
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

VERTICAL FEDERATED LEARNING WITH MISSING
FEATURES DURING TRAINING AND INFERENCE

Anonymous authors
Paper under double-blind review

ABSTRACT

Vertical federated learning trains models from feature-partitioned datasets across
multiple clients, who collaborate without sharing their local data. Standard ap-
proaches assume that all feature partitions are available during both training and
inference. Yet, in practice, this assumption rarely holds, as for many samples only
a subset of the clients observe their partition. However, not utilizing incomplete
samples during training harms generalization, and not supporting them during
inference limits the utility of the model. Moreover, if any client leaves the federa-
tion after training, its partition becomes unavailable, rendering the learned model
unusable. Missing feature blocks are therefore a key challenge limiting the appli-
cability of vertical federated learning in real-world scenarios. To address this, we
propose LASER-VFL, a vertical federated learning method for efficient training
and inference of split neural network-based models that is capable of handling
arbitrary sets of partitions. Our approach is simple yet effective, relying on the
strategic sharing of model parameters and on task-sampling to train a family of
predictors. We show that LASER-VFL achieves a O(1/

√
T) convergence rate for

nonconvex objectives in general,O(1/T) for sufficiently large batch sizes, and lin-
ear convergence under the Polyak-Łojasiewicz inequality. Numerical experiments
show improved performance of LASER-VFL over the baselines. Remarkably, this
is the case even in the absence of missing features. For example, for CIFAR-100,
we see an improvement in accuracy of 21.4% when each of four feature blocks is
observed with a probability of 0.5 and of 12.2% when all features are observed.

1 INTRODUCTION

In federated learning (FL), a set of clients collaborates to jointly train a model using their local data
without sharing it (Kairouz et al., 2021). In horizontal FL, data is distributed by samples, meaning
each client holds a different set of samples but shares the same feature space. In contrast, vertical
FL (VFL) involves data distributed by features, where each client holds different parts of the feature
space for overlapping sets of samples. Whether an application is horizontal or vertical FL is dictated
by how the data arises, as it is not possible to redistribute the data. This work focuses on VFL.

In VFL (Liu et al., 2024), the global datasetD := {x1, . . . ,xN}, whereN is the number of samples,
is partitioned across clients K := {1, . . . ,K}. Each client k ∈ K typically holds a local dataset
Dk := {x1

k, . . . ,x
N
k }, where xnk is the block of features of sample n observed by client k. We have

that xn = (xn1 , . . . ,x
n
K). Unlike horizontal FL, in VFL, different clients collect local datasets with

distinct types of information (features). Such setups—e.g., an online retail company and a social
media platform holding different features on shared users—typically involve entities from different
sectors, reducing competition and increasing the incentive to collaborate. To train VFL models
without sharing the local datasets, split neural networks (Ceballos et al., 2020) are often considered.

In split neural networks, each client k has a representation model fk, parameterized by θfk . The
representations extracted by the clients are then used as input to a fusion model g, parameterized
by θg . This fusion model can be at one of the clients or at a server. Thus, to learn the parameters
θK := (θf1 , . . . ,θfK ,θg) of the resulting predictor h, we can solve the following problem:

min
θK

1

N

N∑
n=1

`(h(xn;θK), yn) where h(xn;θK) := g
(
{fk(xnk ;θfk)}Kk=1 ;θg

)
, (1)

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Method
pmiss

0.0 0.5

(F1-score×100)
Local 74.9 73.0
Standard VFL 91.6 51.8
LASER-VFL (ours) 92.0 82.0

(a) Split neural network. (b) Dataset availability and usage. (c) Results preview.

Figure 1: In Figure 1a, we illustrate a split neural network. In Figure 1b, we show the availability
of a dataset with K = 3 blocks of features, each with a 0.5 probability of being observed, and its
usage and waste by three key methods: standard VFL, a local approach, and our method. Standard
VFL trains a single predictor, while the local approach and our method train different predictors at
different clients (we show the data usage for client 1). In Figure 1c, we present a preview of our
results: a mortality prediction task using the MIMIC-IV dataset, when the probability of each block
of features missing, pmiss, is in {0.0, 0.5}, for both data and test data.

with ` denoting a loss function and yn the label of sample n, which we assume to be held by the
same entity (client or server) as the fusion model. We illustrate this family of models in Figure 1a.

Generalization and availability in standard VFL. We see in (1) that, even for a single sample n,
predictor h depends on all the blocks of features, {xnk : ∀k}. Thus, for both training and inference,
(1) requires the observations of all the clients to be available.1 Building on our example of an online
retailer and a social media company sharing users, each company is also likely to have unique users.
This applies to both training and test data. Further, if any client drops from the federation during
inference, its block will permanently stop being observed. In both the case of nonshared users and of
clients leaving the federation, standard VFL predictors become unusable. Figure 1b illustrates this
phenomenon: for both training and inference, if each of K = 3 clients observes its block of features
with an (independent) probability of 0.5, only 0.53 = 12.5% of the original data is usable. Thus,
restricting training to fully-observed samples hinders generalization, while restricting inference to
such samples limits the availability and utility of the model.

Dealing with missing features. To handle missing features in training data, some approaches ex-
pand the dataset, filling the missing features before collaborative training (Kang et al., 2022b), while
others use their partition of partially-observed samples for local representation learning but exclude
them from collaboration (He et al., 2024). These methods can outperform standard VFL when par-
tially observed samples are present, but they add new training stages and auxiliary modules, making
them more complex. Moreover, they train a joint predictor that requires the collaboration of all
clients during inference. On the other hand, to improve robustness against missing blocks at in-
ference, each client can train a local predictor using only its own features, avoiding collaboration
altogether. This also addresses missing features in the training data. Alternatively, collaborative
methods can employ techniques such as knowledge distillation (Huang et al., 2023) and data aug-
mentation (Gao et al., 2024) to train local predictors, also adding complexity with multiple stages.
However, while robust to missing features, these local predictors cannot utilize additional feature
blocks if available at test time, resulting in wasted data and reduced predictive power. We illustrate
this in Figure 1b.

Therefore, there is a gap in the literature when it comes to leveraging all the available data without
either dropping incomplete samples or ignoring existing features. This raises the following question:

Can we design an efficient VFL method that is robust to missing features at both training and
inference with provable convergence guarantees, without wasting data?

1This contrasts with horizontal FL, where the local data of one client suffices to estimate mini-batch gradi-
ents and to perform inference.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

In this work, we answer this question in the affirmative. We propose LASER-VFL (Leveraging All
Samples Efficiently for Real-world VFL), a novel method that enables both training and inference
using any and all available blocks of features. To the best of our knowledge, this is the first method to
achieve this. Our approach avoids the multi-stage pipelines that are common in this area, providing
a simple yet effective solution that leverages strategic sharing of model parameters alongside a task-
sampling mechanism. By fully utilizing all data (see Figure 1b), our method leads to significant
performance improvements, as demonstrated in Figure 1c. Remarkably, our approach even surpasses
standard VFL when all samples are fully observed. We attribute this to a dropout-like regularization
effect introduced by task sampling.

Our contributions. The main contributions of this work are as follows.

• We propose LASER-VFL, a simple, hyperparameter-free, and efficient VFL method that is flex-
ible to a varying number of feature blocks during both training and inference. To the best of our
knowledge, this is the first method to achieve such flexibility and avoid wasting either training
data or test data.

• We show that LASER-VFL converges at a O(1/
√
T) rate for nonconvex objectives in general,

and at a O(1/T) rate for a sufficiently large batch size. Further, under the Polyak-Łojasiewicz
(PL) inequality, we achieve linear convergence.

• Numerical experiments show that LASER-VFL consistently outperforms baselines across multi-
ple datasets and varying data availability patterns. It demonstrates superior robustness to missing
features and, notably, when all features are available, it still outperforms even standard VFL.

