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Abstract

In the last decade, we have witnessed the introduction of several novel deep1

neural network (DNN) architectures exhibiting ever-increasing performance across2

diverse tasks. Explaining the upward trend of their performance, however, remains3

difficult as different DNN architectures of comparable depth and width – common4

factors associated with their expressive power – may exhibit a drastically different5

performance even when trained on the same dataset. In this paper, we introduce6

the concept of the non-linearity signature of DNN, the first theoretically sound7

solution for approximately measuring the non-linearity of deep neural networks.8

Built upon a score derived from closed-form optimal transport mappings, this9

signature provides a better understanding of the inner workings of a wide range10

of DNN architectures and learning paradigms, with a particular emphasis on the11

computer vision task. We provide extensive experimental results that highlight the12

practical usefulness of the proposed non-linearity signature and its potential for13

long-reaching implications.14

1 Introduction15

Deep neural networks (DNNs) are undoubtedly the most powerful AI models currently available16

[1, 2, 3, 4, 5]. Their performance on many tasks, including natural language processing (NLP) [6]17

and computer vision [7], is already on par or exceeds that of a human being. One of the reasons18

explaining such progress is of course the increasing computational resources [8, 9]. Another one is19

the endeavour for finding ever more efficient neural architectures pursued by researchers over the20

last decade. As of today, the transformer architecture [10] has firmly imposed itself as a number21

one choice for most, if not all, of the recent breakthroughs [11, 12, 13] in the machine learning and22

artificial intelligence fields.23

24

Limitations But why transformers are more capable than other architectures? Answering this25

question requires finding a meaningful measure to compare the different famous models over26

time gauging the trend of their intrinsic capacity. For such a comparison to be informative, it is27

particularly appropriate to consider the computer vision field that produced many of the landmark28

neural architectures improving upon each other over the years. Indeed, the decade-long revival of29

deep learning started with Alexnet’s [14] architecture, the winner of the ImageNet Large Scale Visual30

Recognition Challenge [15] in 2012. By achieving a significant improvement over the traditional31

approaches, Alexnet was the first truly deep neural network to be trained on a dataset of such32

scale, suggesting that deeper models were likely to bring even more gains. In the following years,33

researchers proposed novel ways to train deeper models with hundreds of layers [16, 17, 18, 19]34

pushing the performance frontier even further. The AI research landscape then reached a turning35
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point with the proposal of transformers [10], starting their unprecedented dominance first in NLP and36

then in computer vision [20]. Surprisingly, transformers are not particularly deep, and the size of37

their landmark vision architecture is comparable to that of Alexnet, and this despite a significant38

performance gap between the two. Ultimately, this gap should be explained by the differences in the39

expressive power [21] of the two models: a term used to denote the ability of a DNN to approximate40

functions of a certain complexity. Unfortunately, the existing theoretical results related to this either41

associate higher expressive power with depth [22, 23, 24] or width [25, 26, 27, 28] falling short in42

comparing different families of architectures. This, in turn, limits our ability to understand what43

underpins the achieved progress and what challenges and limitations still exist in the field, guiding44

future research efforts.45

46

Contributions We argue that quantifying the non-linearity of a DNN may be what we were missing47

so far to understand the evolution of the deep learning models at a more fine-grained level. To verify48

this hypothesis in practice, we put forward the following contributions:49

1. We propose a first theoretically sound measure, called the affinity score, that estimates the50

non-linearity of a given (activation) function using optimal transport (OT) theory. We use51

the proposed affinity score to introduce the concept of the non-linearity signature of DNNs52

defined as a set of affinity scores of all its activation functions.53

2. We compare non-linearity signatures of a wide range of popular DNNs used in computer54

vision: from Alexnet to vision transformers (ViT) and their more recent variations. Through55

this, we clearly illustrate the disruptive patterns in the evolution of the deep learning field.56

3. We demonstrate that non-linearity signature can be predictive of DNNs performance and57

used to meaningfully identify the family of approaches to which a given DNN belongs. We58

further show that the non-linearity signature is unique as it doesn’t correlate strongly with59

other potential candidates used for this task.60

The rest of the paper is organized as follows. We start by presenting the relevant background61

knowledge on OT in Section 2. Then, we introduce the affinity score together with its different62

theoretical properties in Section 3. Section 4 presents experimental evaluations on a wide range of63

popular convolutional neural networks. Finally, we conclude in Section 5.64

2 Background65

Optimal Transport Let (X, d) be a metric space equipped with a lower semi-continuous cost66

function c : X ×X → R≥0, e.g the Euclidean distance c(x, y) = ∥x− y∥. Then, the Kantorovich67

formulation of the OT problem between two probability measures µ, ν ∈ P(X) is given by68

OTc(µ, ν) = min
γ∈ADM(µ,ν)

Eγ [c], (1)

where ADM(µ, ν) is the set of joint probabilities with marginals µ and ν, and Eν [f ] denotes the69

expected value of f under ν. The optimal γ minimizing equation 1 is called the OT plan. Denote by70

L(X) the law of a random variable X . Then, the OT problem extends to random variables X,Y and71

we write OTc(X,Y ) meaning OTc(L(X),L(Y )).72

Assuming that either of the considered measures is absolutely continuous, then the Kantorovich73

problem is equivalent to the Monge problem74

OTc(µ, ν) = min
T :T#µ=ν

EX∼µ[c(X,T (X))], (2)

where the unique minimizing T is called the OT map, and T#µ denotes the push-forward measure,75

which is equivalent to the law of T (X), where X ∼ µ.76

Wasserstein distance Let X be a random variable over Rd satisfying E[∥X − x0∥2] < ∞ for some77

x0 ∈ Rd, and thus for any x ∈ Rd. We denote this class of random variables by P2(Rd). Then, the78

2-Wasserstein distance W2 between X,Y ∈ P2(Rd) is defined as79

W2(X,Y ) = OT||x−y||2(X,Y )
1
2 . (3)

We now proceed to the presentation of our main contribution.80
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3 Non-linearity signature of deep neural networks81

Among all non-linear operations introduced into DNNs in the last several decades, activation functions82

remain the only structural piece that they all inevitably share. Without non-linear activation functions,83

most of DNNs, no matter how deep, reduce to a linear function unable to learn complex patterns.84

Activation functions were also early identified [29, 30, 31, 32] as a key to making even a shallow85

network capable of approximating any function, however complex it may be, to arbitrary precision.86

We thus build our study on the following intuition: if activation functions play in important role87

in making DNNs non-linear, then measuring their degree of non-linearity can provide us with an88

approximation of the DNN’s non-linearity itself. To implement this intuition in practice, however, we89

first need to find a way to measure the non-linearity of an activation function. Surprisingly, there is90

no widely accepted measure for this, neither in the field of mathematics nor in the field of computer91

science. To fill this gap, we will use the OT theory to develop a so-called affinity score below.92

3.1 Affinity score93

Identifiability We consider the pre-activation signal X of an activation function within a neural94

network, and the post-activation signal σ(X) denoted by Y as input and output random variables.95

Our first step to build the affinity score then is to ensure that we can identify when σ is linear with96

respect to (wrt) X (for instance, when an otherwise non-linear activation is locally linear at the97

support of X). To show that such an identifiability condition can be satisfied with OT, we first recall98

the following classic result from the literature characterizing the OT maps.99

Theorem 3.1 ([33]). Let X ∈ P2(Rd), T (x) = ∇ϕ(x) for a convex function ϕ with T (X) ∈ P2(Rd).100

Then, T is the unique optimal OT map between µ and T#µ.101

Using this theorem about the uniqueness of OT maps expressed as gradients of convex functions, we102

can prove the following result (all proofs can be found in the Appendix C):103

Corollary 3.2. Without loss of generality, let X,Y ∈ P2(Rd) be centered, and let Y = σ(X) = TX ,104

where T is a positive definite linear transformation. Then, T is the OT map from X to Y .105

