
Published in Transactions on Machine Learning Research (01/2025)

A Scalable Approach for Mapper via Efficient Spatial Search

Luca Simi lucasimi90@gmail.com

Reviewed on OpenReview: https: // openreview. net/ forum? id= lTX4bYREAZ

Abstract

Topological Data Analysis (TDA) is a branch of applied mathematics that studies the shape
of high dimensional datasets using ideas from algebraic topology. The Mapper algorithm is
a widely used tool in Topological Data Analysis, used for uncovering hidden structures in
complex data. However, existing implementations often rely on naive and inefficient meth-
ods for constructing the open covers that Mapper is based on, leading to performance issues,
especially with large, high-dimensional datasets. In this study, we introduce a novel, more
scalable method for constructing open covers for Mapper, leveraging techniques from com-
putational geometry. Our approach significantly enhances efficiency, improving Mapper’s
performance for large high-dimensional data. We will present theoretical insights into our
method and demonstrate its effectiveness through experimental evaluations on well-known
datasets, showcasing substantial improvements in visualization quality and computational
performance. We implemented our method in a new Python library called tda-mapper,
which is freely available at https://github.com/lucasimi/tda-mapper-python, provid-
ing a powerful tool for TDA practitioners and researchers.

1 Introduction

In recent years, Topological Data Analysis (TDA) has gained significant traction in the field of data science
due to its ability to extract valuable insights from complex datasets. TDA uses topological methods that
are resilient to noise and dimensionality, making it a robust mathematical framework for data analysis.
A well-known technique in TDA is the Mapper algorithm. Mapper provides a visual representation of
data in the form of a graph, called Mapper graph, enabling easy exploration and interpretation. Unlike
conventional algorithms, such as clustering algorithms or Principal Component Analysis (PCA), Mapper
excels at visualizing data by preserving their connected components, making it very effective for shape
analysis and pattern discovery. The effectiveness of Mapper was initially demonstrated in the analysis of
medical data, as showcased in the pioneering work by Singh et al. (2007) and in later works by Carlsson
(2009; 2014). Since then, Mapper has proven to be a versatile and powerful tool for data exploration, capable
of uncovering hidden patterns even in high-dimensional datasets.

Data exploration is an iterative and interactive process that requires continuous fine-tuning and adjustments
to extract meaningful insights. Consequently, software for Mapper must prioritize low running times and
minimal memory usage to encourage adoption and be practically useful. The original description of Mapper
(Singh et al., 2007) includes what has now become a standard approach, involving the construction of an open
cover made of overlapping hyperrectangles, also known as standard cubical cover. Currently, researchers and
developers have access to several established open-source libraries for Mapper. However, these libraries work
well with low dimensional lenses, but their approach is often inefficient in higher dimensions. On one hand the
standard cubical cover is often assembled from open covers obtained in lower dimensional projections, and this
makes the number of steps grow exponentially with the dimension, which is computationally unfeasible. On
the other hand, points in dimension k can fall in the intersection of up to 2k hypercubes, resulting in complex
Mapper graphs that are hard to explore, and often have more connected components than points are in the
dataset. These crucial points has been consistently overlooked and neglected, reinforcing the misconception
that Mapper is inefficient with high-dimensional data. Motivated by these limitations, recent advancements
in the field have led to the development of a wide family of Mapper-type algorithms, each proposing a distinct

1

https://openreview.net/forum?id=lTX4bYREAZ
https://github.com/lucasimi/tda-mapper-python

Published in Transactions on Machine Learning Research (01/2025)

adaptation of the original concept. For instance, Ball Mapper (Dłotko, 2019) and Mapper on Ball Mapper
(Paweł Dłotko & Sazdanovic, 2024) construct the open cover by creating an ϵ-net (Gonzalez, 1985), adopting
open balls centered in the points of the dataset instead of evenly-spaced hyperrectangles. Additionally,
specialized variations like NeuMapper (Geniesse et al., 2022), designed specifically for neuroscience data,
adopt a more complex approach. This method, partially inspired by Ball Mapper, employs an intrinsic
metric derived from reciprocal kNN. These adaptations all shift towards changing the way open covers are
built, improving computational performance, but giving away the control on the overlap of the open sets.
While this is often acceptable, there are cases where using a cubical cover with uniform overlap is beneficial,
especially given its foundational role in many Mapper-related results. For instance, it’s possible to estimate
optimal parameters for the standard cubical cover (Carrière et al., 2018), minimizing the need for time-
consuming manual fine-tuning.

In this work, we introduce a novel and more efficient approach to computing Mapper-type algorithms, lever-
aging concepts from computational geometry, aimed at solving the problems of currently available implemen-
tations. Our method uses a greedy adaptation of ϵ-net (Gonzalez, 1985; Dłotko, 2019), called proximity-net,
to construct a subcover of the standard cubical cover, preserving the evenly overlapping open sets of the
standard cubical cover, as defined in the original Mapper implementation. Moreover, we show how we can
improve the overall efficiency of Mapper by adopting specialized data structures for spatial search like metric
trees (Clarkson, 2006; Brin, 1995; Yianilos, 1993; Uhlmann, 1991). We also provide a theoretical analysis
on the complexity of building cubical covers, obtaining an upper bound that explicitly incorporates the
doubling dimension of the dataset (Krauthgamer & Lee, 2004). We present theoretical insights into our
method, supported by experimental evaluations on well-known datasets, highlighting significant improve-
ments in running time compared to the standard approach. Additionally, we introduce our open-source
library, tda-mapper (Simi, 2024), available at https://github.com/lucasimi/tda-mapper-python. To the
best of our knowledge, it is the only library implementing this approach. Finally, we compare our method
with existing software libraries for Mapper, including Kepler Mapper (van Veen et al., 2019) and giotto-tda
(Tauzin et al., 2021). Performance tests demonstrate the advantages of our method in terms of scalability
and efficiency, underscoring its potential for large-scale applications.

2 Preliminaries

This section introduces the fundamental definitions and notations necessary for the remainder of this work.
While many of these concepts are foundational in topology and computational geometry, and are widely
available, they are included here for completeness. The concept of ϵ-net, introduced in Gonzalez (1985), is
widely used in computational geometry (see also Clarkson (2006)), and is central for the contributions of
this work. This notion has been previously used by Dłotko (2019) in the context of TDA as the foundation
for a variant of Mapper called Ball Mapper. The notion of ϵ-net is also closely related to the doubling
dimension of a metric space, that was introduced for the first time in Assouad (1983) and later in Gupta
et al. (2003). Compared to other definitions in literature, the doubling dimension offers a practical measure
of intrinsic dimensionality that remains valuable for discrete finite sets. As we will see later, we will leverage
the doubling dimension to estimate the complexity of our proposed approach, in the form of Theorem 3.
Definition 1. Let X be a topological space. A pseudo-metric on X is a map d : X ×X → R satisfying:

• d(x, y) ≥ 0 for all x, y ∈ X, with d(x, x) = 0;

• Symmetry: d(x1, x2) = d(x2, x1) for all x1, x2 ∈ X;

• Triangle inequality: d(x1, x3) ≤ d(x1, x2) + d(x2, x3) for all x1, x2, x3 ∈ X.

If d(x, y) = 0 implies x = y, then d is a metric. An open ball of center p ∈ X and radius ϵ > 0 is defined as
Bd(p, ϵ) = {x ∈ X | d(p, x) < ϵ}.
Definition 2. Let f : X → Y be a map and d a pseudo-metric on Y . The pullback of d under f is the
pseudo-metric f∗d on X, defined by:

(f∗d)(u, v) = d(f(u), f(v)) for all u, v ∈ X.

2

https://github.com/lucasimi/tda-mapper-python

Published in Transactions on Machine Learning Research (01/2025)

Definition 3. Let (X, d) be a pseudo-metric space. An ϵ-net of X is a subset N ⊆ X such that:

• d(x, y) ≥ ϵ for all x, y ∈ N , x ̸= y;

• For every x ∈ X, there exists y ∈ N with d(x, y) < ϵ.

It’s possible to construct an ϵ-net using a greedy procedure, as reported in Algorithm 1: we start with an
empty set N and at each step we add a point to N that it’s further than ϵ from N itself. At last, when no
point is left to pick, we end up with N which is an ϵ-net by construction.

Algorithm 1 Greedy construction of an ϵ-net
Require: A pseudo-metric space (X, d) and ϵ > 0
Ensure: An ϵ-net N ⊆ X
N ← ∅
while d(X \N,N) > 0 do

Take p ∈ X \N maximizing d(p,N)
N ← N ∪ {p}

end while
return N

Definition 4. Let (X, d) be a pseudo-metric space. The doubling measure of X is the smallest λ > 0 such
that every ball in X can be covered by λ balls of half the radius. The doubling dimension of X is defined as
dim(X) = log2 λ.
Proposition 1. The doubling dimension satisfies the following two properties:

• Let X and Y be pseudo-metric spaces. If X ⊆ Y , then dim(X) ≤ dim(Y).

• For any p ≥ 1 the vector spaces Rk with the Lp-metric satisfy dim(Rk) = O(k).

Proposition 2. Let (X, d) be a pseudo-metric space and N an ϵ-net for X. Then for any ball B(p,R) in
X,

|N ∩B(p,R)| = O
(

(R/ϵ)dim(X)
)
.

