigid patterns and better capture complex, context-dependent relationships.
Crucially, our use of an adaptive standard deviation based on the attention scores allows the model to mod-
ulate this behavior based on the context, facilitating better generalization and diversity across heads and
layers.

A.5.6 Regularization and Robustness

Beyond promoting attention diversity, noise injection acts as a regularizer with several benefits:

• It prevents overfitting to strong patterns by injecting uncertainty.

• It encourages attention to low-probability events.

• It increases the variance of attention distributions, enabling the model to attend to underrepresented
interactions.

• It promotes exploration and robustness

These effects support improved generalization in data-scarce environments and more expressive modeling.

A.6 Justification: Impact of Gaussian Smoothing

The smoothing operation is used to adjust the added noise.

A.6.1 Effect of Gaussian Convolution on Attention Matrix

The convolution operation:

A′′
h = (Ah +N (µ, σ2

GN )) ∗ nσeh
(13)

performs localized averaging of the noisy attention matrix Ah +N (µ, σ2
GN ), where:

A′′
h(i, j) =

k∑
m=1

k∑
n=1

A′
h(i−m, j − n) · nσeh

[m, n] (14)

This operation results in three key effects:

1. Noise Reduction: Independent Gaussian noise can introduce high-frequency fluctuations. Convolving
with a Gaussian kernel acts as a low-pass filter, reducing such variance.

2. parsity Reduction: In the original attention, many values may be near-zero, creating sparsity.
Smoothing fills in values by interpolating between neighbors, producing more continuous transi-
tions.

3. Robust Contextualization: Original patterns are preserved and extended through smoothing
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A.7 Justification for SNSA: A Comparison with Dropout

SNSA can be justified by drawing parallels with dropout regularization, viewing SNSA as an “adaptive”
extension of it. Dropout works by randomly setting some of the activations to zero, effectively disconnecting
certain nodes during training. This prevents the model from becoming overly dependent on specific neurons
and encourages a more robust and generalized representation.

Mathematically, for each attention head Ah, dropout can be seen as applying a mask M (where M is a
Bernoulli distribution), resulting in the modified attention head A′

h = M · Ah. In contrast, GLA applies a
more nuanced adjustment:

Ah = Ah + ϵ ∼ N (µ, σ2) =
(

1 + ϵ

Ah

)
Ah = P ·Ah (15)

Here, P =
(

1 + ϵ
Ah

)
acts as an adaptive perturbation factor. Instead of completely severing connections

between tokens (as in dropout), GLA adjusts the attention weights by either amplifying or diminishing the
focus between two events. This approach maintains the relationships within the data while still introducing
variability.

The random perturbation from GLA forces the attention mechanism to avoid over-reliance on specific pat-
terns by continually adjusting the attention distribution. Consequently, GLA can be seen as a form of
ensemble learning, where each perturbation offers a different perspective on the data. This effectively trains
multiple versions of the model in parallel, each slightly varied due to the noise, leading to a more robust and
generalized final model.

A.8 Performance boost on data insufficiency

Table 7 presents the numerical results corresponding to the data insufficiency section.

Table 7: Effect of incorporating SNSA into the pre-trained Transformer on AUC performance value of HF
prediction across various fine-tunning sample sizes on the test dataset in MIMICIV and the MDC

Model-
dataset /
fine-tuning
percentage

10 % 20% 50% 100%

MLM-MDC 0.5 (0) 0.637
(0.053)

0.710
(0.030)

0.722
(0.025)

MLM+SNSA-
MDC

0.5 (0) 0.628
(0.041)

0.738
(0.012)

0.745
(0.029)

MLM-
MIMICIV

0.800
(.003)

0.819
(.011)

0.834
(.005)

0.852
(.011)

MLM+SNSA-
MIMICIV

0.835
(.023)

0.849
(.013)

0.860
(.007)

0.872
(.004)

A.9 Computational Complexity and Scalability

SNSA involves two primary operations per attention head: adding iid normal noise to an n × n attention
score matrix and convolving the result with a Gaussian filter. Therefore, the computational complexity of
SNSA can be expressed as:

O(SNSA) = O(addition of n× n matrix) + O(convolution)
O(SNSA) = O(n2) + O(k2 × n2) = O(n2) + O(n2) = O(n2)
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Here, n represents the input length (where n = 200 in our case), and k is the kernel size (k ≪ n). Since
the noise addition and convolution operations are only performed during the fine-tuning phase—where the
number of samples is significantly smaller compared to pre-training—SNSA introduces minimal scalability
limitations.

A.10 Effect of SNSA on self-attention behavior on the MIMIC-IV dataset

Figure 8 shows the effect of augmenting pre-trained Transformers with NSA and SNSA on a specific sample
on the MIMIC-IV dataset.

(a) Transformer (b) Trans-
former+SNSA

(c) Pre-trained
Transformer

(d) Pre-trained
Transformer+NSA

(e) Pre-trained
Transformer+SNSA

Figure 8: The attention score weights for ten fine-tuned models on HF prediction on the MIMIC-IV dataset
for a specific sample.scale of the heatmaps varies across different models.

A.11 Baseline Models

The baselines in our study were selected based on prior research and practical considerations for modeling
temporal health data. The following models were used for comparison:

• Logistic Regression (LR)

• Random Forest (RF)

• Multilayer Perceptron (MLP)

• Bidirectional GRU (Bi-GRU)

• Transformer (scratch): A Transformer encoder trained from scratch using multi-head attention
followed by a classification feedforward head.

• Pretrained Transformer (MLM): A Transformer encoder pretrained on MLM and fine-tuned
on downstream tasks, following approaches such as BEHRT, Med-BERT, and others (Rasmy et al.,
2021; Li et al., 2020; Meng et al., 2021).

For LR, RF, and MLP, each visit was encoded as a multi-hot vector and aggregated via summation across
visits. These baselines allow us to benchmark the performance of SNSA against both classical machine
learning models and modern Transformer-based architectures. Training and fine-tuning hyperparameters for
each model are provided in Appendix A.1. Table 8 shows the results.
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Table 8: Average AUC values (%) and standard deviation for different baseline methods for the HF prediction,
AD prediction, and PLS prediction downstream tasks on the test datasets.

Model / Downstream Task HF predic-
tion (MDC)

AD predic-
tion (MDC)

HF pre-
diction
(MIMIC-IV)

PLS pre-
diction
(MIMIC-IV)

Logistic regression 62.4 (1.1) 56.4 (1.1) 83.9 (1.2) 54.2 (0.4)
Random forest 60.7 (0.5) 51.8 (0.3) 77.2 (2.3) 51.1 (0.3)
MLP 67.9 (3.0) 68.0 (1.5) 85.2 (0.3) 59.3 (1.9)
Bi-GRU 62.3 (1.2) 60.4 (1.1) 86.5 (1.2) 55.9 (1.0)
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