Whenever the activation function σ is linear, the solution to the OT problem T exactly reproduces it.106

Characterization We now seek to understand whether T can be characterized more explicitly. For107

this, we prove the following theorem stating that T can be computed in closed-form using the normal108

approximations of X and Y .109

Theorem 3.3. Let X,Y ∈ P2(Rd) be centered and Y = TX for a positive definite matrix T . Let110

NX ∼ N (µ(X),Σ(X)) and NY ∼ N (µ(Y ),Σ(Y )) be their normal approximations where µ and111

Σ denote mean and covariance, respectively. Then, W2(NX , NY ) = W2(X,Y ) and T = Taff , where112

Taff is the OT map between NX and NY and can be calculated in closed-form113

Taff(x) = Ax+ b, A = Σ(Y )
1
2

(
Σ(Y )

1
2Σ(X)Σ(Y )

1
2

)− 1
2

Σ(Y )
1
2 ,

b = µ(Y )−Aµ(X).
(4)

Upper bound When the activation σ is non-linear wrt X , the affine OT mapping Taff(X) will114

deviate from the true activation outputs Y . One important step toward quantifying this deviation is115

given by the famous Gelbrich bound, formalized by means of the following theorem:116

Theorem 3.4 (Gelbrich bound [34]). Let X,Y ∈ P2(Rd) and let NX , NY be their normal approxi-117

mations. Then, W2(NX , NY ) ≤ W2(X,Y ).118

This upper bound provides a first intuition of why OT can be a great tool for measuring non-linearity:119

the cost of the affine map solving the OT problem on the left-hand side increases when the map120

becomes non-linear. We now upper bound the difference between W2(NX , NY ) and W2(X,Y ), two121

quantities that coincide only when σ is linear.122

Proposition 3.5. Let X,Y ∈ P2(Rd) and NX , NY be their normal approximations. Then,123

1. |W2(NX , NY )−W2(X,Y )| ≤
2Tr

[
(Σ(X)Σ(Y ))

1
2

]
√

Tr[Σ(X)]+Tr[Σ(Y )]
.124
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Non-linearity signature = [ (ReLU1), (ReLU2), (ReLU3), ... , (ReLUn)]
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Figure 1: Illustration of how the non-linearity of a given neural network is measured. (Top) The
non-linearity signature of a DNN is a collection of affinity scores calculated for each activation
function spread across its hidden layers. (Bottom) The affinity score is calculated based on 3 main
steps. First, given an input (grey) and an output (red) of an activation function (left), we estimate
the best affine OT fit Taff(X) (green) transporting the input to the output (middle-left). Second, we
measure the mismatch between the two by summing the transportation costs (middle-right) to obtain
the Wasserstein distance W2(TaffX,Y ). Finally, this distance is normalized with the magnitudes of
variance (arrows in the rightmost plot) of the output data based on its covariance matrix.

2. For Taff as in (4), W2(TaffX,Y ) ≤
√

2Tr [Σ(Y )].125

To have a more informative non-linearity measure, we now need to normalize the non-negative Wasser-126

stein distance W2(TaffX,Y ) to an interpretable interval of [0, 1]. The bound given in Proposition 3.5127

lets us define the following affinity score128

ρaff(X,σ(X)) = 1− W2(TaffX,σ(X))√
2Tr[Σ(σ(X))]

. (5)

The proposed affinity score quantifies how far a given activation σ is from an affine transformation.129

It is equal to 1 for any input for which the activation function is linear, and 0 when it is maximally130

non-linear, i.e., when TaffX and σ(X) are independent random variables.131

Remark 3.6. One may wonder whether a simpler alternative to the affinity score can be to use,132

instead of Taff , a mapping TW (x) = Wx defined as a solution of a linear regression problem133

minW ||Y −WX||2F . Then, one can use the coefficient of determination (R2 score) to measure how134

well TW fits the observed data. This approach, however, has two drawbacks. First, following the135

famous Gauss-Markov theorem, TW is an optimal linear (linear in Y ) estimator. On the contrary, Taff136

is a globally optimal non-linear mapping aligning X and Y . Second, R2 compares the fit of TW with137

that of a mapping outputting µ(Y ) for any value of X . This is contrary to ρaff that compares how138

well Taff fits the data wrt to the worst possible cost incurred by Taff as quantified in Proposition 3.5.139

This gives us a bounded score, i.e. ρaff ∈ [0, 1], whereas R2 is not lower bounded, i.e. R2 ∈ [−∞, 1].140

We confirm experimentally in Section 4 that the two coefficients do not correlate consistently across141

the studied DNNs suggesting that R2 is a poor proxy to ρaff .142
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(A) (B)

(C)

Figure 2: (A) Non-linearity of ReLU depends on the range of input values (red); (B) ReLU, Tanh,
and Sigmoid exhibit different degrees of non-linearity for the same input; (C) Affinity score captures
the increasing non-linearity of polynomials of different degrees.

3.2 Non-linearity signature143

We now turn our attention to the definition of a non-linearity signature of deep neural networks. We144

define a neural network N as a composition of layers Fi where each layer Fi is a function taking145

as input a tensor Xi ∈ Rhi×wi×ci (for instance, an image of size 224 × 224 × 3 for i = 1) and146

outputting a tensor Yi ∈ Rhi+1×wi+1×ci+1 used as an input of the following layer Fi+1. This defines147

N = FL ⊙ ...⊙ Fi ...⊙ F1 =
⊙

k=1,...,L Fk where ⊙ stands for a composition.148

We now present the definition of a non-linearity signature of a network N. Below, we abuse the149

compositional structure of Fi and see it as an ordered sequence of functions.150

Definition 3.1. Let N =
⊙

k=1,...,L Fk be a neural network. Define by A a finite set of common
activation functions such that A := {σ|σ : Rh×w×c → Rh×w×c}. Let r be a pooling operation such
that r : Rh×w×c → Rc. Then, the non-linearity signature of N given an input X is defined as follows:

ρaff(N; X) = {ρaff(r(Xi), σ(r(Xi))), ∀σ ∈ Fi ∩ A, i = {1, . . . , L}}.

Non-linearity signature, illustrated in Figure 1, associates to each network N a vector of affinity151

scores calculated over the inputs and outputs of all activation functions encountered across its layers.152

153

What makes an activation function non-linear? We now want to understand the mechanism154

behind achieving a lower or higher non-linearity with a given (activation) function. This will155

explain what the different values of the affinity scores stand for when defining the non-linearity156

signature of a DNN. In Figure 2(A), we show how the ReLU function [35], defined element-wise as157

ReLU(x) = max(0, x), achieves its varying degree of non-linearity. Interestingly, this degree depends158

only on the range of the input values. Second, in Figure 2(B) we also show how the shape of activation159

functions impacts their non-linearity for a fixed input: surprisingly, piece-wise linear ReLU function160

is more non-linear than Sigmoid(x) = 1/(e−x + 1) [36] or Tanh(x) = (e−x − ex)/(e−x + ex).161

Similar observations also apply to compare polynomials of varying degrees (Figure 2(C)). We refer162

the reader to Appendix D for more visualizations of the affinity score of popular activation functions.163

3.3 Related work164

Layer-wise similarity analysis of DNNs A line of work that can be distantly related to our main165

proposal is that of quantifying the similarity of the hidden layers of the DNNs as proposed [37] and166

[38] (see [39] for a complete survey of the subsequent works). [37] extracts activation patterns of167

the hidden layers in the DNNs and use CCA on the singular vectors extracted from them to measure168

how similar the two layers are. Their analysis brings many interesting insights regarding the learning169

dynamics of the different convnets, although they do not discuss the non-linearity propagation in the170
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convnets, nor do they propose a way to measure it. [38] proposed to use a normalized Frobenius171

inner product between kernel matrices calculated on the extracted activations of the hidden layers172

and argued that such a similarity measure is more meaningful than that proposed by [37].173