The time complexity of Algorithm 1 is proportional to the cardinality of the ϵ-net. Therefore, as a conse-
quence of Proposition 2, is O

(
(R/ϵ)dim(X)).

2.1 Mapper algorithm

In this subsection, we provide a concise overview of Mapper, based on its original formulation (Singh et al.,
2007) (see Figure 1 for an example). Mapper operates on a dataset X and its output is determined by the
following steps:

1. Let f be a lens, defined as any continuous map f : X → Y , where Y is a parameter space. Common
choices for the lens f include statistics of any order, projections, entropy, density, eccentricity, and
more.

2. Next, we proceed by constructing an open cover for f(X). In other words, we create a collection
{Uα}α of open sets such that their union covers the entire image f(X), i.e., f(X) =

⋃
α Uα. It is

important to note that the sets in this open cover may intersect with one another, and they inherit
their topology from the space Y .

3. For each element Uα in the selected cover, we define Vα as the preimage of Uα under the function
f . It is clear that the collection {Vα}α forms an open cover of X. Next, we proceed by applying
a user-specified clustering algorithm, in order to partition each open set Vα into a disjoint union of
clusters, denoted as Vα = ⨿βCα,β . The resulting family {Cα,β}α,β is referred to as a refined open
cover for X.

3

Published in Transactions on Machine Learning Research (01/2025)

4. We construct the Mapper graph as the undirected graph G = (V,E) defined by the following rule:
the set V contains a vertex vα,β for every local cluster Cα,β , while the set E contains the edge
e = (vα1,β1 , vα2,β2) only if their corresponding local clusters intersect, i.e., when Cα1,β1 ∩Cα2,β2 ̸= ∅.

Figure 1: The four steps of Mapper on an X-shaped dataset where the lens is the projection on the Y -axis.
Clusters from the same open set share the same color.

The Nerve Theorem. The theoretical foundation of Mapper is rooted in the Nerve Theorem (Borsuk,
1948; Weil, 1952), a fundamental result in algebraic topology that establishes a connection between a topo-
logical space and a combinatorial representation of its open covers. Specifically, it states that if an open
cover U of a topological space X forms a good cover, i.e. every finite intersection of sets in U is either
empty or contractible, then the nerve N(U), a simplicial complex encoding the intersections of sets in U , is
homotopy equivalent to X. The nerve N(U) is constructed by associating a (k − 1)-dimensional simplex to
each non-empty intersection of k sets in U .
Theorem 1. Let X be a topological space and U = {Uα}α be an open cover of X. If every finite intersection
Ui1 ∩ · · · ∩ Uik

is either empty or contractible, then N(U) is homotopy equivalent to X.

The Nerve Theorem is central to tools like Mapper because it enables the simplification of topological spaces
into combinatorial structures, making them amenable to computational analysis. In the context of Mapper,
the refined open cover U of X (produced through clustering on the pullback cover) gives rise to the Mapper
graph, which can be seen as the 1-dimensional truncation of N(U). Here, 0-dimensional simplices correspond
to nodes, and 1-dimensional simplices correspond to edges. When U is a good cover, the Mapper graph retains
topologically relevant information about X. In particular:

• The connected components of the Mapper graph (0-cycles) accurately reflect the connected compo-
nents of X.

• Loops in the Mapper graph (1-cycles) correspond to 1-cycles in N(U), but not all such loops are
topologically meaningful. Only 1-cycles that are not boundaries (i.e., elements of the 1-dimensional
homology group H1(X)) represent genuine features of X.

However, the Mapper graph cannot distinguish between true topological holes and 1-cycles that are bound-
aries (1-boundaries) in the full nerve N(U), because information about higher-dimensional simplices (e.g.,
2-simplices arising from triple intersections) is lost during truncation. Moreover, the clustering step may
produce artifacts that violate the good cover condition, for example, by merging disconnected regions or
disrupting simple-connectedness. In such cases, the correspondence between X and the Mapper graph can
break down. Nevertheless, when the good cover condition holds, the Mapper graph faithfully encodes the
connected components and provides useful insights into the 1-dimensional topology of X.

The good cover condition explains why Mapper includes clustering in its steps. Clustering is used to split
the open sets of the pullback, as a rough approximation of taking connected components. For example if the
lens f is projecting X to a lower dimensional space, which is typical in the context of the classical Mapper,
the clustering step becomes very important, since a projection can have multiple folds: if Bp is a small ball
at f(p) the number of connected components of f−1(Bp) can jump when crossing critical values.

4

Published in Transactions on Machine Learning Research (01/2025)

2.2 Standard Cubical Cover

In the original definition of Mapper (Singh et al., 2007), the authors use an open cover defined by two
parameters: the length w of the intervals and the overlap p ∈ (0, 1/2], which is the fraction of w that
corresponds to the length δ of the intersection of any two adjacent intervals in the cover. This type of cover
is sometimes referred to as a cubical cover or implicitly as a standard cover in the literature. In the rest of
this work we will refer to such cover as standard cubical cover, and to any of its subcovers as cubical cover.
We denote by Y = f(X) ⊆ Rk the space on which the cover is constructed.
Definition 5. Let 0 < n ∈ N and p ∈ (0, 1/2]. Let Y ⊆ R compact. Let m = min(Y), M = max(Y),
w = M−m

n(1−p) , δ = pw and define

aj = m+ j(w − δ)− δ/2, bj = m+ (j + 1)(w − δ) + δ/2.

The standard cubical cover of Y with n intervals and p overlap is the collection of open sets

CCn,p
Y = {(aj , bj) ∩ Yi|j = 0, . . . , n− 1} .

Figure 2: A visual representation of a standard cubical cover in the one-dimensional case with n = 4.

The value w = M−m
n(1−p) correspond to the length of every interval, while δ = pw corresponds to the length of

the overlap of any two adjacent intervals (see Figure 2).
Definition 6. Let 0 < n ∈ N and p ∈ (0, 1/2]. Let Y ⊆ Rk compact and let Yi be the projection of Y on
the i-axis. The standard cubical cover of Y with n intervals and p overlap is the collection of open sets

CCn,p
Y =

{
R ∩ Y ̸= ∅

∣∣∣∣∣R ∈
k∏

i=1
CCn,p

Yi

}
.

Remark 1. We report here some facts that easily follow from the definition in the case of a one-dimensional
standard cubical cover for some Y ⊆ [m,M].

• bi − ai = w for every i = 0, . . . , n− 1;

• a0 = m− δ/2 and bn−1 = M + δ/2;

• bi − ai+1 = δ for every i = 0, . . . , n− 1.

• [m, b0 − δ/2), . . . , [ai + δ/2, bi − δ/2), . . . [an−1 + δ/2,M] is a partition of [m,M].

Remark 2. In this work we use a notion of standard cubical cover that simplifies some computations, but
it’s worth to point out that this definition may slightly diverge in literature. For example, some authors
and software libraries define the standard cubical cover of [n,M] in a way such that a0 = m and bn−1 = M .
However, it’s also important to remark that this definition is compatible with the results presented in Carrière
et al. (2018).

Naive Algorithm. From Definition 6, we can readily devise an algorithm that initially computes the
standard cubical cover for each projection independently. Subsequently, we assemble these individual open
covers into an open cover for the topological space Y . We will refer to this approach as naive construction of
standard cubical cover and is reported in Algorithm 2. This approach becomes computationally expensive for

5

Published in Transactions on Machine Learning Research (01/2025)

high-dimensional datasets. This is also true in the case of Mapper, when we construct the standard cubical
cover on high dimensional lenses. Even when many products are empty, their number can grow rapidly and
introduce additional computational overhead to the entire Mapper process. To illustrate this issue, which is
well known in literature, consider the following example: if Y ⊂ Rk lies along the diagonal, an appropriate
cover for Y could be achieved using a small number of rectangles, proportional to the number of intervals n.
However, Algorithm 2 would construct an open cover for each projection initially and then iterate through
all possible rectangles, resulting in a total of nk steps. As we will demonstrate later in Section 3, the primary
contribution of this work is the resolution of this issue through the adoption of a more efficient algorithm.
Instead of relying on projections, this algorithm iterates over a significantly smaller number of open sets,
comparable to ndim(f(X)) ≪ nk.

Algorithm 2 Naive construction of the standard cubical cover
Require: Y finite point cloud, 0 < n ∈ N, p ∈ (0, 1/2].
Ensure: CCn,p

Y .
for i = 1, . . . , k do

Yi ← the projection of Y on i-th axis;
CCn,p

Yi
← {Ii,0, . . . , Ii,n−1} the standard cubical cover on Yi;

end for
CCn,p

Y ← {R =
∏k

i=1 Ii,ji
|R ̸= ∅, 0 ≤ ji ≤ n− 1}.

return CCn,p
Y

2.3 Ball Cover

When Y ⊆ Rk, rectangles centered in Rk can form an open cover, as in the cubical covers. However, this
approach is unsuitable for arbitrary metric spaces, where rectangles may not be well-defined. Instead, open
balls centered at points in Y offer a natural alternative.