Related work. VFL shares challenges with horizontal FL, such as communication efficiency (Liu
et al., 2022; Valdeira et al., 2024) and privacy preservation (Yu et al., 2024), but also faces unique
obstacles, such as missing feature blocks. During training, these unavailable partitions render the
observed blocks of other clients unusable, and at test time, they can prevent inference altogether.
Therefore, most VFL literature assumes that all features are available for both training and infer-
ence—an often unrealistic assumption that has hindered broader adoption of VFL (Liu et al., 2024).

To address the problem of missing features during VFL training, some works use nonoverlapping,
or nonaligned, samples (that is, samples with missing feature blocks) to improve generalization. In
particular, Feng (2022) and He et al. (2024) apply self-supervised learning to leverage nonaligned
samples locally for better representation learning, while using overlapping samples for collaborative
training of a joint predictor. Alternatively, Kang et al. (2022b), Yang et al. (2022), and Sun et al.
(2023b) employ semi-supervised learning to take advantage of nonaligned samples. Although these
methods enable VFL to utilize data that conventional approaches would discard, they still train a
joint predictor and thus require all features to be available for inference, which remains a limitation.

A recent line of research leverages information from the entire federation to train local predictors.
This can be achieved via transfer learning, as in Feng & Yu (2020); Kang et al. (2022a) for over-
lapping training samples and in Liu et al. (2020); Feng et al. (2022) for handling missing features.
Knowledge distillation is another approach, as used by Ren et al. (2022); Li et al. (2023b) for over-
lapping samples and by Li et al. (2023a); Huang et al. (2023) which leverage nonaligned samples
when training local predictors (only the latter considers scenarios with more than two clients). Xiao
et al. (2024) recently proposed using a distributed generative adversarial network for collaborative
training on nonoverlapping data and synthetic data generation. These methods yield local predictors
that outperform naive local approaches but fail to utilize valuable information when other feature
blocks are available during inference.

A few recent works enable a varying number of clients to collaborate during inference. Sun et al.
(2023a) employs party-wise dropout during training to mitigate performance drops from missing
feature blocks at inference; Gao et al. (2024) introduces a multi-stage approach with complementary
knowledge distillation, enabling inference with different client subsets; and Ganguli et al. (2024)
deals with the related task of handling communication failure during inference in cross-device VFL.
However, all of these methods require fully-observed training data and lack convergence guarantees.

In contrast to prior work, LASER-VFL can handle any subset of feature blocks being present during
both training and inference without wasting data, while requiring only minor modifications to the
standard VFL approach. It differs from conventional VFL solely in its use of strategic sharing of
model parameters and task-sampling mechanisms, without the need for additional stages.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

2 DEFINITIONS AND PRELIMINARIES

Our global dataset D is drawn from an input space X which is partitioned into K feature spaces
X = X1×· · ·×XK such thatDk ⊆ Xk, where, recall,Dk is the local dataset of client k. Ideally, we
would train a general, unconstrained predictor h̃ : X 7→ Y , where Y is the label space, by solving
minθ̃

1
N

∑N
n=1 `(h̃(xn; θ̃), yn). However, VFL brings the additional constraint that this must be

achieved without sharing the local datasets. That is, for all k, the local dataset Dk must remain
at client k. As mentioned in Section 1, standard VFL methods approximate h̃ by h : X 7→ Y , as
defined in (1), allowing for collaborative training without sharing the local datsets, but they cannot
handle missing features during training nor inference.

Another way to train predictors without sharing local data is to learn local predictors. In particular,
each client k ∈ K can learn the parameters θk of a predictor hk : Xk 7→ Y to approximate h̃:

hk(xnk ;θk) := gk(fk(xnk ;θfk);θgk) where θk := (θfk ,θgk). (2)

The representation models fk : Xk 7→ Ek, where Ek is the representation space of client k, are as
in (1), yet the fusion models gk : Ek 7→ R differ from g : E1 × · · · × EK 7→ R in (1) and hk differs
from h. This approach is useful in that hk allows client k to perform inference (and be trained)
independently from all the other clients, but it does not make use of the features observed by clients
j 6= k.

More generally, to achieve robustness to missing blocks in the test data while avoiding wasting
other features, we wish to be able to perform inference based on any possible subset of blocks,
P(K)\{∅}, where P(K) denotes the power set ofK. Standard VFL allows us to obtain a predictor
for the blocks K and the local approach provides us with predictors for the singletons {{i} : i ∈ K}
in the power set. However, none of the other subsets of K is covered by either approach.

A naive way to achieve this would be to train a predictor for each set in P(K) \ {∅} in a de-
coupled manner. That is, we could train each of the following predictors {hJ :

∏
k∈J Xk 7→ Y}

independently, using the collaborative training approach of standard VFL for J :{
hJ (xnJ ;θJ) := gJ ((fk(xnk ;θfk(J)) : k ∈ J);θgJ) : J ∈P(K) \ {∅}

}
, (3)

where θJ = ((θfk(J) : k ∈ J),θgJ) and xnJ = (xnk : k ∈ J). These predictors can either be at
one of the clients or at the server. The set of predictors in (3) includes the local predictors {hk} and
the standard VFL predictor h, but also all the other nonempty sets in the power set P(K).2 This
approach addresses the issue of limited flexibility and robustness in prior methods, which struggle
with varying numbers of available or participating clients during inference. However, by requiring
the independent training of 2K − 1 distinct predictors, it introduces a new challenge: the number
of models would grow exponentially with the number of clients, K. Consequently, the associated
memory, computation, and communication costs would also increase exponentially.

Further, if the predictors in (3) are all held by a single entity, this setup introduces a dependency
of all clients on that entity. To enhance robustness against clients dropping from the federation, we
would like each client to be able to ensure inference whenever it has access to its corresponding
block of the sample. That is, we want each client k ∈ K to train a predictor for every nonempty
subset of K that includes k, defined as Pk(K) := {J ∈ P(K) : k ∈ J }. This allows k to make
predictions regardless of whether the information on the blocks observed by other clients is available
and can be leveraged to improve performance.

In the next section, we present our method, LASER-VFL, which enables the efficient training of
a family of predictors that can handle scenarios where features from an arbitrary set of clients are
missing. We have included a table of notation and a diagram illustrating our method in Appendix A.

3 OUR METHOD

Key idea. When striving to have a predictor at each client to perform inference using any subset
of blocks that includes its own, the main challenge is to circumvent the exponential complexity that
can ensue from the exponential number of possible combinations of available blocks. To address

2The notation in (3) differs slightly from (1) and (2), which use a simpler, more specific formulation.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

this, in LASER-VFL, we share model parameters across the predictors leveraging different sub-
sets of blocks and train them so that the representation models allow for good performance across
the different combinations of blocks. Further, we train the fusion model at each client to handle
any combination of representations that includes its own. To train the predictors on an exponential
number of combinations of missing blocks while avoiding an exponential computational complex-
ity, we employ a sampling mechanism during training, which allows us to essentially estimate an
exponential combination of objectives with a subexponential complexity.

3.1 A TRACTABLE FAMILY OF PREDICTORS SHARING MODEL PARAMETERS

In our approach, each client k ∈ K has a set of predictors {h(k,J) : J ∈ Pk(K)}. Each predictor
h(k,J) :

∏
k∈J Xk 7→ Y has the same target, but a different domain. Therefore, we say that each

predictor performs a distinct task. We define the predictors of client k as follows:h(k,J)

(
xnJ ;θ(k,J)

)
:= gk

 1

|J |
∑
j∈J

fj(x
n
j ;θfj);θgk

 : J ∈Pk(K)

 , (4)

where θ(k,J) = ((θfj : j ∈ J),θgk) and |J | denotes the cardinality of set J .