Impact of activation functions [40] provides the most comprehensive survey on the activation174

functions used in DNNs. Their work briefly discusses the non-linearity of the different activation175

functions suggesting that piecewise linear activation functions with more linear components are more176

non-linear (e.g., ReLU vs. ReLU6). [41] show theoretically that smooth versions of ReLU allow177

for more efficient information propagation in DNNs with a positive impact on their performance.178

Our work provides a first extensive comparison of all popular activation functions; we also show that179

smooth version of ReLU exhibit wider regions of high non-linearity (see Appendix D).180

Non-linearity measure The only work similar to ours in spirit is the paper by [42] proposing the181

non-linearity coefficient in order to predict the train and test error of DNNs. Their coefficient is182

defined as a square root of the Jacobian of the neural network calculated wrt its input, multiplied by183

the covariance matrix of the Jacobian, and normalized by the covariance matrix of the input. The184

presence of the Jacobian in it calls for the differentiability assumption making its application to185

most of the neural networks with ReLU non-linearity impossible as is. The authors didn’t provide186

any implementation of their coefficient and we were not able to find any other study reporting the187

reproduced results from this work.188

4 Experimental evaluations189

We consider computer vision models trained and evaluated on the same Imagenet dataset with 1,000190

output categories (Imagenet-1K) publicly available at [43]. The non-linearity signatures of different191

studied models presented in the paper is calculated by passing batches of size 512 through the192

pre-trained models for the entirety of the Imagenet-1K validation set (see Appendix H for more193

datasets) with a total of 50,000 images. We include the following landmark architectures in our study:194

Alexnet [14], four VGG models [16], Googlenet [44], Inception v3 [17], five Resnet models [18],195

four Densenet models [19], four MNASNet models [45], four EfficientNet models [46], five ViT196

models, three Swin transformer [47] and four Convnext models [48]. We include MNASNet and197

EfficientNet models as prominent representatives of the neural architecture search approach [49].198

Such models are expected to explicitly maximize the accuracy for a given computational budget.199

Swin transformer and Convnext models are introduced as ViTs with traditional computer vision200

priors. Their presence will be useful to better grasp how such priors impact ViTs. We refer the reader201

to Appendix E for more practical details.202

History of deep vision models at a glance We give a general outlook of the developments in203

computer vision over the last decade when seen through the lens of their non-linearity. In Figure 3204

we present the minimum, median, and maximum values of the affinity scores calculated for the205

considered neural networks (see Appendix F for raw non-linearity signatures). We immediately206

see that until the arrival of transformers, the trend of the landmark models was to decrease their207

non-linearity, rather than to increase it. On a more fine-grained level, we note that pure convolution208

architectures such as Alexnet (2012) and VGGs (2014) exhibit a very low spread of the affinity209

score values. This trend changes with the arrival of the inception module first used in Googlenet210

(2014): the latter includes activation functions that extend the range of the non-linearity on both211

ends of the spectrum. Importantly, we can see that the trend toward increasing the maximum and212

average non-linearity of the neural networks has continued for almost the whole decade. Even more213

surprisingly, EfficientNet models (2019), trained through neural architecture search, have strong214

negative skewness toward higher linearity, although they were state-of-the-art in their time. The215

second surprising finding comes with the arrival of ViTs (2020): they break the trend and leverage216

the non-linearity of their hidden activation functions becoming more or more non-linear with the217

varying size of the patches (see Appendix F for a more detailed comparison with raw signatures).218

This trend remains valid also for Swin transformers (2021), although introducing the computer vision219

priors into them makes their non-linearity signature look more similar to pure convolutional networks220

from the early 2010s, such as Alexnet and VGGs. Finally, we observe that the non-linearity signature221

of a modern Convnext architecture (2022), designed as a convnet for 2020s using the best practices222

of Swin transformers, further confirms this observation.223
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Figure 3: Median, minimum, and maximum values of non-linearity signatures of the different
architectures spanning a decade (2012-2022) of computer vision research. We observe a clear trend
toward the increase of the spread and the maximum values of the linearity in neural networks lasting
until the arrival of transformers in 2020. ViTs have a distinct pattern of maximizing the non-linearity
of their activation functions. Swin transformers and Convnext models retain this property from them
while remaining close to the pure convolutional networks.
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Figure 4: Best found dependency between the different statistics extracted from the non-linearity
signatures of the DNN families and their respective Imagenet-1K accuracy. The results are compared
in terms of the R2 score against the most precise of the other common DNN characteristics such as
depth, size, and the GFLOPS.
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Figure 5: Comparing the different families of the neural architectures based on their non-linearity
signatures. (A) Hierarchical clustering of all DNNs considered in our study revealing meaningful
clusters with close architectural characteristics; (B) 9 representative architectures from all studied
families and the similarities between them. Note how the similarities between early convnets and other
models is decreasing with time until computer vision priors are introduced into Swin transformers in
2021; (C) Distributions of affinity scores in each network. Most models expand the non-linearity
ranges of their activation functions compared to early convnets. ViTs are dominated by highly
non-linear activation functions, Resnets have a bimodal distribution, Densenets, and EfficientNets
have a diametrically skewed distribution compared to ViTs. (D) Comparing the same convnet with 20
layers when trained with (Residual Resnet20) and without (Plain Resnet20) residual connections (top
row). Residual connections introduce a clear trend toward a bimodal distribution of affinity scores;
the same effect is observed for Resnet18 and Resnet34 (bottom row).

Closer look at accuracy/non-linearity trade-off Different families of vision models leverage differ-224

ent characteristics of their internal non-linearity to achieve better performance. To better understand225

this phenomenon, we now turn our attention to a more detailed analysis of the accuracy/non-linearity226

trade-off by looking for a statistic extracted from their non-linearity signatures that is the most predic-227

tive of their accuracy as measured by the R2 score. Additionally, we also want to understand whether228

the non-linearity of DNNs can explain their performance better than the traditional characteristics229

such as the number of parameters, the number of giga floating point operations per second (GFLOPS),230

and the depth. From the results presented in Figure 4, we observe the following. First, the information231

extracted from the non-linearity signatures often correlates more with the final accuracy, than the232

usual DNN characteristics. This is the case for Residual networks (ResNets and DenseNets), ViTs,233

and vision models influenced by transformers (Post-ViT). Unsurprisingly, for models based on neural234

architecture search (NAS-based, i.e. EfficientNets and MNASNets) the number of parameters is235

the most informative metric as they are specifically designed to reach the highest accuracy with the236

increasing model size and compute. For Pre-residual pure convolutional models (Alexnet, VGGs,237

Googlenet, and Inception), the spread of the non-linearity explains the accuracy increase similarly to238

depth. Second, we observe that all models preceding ViTs were implicitly optimizing the spread of239

their affinity score values to achieve better performance. After the arrival of the transformers, the240

observed trend is to increase either the median or the minimum values of the non-linearity. This241

suggests a fundamental shift in the implicit bias that the transformers carry.242
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Table 1: Pearson correlations between the non-linearity signature and other metrics, for all the
architectures evaluated in this study. The highest absolute value in each group is reported in bold.