In the context of Mapper, this idea has been explored in Dłotko (2019); Paweł Dłotko & Sazdanovic (2024),
where the author introduces Ball Mapper, a variation of the original algorithm. In this approach, a greedy
procedure is used to cover Y with balls of fixed radius until full coverage is achieved. This method is
sometimes referred to as an ϵ-net, although the term also describes a related concept in computational
geometry (Gonzalez, 1985) (see Definition 3). Notably, the centers derived in Ball Mapper satisfy the
definition of an ϵ-net according to Definition 3, making it straightforward to distinguish between these
notions based on context.
Definition 7. Given a dataset Y and a metric d on Y , a ball cover of radius r > 0 on Y is any open cover
where every set is an open ball of radius r.

Unlike cubical covers, ball covers center their balls on points in Y , not evenly spaced points in Rk. While
balls in L∞-distance may appear cubical, the two constructions are fundamentally different.

Cardinality of Ball Cover. The cardinality of the ball cover determines the number of nodes in the Ball
Mapper graph, directly influencing its complexity. While bounded above by |Y |, this bound is impractical for
large datasets. Instead, ϵ-nets provides a more useful estimate: the number of balls required is proportional
to (R/ϵ)dim(Y), where dim(Y) is the doubling dimension of Y (see Proposition 2).

2.4 Vantage Point Trees

Given a query point q and a query radius ϵ, a range query is a function that returns the set of points within
distance ϵ from q, i.e. the points in the ball B(q, ϵ). There are many ways to perform range queries efficiently,
using different algorithms and data structures. A well-known example is the kd-tree (Friedman et al., 1977;
Skrodzki, 2019), which partitions the space in a hierarchical tree-like structure that allows to reduce the
number of distance computations employing the triangle inequality. The use of kd-trees in Mapper-type
algorithms has been explored in Dłotko (2019), where the author notes that their effectiveness for Ball Mapper

6

Published in Transactions on Machine Learning Research (01/2025)

may be limited, particularly in high-dimensional spaces where Ball Mapper typically operates. However, we
believe that the approach presented in Mapper on Ball Mapper from Paweł Dłotko & Sazdanovic (2024)
could benefit from incorporating a specialized data structure for range queries. In this case, the open cover
is constructed on the space f(X), which is often lower-dimensional than the original space X. Using a data
structure optimized for range queries could thus offer a significant performance boost. In our study, we
aim to address diverse scenarios by using any lens function f : X → Y with no restriction on the space Y .
Importantly, Y need not be strictly Euclidean or coordinate-based; it can encompass any domain where a
meaningful notion of distance is defined. For all these reasons we decided to chose vp-trees instead of kd-trees
(Yianilos, 1993; Brin, 1995).
Remark 3. It is important to note that vp-trees were our first choice due to their flexibility, as they can be
used in any metric or pseudo-metric space. However, when Y is a Euclidean domain contained within Rk, it
may be beneficial to explore other data structures that offer efficient spatial search. One such structure is
R-trees (Guttman, 1984), which could be particularly well-suited for constructing cubical covers.

A vantage-point tree, or vp-tree, is a binary tree data structure where each internal node organizes the points
of the space according to their distance from a chosen point, called vantage point. Each internal node stores
a tuple (p, r) as a reference to the ball B(p, r) where p is the chosen vantage point, and p’s descendants
satisfy the vp-tree property: for every left descendant y we have d(p, y) ≤ r, and for every right descendant
z we have d(p, z) ≥ r (see also Figure 3).

Figure 3: Two representations of a vp-tree on the dataset Y = {a, b, c, d, e, f, g} ⊆ R2. Nodes on the right
correspond to balls on the left. The vp-tree property is evident: left descendants are enclosed by circles and
right descendats are outside those circles.

Building Vantage Point Trees. The procedure used to build a vp-tree can be sketched in this way:
given a dataset Y we first chose a vantage point p from Y , then split Y into two equally-sized subsets: those
points that are closer to p, and those that are farther. Repeating the procedure on the two halves we obtain
two trees L, obtained from the first half, and R obtained from the second one. The result is then obtained
as the binary tree rooted at p, with L as left child and R as right child. We will refer to this procedure as
the build_vptree function which is reported in Algorithm 3

The time and space complexity of Algorithm 3 can be analyzed in the following way: given a dataset Y , every
call to build_vptree can be implemented using an in-place procedure like quickselect on the input array Y ,
which takes O(|Y |) time and O(1) space. Therefore as a simple application of the master theorem, building a
balanced vp-tree has asymptotic time complexity O(|Y | · log(|Y |)) and asymptotic space complexity O(|Y |).

Range Queries on Vantage Point Trees. After a vp-tree is built, we can perform range queries by
descending from the root (see Algorithm 4). Say we want to perform a range query for a point q and radius
ϵ. Let (p, r) be the tuple stored at any internal node while visiting the vp-tree. Using the triangle inequality
it’s possible to skip some of p’s children when certain conditions are met. In particular, we can do this in
two situations: (a) when B(q, ϵ) ⊆ B(p, r), equivalent to d(p, q) ≥ r + ϵ, we need to visit only the left child

7

Published in Transactions on Machine Learning Research (01/2025)

Algorithm 3 Algorithm for build_vptree(Y, d)
Require: Let Y = [y0, . . . , yn−1] be a dataset, and let d be a metric on Y .
Ensure: build_vptree(Y, d) returns a vp-tree on (Y, d).

if Y = ∅ then:
return ∅ ▷ the empty tree

else
p← choose in Y . ▷ chose randomly
Move p at the head of Y , such that y0 = p.
Let ρ = mediany∈Y d(p, Y).
Reorder Y such that d(p, yi) ≤ ρ for i < n/2 and d(p, yi) ≥ ρ for i ≥ n/2.
L← build_vptree([y1, . . . , yn/2−1], d)
R← build_vptree([yn/2, . . . , yn−1], d)
return Tree{root = (p, ρ), left = L, right = R}

end if

(see Figure 4a); (b) when B(q, ϵ) ∩B(p, r) = ∅, equivalent to d(p, q) ≥ r + ϵ, we need to visit only the right
child (see Figure 4b).

(a) When B(q, ϵ) ⊆ B(p, r) we skip the right child, since
right descendants are outside the range query.

(b) When B(q, ϵ)∩B(p, r) = ∅ we skip the left child, since
left descendants are outside the range query.

Figure 4: The two conditions when we need to visit only one child during range queries.

Range queries can be significantly more efficient with vp-trees than with linear scans. A linear scan requires
going through all the points of a dataset Y , which takes |Y | steps in total. On the other hand, with vp-
trees, a range query usually takes less steps, since we can often skip one child from the search due to the
triangle inequality satisfied by the metric (see Figure 4a and Figure 4b). Giving a general estimation of the
average time complexity of range queries via vp-trees is particularly challenging due to its dependency on
the dataset (Brin, 1995), we can only state that, for a dataset Y , it is bounded between O(log(|Y |)) and
O(|Y |). However, when the query radius is sufficiently small, we expect to fall often in a cases where we can
skip a branch from the range query. In such cases the time complexity becomes closer to O(log(|Y |)).

Ball Cover via Vantage Point Trees. It is worth emphasizing that the construction of the ball cover
can be improved by leveraging vp-trees alone. Specifically, one can first construct a vp-tree T on the dataset
Y . Then, in the ϵ-net algorithm, the open balls are generated using range queries on T (see Algorithm 5).

8

Published in Transactions on Machine Learning Research (01/2025)

Algorithm 4 Algorithm for range_query(T, q, ϵ)
Require: Let Y be a dataset, and d a metric on Y . Let T = build_vptree(Y, d). Let q be a query point,

and let ϵ > 0 be a query radius.
Ensure: The open ball B(q, ϵ).

if T is empty or terminal then
return {y ∈ T.leaves | d(q, y) < ϵ}

else
(p, r)← T.root
S ← ∅
if r < d(p, q) + ϵ then ▷ Opposite to Figure 4a

S ← S ∪ range_query(T.right, q, ϵ)
end if
if r > d(p, q)− ϵ then ▷ Opposite to Figure 4b

S ← S ∪ range_query(T.left, q, ϵ)
end if
return S

end if

Algorithm 5 Construction of ball cover via vp-trees
Require: Let (Y, d) be a metric space. Let r ≥ 0.
Ensure: A ball cover C of radius r.
T ← build_vptree(Y, d) ▷ Algorithm 3
N ← ∅
C ← ∅
while N ̸= Y do

Take p ∈ Y \N
B ← range_query(T, p, r) ▷ Algorithm 4
N ← N ∪B
C ← C ∪ {B}

end while
return C

3 Cubical Cover in Higher Dimensions

In this section, we outline the main contributions of this work. To begin, it is essential to introduce some
notation.
Definition 8. Let Y ⊆ Rk compact. Let mi = miny∈Y yi, and Mi = maxy∈Y yi, with mi < Mi for
i = 1 . . . k. We define σY : Rk → Rk by setting for every y = (yi)i=1,...,k ∈ Rk

σ(y) =
(
yi −mi

Mi −mi

)
i=1...,k

.

Remark 4. In the settings of Definition 8, the map σY : Rk → Rk is a bijection that maps Y to the hypercube
[0, 1]k. The map σ−1 : Rk → Rk is given by setting for each y = (yi)i=1,...,k ∈ Rk

σ−1
Y (y) = (mi + yi(Mi −mi))i=1,...,k .