Model parameter sharing. Note that, although we can see (4) as |Pk(K)| = 2K−1 different
predictors, the predictors are made up of different combinations of only K representation models
and K fusion models. That is, we only require parameters θ := (θf1 , . . . ,θfK ,θg1 , . . . ,θgK). In
particular, in contrast to (3), where the predictors used different representation models for each task,
in (4), we share the representation models across predictors. Similarly to the representation models,
we have a single fusion model per client.

It is also important to note that each fusion model takes the specific form
gk ((fi(x

n
i ;θfi) : i ∈ J);θgk) = gk(1

|J |
∑
i∈J fi(x

n
i ;θfi);θgk). By employing a nonpa-

rameterized aggregation mechanism on the extracted representations whose output does not depend
on the number of aggregated representations, the same fusion model can handle different sets of
representations of different sizes. In particular, we opt for an average (rather than, say, a sum)
because neural networks perform better when their inputs have similar distributions (Ioffe &
Szegedy, 2015). Note that the representation model can be adjusted so that using averaging instead
of concatenation as the aggregation mechanism does not reduce the flexibility of the overall model,
but simply shifts it from the fusion model to the representation models.

With this approach, we have avoided an exponential memory complexity by sharing the weights
across an exponential number of predictors such that we haveK representation models andK fusion
models. In the next subesection, we will go over the efficient training of this family of predictors.

3.2 EFFICIENT TRAINING VIA TASK-SAMPLING

The family of predictors introduced in Section 3.1 can efficiently perform inference for an expo-
nential number of tasks. We will now discuss how to train this family of predictors while avoiding
exponential computation and communication complexity during the training process. The key to
this approach lies in carefully sampling tasks at each gradient step of model training.

Our optimization problem. As mentioned in Section 1, we are not only interested in dealing
with missing blocks of features during inference, but also during training. In particular, we assume
that the availability of each block k in sample n follows a random distribution and denote by Kno
the (random) subset of blocks of features of sample n that is observed in the training data. Let
the loss corresponding to fusion model k using blocks of features I for prediction be denoted as
L̃k,I(θ;n) := `

(
h(k,I)

(
xnI ;θ(k,I)

)
, yn
)
, to train our predictors (4), we consider the following

optimization problem:

min
θ

{
L(θ) := E

[
L̃(θ) :=

1

N

N∑
n=1

L̃n(θ)

]}
where L̃n(θ) :=

∑
k∈Kn

o

∑
I∈Pk(Kn

o)

1

|I|
· L̃k,I(θ;n).

(5)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1: LASER-VFL Training

Input: initial point θ0, train data D.
1 for t = 0, . . . , T − 1 do
2 Clients K sample the same mini-batch Bt with KBt

o = Kno , ∀n ∈ Bt, via a shared seed.
3 for k ∈ KBt

o in parallel do
4 Broadcast fk(Btk;θtfk) and receive fi(Bti ;θtfi), for all i ∈ KBt

o \ {k}.
5 Sample a task-defining set of blocks Stkj ∼ U(Pj

k(KBt

o)), for all j ∈ [|KBt

o |] .
6 Compute L̃k,St

k
(θt;Bt), as in (6), and backpropagate over fusion model gk.

7 Send derivative of L̃k,St
k
(θt;Bt) with respect to each k ∈ KBt

o and receive theirs.
8 Sum the received gradients and backpropagate over fk.

9 Update the weights θt+1 = θt − η∇L̃BtSt(θt), where ∇L̃BtSt(θt) is as in (7).

where the expectation is over the set of available feature blocks {Kno : ∀n}. In (5), we employ the
normalization 1/|I| to avoid having a larger weight being assigned to prediction tasks concerning a
larger number of blocks, as these will show up at |I| different clients. Further, note that, if different
blocks of features have different probabilities of being observed, we can also normalize the loss
with respect to the different probabilities which can be computed during the entity alignment stage
of VFL (see below), before taking the expectation in (5). We omit this here for simplicity. We
assume that the data is missing completely at random (Zhou et al., 2024).

Looking at (5), we see that, while we are interested in tackling K × 2K−1 different tasks, which
falls in the realm of multi-objective optimization and multi-task learning (Caruana, 1997), we opt
for combining them into a single objective, rather than employing a specialized multi-task optimizer.
This corresponds to a weighted form of unitary scalarization (Kurin et al., 2022).

Our optimization method. We learn parameters θ using a gradient-based method summarized in
Algorithm 1, which we now describe. At the start of step t, we have iterate θt and choose a mini-
batch Bt ⊆ [N] := {1, . . . , N} such that the set of observed feature blocks of sample n, Kno , is the
same for all samples n ∈ Bt. We denote KBt

o = Kno for all n ∈ Bt. Then, each client k ∈ KBt

o

broadcasts its representation fk(Btk;θtfk), where Btk := {xnk : ∀n ∈ Bt}, to the other clients in KBt

o .

At this point, each client k ∈ KBt

o holds the representations corresponding to the set of observed
feature blocks of the current mini-batch. Now, to train for all the possible combinations of feature
blocks while avoiding an exponential complexity, each client k samples Kt

o := |KBt

o | tasks—the
number of blocks observed for the samples in Bt—from Pk

(
KBt

o

)
, the subset of the powerset

whose elements contain k. These sampled tasks are then used to update the model parameters ac-
cording to (5) while avoiding exponential complexity (note thatKt

o ≤ K). The losses corresponding
to these tasks are weighted, to get an unbiased estimator of the gradient. This allows us to train the
model in such a way that it can perform inference for any subset of available blocks of features.

More precisely, the task-defining feature blocks sampled at client k are given by Stk :={
Stk1, . . . ,SnkKt

o

}
, where Stkj is a set containing j feature blocks. Each set Stkj is sampled from

a uniform distribution over a subset of Pk

(
KBt

o

)
that contains its sets of size j. That is:

Stkj ∼ U
(
Pj
k

(
KB

t

o

))
where Pj

k

(
KB

t

o

)
:=
{
J ∈Pk(KB

t

o) : |J | = j
}
.

This task-sampling mechanism provides us with Kt
o ≤ K representations that correspond to the

blocks in Stk. This allows us to efficiently estimate the loss (linear complexity), whose exact com-
putation would lead to an exponential complexity. Based on these sampled representations, we
compute the following estimate for the loss:

L̃k,St
k
(θt;Bt) :=

1

|Bt|
∑
n∈Bt

∑
j∈[Kt

o]

anj · L̃k,St
kj

(θt;n) where anj =

(
Kt
o − 1

j − 1

)
/j. (6)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Algorithm 2: LASER-VFL Inference

Input: test sample x′, trained parameters θT .
1 The blocks of features K′o of sample x′ are observed.
2 for k ∈ K′o in parallel do
3 Broadcast fk(x′k;θTfk) and receive fi(x′i;θ

T
fi

), for all i ∈ K′o \ {k}.
4 Client k predicts the label using h(k,K′

o)

(
xnK′

o
;θ(k,K′

o)

)
.

The weighting anj counteracts the probability of each task being sampled, allowing us to obtain an
unbiased estimate of the gradient. Now, we use this to minimize (5) by doing the following update:

θt+1 = θt − η∇L̃BtSt(θt), (7)

where St := {St1, . . . ,StK} and

∇L̃BtSt(θt) :=
1

|Bt|
∑
n∈Bt

∑
k∈Kn

o

∑
j∈[|Kn

o |]

anj · ∇L̃k,St
kj

(θt;n).

After completing the training in Algorithm 1, we can perform inference, as described in Algorithm 2.
This algorithm consists simply of sharing of representations of the observed blocks test sample x′
by the clients which observe their partitions for this sample, K′o, following by each of these clients
k ∈ K′o using h(k,K′

o) to predict the label.