Models CKA NORM SPARSITY ENTROPY R2

VGGs 0.0 ± 0.05 -0.67 ± 0.06 -0.18 ± 0.03 -0.90 ± 0.04 -0.21 ± 0.06
ResNets 0.53 ± 0.04 -0.41 ± 0.19 -0.68 ± 0.02 -0.38 ± 0.12 -0.48 ± 0.24
DenseNets 0.88 ± 0.02 -0.76 ± 0.02 -0.89 ± 0.02 -0.66 ± 0.03 0.85 ± 0.04
MNASNets 0.67 ± 0.11 -0.54 ± 0.14 -0.63 ± 0.07 -0.55 ± 0.16 0.45 ± 0.17
EfficientNets 0.42 ± 0.10 -0.16 ± 0.22 -0.17 ± 0.23 -0.16 ± 0.14 0.21 ± 0.12
ViTs -0.22 ± 0.40 -0.67 ± 0.20 -0.09 ± 0.56 0.17 ± 0.25 -0.10 ± 0.34
Swins -0.15 ± 0.13 -0.53 ± 0.10 -0.26 ± 0.17 0.06 ± 0.35 -0.13 ± 0.13
Convnexts 0.69 ± 0.08 0.21 ± 0.15 0.23 ± 0.16 0.02 ± 0.09 0.79 ± 0.05
Average 0.33 ± 0.45 -0.44 ± 0.34 -0.32 ± 0.42 -0.31 ± 0.39 0.14 ± 0.49

Distinct signature for every architecture Non-linearity signature correctly identifies the different243

families of neural architectures. To show this, we perform hierarchical clustering using pairwise244

dynamic time warping (DTW) distances [50] between the non-linearity signatures of the models from245

Figure 3. The results in Figure 5 (A), as well as the pairwise distance matrix between a representative246

of each studied family in Figure 5 (B) (see Appendix G for the full matrix), show that we correctly247

cluster all similar models together, both within their respective families (such as the different248

variations of the same architecture) and across them (such as the cluster of Swin and pure convolution249

models). Additionally, we highlight the individual affinity scores’ distributions of representative250

models in Figure 5 (C). Finally, we highlight the exact effect of residual connections proposed in251

2016 and used ever since by every benchmark model in Figure 5 (D). It reveals vividly that residual252

connections make the distribution of the affinity scores bimodal with one such mode centered around253

highly linear activation functions. This confirms in a principled way that residual connections indeed254

tend to enable the learning of the identity function just as suggested in the seminal work that proposed255

them [18]. Non-linearity signatures can also be applied to meaningfully identify training methods,256

such as popular nowadays self-supervised approaches, for a fixed architecture (see Appendix I).257

258

Uniqueness of the affinity score No other metric extracted from the activation functions of the259

considered networks exhibits a strong consistent correlation with the non-linearity signature. To260

validate this claim, we compare in Table 1 the Pearson correlation between the non-linearity signature261

and several other metrics comparing the inputs and the outputs of the activation functions. We can see262

that for different models the non-linearity correlates with different metrics suggesting that it captures263

the information that other metrics fail to capture consistently across all architectures. This becomes264

even more apparent when analyzing the individual correlation values (in Appendix G). Overall, the265

proposed affinity score and the non-linearity signatures derived from it offer a unique perspective on266

the developments in the ML field.267

5 Discussions268

We proposed the first sound approach to measure non-linearity of activation functions in neural269

networks and defined their non-linearity signature based on it. We further used non-linearity signatures270

to provide a meaningful overview of the evolution of neural architectures proposed over the last271

decade with clear interpretable patterns. We showed that until the arrival of transformers, the trend in272

DNNs was to decrease their non-linearity, rather than to increase it. Vision transformers changed273

this pattern drastically. We also showcased that our measure is unique, as no other metric correlates274

strongly with it across all architectures.275

In the future, our work can be applied to study the non-linearity of the LLM models to better under-276

stand the effect of different architectural choices in them. On a higher level, our approach can also be277

used to identify new disruptive neural architectures by identifying those of them that leverage different278

internal non-linearity characteristics to obtain better performance. This capacity of identifying novel279

technologies is even more crucial in the age of very large models where experimenting with the280

building blocks of the optimized backbone comes at a very high cost.281
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A Broader Impacts451

This paper presents work whose goal is to advance the field of Machine Learning and better understand452

the underlying behavior of Deep Neural Networks architectures. There are many potential societal453

consequences of our work, none which we feel must be specifically highlighted here.454

B Limitations455

An important assumption of Theorem 3.3, is that the activation function that we want to analyze456

through ρaff needs to be a positive definite transformation of the inputs. Fortunately, this is the case for457

activation functions, that we consider in this paper. Finally, we note that despite the strong correlation458

between the statistics extracted from the non-linearity signatures for certain DNNs’ architectures,459

we are yet to show that explicitly optimizing affinity scores through backpropagation can have an460

actionable impact on DNNs performance or its other properties, such as robustness or transferability.461

C Proofs of main theoretical results462

In this section, we provide proofs of the main theoretical results from the paper.463

Corollary 3.2. Without loss of generality, let X,Y ∈ P2(Rd) be centered, and such that Y = TX ,464

where T is a positive semi-definite linear transformation. Then, T is the OT map from X to Y .465

Proof. We first proof that we can consider centered distributions without loss of generality. To this466

end, we note that467

W 2
2 (X,Y ) = W 2

2 (X − E[X], Y − E[Y ]) + ∥E[X]− E[Y ]∥2, (6)

implying that splitting the 2-Wasserstein distance into two independent terms concerning the L2468

distance between the means and the 2-Wasserstein distance between the centered measures.469

Furthermore, if we have an OT map T ′ between X − E[X] and Y − E[Y ], then470

T (x) = T ′(x− E[X]) + E[Y ], (7)

is the OT map between X and Y .471

To prove the statement of the Corollary, we now need to apply Theorem 3.1 to the convex ϕ(x) =472

xTTx, where T is positive semi-definite.473

Theorem 3.3. Let X,Y ∈ P2(Rd) be centered and Y = TX for a positive definite matrix T . Let474

NX ∼ N (µ(X),Σ(X)) and NY ∼ N (µ(Y ),Σ(Y )) be their normal approximations where µ and Σ475

denote mean and covariance, respectively. Then, W2(NX , NY ) = W2(X,Y ) and T = Taff , where476

Taff is the OT map between NX and NY and can be calculated in closed-form477

Taff(x) = Ax+ b, A = Σ(Y )
1
2

(
Σ(Y )

1
2Σ(X)Σ(Y )

1
2

)− 1
2

Σ(Y )
1
2 ,

b = µ(Y )−Aµ(X).
(8)

Proof. Corollary 3.2 states that T is an OT map, and478

Σ(TNX) = TΣ(X)T = Σ(Y ).

Therefore, TNX = NY , and by Theorem 3.1, T is the OT map between NX and NY . Finally, we479

compute480

W 2
2 (NX , NY ) =Tr[Σ(X)] + Tr[TΣ(X)T ]− 2Tr[T

1
2Σ(X)T

1
2 ]

= argmin
T :T (X)=Y

EX [∥X − T (X)∥2]

=W 2
2 (X,Y ).

481

14



Proposition 3.5. Let X,Y ∈ P2(Rd) and NX , NY be their normal approximations. Then,482

1. |W2(NX , NY )−W2(X,Y )| ≤
2Tr

[
(Σ(X)Σ(Y ))

1
2

]
√

Tr[Σ(X)]+Tr[Σ(Y )]
.483

2. For Taff as in (4), W2(TaffX,Y ) ≤
√
2Tr [Σ(Y )]

1
2 .484

Proof. By Theorem 3.4, we have W2(NX , NY ) ≤ W2(X,Y ). On the other hand,485

W 2
2 (X,Y ) = min

γ∈ADM(X,Y )

∫
Rd×Rd

∥x− y∥2dγ(x, y)

≤
∫
Rd×Rd

(
∥x∥2 + ∥y∥2

)
dγ(x, y)

= Tr[Σ(X)] + Tr[Σ(Y )].