Definition 9. Let ρn : Rk →
(1

2n + 1
nZ
)k be the map defined by setting for every y = (yi)i=1,...,k ∈ Rk

ρn(y) =
(
⌊nyi⌋+ 1/2

n

)
i=1,...,k

.

9

Published in Transactions on Machine Learning Research (01/2025)

Following Definition 6, we define a helper function that maps each point in Y to its closest hypercube in
the standard cubical cover. Specifically, this means the function assigns the hypercube whose center is the
nearest neighbor to the point among all other hypercube centers.
Definition 10. Let 0 < n ∈ N and let p ∈ (0, 1). Consider the interval [m,M] ⊆ R and let w = M−m

n(1−p) and
δ = pw. Let ai = m + i(w − δ) − δ/2 and bi = m + (i + 1)(w − δ) + δ/2. We define the cubical proximity
function CP[m,M](n, p) : [m,M]→ P([m,M]) by setting for every y ∈ [m,M]

CP[m,M](n, p)(y) = [m,M] ∩ (ai, bi) ∀y ∈ [ai + δ/2, bi − δ/2).

For any Y ⊆ Rk compact we can define for every y = (yi)i=1,...,k ∈ Y

CPY (n, p)(y) = Y ∩
k∏

i=1
CPYi

(n, p)(yi).

where Yi is the projection of Y on the i-axis.
Remark 5. For every y ∈ [m,M] there exists only one j such that y ∈ [aj + δ/2, bj − δ/2), which can be
easily computed as

j = n

⌊
y −m
M −m

⌋
.

We can extend this to higher dimension. In case of Y ⊆ Rk, for every y = (yi)i=1,...,k ∈ Y , for each i there
exists only one ji = n

⌊
yi−mi

Mi−mi

⌋
such that yi ∈ [aji + δi/2, bji − δi/2), and we have

CPY (n, p)(y) = Y ∩
k∏

i=1
(aji

, bji
).

This setting gives a well-defined notion for CPY (n, p), since the intervals [ai + δ/2, bi − δ/2) are a partition
of [m,M] (see Remark 1). We can finally state one of the main contributions of our methodology, in the
form of the following result.
Theorem 2. Let Y ⊆ Rk compact. Let 0 < n ∈ N and let p ∈ (0, 1). Then for every y ∈ Y we have

CPY (n, p)(y) = Bσ∗
Y

d∞

(
(σ−1

Y ◦ ρn ◦ σY)(y), 1
2n− 2np

)
.

Proof. We have CPY (n, p)(y) =
∏k

i=1(aji
, bji

) where ji = n
⌊

yi−mi

Mi−mi

⌋
. Then

σY (CPY (n, p)(y)) =
k∏

i=1

(
aji −mi

Mi −mi
,
bji −mi

Mi −mi

)

=
k∏

i=1

(
ji + 1/2

n
− 1

2n− 2np,
ji + 1/2

n
+ 1

2n− 2np

)
= Bd∞

(
ji + 1/2

n
,

1
2n− 2np

)
= Bd∞

(
ρn(σY (y)), 1

2n− 2np

)
Therefore

CPY (n, p)(y) = σ−1
Y Bd∞

(
ρ(σY (y)), 1

2n− 2np

)
= Bσ∗

Y
d∞

(
(σ−1

Y ◦ ρ ◦ σY)(y), 1
2n− 2np

)

10

Published in Transactions on Machine Learning Research (01/2025)

3.1 Estimating Cardinality

As a consequence of Theorem 2, we developed a more efficient method for constructing the elements of CCn,p
Y

using vp-trees. In this subsection, we provide an estimate of the cardinality of CCn,p
Y , which also allows us to

assess the overall complexity of its construction. Theorem 3 establishes an upper bound on the cardinality
of a minimal subcover of CCn,p

Y , while Corollary 1 extends this result to derive an upper bound on the
cardinality of CCn,p

Y .
Theorem 3. Let Y ⊆ Rk. Then, there exist a subcover C ⊆ CCn,p

Y with cardinality

|C| ≤
(

2n · 2− p
p

)dim(Y)
.

Proof. Initially we establish some notation that will make the proof easier. Let δ = σ∗
Y d∞ and let ψn =

σ−1
Y ◦ ρn ◦ σY . Under the metric δ, Y is contained in a k-dimensional hypercube of side 1, and ψn acts as an

approximation function that maps Y to a regular grid of side ϵn = 1
2n . Then, as a consequence of Theorem

2, the collection CCn,p
Y consists of the balls BY

δ (ψn(y), rn) for each y ∈ Y , where the radius is rn = 1
2n−2np .

First, it’s easy to observe that δ(y, ψn(y)) ≤ ϵn for every y ∈ Y and every n. Therefore every ball
BY

δ (ψn(y), rn) is contained within the ball BY
δ (y, rn + ϵn), which has the same center y but a larger ra-

dius to account for the approximation error introduced by ψn. Therefore, for any chosen m, this gives us
our first inclusion:

BY
δ (ψm(y), rm) ⊆ BY

δ (y, rm + ϵm).

By recursively applying the notion of doubling dimension, the ball BY
δ (y, rm + ϵm) can be iteratively covered

by λs balls of radius rm+ϵm

2s , where s is the depth of the iteration and λ is the doubling measure of Y under
the metric δ. Therefore, we have:

BY
δ (y, rm + ϵm) ⊆

λs⋃
j=1

BY
δ

(
yj ,

rm + ϵm
2s

)
,

where {yj}j are the centers of the covering balls and λ is the doubling measure of Y . If we now consider any
n ≥ m, using the same argument as in the first inclusion, we can write

BY
δ

(
yj ,

rm + ϵm
2s

)
⊆ BY

δ

(
ψn(yj), rm + ϵm

2s
+ ϵn

)
,

which holds for any choice of s. If we then chose s such that rm+ϵm

2s + ϵn ≤ rn we can further claim that

BY
δ

(
ψn(yj), rm + ϵm

2s
+ ϵn

)
⊆ BY

δ (ψn(yj), rn) .

The inequality rm+ϵm

2s + ϵn ≤ rn can be easily solved in s, and gives s ≥ log2

(
n
m ·

2−p
p

)
, which holds when

we set s =
⌈
log2

(
n
m ·

2−p
p

)⌉
. After this, we can finally set L = λs and give the following estimate:

L = λs = 2dim(Y)·s ≤ 2dim(Y)·[1+log2(n
m · 2−p

p)] =
(

2 · n
m
· 2− p

p

)dim(Y)
.

Summing up and chaining the inclusions together, we obtain the following

BY
δ (ψm(y), rm) ⊆

L⋃
j=1

BY
δ

(
yj ,

rm + ϵm
2s

)
⊆

L⋃
j=1

BY
δ (ψn(yj), rn) .

11

Published in Transactions on Machine Learning Research (01/2025)

Finally, setting m = 1 and Ij = BY
δ (ψn(yj), rn), we have L ≤

(
2n · 2−p

p

)dim(Y)
and

Y ⊆ BY
δ (ψ1(y), r1) ⊆

L⋃
j=1

BY
δ (ψn(yj), rn) =

L⋃
j=1

Ij ,

which concludes the proof.

Corollary 1. Let Y ⊆ Rk, then

|CCn,p
Y | ≤ 3k ·

(
2n · 2− p

p

)dim(Y)
.

Proof. Theorem 3 states that is always possible to find a subcover S ⊆ CCn,p
Y where |S| ≤

(
2n · 2−p

p

)dim(Y)
.

Since S covers Y , every other interval I ∈ CCn,p
Y must intersect some interval in S. Therefore we can write

CCn,p
Y =

⋃
I∈S
AI ,

where AI = {J ∈ CCn,p
Y | J ∩ I ̸= ∅}. It’s easy to see that for dimensionality reasons |AI | ≤ 3k, therefore we

can claim that

|CCn,p
Y | ≤ |S| · 3k ≤ 3k ·

(
2n · 2− p

p

)dim(Y)
,

and this concludes the proof.

Theorem 3 asserts that a minimal subcover of CCn,p
Y has cardinality bounded by a value that depends solely

on n, p, and dim(Y). This upper bound is intrinsic as it is independent from the dimension of the feature
space Rk. Conversely, the inequality in Corollary 1 is not intrinsic, as it also depends on k, yet it justifies
why proximity-net runs in far fewer steps than nk. Notably, this upper bound is a very rough estimation and
could potentially be improved, as the factor 3k is significantly higher than what is typically observed. While
a smaller factor might be achievable, it remains unclear how such an improvement would be influenced by
the specific dataset.

Standard Cubical Cover via Vantage Point Trees. Theorem 2 suggests how we can construct the
hypercubes of the standard cubical cover as open balls under a scaled L∞-distance. This insight leads to
an immediate improvement in constructing the standard cubical cover: first, a vp-tree T is built using the
scaled L∞-distance. Then, after identifying all the hypercubes and their centers (noting that some centers
may not correspond to points in the dataset), the points within each hypercube can be efficiently retrieved
using range queries on T centered at these points (see Algorithm 6).