Aligning the samples based on block availability. Entity alignment is a process the precedes
training in VFL where the samples of the different local datasets are matched so that their features
are correctly aligned, thus allowing for collaborative model training (Liu et al., 2024). The identifi-
cation of the available blocks for each sample can be performed during this prelude to VFL training,
allowing for a batch selection procedure that ensures that each batch contains samples with the same
observed blocks, which we use in our method.

Extensions. It is important to highlight that our method can also be easily employed in situations
where different clients hold different labels, as it naturally fits multi-task learning problems. Further,
it can easily be applied to setups where any subset of K holds the labels, sufficing to drop fusion
models from the clients which do not hold the labels or have them tackle unsupervised or self-
supervised learning tasks instead.

4 CONVERGENCE GUARANTEES

In this section, we present convergence guarantees for our method. Let us start by stating the as-
sumptions used in our results.

Assumption 1 (L-smoothness and finite infimum). Function L̃ : Θ 7→ R is differentiable and there
exists a constant L ∈ (0,∞) such that:

∀ θ1,θ2 ∈ Θ : ‖∇L̃(θ1)−∇L̃(θ2)‖ ≤ L‖θ1 − θ2‖. (A1)

The inequality above holds if L is L′-smooth. We assume and define L? := infθ L(θ) > −∞.

Assumption 2 (Unbiased). The mini-batch gradient estimate is unbiased. That is, let L̃Bt(θ) :=
1
|Bt|

∑
n∈Bt L̃n(θ), we have for any mini-batch Bt ⊆ [N] that:

∀(θ, t) ∈ Θ× {0, 1, . . . , T − 1} : E
[
∇L̃Bt(θ)

]
= ∇L̃(θ), (A2)

where the expectation is with respect to the mini-batch B.
Assumption 3 (Bounded variance). There exists a constant σ ∈ (0,∞) such that, for any mini-batch
Bt ⊆ [N] of size B and any set of task-defining blocks St:

∀(θ, t) ∈ Θ× {0, 1, . . . , T − 1} : E
∥∥∥∇L̃BtSt(θt)−∇L̃(θt)

∥∥∥2

≤ σ2

B
, (A3)

where the expectation is with respect to Bt and St.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Using the assumptions above, we can derive the results below, where we use the following filtration:

F t := σ(B0,S0,B1,S1, . . . ,Bt−1,St−1).

We also define a random variable Ink that is equal to one if block k of sample n is observed and zero
otherwise. Further, we let In = (In1 , . . . , I

n
K) and I = (I1, . . . , IN).

We use the following lemma, showing the unbiasedness of our update vector, in our proof of Theo-
rem 1.
Lemma 1 (Unbiased update vector). If the mini-batch gradient estimate is unbiased (A2), then, for
all t ≥ 0:

E
[
∇L̃BtSt(θ) | σ(I,F t)

]
= ∇L̃(θt), (8)

where the expectation is with respect to mini-batch Bt and the sampled set of tasks St.
Theorem 1 (Main result). Let {θt} be a sequence generated by Algorithm 1, if L is L-smooth and
has a finite infimum (A1), the mini-batch estimate of the gradient is unbiased (A2), and our update
vector has a bounded variance (A3), we then have that, for η ∈ (0, 1/L]:

1

T

T−1∑
t=0

E
∥∥∇L(θt)

∥∥2 ≤ 2∆

ηT
+
ηLσ2

B
, (9)

where ∆ := L(θ0)− L? and the expectation is with respect to {Bt}, {St}, and I .

If we take the stepsize to be η =
√

2∆B
Lσ2T , we get from (9) that

1

T

T−1∑
t=0

E
∥∥∇L(θt)

∥∥2 ≤
√

8∆Lσ2

BT
,

thus achieving a O(1/
√
T) convergence rate. Yet, if we assume that the batch size is sufficiently

large, B = Ω(σ2/ε), we get from (9) that we can achieve an error level 1
T

∑T−1
t=0 E ‖∇L(θt)‖2 ≤ ε

in O(1/T) iterations.

We can further establish linear convergence under the Polyak-Łojasiewicz inequality Polyak (1963).
Assumption 4 (PL inequality). We assume that there exists a positive constant µ such that

∀θ ∈ Θ : ‖∇L(θ)‖2 ≥ 2µ(L(θ)− L?). (A4)

We use the expected suboptimality δt := EL(θt) − L?, where the expectation is with respect to
{Bt}, {St}, and I , as our Lyapunov function in the following result.
Theorem 2 (Linear convergence). Let {θt} be a sequence generated by Algorithm 1, if L is L-
smooth and has a finite infimum (A1), the mini-batch estimate of the gradient is unbiased (A2), our
update vector has a bounded variance (A3), and the PL inequality (A4) holds for L, we then have
that, for η ∈ (0, 1/L]:

δT ≤ (1− µη)T δ0 +
ηLσ2

2µB
.

It follows from µ ≤ L that 1 − µη ∈ (0, 1). Therefore, we have linear convergence to the global
optimum for the full-batch case (σ = 0) and, more generally, we have linear convergence to aO(σ2)
neighborhood around it.

We defer the proofs of Lemma 1, Theorem 1, and Theorem 2 to Appendix B.

5 EXPERIMENTS

In this section, we describe the experiments and analyze the results to empirically evaluate the
performance of LASER-VFL and compare it against baseline approaches. We first provide a brief
overview of the baseline methods and tasks considered. Next, we discuss the metrics used for
evaluation and present the experimental results, followed by a brief discussion.

We compare our method to the following baselines:

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 1: Test metrics forK = 4 clients across different datasets and varying probabilities of missing
blocks during training and inference, averaged over five seeds (± standard deviation).

Training pmiss 0.0 0.1 0.5
Inference pmiss 0.0 0.1 0.5 0.0 0.1 0.5 0.0 0.1 0.5

HAPT (accuracy, %)
Local 82.1± 0.6 82.2± 0.7 81.9± 1.6 82.3± 0.4 82.4± 0.4 81.8± 1.0 80.7± 1.0 80.8± 1.3 80.3± 1.7
Standard VFL 92.7± 0.4 61.9± 3.8 17.8± 5.1 91.3± 1.0 61.1± 3.7 17.6± 5.0 81.7± 2.2 54.9± 3.4 16.4± 4.2
VFedTrans 82.5± 0.4 82.5± 0.4 82.3± 0.7 82.9± 0.3 82.9± 0.2 82.8± 0.7 82.2± 0.5 82.2± 0.5 82.2± 0.8
Ensemble 90.5± 0.9 90.0± 0.7 84.3± 1.4 90.9± 0.7 90.2± 1.0 84.4± 1.1 88.7± 1.3 88.5± 1.6 82.6± 1.7
LASER-VFL (ours) 92.9± 0.6 92.2± 0.6 87.0± 1.2 93.6± 0.5 93.1± 0.5 88.2± 1.2 92.3± 1.1 91.7± 0.9 86.0± 1.8
Combinatorial 92.9± 0.6 92.4± 0.7 88.3± 1.9 89.0± 1.7 89.7± 1.4 87.0± 1.9 81.9± 4.8 82.6± 4.1 83.3± 1.7

Credit (F1-score×100)
Local 37.7± 3.1 37.6± 3.1 37.5± 3.2 37.6± 3.0 37.6± 2.9 37.5± 3.2 36.2± 3.5 36.2± 3.6 36.0± 3.6
Standard VFL 45.7± 2.6 38.8± 2.5 31.0± 0.7 42.4± 1.2 38.3± 0.7 31.0± 0.7 32.4± 2.4 32.5± 1.3 30.3± 0.5
VFedTrans 37.7± 1.5 37.6± 1.4 37.2± 1.6 39.5± 0.8 39.4± 0.8 39.2± 0.9 35.7± 0.3 35.6± 0.3 35.6± 0.4
Ensemble 42.1± 1.0 42.1± 1.0 40.1± 0.8 41.4± 1.3 40.8± 0.9 39.2± 1.1 42.4± 2.1 41.8± 1.7 40.1± 1.1
LASER-VFL (ours) 46.5± 2.8 45.0± 2.5 43.7± 1.2 43.1± 4.2 41.9± 4.0 41.3± 1.9 41.5± 4.2 40.9± 4.0 41.4± 1.7
Combinatorial 42.8± 2.9 42.7± 2.5 41.7± 1.5 44.4± 1.0 41.8± 2.2 41.7± 1.5 32.8± 3.6 36.3± 0.6 37.6± 2.1