Combining the above inequalities, we get486

|W2(NX , NY )−W2(X,Y )| ≤
∣∣∣√Tr[Σ(X)] + Tr[Σ(Y )]−W2(NX , NY )

∣∣∣ .
Let a = Tr[Σ(X)] + Tr[Σ(Y )], and so W 2

2 (NX , NY ) = a − b, where b = 2Tr
[
(Σ(X)Σ(Y ))

1
2

]
.487

Then the RHS of can be written as488 ∣∣∣√a−
√
a− b

∣∣∣ = |a− (a− b)|
√
a+

√
a− b

≤ b√
a
,

where the inequality follows from positivity of W2(NX , NY ) =
√
a− b. Letting X = TaffX in the489

obtained bound gives 2).490
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Figure 6: Median affinity scores of Sigmoid, ReLU, GELU, ReLU6, LeakyReLU with a default
value of slope, Tanh, HardTanh, SiLU, and HardSwish obtained across random draws from Gaussian
distribution with a sliding mean and varying stds used as their input. Whiskers of boxplots show the
whole range of values obtained for each mean across all stds. The baseline value is the affinity score
obtained for a sample covering the whole interval. The ranges and extreme values of each activation
function over its subdomain are indicative of its non-linearity limits.

D Affinity scores of other popular activation functions491

Many works aimed to improve the way how the non-linearity – represented by activation functions –492

can be defined in DNNs. As an example, a recent survey on the commonly used activation functions in493

deep neural networks [40] identifies over 40 activation functions with first references to sigmoid dating494

back to the seminal paper [36] published in late 80s. The fashion for activation functions used in deep495

neural networks evolved over the years in a substantial way, just as the neural architectures themselves.496

Saturating activations, such as sigmoid and hyperbolic tan, inspired by computational neuroscience497

were a number one choice up until the arrival of rectifier linear unit (ReLU) in 2010. After being the498

workhorse of many famous models over the years, the arrival of transformers popularized Gaussian499

Error Linear Unit (GELU) which is now commonly used in many large language models including500

GPTs.501

We illustrate in Figure 6 the affinity scores obtained after a single pass of the data through the502

following activation functions: Sigmoid, ReLU [51], GELU [52], ReLU6 [53], LeakyReLU [54]503

with a default value of the slope, Tanh, HardTanh, SiLU [55], and HardSwish [56]. As the non-504

linearity of activation functions depends on the domain of their input, we fix 20 points in their505

domain equally spread in [−20, 20] interval. We use these points as means {mi}20i=1 of Gaussian506

distributions from which we sample 1000 points in R300 with standard deviation (std) σ taking values507

in [2, 1, 0.5, 0.25, 0.1, 0.01]. Each sample denoted by X
σj
mi is then passed through the activation508

function act ∈ {sigmoid,ReLU,GELU} to obtain ρ
mi,σj

aff := ρaff(X
σj
mi , act(Xσj

mi)). Larger std509

values make it more likely to draw samples that are closer to the region where the studied activation510

functions become non-linear. We present the obtained results in Figure S2 where each of 20 boxplots511

showcases median(ρmi,σ·
aff ) values with 50% confidence intervals and whiskers covering the whole512

range of obtained values across all σj .513
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This plot allows us to derive several important conclusions. We observe that each activation function514

can be characterized by 1) the lowest values of its non-linearity obtained for some subdomain of the515

considered interval and 2) the width of the interval in which it maintains its non-linearity. We note516

that in terms of 1) both GELU and ReLU may attain affinity scores that are close to 0, which is not517

the case for Sigmoid. For 2), we observe that the non-linearity of Sigmoid and GELU is maintained518

in a wide range, while for ReLU it is rather narrow. We can also see a distinct pattern of more519

modern activation functions, such as SiLU and HardSwish having a stronger non-linearity pattern in520

large subdomains. We also note that despite having a shape similar to Sigmoid, Tanh may allow for521

much lower affinity scores. Finally, the variations of ReLU seem to have a very similar shape with522

LeakyReLU being on average more linear than ReLU and ReLU6.523
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Figure 7: (Top left) Affinity score is robust to the dimensionality reduction both when using averaging
and summation over the spatial dimensions; (Top right) When d > n, sample covariance matrix
estimation leads to a lack of robustness in the estimation of the affinity score; (Bottom) Shrinkage of
the covariance matrix leads to constant values of the affinity scores with increasing d.

E Implementation details524

Dimensionality reduction Manipulating 4-order tensors is computationally prohibitive and thus525

we need to find an appropriate lossless function r to facilitate this task. One possible choice for r526

may be a vectorization operator that flattens each tensor into a vector. In practice, however, such527

flattening still leads to very high-dimensional data representations. In our work, we propose to use528

averaging over the spatial dimensions to get a suitable representation of the manipulated tensors. In529

Figure 7 (left), we show that the affinity score is robust wrt such an averaging scheme and maintains530

the same values as its flattened counterpart.531

Computational considerations The non-linearity signature requires calculating the affinity score532

over “wide” matrices. Indeed, after the reduction step is applied to a batch of n tensors of size533

h× w × c, we end up with matrices of size n× c where n may be much smaller than c. This is also534

the case when input tensors are 2D when the batch size is smaller than the dimensionality of the535

embedding space. To obtain a well-defined estimate of the covariance matrix in this case, we use a536

known tool from the statistics literature called Ledoit-Wolfe shrinkage [57]. In Figure 7 (right), we537

show that shrinkage allows us to obtain a stable estimate of the affinity scores that remain constant in538

all regimes.539

Robustness to batch size and different seeds In this section, we highlight the robustness of the540

non-linearity signature with respect to the batch size and the random seed used for training. To this541

end, we concentrate on VGG16 architecture and CIFAR10 dataset to avoid costly Imagenet retraining.542

In Figure 8, we present the obtained result where the batch size was varied between 128 and 1024543

with an increment of 128 (left plot) and when VGG16 model was retrained with seeds varying from544

1 to 9 (right plot). The obtained results show that the affinity score is robust to these parameters545

suggesting that the obtained results are not subject to a strong stochasticity.546
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Figure 8: Non-linearity signature of VGG16 on CIFAR10 with a varying batch size (left) and when
retrained from 9 different random seeds (right).
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Figure 9: Non-linearity signatures of VGG16 on CIFAR10 in the beginning and end of training on
Imagenet.

Impact of training Finally, we also show how a non-linearity signature of a VGG16 model looks547

like at the beginning and in the end of training on Imagenet. We extract its non-linearity signature548

at initialization when making a feedforward pass over the whole CIFAR10 dataset and compare it549

to the non-linearity signature obtained in the end. In Figure 9, we can see that at initialization the550

network’s non-linearity signature is increasing, reaching almost a perfectly linear pattern in the last551

layers. Training the network enhances the non-linearity in a non-monotone way. Importantly, it also552

highlights that the non-linearity signature is capturing information from the training process.553

19



1 2 4 5 7
Depth

0

0.2

0.4

0.6

0.8

1

af
f

Alexnet (ReLU, std=0.005)

1 4 8 11 15
Depth

0

0.2

0.4

0.6

0.8

1

af
f

Vgg16 (ReLU, std=0.008)

0 10 20 30 40 50 60
Depth

0

0.2

0.4

0.6

0.8

1

af
f

Inception v3 (ReLU, std=0.004)

0 25 50 75 100 125 150
Depth

0

0.2

0.4

0.6

0.8

1

af
f

Resnet152 (ReLU, std=0.005)

0 25 50 75 100 125 150
Depth

0

0.2

0.4

0.6

0.8

1

af
f

Densenet161 (ReLU, std=0.020)

0 50 100 150
Depth

0.0

0.2

0.4

0.6

0.8

1.0

1.2

af
f

Efficientnet b6 (std=0.008)

SiLU
Squeeze (SiLU)
Excite (Sigmoid)

0 5 10 15 20 25 30
Depth

0

0.2

0.4

0.6

0.8

1

af
f

Vit Huge 14x14 (GELU, std=0.013)

0 2 4 6 8 10
Depth

0

0.2

0.4

0.6

0.8

1

af
f

Swin T (GELU, std=0.022)

0 5 10 15
Depth

0

0.2

0.4

0.6

0.8

1

af
f

Convnext (GELU, std=0.019)

Figure 10: Raw non-linearity signatures of popular DNN architectures, plotted as affinity scores over
the depth throughout the network.
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Figure 11: ViTs: Large ViT with 16x16 and 32x32 patch sizes and Huge ViT.