While this improvement is significant, it is still insufficient. Although it reduces the number of steps compared
to Algorithm 2, a single point in the dataset may still lie in the intersection of up to 2k open hypercubes.
This detail is often overlooked but has critical implications: the standard cubical cover could, in principle,
contain more open sets than there are points in the dataset. This issue becomes particularly pronounced in
higher dimensions, where such open covers tend to produce Mapper graphs that are too complex to provide
meaningful insights.

3.2 Proximity-Net

In this work, we introduce a generalization of ϵ-net that we call proximity-net. This modified algorithm is
a greedy procedure that takes a single parameter, that we call proximity function (see Definition 11), and
covers the dataset with a collection of sets.
Definition 11. A proximity function on Y is a map b : Y → P(Y) such that p ∈ b(p) for any p ∈ Y .

12

Published in Transactions on Machine Learning Research (01/2025)

Algorithm 6 Construction of the standard cubical cover via vp-trees
Require: Let Y ⊆ Rk, let 0 < n ∈ N and p ∈ (0, 1/2].
Ensure: The standard cubical cover CCn,p

Y .
T ← build_vptree(Y, σ∗

Y d∞) ▷ Algorithm 3
L← (σ−1

Y ◦ ρn ◦ σY)(Y)
C ←

{
range_query

(
T, l, 1

2n−2np

) ∣∣∣ l ∈ L} ▷ Theorem 2, Algorithm 4
return C

Remark 6. The cubical proximity function CPY (n, p) from Definition 10 is a proximity function according
to Definition 11.

The proximity-net algorithm is reported in Algorithm 7 and the only difference with respect to ϵ-net is that
the sets obtained from proximity-net are built by applying the proximity function, and therefore are not
required to be open balls. This choice brings improved flexibility and allows to build diverse types of open
covers by applying the same procedure to a properly chosen parameter. In this section we will see how
we can obtain both the ball cover and a cubical cover using proximity-net. More importantly, deriving a
cubical cover from proximity-net effectively addresses the flaw of Algorithm 2, as the number of open balls
is expected to be significantly fewer than nk (Corollary 1).

Algorithm 7 Construction of proximity-net
Require: Let Y be a dataset, and let b be a proximity function on Y .
Ensure: A cover of Y
S ← Y , as a set ▷ S is the set that tracks the points of Y not covered yet
C ← ∅
while S ̸= ∅ do

Take a point p ∈ S ▷ Randomly or according to some heuristic
B ← b(p)
Add B to C
for q ∈ B do ▷ All the points in B are now covered

Remove q from S
end for

end while
return C

It’s worth to point out that the original ϵ-net can be obtained by supplying proximity-net with the ball
proximity function defined as in Definition 12, and further optimize it using vp-trees. This optimization is
reported in Algorithm 8 and is essentially the same as Algorithm 5.
Definition 12. Let Y ⊆ Y ′ and let d be a pseudo-metric on Y ′. For each ϵ > 0 we define the function
BPY (d, ϵ) : Y ′ → P(Y) by setting

BPY (d, ϵ) : y 7→ Y ∩Bd(y, ϵ).
for every y ∈ Y ′. Moreover, the restriction of BPY (d, ϵ) on Y is a proximity function that we call ball
proximity function.
Remark 7. Definition 12 allows to use the same notation BPY when we want to construct a ball with a
center that is not contained in Y , but in an eventually larger space Y ′. We will use this in Theorem 2.

We can improve ϵ-net algorithm by first building a vp-tree T on the dataset to be covered. After that we
can call proximity-net (Algorithm 7) by supplying a function that for each point p performs a range query
on T . This approach (Algorithm 8) is eventually faster than the original ϵ-net approach.
Remark 8. The ability to work with pseudo-metrics, rather than just metrics, is an invaluable feature of
vp-trees that we can leverage in our implementation. In the setting of Mapper on Ball Mapper, we have a
lens f : X → Y and a metric d on Y . Mapper on Ball Mapper is obtained by taking the pullback of the open
sets of Ball Mapper under the lens f . This is equivalent to apply Algorithm 8 to the input dataset Y = X

13

Published in Transactions on Machine Learning Research (01/2025)

Algorithm 8 Construction of ϵ-net via proximity-net and vp-trees
Require: Let Y be a dataset and d a pseudo-metric on Y . Let ϵ > 0 be a chosen radius.
Ensure: A ball cover C on Y with balls of radius ϵ.
T ← build_vptree(Y, d) ▷ Algorithm 3
π ← p 7→ range_query(T, p, ϵ) ▷ Definition 12, Algorithm 4
C ← proximity-net(X,π) ▷ Algorithm 7
return C

under the pullback pseudo-metric f∗d. This brings a practical benefit in terms of time and space, since the
pullback cover is already obtained in this way, without constructing it explicitly from a cover on f(X).

Cubical Cover via Proximity-Net and Vantage Point Trees. Under an appropriate choice of prox-
imity function, we can construct a cubical cover using proximity-net, while keeping the number of open sets
limited, as in the case of ϵ-net (see Remark 2.3), eliminating the performance degradation encountered in
Algorithm 2.
Remark 9. As a result of Theorem 2, we can claim that

y 7→ Bσ∗
Y

d∞

(
(σ−1

Y ◦ ρn ◦ σY)(y), 1
2n− 2np

)
is a proximity function.

By leveraging Theorem 2 we can finally summarize our methodology for computing this cover efficiently,
which is also reported in Algorithm 9. In the first step we use Algorithm 3 to construct a vp-tree T on Y using
the pseudo-metric σ∗

Y d∞. The range query method on T (Algorithm 4) is then equivalent to computing the
proximity function BPY (σ∗

Y d∞, ϵ) for any choice of ϵ. Then, once T has been constructed, we run proximity-
net algorithm (Algorithm 7) by supplying the proximity function BPY

(
σ∗

Y d∞,
1

2n−2np

)
(σ−1

Y ◦ρn◦σY) which
by definition is equivalent to

y 7→ Bσ∗
Y

d∞

(
(σ−1

Y ◦ ρn ◦ σY)(y), 1
2− 2p

)
,

and therefore can be efficiently computed as

y 7→ range_query
(
T, (σ−1

Y ◦ ρn ◦ σY)(y), 1
2n− 2np

)
using the vp-tree T . As stated by Theorem 2, this is equivalent to computing CPY (n, p)(y).

Algorithm 9 Construction of cubical cover via proximity-net and vp-trees
Require: Let Y ⊆ Rk, let 0 < n ∈ N and p ∈ (0, 1/2].
Ensure: A cubical cover C ⊆ CCn,p

Y .
T ← build_vptree(Y, σ∗

Y d∞) ▷ Algorithm 3
π = y 7→ range_query(T, (σ−1

Y ρnσY)(y), 1
2n−2np) ▷ Definition 10, Theorem 2, Algorithm 4

C ← proximity-net(π) ▷ Algorithm 7
return C

Since proximity-net is a greedy algorithm that selects a distinct element of CCn,p
Y at each step, estimating

the cardinality of CCn,p
Y also provides an upper bound on the total number of iterations of proximity-net.

Consequently, the algorithm produces an open cover of Y , where each open set corresponds to one of the
hyperrectangles from the original standard cubical cover CCn,p

Y . This refined open cover may contain fewer
open sets than the original cubical cover, thanks to the application of proximity-net. Despite its smaller size,
the cover remains sufficient to encompass the entire dataset. Moreover, the Mapper graph derived from this
open cover retains its informativeness while being potentially easier to visualize and analyze, particularly in
higher dimensions (see Figure 5).

14

Published in Transactions on Machine Learning Research (01/2025)

Figure 5: A visual comparison between the standard cubical cover (left) and the cover from proximity-net
(right) on the Digits dataset (Alpaydin & Kaynak, 1998). Node colors represent the average digit values.
We ran Mapper using PCA with four principal components as the lens, ten intervals and 50% overlap, and
KMeans clustering with two clusters.

Non-Determinism. Algorithm 7 does not prescribe a strict rule for selecting points in its main loop,
reflecting the inherent non-determinism of ϵ-net construction as defined in Algorithm 1. This flexibility
means that the resulting Mapper graph may vary depending on the specific choice of points.

On one hand, it’s possible to reduce this variability by picking, at each step, the point p that maximizes
the distance d(p, Y \ S). While this approach increases computational cost, it can improve consistency and
reproducibility.

On the other hand, when the good cover condition is met, the impact of non-determinism on the Mapper
graph is not topologically relevant, since as discussed more deeply in 2.1, the topological information encoded
in the Mapper graph does not depend on the specific open cover. If this condition is not met, the Mapper
graph may no longer reflect the topological features of X, and using Mapper in such cases is questionable
since the Nerve Theorem does not apply.

Moreover, when the open cover derived from proximity-net is a subcover of a good cover, it inherently
satisfies the good cover condition. For instance, in the case of a standard cubical cover—constructed de-
terministically—if the good cover condition is satisfied for the standard cubical cover, then the standard
Mapper graph is topologically meaningful, and the Mapper graph obtained via proximity-net also preserves
the same topological features. Under these conditions, the choice of points in Algorithm 7 does not affect
the topological features of the Mapper graph.

Computational Complexity. The computational complexity of Algorithm 7 can be estimated if we know
the cardinality of the open cover produced via the ϵ-net or proximity-net and the complexity of the proximity
function. This estimation is particularly relevant for two cases: the ball proximity function BPY (d, ϵ) and
the cubical cover proximity function CPY (n, p). In both cases, range queries are performed using vp-trees,
corresponding to Algorithm 8 for the ball cover and Algorithm 9 for the cubical cover.