MIMIC-IV (F1-score×100)
Local 74.9± 0.5 74.9± 0.5 74.8± 0.5 75.0± 0.3 75.0± 0.2 75.0± 0.3 73.0± 0.5 73.0± 0.5 73.0± 0.5
Standard VFL 91.6± 0.2 77.0± 1.3 52.5± 2.2 90.9± 0.3 76.8± 1.3 52.5± 2.2 81.1± 0.4 70.2± 0.8 51.8± 1.8
Ensemble 84.2± 0.3 83.9± 0.3 77.9± 1.6 84.1± 0.4 83.7± 0.5 78.1± 1.1 82.1± 0.3 81.8± 0.5 76.4± 1.1
LASER-VFL (ours) 92.0± 0.2 91.2± 0.3 85.5± 1.0 91.1± 0.5 90.2± 0.3 84.7± 0.9 87.7± 0.2 86.9± 0.2 82.0± 1.0
Combinatorial 91.3± 0.3 87.2± 1.7 83.6± 0.4 91.0± 0.3 86.7± 1.4 83.4± 0.4 80.5± 1.2 80.6± 1.7 78.9± 0.5

CIFAR-10 (accuracy, %)
Local 72.4± 0.1 72.5± 0.2 72.5± 0.9 71.8± 0.2 72.0± 0.3 72.0± 0.7 67.6± 0.3 67.7± 0.4 68.0± 1.1
Standard VFL 87.8± 0.2 59.5± 12.0 11.6± 3.5 85.6± 0.8 58.0± 11.2 11.5± 3.4 52.3± 10.2 37.0± 9.0 10.9± 2.1
Ensemble 83.8± 0.2 82.5± 0.6 74.9± 0.5 83.2± 0.3 82.0± 0.8 74.3± 0.7 79.5± 0.5 78.1± 0.5 70.3± 0.3
LASER-VFL (ours) 90.3± 0.2 89.3± 0.3 81.6± 1.2 89.7± 0.2 88.6± 0.3 81.1± 1.1 85.5± 0.3 84.6± 0.4 77.0± 1.1
Combinatorial 88.0± 0.3 87.2± 0.5 81.2± 1.0 85.6± 0.7 85.3± 0.6 80.1± 1.0 51.9± 10.1 56.3± 7.7 65.7± 3.7

CIFAR-100 (accuracy, %)
Local 46.4± 0.2 46.5± 0.1 46.5± 0.1 45.5± 0.3 45.4± 0.4 45.3± 0.8 37.4± 0.6 37.7± 0.5 37.7± 0.9
Standard VFL 62.1± 0.3 40.0± 9.3 2.3± 2.8 55.6± 1.8 35.6± 7.6 2.3± 2.7 15.6± 6.5 10.2± 4.3 1.4± 0.9
Ensemble 58.5± 0.5 56.3± 0.9 48.6± 0.3 57.5± 0.6 55.3± 0.7 47.4± 0.7 48.2± 0.9 46.3± 0.7 40.1± 0.7
LASER-VFL (ours) 69.7± 0.4 68.2± 0.8 58.4± 1.5 68.3± 0.2 66.8± 0.5 57.0± 1.5 58.5± 0.9 57.3± 0.7 48.7± 0.8
Combinatorial 62.1± 0.4 61.6± 0.4 56.4± 0.9 55.7± 1.9 56.3± 1.9 53.4± 1.0 13.0± 4.5 16.4± 4.0 27.8± 3.6

• Local: as can be seen in (2), the local approach leverages its block for training and inference
whenever it is observed, but ignores the remaining blocks.

• Standard VFL (Liu et al., 2022): as can be seen in (1), the standard VFL model can only be
trained on and used for inference for fully-observed samples. When the model is unavailable for
prediction, a random prediction is made.

• VFedTrans (Huang et al., 2023): VFedTrans introduces a multi-stage VFL training pipeline
to collaboratively train local predictors. (We give more details about VFedTrans below.)

• Ensemble: in the ensemble approach, we train local predictors as in Local. However, instead
of performing decoupled inference, the clients share their predictions and select a joint prediction
by majority vote. Ties are broken at random.

• Combinatorial: we train the combinatorial set of predictors in (3) in a decoupled manner.
During training, each batch is used by all the models corresponding to subsets of the set of
observed blocks in the batch. During inference, we use the predictor corresponding to the set of
observed blocks. We go over the scalability problems of this approach below.

Our experiments focus on the following tasks:

• HAPT (Reyes-Ortiz et al., 2016): a human activity recognition dataset.
• Credit (Yeh & Lien, 2009): a dataset for predicting credit card payment defaults.
• MIMIC-IV (Johnson et al., 2020): a time series dataset concerning healthcare data. We focus

on the task of predicting in-hospital mortality from ICU data corresponding to patients admitted
with chronic kidney disease. We resort to the data processing pipeline in (Gupta et al., 2022).

• CIFAR-10 & CIFAR-100 (Krizhevsky et al., 2009): are two popular image datasets, the former
containing 10 classes and the latter containing 100.

For all datasets, we split the samples into K = 4 feature blocks. For example, for the CIFAR
datasets, each image is partitioned into four quadrants, each assigned to a different client. Given
our interest in ensuring that all clients perform well at inference time, we average the metrics across
clients. In Appendix C, we provide detailed descriptions of how we compute accuracy and F1-score.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

We do not run VFedTrans for MIMIC-IV, CIFAR-10, and CIFAR-100 due to its greater complex-
ity. In particular, the training pipeline of VFedTrans includes three stages: federated represen-
tation learning, a local representation distillation, and training a local model. The first two stages
are performed per pair of clients and are thus repeated K − 1 times. This means that experiments
with VFedTrans take significantly longer to run (and to tune the hyperparameters of each stage of
the training pipeline). Thus, given how VFedTrans performs similarly to Local in the first two
experiments, we limit our experiments with VFedTrans to these simpler tasks.

Performance for different missing data probabilities. In Table 1, we see that the methods with
local predictors (Local and VFedTrans) are robust to missing blocks during both training and
inference, yet they fall behind when all the blocks are observed. In contrast, Standard VFL
performs well when all the blocks are observed, yet its performance degrades very quickly in
the presence of missing blocks. The Ensemble method improves upon Standard VFL sig-
nificantly in the presence of missing blocks, as it leverages the robustness its local predictors.

Figure 2: Performance and run-
time across different numbers of
clients (CIFAR-10, pmiss = 0.1 for
training and inference). We did
not run Combinatorial for 8
clients due to resource constraints.

Yet, when all the blocks are observed, although Ensemble
improves over the local predictors significantly, it still cannot
match the performance of Standard VFL. We see that the
Combinatorial approach outperforms all baselines when
there is little to no missing training data (pmiss ∈ {0.0, 0.1}).
Yet, for a larger amount of missing training data (pmiss = 0.5),
its performance degrades significantly. This is because each
mini-batch is only used to train predictors that use observed
feature blocks, harming the generalization of predictors that
use a larger subset of the features. This leads to an inter-
esting phenomenon: when pmiss = 0.5 for training data,
Combinatorial performs better for higher probabilities of
missing testing data. This is because missing test data dic-
tates the use of predictors trained on smaller, more frequently
observed feature subsets. LASER-VFL consistently outper-
forms the baselines across the different probabilities of miss-
ing blocks during training and inference.3 In particular, even
when the samples are fully-observed, LASER-VFL outper-
forms Standard VFL. We believe this is due to the regular-
ization effect of the task-sampling mechanism in our method,
which effectively behaves as a form of dropout.