F Raw signatures554

In Figure 10, we portray the raw non-linearity signatures of several representative networks studied555

in the main paper. We use different color codes for distinct activation functions appearing repeatedly556

in the considered architecture (for instance, every first ReLU in a residual block of a Resnet). We557

also indicate the mean standard deviation of the affinity scores over batches in the title.558

We see that the non-linearities across ReLU activations in all of Alexnet’s 8 layers remain stable. Its559

successor, VGG network, reveals tiny, yet observable, variations in the non-linearity propagation with560

increasing depth and, slightly lower overall non-linearity values. We attribute this to the decreased561

size of the convolutional filters (3x3 vs. 7x7). The Googlenet architecture was the first model562

to consider learning features at different scales in parallel within the so-called inception modules.563

This add more variability as affinity scores of activation in Googlenet vary between 0.6 and 0.9.564

Despite being almost 20 times smaller than VGG16, the accuracy of Googlenet on Imagenet remains565

comparable, suggesting that increasing and varying the linearity is a way to have high accuracy with566

a limited computational complexity compared to predecessors. This finding is further confirmed with567

Inception v3 that pushed the spread of the affinity score toward being more linear in some hidden568

layers. When comparing this behavior with Alexnet, we note just how far we are from it. Resnets569

achieve the same spread of values of the non-linearity but in a different, and arguably, simpler way.570

Indeed, the activation after the skip connection exhibits affinity scores close to 1, while the activations571

in the hidden layers remain much lower. Densenet, that connect each layer to all previous layers and572
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Figure 12: Impact of depth on the non-linearity signature of VGGs.
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Figure 13: Impact of depth on the non-linearity signature of Resnets.

not just to the one that precedes it, is slightly more non-linear than Resnet152, although the two bear573

a striking similarity: they both have an activation function that maintains the non-linearity low with574

increasing depth. Additionally, transition layers in Densenet act as linearizers and allow it to reset the575

non-linearity propagation in the network by reducing the feature map size. ViTs (Large with 16x16576

and 32x32 patch sizes, and Huge with 14x14 patches) are all highly non-linear models to the degree577

yet unseen. Interestingly, as seen in Figure 11 the patch size affects the non-linearity propagation578

in a non-trivial way: for 16x16 size a model is more non-linear in the early layers, while gradually579

becoming more and more linear later, while 32x32 patch size leads to a plateau in the hidden layers580

of MLP blocks, with a steep change toward linearity only in the final layer. We hypothesize that581

attention modules in ViT act as a focusing lens and output the embeddings in the domain where the582

activation function is the most non-linear.583

Finally, we explore the role of increasing depth for VGG and Resnet architectures. We consider584

VGG11, VGG13, VGG16 and VGG19 models in the first case, and Resnet18, Resnet34, Resnet50,585

Resnet101 and Resnet152. The results are presented in Figure 12 and Figure 13 for VGGs and586

Resnets, respectively. Interestingly, VGGs do not change their non-linearity signature with increasing587

depth. In the case of Resnets, we can see that the separation between more linear post-residual588

activations becomes more distinct and approaches 1 for deeper networks.589
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Table 2: Pearson correlations between the affinity score and other metrics, for all the architectures
evaluated in this study. We see that no other metric can reliably provide the same information as the
proposed non-linearity signature across different neural architectures.

Model CKA Norm Sparsity Entropy R2

alexnet -0.75 -0.86 0.14 -0.80 -0.41
vgg11 -0.07 -0.76 -0.15 -0.95 -0.27
vgg13 0.08 -0.66 -0.23 -0.93 -0.26
vgg16 0.01 -0.63 -0.19 -0.88 -0.17
vgg19 -0.01 -0.62 -0.15 -0.86 -0.14
googlenet 0.74 -0.60 -0.83 -0.49 0.73
inception v3 0.69 -0.66 -0.75 -0.45 0.35
resnet18 0.59 -0.17 -0.67 -0.30 -0.44
resnet34 0.48 -0.18 -0.65 -0.19 -0.08
resnet50 0.56 -0.60 -0.71 -0.50 -0.78
resnet101 0.51 -0.57 -0.70 -0.51 -0.64
resnet152 0.52 -0.51 -0.68 -0.42 -0.48
densenet121 0.84 -0.75 -0.87 -0.62 0.82
densenet161 0.87 -0.74 -0.87 -0.67 0.81
densenet169 0.87 -0.74 -0.87 -0.67 0.81
densenet201 0.89 -0.75 -0.91 -0.67 0.90
efficientnet b1 0.35 -0.41 -0.39 0.01 0.03
efficientnet b2 0.49 -0.02 -0.44 -0.06 0.34
efficientnet b3 0.32 -0.12 -0.18 -0.13 0.18
efficientnet b4 0.30 -0.51 -0.29 -0.44 0.11
vit b 32 0.47 -0.31 -0.29 0.39 0.51
vit l 32 -0.14 -0.61 -0.47 -0.02 -0.06
vit b 16 -0.27 -0.71 0.04 0.39 -0.22
vit l 16 -0.39 -0.89 -0.66 -0.23 -0.24
vit h 14 -0.77 -0.83 0.92 0.31 -0.49
swin t -0.12 -0.39 -0.02 -0.42 -0.06
swin s -0.003 -0.61 -0.31 0.18 -0.03
swin b -0.32 -0.59 -0.43 0.42 -0.32
convnext tiny 0.77 -0.01 -0.04 0.09 0.80
convnext small 0.57 0.22 0.25 0.13 0.72
convnext base 0.67 0.41 0.35 -0.03 0.82
convnext large 0.75 0.23 0.35 -0.10 0.84
Average 0.31 ± 0.45 -0.44 ± 0.35 -0.31 ± 0.43 -0.29 ± 0.39 0.13 ± 0.50

G Detailed comparisons between architectures590

We consider the following metrics as 1) the linear CKA [38] commonly used to assess the similarity591

of neural representations, the average change in 2) SPARSITY and 3) ENTROPY before and after the592

application of the activation function as well as the 4) Frobenius NORM between the input and output593

of the activation functions, and the 5) R2 score between the linear model fitted on the input and the594

output of the activation function. We present in Table 2, the detailed values of Pearson correlations595

obtained for each architecture and all the metrics considered in this study. In Figure 14, we show the596

full matrix of pairwise DTW distances [50] obtained between architectures, then used to obtain the597

clustering presented in the main text.598
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Figure 14: Full matrix of DTW distances between non-linearity signatures.
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Figure 15: Deviation in terms of the Euclidean distance of the non-linearity signature obtained on
CIFAR10, CIFAR100, and Random datasets from the non-linearity signature of the Imagenet dataset.

H Results on more datasets599

Below, we compare the results obtained on CIFAR10, CIFAR100 datasets as well as when the random600

data tensors are passed through the network. As the number of plots for all chosen 33 models on601

these datasets will not allow for a meaningful visual analysis, we rather plot the differences – in terms602

of the DTW distance – between the non-linearity signature of the model on Imagenet dataset with603

respect to three other datasets. We present the obtained results in Figure 15.604

We can see that the overall deviation for CIFAR10 and CIFAR100 remains lower than for Random605

dataset suggesting that these datasets are semantically closer to Imagenet.606
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Figure 16: Hierarchical clustering of supervised and self-supervised pre-trained Resnet50 using the
DTW distances between their non-linearity signatures.

Table 3: Robustness of the different criteria when considering the same architectures pre-trained for
different tasks. Affinity score achieves the lowest standard deviation suggesting that it is capable of
correctly identifying the architecture even when it was trained differently.