For Algorithm 8, the main loop iterations correspond to the size of the ball cover, which is O((R/r)dim(Y)),
as stated in Proposition 2. However, the time complexity of range queries, that we denote by ΨY (r), is
challenging to estimate, as also reported by Uhlmann (1991). Additionally, constructing the vp-tree on a

15

Published in Transactions on Machine Learning Research (01/2025)

dataset Y has an asymptotic time cost of O(|Y | · log(|Y |)) and takes O(|Y |) additional space. Combining
these factors, we can write:

Time(Y, r) = O
(
|Y | · log(|Y |) + ΨY (r) ·

(
R

r

)dim(Y)
)

Space(Y, r) = O
(
|Y |+

(
R

r

)dim(Y)
)
.

For the cubical cover, and Y ⊆ Rk, we estimate the cardinality of the open cover using Theorem 2. The
process is analogous, leading to:

Time(Y, n, p) = O
(
|Y | · log(|Y |) + ΨY

(
1

2n− 2np

)
· 3k ·

(
2n · 2− p

p

)dim(Y)
)

Space(Y, n, p) = O
(
|Y |+ 3k ·

(
2n · 2− p

p

)dim(Y)
)
.

3.3 Experimental Results

To evaluate the benefits of the approach outlined in Algorithm 8, and supported by Theorem 3 and Corollary
1, we conducted a series of programmatic experiments. Initially, we developed a Python library called
tda-mapper (Simi, 2024) based on the approach presented in this work. Subsequently, we compared it
against other open-source libraries. The motivation behind creating tda-mapper was to explore alternative
methods for constructing open covers for Mapper and eventually implement a more efficient approach. While
major open-source implementations like Python Mapper (v0.1.17) (Müllner & Babu, 2013), GUDHI (v3.10.1)
(Carrière, 2024), giotto-tda (v0.6.0) (Tauzin et al., 2021), and Kepler Mapper (v2.0.1) (van Veen et al., 2019)
can in principle support high-dimensional lenses, they all rely on Algorithm 2 which has known limitations,
as previously discussed. The root cause of this issue lies in their source code: a common thread among
these libraries is the use of the itertools.product function. This function, described in Python’s official
documentation available at https://docs.python.org/3/library/itertools.html#itertools.product,
is used to perform a nested loop on each one-dimensional open cover, which corresponds to what Algorithm
2 does.

In this section, we report the results obtained from comparing giotto-tda (v0.6.2) (Tauzin et al., 2021), Kepler
Mapper (v2.1.0) (van Veen et al., 2019) and tda-mapper (v0.9.0) (Simi, 2024), focusing on both running time
performance and the complexity of the generated graphs. These results align with the expected behavior
and demonstrate the clear superiority of our approach, which achieves better scalability with respect to
lens dimension while producing less complex graphs. To evaluate the performance and scalability of our
approach, we conducted a series of measurements on the running time required to compute Mapper graphs.
During these benchmarks, we consistently kept a fixed number of intervals and overlap, while systematically
varying the lens dimension. This comparative analysis provides valuable insights into the behavior of these
implementations when dealing with high-dimensional data. Our experiments were conducted on Debian 12
using Python 3.11, using a PC equipped with a Ryzen 7 5700G CPU with 2x16GB DDR34 2133Mhz, in dual
channel configuration. To ensure the reliability of our benchmarks, we used well-known datasets publicly
available at the UCI Machine Learning Repository (Dua & Graff, 2023): (a) the Digits dataset (Alpaydin
& Kaynak, 1998), with 1797 instances and 64 features; (b) the MNIST dataset (LeCun et al., 1998), with
70000 instances and 784 features; (c) the Cifar-10 dataset (Krizhevsky et al., 2009), with 60000 instances
and 1024 features; and (d) the Fashion-MNIST dataset (Xiao et al., 2017) with 70000 instances and 784
features. For each dataset we ran Mapper using overlap fraction p ranging in the set {0.125, 0.25, 0.5} and
using n = 10 as the number of intervals on each feature. This choice is arbitrary, but was enough to get
informative Mapper graphs, especially with low-dimensional lenses, with every dataset we used.

16

https://docs.python.org/3/library/itertools.html#itertools.product

Published in Transactions on Machine Learning Research (01/2025)

As a final note, it is important to emphasize that our experiments were largely constrained by memory limi-
tations. Many instances could not be executed for values of k > 5 due to out-of-memory errors encountered
while benchmarking giotto-tda and kepler-mapper. Consequently, direct comparisons are limited to k ≤ 5.
Nonetheless, the asymptotic behavior of tda-mapper has been analyzed for higher values of k, up to k = 10.
These benchmarks highlight the good scalability properties of our approach in this extended range.

Choosing the open cover. In the following plots we report the running times of tda-mapper on the
cubical cover via proximity-net (Algorithm 7) and on the ball cover via ϵ-net (Algorithm 8).

It’s important to point out that these two open covers don’t align and need different input parameters, so
comparing the two approaches requires a little care. For this reason the ball cover has been constructed
by supplying the inputs that better match those of cubical cover, i.e. as the metric we chose the scaled
L∞-distance, and as the radius we chose 1/(2n− 2np) (see Proposition 2).

As we will see in the plots there is often no clear winner in terms of performance between cubical cover and
ball cover, except for a single case where the ball cover scales better with dimension than the cubical cover.

Choosing the clustering algorithm. The choice of clustering algorithm plays a crucial role in the
complexity of the Mapper graph. Different clustering approaches may result in varying numbers of nodes and
edges, impacting both the interpretability of the graph and its computational cost. For example, clustering
algorithms that require the number of clusters k as an input parameter (such as KMeans (MacQueen, 1967))
would produce a Mapper graph with s k nodes, where s is the number of open sets constructed on the image
of the lens. Certain clustering algorithms are particularly well-suited to specific lenses. For instance, when
using density as the lens, DBSCAN (Ester et al., 1996) might be a good choice. This is because the open
sets in the pullback cover will often correspond to regions of approximately uniform density, aligning well
with DBSCAN’s focus on density.

However, in the context of constructing Mapper graphs using high-dimensional lenses (one of the key aspects
of our method) the reliance on clustering diminishes. High-dimensional lenses often yield open sets that can
naturally distinguish clusters without requiring additional clustering (see the discussion in 2.1 about the
Nerve Theorem). This principle can also be observed in Dłotko (2019), where the open cover is directly
constructed on the dataset rather than in the lens image, eliminating the need for clustering altogether.
Similarly, in our approach, the higher-dimensional lens spaces reduce the dependency on clustering compared
to classical Mapper, where lenses are typically low-dimensional (e.g., 2D projections).

Given these considerations, and because our experiments focus on the asymptotic behavior when the lens
dimension is high, we chose a trivial clustering strategy. Specifically, we opted for a clustering algorithm
that assigns all data points to a single cluster. This minimizes the influence of clustering on our benchmarks
and isolates the effects of our approach for building open covers in our analysis.

Scaling with the Embedding Dimension. The first experiment involves creating a 1-dimensional
dataset embedded in dimension k, referred to as the Line dataset in the plots. This is a toy experiment
where the dataset consists of 10000 points lying on the diagonal of the hypercube [0, 1]k, with a small random
noise. As expected, compared with kepler-mapper and giotto-tda, the running time of tda-mapper on this
dataset demonstrates the advantage of our approach especially in higher dimensions (see Figure 6).

Scaling with the Intrinsic Dimension. We conducted additional experiments to better reflect typical
use cases when employing Mapper libraries (see Figure 7, 8, 9, 10). To streamline the process, we used
Principal Component Analysis (PCA) as the lens, varying the number of components from 1 to 10. As the
number of PCA components k increases, the discrepancy with the doubling dimension of the image is also
expected to grow. This range was sufficient to highlight a significant performance advantage of tda-mapper
in all experiments for k ≥ 4. In contrast, both kepler-mapper and giotto-tda encountered frequent out-of-
memory issues, and their results are shown only for experiments that successfully ran. Memory consumption
poses a major challenge to algorithm scalability, and notably, tda-mapper completed all experiments without
any out-of-memory errors, consistently using far less memory. The plots depict running times on a linear
scale for the main axes, supplemented by a logarithmic scale in the inset plots. Interestingly, as k increases,

17

Published in Transactions on Machine Learning Research (01/2025)

Figure 6: Comparison of running times on the Line dataset in dimension k.

tda-mapper exhibits sub-exponential growth in running time. Extending these experiments to larger k values
would be worthwhile to determine whether running times stabilize (as observed in the Digits dataset) or
continue to grow.

3.3.1 Visualization

To highlight the visual improvements achieved with proximity-net, we present comparisons of Mapper graphs
generated from our benchmark datasets in Figures 11, 13, 15, and 17. The Mapper algorithm was configured
using PCA with four principal components as the lens, a cubical cover with five intervals and 50% overlap,
and KMeans clustering with two clusters was applied to the pullback of each open set. Nodes are colored
based on their labeled classes. As expected, the Mapper graphs generated by giotto-tda and kepler-mapper
are less intuitive to navigate compared to those produced by tda-mapper. However, the simpler graphs from
tda-mapper effectively capture relationships among the different color-coded classes, offering clearer insights
compared to the other libraries.