Scalability. In Figure 2, we study the scalability of the dif-
ferent methods. Namely, we see that LASER-VFL performs
the best across the different numbers of clients. After that,
Combinatorial and Ensemble perform the best, with
Combinatorial doing better for fewer clients, as each ex-
act combination of feature blocks is observed more times,
while Ensemble does better for a larger number of clients
since, like LASER-VFL, it trains each representation model
for any batch for which its feature block is observed (regardless of the availability of the remaining
blocks). We can also observe in Figure 2 the expected scalability issues of Combinatorial.

6 CONCLUSIONS

In this work, we introduced LASER-VFL, a novel method for efficient training and inference in
vertical federated learning that is robust to missing blocks of features without wasting data. This
is achieved by carefully sharing model parameters and by employing a task-sampling mechanism
that allows us to efficiently estimate a loss whose computation would otherwise lead to an expo-
nential complexity. We provide convergence guarantees for LASER-VFL and present numerical
experiments demonstrating the improved performance of LASER-VFL, not only in the presence of
missing features but, remarkably, even when all samples are fully observed. For future work, it
would be interesting to explore applications of our method to multi-task learning, seeing how our
method behaves when different clients tackle different tasks, as this fits very naturally into our setup.

3With the exception of a coupled of settings in the HAPT and Credit datasets, where LASER-VFL is slightly
outperformed, but this minimal difference falls within the standard deviation.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Rich Caruana. Multitask learning. Machine learning, 28:41–75, 1997.

Iker Ceballos, Vivek Sharma, Eduardo Mugica, Abhishek Singh, Alberto Roman, Praneeth
Vepakomma, and Ramesh Raskar. SplitNN-driven vertical partitioning. arXiv:2008.04137, 2020.

Di Chai, Leye Wang, Junxue Zhang, Liu Yang, Shuowei Cai, Kai Chen, and Qiang Yang. Practical
lossless federated singular vector decomposition over billion-scale data, 2022. URL https:
//arxiv.org/abs/2105.08925.

Siwei Feng. Vertical federated learning-based feature selection with non-overlapping sample uti-
lization. Expert Systems with Applications, 208:118097, 2022.

Siwei Feng and Han Yu. Multi-participant multi-class vertical federated learning. arXiv preprint
arXiv:2001.11154, 2020.

Siwei Feng, Boyang Li, Han Yu, Yang Liu, and Qiang Yang. Semi-supervised federated heteroge-
neous transfer learning. Knowledge-Based Systems, 252:109384, 2022.

Surojit Ganguli, Zeyu Zhou, Christopher G. Brinton, and David I. Inouye. Fault tolerant server-
less vfl over dynamic device environment, 2024. URL https://arxiv.org/abs/2312.
16638.

Dashan Gao, Sheng Wan, Lixin Fan, Xin Yao, and Qiang Yang. Complementary knowledge distilla-
tion for robust and privacy-preserving model serving in vertical federated learning. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 38, pp. 19832–19839, 2024.

Mehak Gupta, Brennan Gallamoza, Nicolas Cutrona, Pranjal Dhakal, Raphael Poulain, and Rahma-
tollah Beheshti. An Extensive Data Processing Pipeline for MIMIC-IV. In Proceedings of the
2nd Machine Learning for Health symposium, volume 193 of Proceedings of Machine Learning
Research, pp. 311–325. PMLR, 28 Nov 2022. URL https://proceedings.mlr.press/
v193/gupta22a.html.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, 2016.

Yuanqin He, Yan Kang, Xinyuan Zhao, Jiahuan Luo, Lixin Fan, Yuxing Han, and Qiang Yang. A
hybrid self-supervised learning framework for vertical federated learning. IEEE Transactions on
Big Data, 2024.

S Hochreiter. Long short-term memory. Neural Computation MIT-Press, 1997.

Chung-ju Huang, Leye Wang, and Xiao Han. Vertical federated knowledge transfer via representa-
tion distillation for healthcare collaboration networks. In Proceedings of the ACM Web Conference
2023, pp. 4188–4199, 2023.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift, 2015. URL https://arxiv.org/abs/1502.03167.

Alistair Johnson, Lucas Bulgarelli, Tom Pollard, Steven Horng, Leo Anthony Celi, and Roger Mark.
Mimic-iv. PhysioNet. Available online at: https://physionet. org/content/mimiciv/1.0/(accessed
August 23, 2021), pp. 49–55, 2020.

Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, Rafael G. L.
D’Oliveira, Hubert Eichner, Salim El Rouayheb, David Evans, Josh Gardner, Zachary Garrett,
Adrià Gascón, Badih Ghazi, Phillip B. Gibbons, Marco Gruteser, Zaid Harchaoui, Chaoyang He,
Lie He, Zhouyuan Huo, Ben Hutchinson, Justin Hsu, Martin Jaggi, Tara Javidi, Gauri Joshi,
Mikhail Khodak, Jakub Konečný, Aleksandra Korolova, Farinaz Koushanfar, Sanmi Koyejo,
Tancrède Lepoint, Yang Liu, Prateek Mittal, Mehryar Mohri, Richard Nock, Ayfer Özgür, Rasmus
Pagh, Mariana Raykova, Hang Qi, Daniel Ramage, Ramesh Raskar, Dawn Song, Weikang Song,
Sebastian U. Stich, Ziteng Sun, Ananda Theertha Suresh, Florian Tramèr, Praneeth Vepakomma,
Jianyu Wang, Li Xiong, Zheng Xu, Qiang Yang, Felix X. Yu, Han Yu, and Sen Zhao. Advances
and open problems in federated learning, 2021.

11

https://arxiv.org/abs/2105.08925
https://arxiv.org/abs/2105.08925
https://arxiv.org/abs/2312.16638
https://arxiv.org/abs/2312.16638
https://proceedings.mlr.press/v193/gupta22a.html
https://proceedings.mlr.press/v193/gupta22a.html
https://arxiv.org/abs/1502.03167

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Yan Kang, Yuanqin He, Jiahuan Luo, Tao Fan, Yang Liu, and Qiang Yang. Privacy-preserving fed-
erated adversarial domain adaptation over feature groups for interpretability. IEEE Transactions
on Big Data, 2022a.

Yan Kang, Yang Liu, and Xinle Liang. Fedcvt: Semi-supervised vertical federated learning with
cross-view training. ACM Transactions on Intelligent Systems and Technology (TIST), 13(4):
1–16, 2022b.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Vitaly Kurin, Alessandro De Palma, Ilya Kostrikov, Shimon Whiteson, and Pawan K Mudigonda. In
defense of the unitary scalarization for deep multi-task learning. Advances in Neural Information
Processing Systems, 35:12169–12183, 2022.

Wenjie Li, Qiaolin Xia, Hao Cheng, Kouyin Xue, and Shu-Tao Xia. Vertical semi-federated learning
for efficient online advertising. In Proceedings of the International Workshop on Trustworthy
Federated Learning in Conjunction with IJCAI 2023 (FL-IJCAI’23), 2023a. URL https://
arxiv.org/abs/2209.15635.

Wenjie Li, Qiaolin Xia, Junfeng Deng, Hao Cheng, Jiangming Liu, Kouying Xue, Yong Cheng, and
Shu-Tao Xia. Vfed-ssd: Towards practical vertical federated advertising, 2023b. URL https:
//arxiv.org/abs/2205.15987.

Yang Liu, Yan Kang, Chaoping Xing, Tianjian Chen, and Qiang Yang. A secure federated transfer
learning framework. IEEE Intelligent Systems, 35(4):70–82, July 2020. ISSN 1941-1294. doi: 10.
1109/mis.2020.2988525. URL http://dx.doi.org/10.1109/MIS.2020.2988525.