Criterion Mean ± std
ρaff 0.76±0.04
Linear CKA 0.90±0.07
Norm 448.56±404.61
Sparsity 0.56±0.16
Entropy 0.39±0.46

I Results for self-supervised methods607

In this section, we show that the non-linearity signature of a network remains almost unchanged608

when considering other pertaining methodologies such as for instance, self-supervised ones. To this609

end, we use 17 Resnet50 architecture pre-trained on Imagenet within the next 3 families of learning610

approaches:611

1. SwAV [58], DINO [59], and MoCo [60] that belong to the family of contrastive learning612

methods with prototypes;613

2. Resnet50 [18], Wide Resnet50 [61], TRex, and TRex* [62] that are supervised learning614

approaches;615

3. SCE [63], Truncated Triplet [64], and ReSSL [65] that perform contrastive learning using616

relational information.617

From the dendrogram presented in Figure 16, we can observe that the DTW distances between the618

non-linearity signatures of all the learning methodologies described above allow us to correctly cluster619

them into meaningful groups. This is rather striking as the DTW distances between the different620

instances of the Resnet50 model are rather small in magnitude suggesting that the affinity scores still621

retain the fact that it is the same model being trained in many different ways.622

While providing a fine-grained clustering of different pre-trained models for a given fixed architecture,623

the average affinity scores over batches remain surprisingly concentrated as shown in Table 3. This624

hints at the fact that the non-linearity signature is characteristic of architecture but can also be subtly625

multi-faceted when it comes to its different variations.626
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NeurIPS Paper Checklist627
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Question: Do the main claims made in the abstract and introduction accurately reflect the629

paper’s contributions and scope?630

Answer: [Yes]631

Justification: Proposition of affinity score and non-linearity signature in Section 3. Experi-632

ments showing non-linearity signatures of DNNs, prediction of performance, clustering and633

uniqueness in Section 4.634

Guidelines:635

• The answer NA means that the abstract and introduction do not include the claims636

made in the paper.637

• The abstract and/or introduction should clearly state the claims made, including the638

contributions made in the paper and important assumptions and limitations. A No or639

NA answer to this question will not be perceived well by the reviewers.640

• The claims made should match theoretical and experimental results, and reflect how641

much the results can be expected to generalize to other settings.642

• It is fine to include aspirational goals as motivation as long as it is clear that these goals643

are not attained by the paper.644

2. Limitations645

Question: Does the paper discuss the limitations of the work performed by the authors?646

Answer: [Yes]647

Justification: We discuss limitations in Appendix B.648

Guidelines:649

• The answer NA means that the paper has no limitation while the answer No means that650

the paper has limitations, but those are not discussed in the paper.651

• The authors are encouraged to create a separate "Limitations" section in their paper.652

• The paper should point out any strong assumptions and how robust the results are to653

violations of these assumptions (e.g., independence assumptions, noiseless settings,654

model well-specification, asymptotic approximations only holding locally). The authors655

should reflect on how these assumptions might be violated in practice and what the656

implications would be.657

• The authors should reflect on the scope of the claims made, e.g., if the approach was658

only tested on a few datasets or with a few runs. In general, empirical results often659

depend on implicit assumptions, which should be articulated.660

• The authors should reflect on the factors that influence the performance of the approach.661

For example, a facial recognition algorithm may perform poorly when image resolution662

is low or images are taken in low lighting. Or a speech-to-text system might not be663

used reliably to provide closed captions for online lectures because it fails to handle664

technical jargon.665

• The authors should discuss the computational efficiency of the proposed algorithms666

and how they scale with dataset size.667

• If applicable, the authors should discuss possible limitations of their approach to668

address problems of privacy and fairness.669

• While the authors might fear that complete honesty about limitations might be used by670

reviewers as grounds for rejection, a worse outcome might be that reviewers discover671

limitations that aren’t acknowledged in the paper. The authors should use their best672

judgment and recognize that individual actions in favor of transparency play an impor-673

tant role in developing norms that preserve the integrity of the community. Reviewers674

will be specifically instructed to not penalize honesty concerning limitations.675

3. Theory Assumptions and Proofs676

Question: For each theoretical result, does the paper provide the full set of assumptions and677

a complete (and correct) proof?678
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• All the theorems, formulas, and proofs in the paper should be numbered and cross-683

referenced.684

• All assumptions should be clearly stated or referenced in the statement of any theorems.685

• The proofs can either appear in the main paper or the supplemental material, but if686

they appear in the supplemental material, the authors are encouraged to provide a short687

proof sketch to provide intuition.688

• Inversely, any informal proof provided in the core of the paper should be complemented689

by formal proofs provided in appendix or supplemental material.690

• Theorems and Lemmas that the proof relies upon should be properly referenced.691

4. Experimental Result Reproducibility692

Question: Does the paper fully disclose all the information needed to reproduce the main ex-693

perimental results of the paper to the extent that it affects the main claims and/or conclusions694

of the paper (regardless of whether the code and data are provided or not)?695

Answer: [Yes]696

Justification: All models are pretrained checkpoints from torchvision. Experiments are697

conducted on Imagenet, publicly available.698

Guidelines:699

• The answer NA means that the paper does not include experiments.700

• If the paper includes experiments, a No answer to this question will not be perceived701

well by the reviewers: Making the paper reproducible is important, regardless of702

whether the code and data are provided or not.703

• If the contribution is a dataset and/or model, the authors should describe the steps taken704

to make their results reproducible or verifiable.705

• Depending on the contribution, reproducibility can be accomplished in various ways.706

For example, if the contribution is a novel architecture, describing the architecture fully707

might suffice, or if the contribution is a specific model and empirical evaluation, it may708

be necessary to either make it possible for others to replicate the model with the same709

dataset, or provide access to the model. In general. releasing code and data is often710

one good way to accomplish this, but reproducibility can also be provided via detailed711

instructions for how to replicate the results, access to a hosted model (e.g., in the case712

of a large language model), releasing of a model checkpoint, or other means that are713

appropriate to the research performed.714

• While NeurIPS does not require releasing code, the conference does require all submis-715

sions to provide some reasonable avenue for reproducibility, which may depend on the716

nature of the contribution. For example717

(a) If the contribution is primarily a new algorithm, the paper should make it clear how718

to reproduce that algorithm.719

(b) If the contribution is primarily a new model architecture, the paper should describe720

the architecture clearly and fully.721

(c) If the contribution is a new model (e.g., a large language model), then there should722

either be a way to access this model for reproducing the results or a way to reproduce723

the model (e.g., with an open-source dataset or instructions for how to construct724

the dataset).725

(d) We recognize that reproducibility may be tricky in some cases, in which case726

authors are welcome to describe the particular way they provide for reproducibility.727

In the case of closed-source models, it may be that access to the model is limited in728

some way (e.g., to registered users), but it should be possible for other researchers729

to have some path to reproducing or verifying the results.730

5. Open access to data and code731
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Question: Does the paper provide open access to the data and code, with sufficient instruc-732

tions to faithfully reproduce the main experimental results, as described in supplemental733

material?734

Answer: [Yes]735

Justification: Anonymized code to reproduce experiments is available as a zip file, with a736

README file to explain how to run it.737

Guidelines:738

• The answer NA means that paper does not include experiments requiring code.739

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/740

public/guides/CodeSubmissionPolicy) for more details.741

• While we encourage the release of code and data, we understand that this might not be742

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not743

including code, unless this is central to the contribution (e.g., for a new open-source744

benchmark).745

• The instructions should contain the exact command and environment needed to run to746

reproduce the results. See the NeurIPS code and data submission guidelines (https:747

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.748

• The authors should provide instructions on data access and preparation, including how749

to access the raw data, preprocessed data, intermediate data, and generated data, etc.750

• The authors should provide scripts to reproduce all experimental results for the new751

proposed method and baselines. If only a subset of experiments are reproducible, they752

should state which ones are omitted from the script and why.753

• At submission time, to preserve anonymity, the authors should release anonymized754

versions (if applicable).755

• Providing as much information as possible in supplemental material (appended to the756

paper) is recommended, but including URLs to data and code is permitted.757

6. Experimental Setting/Details758

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-759

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the760

results?761

Answer: [Yes]762

Justification: Experimental details are described in Section 4 and Appendix E.763