Additionally, we compare the reported graphs across five distinct metrics in all experiments: density, tran-
sitivity, degree, clustering coefficients, and betweenness centrality. Detailed comparisons of the node-level
metrics (degree, clustering coefficients, and betweenness centrality) are presented in Figures 12, 14, 16, and
18 as histograms, showing their distributions across all nodes. Tables 1, 2, 3, and 4 provide aggregated values
for these distributions, reported as means and standard deviations (std), along with the graph-level metrics
density and transitivity. Notably, transitivity and clustering coefficients exhibit similar patterns across the
three libraries tested. This suggests that all libraries maintain similar levels of local clustering, preserving
the tendency for nodes within a neighborhood to form tightly-knit clusters. However, we observe several
differences in other metrics. Compared to giotto-tda and kepler-mapper, tda-mapper exhibits lower average
degrees, yet maintains the same clustering coefficients and transitivity. Despite having fewer connections
overall, the graphs generated by tda-mapper preserve similar levels of local cohesiveness, suggesting a focus
on more concentrated, direct connections within clusters. A key distinction arises in betweenness centrality,
where tda-mapper consistently demonstrates higher values. This indicates that certain nodes play a more
pivotal role in bridging different parts of the graph, pointing to a more centralized or hierarchical structure.
These nodes are crucial for connecting otherwise isolated clusters. Furthermore, the higher density observed
in tda-mapper suggests that its graphs are more compact, with fewer nodes but denser interconnections,
potentially offering a clearer and more streamlined representation of the key relationships between clusters.

18

Published in Transactions on Machine Learning Research (01/2025)

Figure 7: Comparison of running times on the PCA with k components on the Digits dataset.

Figure 8: Comparison of running times on the PCA with k components on the MNIST dataset.

19

Published in Transactions on Machine Learning Research (01/2025)

Figure 9: Comparison of running times on the PCA with k components on the Cifar-10 dataset.

Figure 10: Comparison of running times on the PCA with k components on the Fashion-MNIST dataset.

20

Published in Transactions on Machine Learning Research (01/2025)

(a) giotto-tda (b) kepler-mapper (c) tda-mapper

Figure 11: Comparison of Mapper graphs for Digits.

(a) Degree (b) Clustering Coefficient (c) Betweenness Centrality

Figure 12: Comparison of metrics for Digits.

Table 1: Summary metrics for Digits.

Metric giotto-tda kepler-mapper tda-mapper
Density 0.04 0.05 0.12
Transitivity 0.40 0.40 0.41
Degree (std) 46.27 (27.51) 46.82 (29.64) 11.80 (5.77)
Clustering (std) 0.58 (0.22) 0.61 (0.24) 0.46 (0.16)
Betweenness (std) 0.002 (0.003) 0.002 (0.004) 0.016 (0.019)

21

Published in Transactions on Machine Learning Research (01/2025)

(a) giotto-tda (b) kepler-mapper (c) tda-mapper

Figure 13: Comparison of Mapper graphs for MNIST.

(a) Degree (b) Clustering Coefficient (c) Betweenness Centrality

Figure 14: Comparison of metrics for MNIST.

Table 2: Summary metrics for MNIST.

Metric giotto-tda kepler-mapper tda-mapper
Density 0.06 0.06 0.16
Transitivity 0.40 0.40 0.44
Degree (std) 66.78 (36.50) 63.58 (37.62) 21.15 (8.29)
Clustering (std) 0.53 (0.19) 0.56 (0.21) 0.47 (0.12)
Betweenness (std) 0.002 (0.002) 0.002 (0.003) 0.01 (0.01)

22

Published in Transactions on Machine Learning Research (01/2025)

(a) giotto-tda (b) kepler-mapper (c) tda-mapper

Figure 15: Comparison of Mapper graphs for Cifar-10.

(a) Degree (b) Clustering Coefficient (c) Betweenness Centrality

Figure 16: Comparison of metrics for Cifar-10.

Table 3: Summary metrics for Cifar-10.

Metric giotto-tda kepler-mapper tda-mapper
Density 0.05 0.05 0.18
Transitivity 0.40 0.40 0.45
Degree (std) 62.25 (31.23) 57.54 (31.73) 26.08 (12.43)
Clustering (std) 0.53 (0.19) 0.56 (0.21) 0.50 (0.11)
Betweenness (std) 0.002 (0.002) 0.002 (0.003) 0.008 (0.008)

23

Published in Transactions on Machine Learning Research (01/2025)

(a) giotto-tda (b) kepler-mapper (c) tda-mapper

Figure 17: Comparison of Mapper graphs for Fashion-MNIST.

(a) Degree (b) Clustering Coefficient (c) Betweenness Centrality

Figure 18: Comparison of metrics for Fashion-MNIST.

Table 4: Summary metrics for Fashion-MNIST.

Metric giotto-tda kepler-mapper tda-mapper
Density 0.05 0.05 0.13
Transitivity 0.40 0.40 0.43
Degree (std) 48.09 (30.15) 48.46 (30.36) 13.58 (7.06)
Clustering (std) 0.59 (0.23) 0.61 (0.23) 0.52 (0.17)
Betweenness (std) 0.002 (0.003) 0.002 (0.004) 0.015 (0.021)

24

Published in Transactions on Machine Learning Research (01/2025)

Acknowledgements

This work is dedicated to the memory of my father, whose support and encouragement have been a constant
source of strength throughout my life. I wish to express my deep gratitude to Sofia Torchia for her insightful
comments and genuine interest in this work, which have been invaluable. I also extend sincere thanks to
the anonymous reviewers for their constructive feedback and suggestions, which have greatly improved this
paper, and to the action editor for their commitment to the review process.

This research was conducted independently and did not receive any external funding or institutional support.
The findings presented here are not associated with the author’s professional duties or affiliations.

References
Ethem Alpaydin and Cenk Kaynak. Optical Recognition of Handwritten Digits. UCI Machine Learning

Repository, 1998. DOI: https://doi.org/10.24432/C50P49.

Patrice Assouad. Plongements lipschitziens dans ∖n. Bulletin de la Société Mathématique de France, 111:429–
448, 1983. doi: 10.24033/bsmf.1997. URL http://www.numdam.org/articles/10.24033/bsmf.1997/.

Karol Borsuk. On the imbedding of systems of compacta in simplicial complexes. Fundamenta Mathematicae,
35(1):217–234, 1948. URL http://eudml.org/doc/213158.

Sergey Brin. Near neighbor search in large metric spaces. In Proceedings of the 21th International Conference
on Very Large Data Bases, VLDB ’95, pp. 574–584, San Francisco, CA, USA, 1995. Morgan Kaufmann
Publishers Inc. ISBN 1558603794.

Gunnar Carlsson. Topology and data. Bulletin of The American Mathematical Society - BULL AMER
MATH SOC, 46:255–308, 04 2009. doi: 10.1090/S0273-0979-09-01249-X.

Gunnar Carlsson. Topological pattern recognition for point cloud data. Acta Numerica, 23:289–368, 05 2014.
doi: 10.1017/S0962492914000051.

Mathieu Carrière. Cover complex. In GUDHI User and Reference Manual. GUDHI Editorial Board, 3.10.1
edition, 2024. URL https://gudhi.inria.fr/doc/3.10.1/group__cover__complex.html.

Mathieu Carrière, Bertrand Michel, and Steve Oudot. Statistical analysis and parameter selection for mapper.
Journal of Machine Learning Research, 19(12):1–39, 2018. URL http://jmlr.org/papers/v19/17-291.
html.

Kenneth L. Clarkson. Nearest-neighbor searching and metric space dimensions. In Nearest-Neighbor Methods
in Learning and Vision: Theory and Practice. The MIT Press, 03 2006. ISBN 9780262256957. doi:
10.7551/mitpress/4908.003.0005. URL https://doi.org/10.7551/mitpress/4908.003.0005.

Dheeru Dua and Casey Graff. Uci machine learning repository, 2023. URL http://archive.ics.uci.edu/.

Paweł Dłotko. Ball mapper: a shape summary for topological data analysis, 2019. URL https://arxiv.
org/abs/1901.07410.

Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-based algorithm for discovering
clusters in large spatial databases with noise. In Proceedings of the Second International Conference on
Knowledge Discovery and Data Mining, KDD’96, pp. 226–231. AAAI Press, 1996.

Jerome H. Friedman, Jon Louis Bentley, and Raphael Ari Finkel. An algorithm for finding best matches
in logarithmic expected time. ACM Trans. Math. Softw., 3(3):209–226, sep 1977. ISSN 0098-3500. doi:
10.1145/355744.355745. URL https://doi.org/10.1145/355744.355745.

Caleb Geniesse, Samir Chowdhury, and Manish Saggar. Neumapper: A scalable computational framework
for multiscale exploration of the brain’s dynamical organization. Network Neuroscience, 6(2):467–498, 06
2022. ISSN 2472-1751. doi: 10.1162/netn_a_00229. URL https://doi.org/10.1162/netn_a_00229.