Yang Liu, Xinwei Zhang, Yan Kang, Liping Li, Tianjian Chen, Mingyi Hong, and Qiang Yang.
FedBCD: A communication-efficient collaborative learning framework for distributed features.
IEEE Transactions on Signal Processing, 70:4277–4290, 2022.

Yang Liu, Yan Kang, Tianyuan Zou, Yanhong Pu, Yuanqin He, Xiaozhou Ye, Ye Ouyang, Ya-Qin
Zhang, and Qiang Yang. Vertical federated learning: Concepts, advances, and challenges. IEEE
Transactions on Knowledge and Data Engineering, 2024.

Boris T Polyak. Gradient methods for the minimisation of functionals. USSR Computational Math-
ematics and Mathematical Physics, 3(4):864–878, 1963.

Zhenghang Ren, Liu Yang, and Kai Chen. Improving availability of vertical federated learning:
Relaxing inference on non-overlapping data. ACM Transactions on Intelligent Systems and Tech-
nology (TIST), 13(4):1–20, 2022.

Jorge-L Reyes-Ortiz, Luca Oneto, Albert Samà, Xavier Parra, and Davide Anguita. Transition-aware
human activity recognition using smartphones. Neurocomputing, 171:754–767, 2016.

Jingwei Sun, Zhixu Du, Anna Dai, Saleh Baghersalimi, Alireza Amirshahi, David Atienza, and
Yiran Chen. Robust and ip-protecting vertical federated learning against unexpected quitting of
parties. arXiv preprint arXiv:2303.18178, 2023a.

Jingwei Sun, Ziyue Xu, Dong Yang, Vishwesh Nath, Wenqi Li, Can Zhao, Daguang Xu, Yiran Chen,
and Holger R Roth. Communication-efficient vertical federated learning with limited overlapping
samples. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
5203–5212, 2023b.

Pedro Valdeira, João Xavier, Cláudia Soares, and Yuejie Chi. Communication-efficient vertical
federated learning via compressed error feedback. arXiv preprint arXiv:2406.14420, 2024.

Yunpeng Xiao, Xufeng Li, Tun Li, Rong Wang, Yucai Pang, and Guoyin Wang. A distributed
generative adversarial network for data augmentation under vertical federated learning. IEEE
Transactions on Big Data, 2024.

12

https://arxiv.org/abs/2209.15635
https://arxiv.org/abs/2209.15635
https://arxiv.org/abs/2205.15987
https://arxiv.org/abs/2205.15987
http://dx.doi.org/10.1109/MIS.2020.2988525

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Yitao Yang, Xiucai Ye, and Tetsuya Sakurai. Multi-view federated learning with data collaboration.
In Proceedings of the 2022 14th International Conference on Machine Learning and Computing,
pp. 178–183, 2022.

I-Cheng Yeh and Che-hui Lien. The comparisons of data mining techniques for the predictive
accuracy of probability of default of credit card clients. Expert systems with applications, 36(2):
2473–2480, 2009.

Lei Yu, Meng Han, Yiming Li, Changting Lin, Yao Zhang, Mingyang Zhang, Yan Liu, Haiqin Weng,
Yuseok Jeon, Ka-Ho Chow, et al. A survey of privacy threats and defense in vertical federated
learning: From model life cycle perspective. arXiv preprint arXiv:2402.03688, 2024.

Youran Zhou, Sunil Aryal, and Mohamed Reda Bouadjenek. Review for handling missing data with
special missing mechanism. arXiv preprint arXiv:2404.04905, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A LASER-VFL DIAGRAM AND TABLE OF NOTATION

Table 2: Table of Notation

Symbol Description
K Number of clients

N Number of samples

xn Sample n

xnk Block k of sample n

D Global dataset

Dk Local dataset

θ Parameters of our model

θK Parameters of the standard VFL model

θfk Parameters of the representation model at client k

θgk Parameters of the fusion model at client k

` Loss function

L Objective function

h Predictor of the standard VFL model

h(k,J) Predictor at client k using feature blocks J
P(S) Power set of S
Pj(S) Subsets in the power set of S containing j

Pi
j(S) Subsets in the power set of S of size i containing j

fk Representation model at client k

gk Fusion model at client k

hk Predictor at client k

g Standard VFL fusion model

h Standard VFL predictor

Kno Set of observed features blocks of sample n

x′ Test sample

Figure 3: Diagram illustrating a forward pass of LASER-VFL.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

B PROOFS

B.1 PRELIMINARIES

The following quadratic upper bound follows from the L-smoothness of L̃ (A1):

∀ θ1,θ2 ∈ Θ : L̃(θ1) ≤ L̃(θ2) +∇L̃(θ2)>(θ1 − θ2) +
L

2
‖θ1 − θ2‖2. (10)

Let X denote a random variable and let F be a convex function, Jensen’s inequality states that

F (E(X)) ≤ E(F (X)). (11)

B.2 PROOF OF LEMMA 1

We define the following shorthand notation for the conditional expectations

Et [·] := EBtSt

[
· | σ(I,F t)

]
and

Et+ [·] := EBtSt

[
· | σ(I,F t,Bt)

]
.

From the definition of our update vector∇L̃BtSt(θt), in (7), we have that

Et
[
∇L̃BtSt(θt)

]
= Et

 1

|Bt|
∑
n∈Bt

∑
k∈Kn

o

|Kn
o |∑

j=1

anj · ∇L̃k,St
kj

(θt;n)


and, using the law of total expectation, we arrive at

Et
[
∇L̃BtSt(θt)

]
= Et

 1

|Bt|
∑
n∈Bt

Et+

 ∑
k∈Kn

o

|Kn
o |∑

j=1

anj · ∇L̃k,St
kj

(θt;n)


= Et

 1

|Bt|
∑
n∈Bt

∑
k∈Kn

o

|Kn
o |∑

j=1

anj · Et+
[
∇L̃k,St

kj
(θt;n)

] .
Now, it follows from the fact that Stkj ∼ U(Pj

k(Kno)) that

Et
[
∇L̃BtSt(θt)

]
= Et

 1

|Bt|
∑
n∈Bt

∑
k∈Kn

o

|Kn
o |∑

j=1

anj ·
∑

J∈Pj
k(Kn

o)

P(Snkj = J) · ∇L̃k,J (θt;n)


= Et

 1

|Bt|
∑
n∈Bt

∑
k∈Kn

o

|Kn
o |∑

j=1

anj

|Pj
k(Kno)|

·
∑

J∈Pj
k(Kn

o)

∇L̃k,J (θt;n)


= Et

 1

|Bt|
∑
n∈Bt

∑
k∈Kn

o

|Kn
o |∑

j=1

anj(|Kn
o |−1
j−1

) · ∑
J∈Pj

k(Kn
o)

∇L̃k,J (θt;n)

 .
Now, from the definition of anj , we have that

Et
[
∇L̃BtSt(θt)

]
= Et

 1

|Bt|
∑
n∈Bt

∑
k∈Kn

o

|Kn
o |∑

j=1

1

j
·

∑
J∈Pj

k(Kn
o)

∇L̃k,J (θt;n)

 ,
which we can rewrite as

Et
[
∇L̃BtSt(θt)

]
= Et

 1

|Bt|
∑
n∈Bt

∑
k∈Kn

o

∑
J∈Pk(Kn

o)

1

|J |
· ∇L̃k,J (θt;n)

 .
15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Now, from the definition of∇L̃n(θ), in (5), we have that

Et
[
∇L̃BtSt(θt)

]
= Et

[
1

|Bt|
∑
n∈Bt

∇L̃n(θ)

]
.

Finally, from (A2), we have that:

Et
[
∇L̃BtSt(θt)

]
= ∇L̃(θt),

arriving at the result that we set out to prove.