Guidelines:764

• The answer NA means that the paper does not include experiments.765

• The experimental setting should be presented in the core of the paper to a level of detail766

that is necessary to appreciate the results and make sense of them.767

• The full details can be provided either with the code, in appendix, or as supplemental768

material.769

7. Experiment Statistical Significance770

Question: Does the paper report error bars suitably and correctly defined or other appropriate771

information about the statistical significance of the experiments?772

Answer: [Yes]773

Justification: Standard deviations across multiple batch of data are reported.774

Guidelines:775

• The answer NA means that the paper does not include experiments.776

• The authors should answer "Yes" if the results are accompanied by error bars, confi-777

dence intervals, or statistical significance tests, at least for the experiments that support778

the main claims of the paper.779

• The factors of variability that the error bars are capturing should be clearly stated (for780

example, train/test split, initialization, random drawing of some parameter, or overall781

run with given experimental conditions).782
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• The method for calculating the error bars should be explained (closed form formula,783

call to a library function, bootstrap, etc.)784

• The assumptions made should be given (e.g., Normally distributed errors).785

• It should be clear whether the error bar is the standard deviation or the standard error786

of the mean.787

• It is OK to report 1-sigma error bars, but one should state it. The authors should788

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis789

of Normality of errors is not verified.790

• For asymmetric distributions, the authors should be careful not to show in tables or791

figures symmetric error bars that would yield results that are out of range (e.g. negative792

error rates).793

• If error bars are reported in tables or plots, The authors should explain in the text how794

they were calculated and reference the corresponding figures or tables in the text.795

8. Experiments Compute Resources796

Question: For each experiment, does the paper provide sufficient information on the com-797

puter resources (type of compute workers, memory, time of execution) needed to reproduce798

the experiments?799

Answer: [Yes]800

Justification: All experiments are carried out on a single A100 GPU.801

Guidelines:802

• The answer NA means that the paper does not include experiments.803

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,804

or cloud provider, including relevant memory and storage.805

• The paper should provide the amount of compute required for each of the individual806

experimental runs as well as estimate the total compute.807

• The paper should disclose whether the full research project required more compute808

than the experiments reported in the paper (e.g., preliminary or failed experiments that809

didn’t make it into the paper).810

9. Code Of Ethics811

Question: Does the research conducted in the paper conform, in every respect, with the812

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?813

Answer: [Yes]814

Justification: Standard and public datasets used, no experiments on human subjects.815

Guidelines:816

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.817

• If the authors answer No, they should explain the special circumstances that require a818

deviation from the Code of Ethics.819

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-820

eration due to laws or regulations in their jurisdiction).821

10. Broader Impacts822

Question: Does the paper discuss both potential positive societal impacts and negative823

societal impacts of the work performed?824

Answer: [Yes]825

Justification: We discuss broader impacts in Appendix A.826

Guidelines:827

• The answer NA means that there is no societal impact of the work performed.828

• If the authors answer NA or No, they should explain why their work has no societal829

impact or why the paper does not address societal impact.830

• Examples of negative societal impacts include potential malicious or unintended uses831

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations832

(e.g., deployment of technologies that could make decisions that unfairly impact specific833

groups), privacy considerations, and security considerations.834
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• The conference expects that many papers will be foundational research and not tied835

to particular applications, let alone deployments. However, if there is a direct path to836

any negative applications, the authors should point it out. For example, it is legitimate837

to point out that an improvement in the quality of generative models could be used to838

generate deepfakes for disinformation. On the other hand, it is not needed to point out839

that a generic algorithm for optimizing neural networks could enable people to train840

models that generate Deepfakes faster.841

• The authors should consider possible harms that could arise when the technology is842

being used as intended and functioning correctly, harms that could arise when the843

technology is being used as intended but gives incorrect results, and harms following844

from (intentional or unintentional) misuse of the technology.845

• If there are negative societal impacts, the authors could also discuss possible mitigation846

strategies (e.g., gated release of models, providing defenses in addition to attacks,847

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from848

feedback over time, improving the efficiency and accessibility of ML).849

11. Safeguards850

Question: Does the paper describe safeguards that have been put in place for responsible851

release of data or models that have a high risk for misuse (e.g., pretrained language models,852

image generators, or scraped datasets)?853

Answer: [NA]854

Justification: No such risks, no checkpoints released.855

Guidelines:856

• The answer NA means that the paper poses no such risks.857

• Released models that have a high risk for misuse or dual-use should be released with858

necessary safeguards to allow for controlled use of the model, for example by requiring859

that users adhere to usage guidelines or restrictions to access the model or implementing860

safety filters.861

• Datasets that have been scraped from the Internet could pose safety risks. The authors862

should describe how they avoided releasing unsafe images.863

• We recognize that providing effective safeguards is challenging, and many papers do864

not require this, but we encourage authors to take this into account and make a best865

faith effort.866

12. Licenses for existing assets867

Question: Are the creators or original owners of assets (e.g., code, data, models), used in868

the paper, properly credited and are the license and terms of use explicitly mentioned and869

properly respected?870

Answer: [Yes]871

Justification: Torchvision contributors credited for checkpoints, and datasets as well, in872

Section 4.873

Guidelines:874

• The answer NA means that the paper does not use existing assets.875

• The authors should cite the original paper that produced the code package or dataset.876

• The authors should state which version of the asset is used and, if possible, include a877

URL.878

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.879

• For scraped data from a particular source (e.g., website), the copyright and terms of880

service of that source should be provided.881

• If assets are released, the license, copyright information, and terms of use in the882

package should be provided. For popular datasets, paperswithcode.com/datasets883

has curated licenses for some datasets. Their licensing guide can help determine the884

license of a dataset.885

• For existing datasets that are re-packaged, both the original license and the license of886

the derived asset (if it has changed) should be provided.887
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• If this information is not available online, the authors are encouraged to reach out to888

the asset’s creators.889

13. New Assets890

Question: Are new assets introduced in the paper well documented and is the documentation891

provided alongside the assets?892

Answer: [Yes]893

Justification: Anonymized code to reproduce experiments is available as a zip file, with a894

README file to explain how to run it.895

Guidelines:896

• The answer NA means that the paper does not release new assets.897

• Researchers should communicate the details of the dataset/code/model as part of their898

submissions via structured templates. This includes details about training, license,899

limitations, etc.900

• The paper should discuss whether and how consent was obtained from people whose901

asset is used.902

• At submission time, remember to anonymize your assets (if applicable). You can either903

create an anonymized URL or include an anonymized zip file.904

14. Crowdsourcing and Research with Human Subjects905

Question: For crowdsourcing experiments and research with human subjects, does the paper906

include the full text of instructions given to participants and screenshots, if applicable, as907

well as details about compensation (if any)?908

Answer: [NA]909

Justification: No experiments on human subjects.910

Guidelines:911

• The answer NA means that the paper does not involve crowdsourcing nor research with912

human subjects.913

• Including this information in the supplemental material is fine, but if the main contribu-914

tion of the paper involves human subjects, then as much detail as possible should be915

included in the main paper.916

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,917

or other labor should be paid at least the minimum wage in the country of the data918

collector.919

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human920

Subjects921

Question: Does the paper describe potential risks incurred by study participants, whether922

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)923

approvals (or an equivalent approval/review based on the requirements of your country or924

institution) were obtained?925

Answer: [NA]926

Justification: No experiments on or with human subjects.927

Guidelines:928

• The answer NA means that the paper does not involve crowdsourcing nor research with929

human subjects.930

• Depending on the country in which research is conducted, IRB approval (or equivalent)931

may be required for any human subjects research. If you obtained IRB approval, you932

should clearly state this in the paper.933

• We recognize that the procedures for this may vary significantly between institutions934

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the935

guidelines for their institution.936

• For initial submissions, do not include any information that would break anonymity (if937

applicable), such as the institution conducting the review.938
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