25

http://www.numdam.org/articles/10.24033/bsmf.1997/
http://eudml.org/doc/213158
https://gudhi.inria.fr/doc/3.10.1/group__cover__complex.html
http://jmlr.org/papers/v19/17-291.html
http://jmlr.org/papers/v19/17-291.html
https://doi.org/10.7551/mitpress/4908.003.0005
http://archive.ics.uci.edu/
https://arxiv.org/abs/1901.07410
https://arxiv.org/abs/1901.07410
https://doi.org/10.1145/355744.355745
https://doi.org/10.1162/netn_a_00229

Published in Transactions on Machine Learning Research (01/2025)

Teofilo F. Gonzalez. Clustering to minimize the maximum intercluster distance. Theoretical Computer
Science, 38:293–306, 1985. ISSN 0304-3975. doi: https://doi.org/10.1016/0304-3975(85)90224-5. URL
https://www.sciencedirect.com/science/article/pii/0304397585902245.

Anupam Gupta, Robert Krauthgamer, and James R. Lee. Bounded geometries, fractals, and low-distortion
embeddings. In 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings.,
pp. 534–543, 2003. doi: 10.1109/SFCS.2003.1238226.

Antonin Guttman. R-trees: a dynamic index structure for spatial searching. SIGMOD Rec., 14(2):47–57,
June 1984. ISSN 0163-5808. doi: 10.1145/971697.602266. URL https://doi.org/10.1145/971697.
602266.

Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. Exploring network structure, dynamics, and function
using networkx. In Gaël Varoquaux, Travis Vaught, and Jarrod Millman (eds.), Proceedings of the 7th
Python in Science Conference, pp. 11 – 15, Pasadena, CA USA, 2008.

Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli Virtanen, David
Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti Pi-
cus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernández del
Río, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren
Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. Array programming with
NumPy. Nature, 585(7825):357–362, September 2020. doi: 10.1038/s41586-020-2649-2. URL https:
//doi.org/10.1038/s41586-020-2649-2.

John D. Hunter. Matplotlib: A 2d graphics environment. Computing in Science & Engineering, 9(3):90–95,
2007. doi: 10.1109/MCSE.2007.55.

Robert Krauthgamer and James R. Lee. Navigating nets: simple algorithms for proximity search. In Pro-
ceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’04, pp. 798–807,
USA, 2004. Society for Industrial and Applied Mathematics. ISBN 089871558X.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images, 2009.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to docu-
ment recognition. In Proceedings of the IEEE, volume 86, pp. 2278–2324, 1998. doi: 10.1109/5.726791.
URL http://yann.lecun.com/exdb/mnist/.

James B. MacQueen. Some methods for classification and analysis of multivariate observations. In Proceed-
ings of the fifth Berkeley symposium on mathematical statistics and probability, volume 1, pp. 281–297.
Oakland, CA, USA, 1967.

Daniel Müllner and Aravindakshan Babu. Python mapper: An open-source toolchain for data exploration,
analysis, and visualization, 2013. URL http://danifold.net/mapper.

Davide Gurnari Paweł Dłotko and Radmila Sazdanovic. Mapper–type algorithms for complex data and rela-
tions. Journal of Computational and Graphical Statistics, 33(4):1383–1396, 2024. doi: 10.1080/10618600.
2024.2343321. URL https://doi.org/10.1080/10618600.2024.2343321.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel,
Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre Passos,
David Cournapeau, Matthieu Brucher, Matthieu Perrot, and Édouard Duchesnay. Scikit-learn: Machine
learning in python. Journal of Machine Learning Research, 12(85):2825–2830, 2011. URL http://jmlr.
org/papers/v12/pedregosa11a.html.

Plotly Technologies Inc. Collaborative data science, 2015. URL https://plot.ly.

Luca Simi. tda-mapper, December 2024. URL https://doi.org/10.5281/zenodo.14270565.

26

https://www.sciencedirect.com/science/article/pii/0304397585902245
https://doi.org/10.1145/971697.602266
https://doi.org/10.1145/971697.602266
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
http://yann.lecun.com/exdb/mnist/
http://danifold.net/mapper
https://doi.org/10.1080/10618600.2024.2343321
http://jmlr.org/papers/v12/pedregosa11a.html
http://jmlr.org/papers/v12/pedregosa11a.html
https://plot.ly
https://doi.org/10.5281/zenodo.14270565

Published in Transactions on Machine Learning Research (01/2025)

Gurjeet Singh, Facundo Memoli, and Gunnar Carlsson. Topological Methods for the Analysis of High
Dimensional Data Sets and 3D Object Recognition. In M. Botsch, R. Pajarola, B. Chen, and M. Zwicker
(eds.), Eurographics Symposium on Point-Based Graphics. The Eurographics Association, 2007. ISBN
978-3-905673-51-7. doi: /10.2312/SPBG/SPBG07/091-100.

Martin Skrodzki. The k-d tree data structure and a proof for neighborhood computation in expected
logarithmic time, 2019. URL https://arxiv.org/abs/1903.04936.

Guillaume Tauzin, Umberto Lupo, Lewis Tunstall, Julian Burella PÃ©rez, Matteo Caorsi, Anibal M. Medina-
Mardones, Alberto Dassatti, and Kathryn Hess. giotto-tda: : A topological data analysis toolkit for
machine learning and data exploration. Journal of Machine Learning Research, 22(39):1–6, 2021. URL
http://jmlr.org/papers/v22/20-325.html.

Jeffrey K. Uhlmann. Satisfying general proximity / similarity queries with metric trees. Information Process-
ing Letters, 40(4):175–179, 1991. ISSN 0020-0190. doi: https://doi.org/10.1016/0020-0190(91)90074-R.
URL https://www.sciencedirect.com/science/article/pii/002001909190074R.

Hendrik Jacob van Veen, Nathaniel Saul, David Eargle, and Sam W. Mangham. Kepler mapper: A flexible
python implementation of the mapper algorithm. Journal of Open Source Software, 4(42):1315, 2019. doi:
10.21105/joss.01315. URL https://doi.org/10.21105/joss.01315.

André Weil. Sur les théorèmes de de rham. Commentarii mathematici Helvetici, 26:119–145, 1952. URL
http://eudml.org/doc/139040.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms, 2017. URL https://arxiv.org/abs/1708.07747.

Peter N. Yianilos. Data structures and algorithms for nearest neighbor search in general metric spaces. In
Proceedings of the Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’93, pp. 311–321,
USA, 1993. Society for Industrial and Applied Mathematics. ISBN 0898713137.

A Appendix: Library Overview

Throughout the development process of tda-mapper, one of the objectives was to create an API that is easy
to understand and use. For this reason we adopted an object-oriented approach taking inspiration from the
well-known scikit-learn APIs (Pedregosa et al., 2011), since we expect some good level of familiarity with
it from the intended user base of tda-mapper. Additionally, we made efforts to keep the API of tda-mapper
similar to the APIs provided by giotto-tda and Kepler Mapper, allowing users to smoothly transition between
these libraries and leverage their existing knowledge. By considering these factors, we aim to provide a user-
friendly and seamless experience for users of tda-mapper, making it easier for them to explore and use the
library’s full potential.

We have implemented our own version of the vp-tree data structure and optimized it for our specific use-case:
our implementation allows each leaf of the vp-tree to contain multiple items by stopping the construction
when the splitting circle is small, either in terms of its cardinality or in terms of its radius (smaller than a
given threshold). This optimization is beneficial both for range queries and for K-nearest neighbor (KNN)
queries. When, during a search, the visited node becomes smaller than the query, the search operation
collapses into a faster brute force linear scan.

The implementation of tda-mapper relies on several dependencies, including networkx (Hagberg et al., 2008),
numpy (Harris et al., 2020), matplotlib (Hunter, 2007), and plotly (Plotly Technologies Inc., 2015). Overall,
the software dependencies in tda-mapper are crucial for its functionality and enable users to generate Mapper
graphs and visualize them effectively:

• networkx is used to generate and manipulate the Mapper graph, which is the primary result of the
algorithm.

27

https://arxiv.org/abs/1903.04936
http://jmlr.org/papers/v22/20-325.html
https://www.sciencedirect.com/science/article/pii/002001909190074R
https://doi.org/10.21105/joss.01315
http://eudml.org/doc/139040
https://arxiv.org/abs/1708.07747

Published in Transactions on Machine Learning Research (01/2025)

• numpy is necessary for numeric computations, particularly for the CubicalCover function.

• matplotlib and plotly are used to create plots for the Mapper graph, providing visualization
options.

Additionally, there is a weaker dependency on sklearn (Pedregosa et al., 2011) which is used only for
testing, ensuring that the implementation aligns with widely-used machine learning standards. The sklearn
library is used to check that the custom-defined estimators in tda-mapper are compatible with sklearn. An
extensive amount of effort was devoted to ensure a good level of automation during development, especially
for testing, which is performed using GitHub actions. At the time of writing code coverage is around 96%.

For more in depth information, examples, tutorials, and documentation, the interested reader can visit
https://tda-mapper.readthedocs.io/en/main/.

28

https://tda-mapper.readthedocs.io/en/main/

	Introduction
	Preliminaries
	Mapper algorithm
	Standard Cubical Cover
	Ball Cover
	Vantage Point Trees

	Cubical Cover in Higher Dimensions
	Estimating Cardinality
	Proximity-Net
	Experimental Results
	Visualization

	Appendix: Library Overview