B.3 PROOF OF THEOREM 1

Let us show the convergence of our method. It follows from the quadratic upper bound in (10) which
ensues from the L-smoothness assumption (A1), that

L̃(θt+1)− L̃(θt) ≤ ∇L̃(θt)>(θt+1 − θt) +
L

2

∥∥θt+1 − θt
∥∥2
.

Using the fact that θt+1 = θt − η∇L̃BtSt(θt), we get that:

L̃(θt+1)− L̃(θt) ≤ −η∇L̃(θt)>∇L̃BtSt(θt) +
η2L

2

∥∥∥∇L̃BtSt(θt)
∥∥∥2

.

Now, we take the conditional expectation Et [·] = EBtSt [· | σ(I,F t)], defined in Appendix B.2,
arriving that:

Et
[
L̃(θt+1)

]
− L̃(θt) ≤ −η∇L̃(θt)>Et

[
∇L̃BtSt(θt)

]
+
η2L

2
Et
[∥∥∥∇L̃BtSt(θt)

∥∥∥2
]
.

We can now use the result from Lemma 1 to arrive at the following inequality:

Et
[
L̃(θt+1)

]
− L̃(θt) ≤ −η

∥∥∥∇L̃(θt)
∥∥∥2

+
η2L

2
Et
[∥∥∥∇L̃BtSt(θt)

∥∥∥2
]
. (12)

Now, since it follows from Lemma 1 that

Et
[∥∥∥∇L̃BtSt(θt)−∇L̃(θt)

∥∥∥2
]

= Et
[∥∥∥∇L̃BtSt(θt)

∥∥∥2
]
−
∥∥∥∇L̃(θt)

∥∥∥2

,

Thus, we have from the bounded variance assumption (A3) that

Et
[∥∥∥∇L̃BtSt(θt)

∥∥∥2
]
≤
∥∥∥∇L̃(θt)

∥∥∥2

+
σ2

B
.

Using the inequality above in (12), we arrive at

Et
[
L̃(θt+1)

]
− L̃(θt) ≤ −η

∥∥∥∇L̃(θt)
∥∥∥2

+
η2L

2

∥∥∥∇L̃(θt)
∥∥∥2

+
η2Lσ2

2B

= −η
(

1− ηL

2

)∥∥∥∇L̃(θt)
∥∥∥2

+
η2Lσ2

2B
.

Therefore, for a stepsize η ∈ (0, 1/L], we have that

Et
[
L̃(θt+1)

]
− L̃(θt) ≤ −η

2

∥∥∥∇L̃(θt)
∥∥∥2

+
η2Lσ2

2B
.

Taking the conditional expectation E[· | σ(I)], we get from the inequality above that have:

E
[
L̃(θt+1)− L̃(θt) | σ(I)

]
≤ −η

2
· E
[∥∥∥∇L̃(θt)

∥∥∥2

| σ(I)

]
+
η2Lσ2

2B
.

Now, taking the unconditional expectation (over I) and using the law of total expectation and the
fact that L(θ) = EI [L̃(θ)], we get that

EL(θt+1)− EL(θt) ≤ −η
2
· E
[
E
[∥∥∥∇L̃(θt)

∥∥∥2

| σ(I)

]]
+
η2Lσ2

2B
.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Therefore, we have from Jensen’s inequality (11) that

EL(θt+1)− EL(θt) ≤ −η
2
· E
∥∥∥E [∇L̃(θt) | σ(I)

]∥∥∥2

+
η2Lσ2

2B
.

Using the dominated convergence theorem, we can interchange the expectation and the gradient
operators, arriving at the following descent lemma in expectation:

EL(θt+1)− EL(θt) ≤ −η
2
· E
∥∥∇L(θt)

∥∥2
+
η2Lσ2

2B
. (13)

Taking the average of the inequality above for t ∈ {0, 1, . . . , T − 1}, we get that:

EL(θT)− L(θ0)

T
≤ − η

2T

T−1∑
t=0

E
∥∥∇L(θt)

∥∥2
+
η2Lσ2

2
.

Lastly, rearranging the terms and using the existence and definition of L? (A1), we have that

1

T

T−1∑
t=0

E
∥∥∇L(θt)

∥∥2 ≤ 2(L(θ0)− L?)
ηT

+
ηLσ2

B
,

thus arriving at the result in (9).

B.4 PROOF OF THEOREM 2

Following the same steps as in the proof of Theorem 1, we can arrive at the same descent lemma in
expectation (13),

EL(θt+1)− EL(θt) ≤ −η
2
· E
∥∥∇L(θt)

∥∥2
+
η2Lσ2

2B
.

Rearranging the terms and subtracting the infimum on both sides, we get that

EL(θt+1)− L? ≤ EL(θt)− L? − η

2
· E
∥∥∇L(θt)

∥∥2
+
η2Lσ2

2B
.

Now, using the definition of our Lyapunov function, δt = EL(θt) − L?, we arrive at the following
inequality:

δt+1 ≤ δt − η

2
· E
∥∥∇L(θt)

∥∥2
+
η2Lσ2

2B
.

Now, from the PL inequality (A4), we have that:

δt+1 ≤ δt − µη · E
[
L(θt)− L?

]
+
η2Lσ2

2B
.

Therefore, again using the definition of our Lyapunov function, we arrive at

δt+1 ≤ (1− µη) · δt +
η2Lσ2

2B
.

Recursing the inequality above, we get that

δT ≤ (1− µη)T δ0 +
η2Lσ2

2B

T−1∑
t=0

(1− µη)t.

Finally, using the sum of a geometric series, we arrive at

δT ≤ (1− µη)T δ0 +
ηLσ2

2µB
,

which corresponds to the result that we set out to prove.

C EXPERIMENT DETAILS

Notes on VFedTrans. For the VFedTrans (Huang et al., 2023) pipeline, we use FedSVD (Chai
et al., 2022) for federated representation learning and an autoencoder for local representation learn-
ing, as these are the best performing methos in Huang et al. (2023). For the local predictor, we use
a multilayer perceptron, as in Huang et al. (2023).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Notes on MIMIC-IV. We use ICU data of MIMIC-IV v1.0 (Johnson et al., 2020) and follow
the data processing pipeline in Gupta et al. (2022). We focus on the task of predicting in-hospital
mortality for patients admitted with chronic kidney disease. We do feature selection with diagno-
sis data and the selected features of chart events (labs and vitals) used in the “Proof of concept
experiments” Gupta et al. (2022) as input features.

Computing metrics. As mentioned in the main text of the paper, we want our metrics to capture
that fact that we want all clients to perform well at inference time. Therefore we consider the average
metrics across the clients. More precisely, we compute the metrics for Table 1 as follows:

• For the test accuracy, let ŷn(k) denote the prediction of client k for sample n, we compute:

accuracy = 100× 1

N

N∑
n=1

 1

|Kno |
∑
k∈Kn

o

1(ŷn(k) = yn)

 .

• For the F1-score (×100), we compute:

F1-score = 100× 1

K

K∑
k=1

Pk ·Rk
Pk +Rk

,

where Pk and Rk are the precision and recall of client k, with respect to its predictor and (only)
the samples it observed.

Models used. For the HAPT and Credit datasets, we trained simple multilayer perceptrons; for the
MIMIC-IV dataset, we trained an LSTM (Hochreiter, 1997); and, for the CIFAR-10 and CIFAR-100
experiments, we use ResNets18 (He et al., 2016) models.

To allow for reproducibility, we will be making our code publicly available upon acceptance.

18

	Introduction
	Definitions and Preliminaries
	Our method
	A tractable family of predictors sharing model parameters
	Efficient training via task-sampling

	Convergence guarantees
	Experiments
	Conclusions
	LASER-VFL diagram and table of notation
	Proofs
	Preliminaries
	Proof of Lemma 1
	Proof of Theorem 1
	Proof of Theorem 2

	Experiment details

