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Abstract

The prospect of substantial reductions in the power consumption of AI is a major
motivation for the development of neuromorphic hardware. Less attention has been
given to the complementary research of power-efficient learning rules for such
systems. Here we study self-learning physical systems trained by local learning
rules based on contrastive learning. We show how the physical learning rule
can be biased toward finding power-efficient solutions to learning problems, and
demonstrate in simulations and laboratory experiments the emergence of a trade-off
between power-efficiency and task performance.

1 Introduction

In recent years, the power consumption of training and inference using state-of-the-art ML models
has risen exponentially, doubling every several months [1]. Such power requirements impede further
ML development and pose significant sustainability problems [2, 3, 4]. This issue provides ample
motivation for development of power-efficient systems capable of performing machine learning tasks.
Neuromorphic hardware [5, 6, 7, 8] offers the prospect of lower power consumption compared to
standard computers by 2− 5 orders of magnitude [9, 10, 11, 12]. In addition, power-efficient learning
algorithms [13, 14, 15, 16] could further reduce power requirements in neuromorphic systems.

Recently, a new avenue was opened toward realizing power-efficient neuromorphic computing,
physical learning machines or self-learning physical networks [17]. Rather than mimicking known
learning algorithms such as backpropagation, such systems exploit their inherent physics in order to
learn, using local learning rules that modify learning degrees of freedom based on locally available
information, such that the system globally learns. In particular, contrastive learning [18, 19, 20, 21]
rules enable supervised learning.

In order to realize any power gains, such learning rules must be implemented in hardware. Coupled
Learning, a particular contrastive learning rule, has been realized successfully in laboratory hardware
for electronic circuits of variable resistors [22, 23, 24, 25]. Such systems can be miniaturized and
built to consume less power than conventional AI as they are analog rather than digital. Here we
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Figure 1: Simulations of physical circuits learning linear regression. (A) A network of size N = 64
nodes trained to infer linear relations between voltage drops on two input edges and two output
edges. (B) Coupled learning succeeds in training this network regardless of conductance initialization,
which is uniform. (C) However, the power dissipated by this network during training depends
on the initialized conductance values. (D) Initializing conductances at low values produces more
power-efficient learning solutions. The trained power is the free power of the system after training.

show that the propensity of self-learning electronic circuits to minimize power dissipation enables
even greater reductions of power consumption via power-efficient learning rules.

In particular, we study how self-learning circuits can learn power-efficient solutions to computational
tasks such as regression, by utilizing appropriate learning rules and initial conditions. We study these
systems analytically, computationally and experimentally.

2 Power-efficient Coupled Learning

Consider an electronic circuit made of a network of edges consisting of adaptive resistors of con-
ductance ki, connected by nodes, indexed by a. The circuit physically equilibrates by minimizing
the scalar total power dissipation P =

∑
i ki∆V 2

i subject to applied boundary conditions, where
∆Vi is the voltage drop across edge i. Thus, physics minimizes a “physical cost function" (P ) by
adjusting “physical degrees of freedom" (the node voltages Va) to ensure that the current is balanced
at every node (Kirchhoff’s law). At the same time, a self-learning circuit adjusts its “learning degrees
of freedom" (the edge conductances ki) to minimize a “learning cost function," C. In contrastive
learning approaches such as Coupled Learning [20], the learning circuit locally compares two states
that minimize the physical cost function, emerging in response to two sets of boundary conditions.
First, voltage-drop inputs ∆VI,d associated with training example d are applied as constraints to some
input edges, and the network responds by finding a free state ∆V F

i,d for all edges. Then, a second set
of boundary conditions is applied, corresponding to a clamped state, chosen so as to encode an error
signal.

For example, suppose we would like the circuit to respond by adopting certain output voltage
drop values ∆ṼO,d on output edges O, i.e. by minimizing a mean-squared-error cost function
C ∼

∑
d[∆V F

O,d −∆ṼO,d]
2. In Coupled Learning, a supervisor applies additional weak constraints

to output nodes to nudge them closer to the desired voltage response ∆V C
O,d = ∆V F

O,d + η[∆ṼO,d −
∆V F

O,d], with η ≪ 1, and the system finds a clamped state V C
a . The contrast function Cd ≡

η−1{PC
d −PF

d } serves as a surrogate for the learning cost function C, so that the partial derivative of
C with respect to the conductances ki leads to a local learning rule:

k̇i,d = αη−1 ∂

∂ki
{PF

d − PC
d } = αη−1{(∆V F

i,d)
2 − (∆V C

i,d)
2}. (1)

This local rule is implemented physically in our laboratory self-learning circuits [25] to update the
learning degrees of freedom, in lieu of a more conventional approach such as backpropagation. We
emphasize that that no computer is involved with setting the values of the learning degrees of freedom,
i.e. the conductance values.

We first apply this learning rule in computational simulations to train (N = 64 nodes, Ne = 143
edges, code available [26]) networks of variable linear resistors to perform linear regression, i.e.
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to recover a linear relation between the voltage drops on two source edges and desired voltage
drops at two target edges ∆VO =

∑
i ÃOI∆VI (Fig. 1A), with ÃOI a 2× 2 matrix sampled from

Ã ∼
(
0.2 0.3
0.1 0.5

)
+ 0.1N (0, 1)2×2. Networks are initialized with uniform conductance values at

different scales 10−4 ≤ κ ≤ 101, where the extreme values correspond to the conductance limits
allowed in the simulation (conductances are clipped at these values, simulating the limited range of
realistic adaptive resistors). Our simulated networks are successful in learning these tasks, reducing
the error by orders of magnitude regardless of conductance initialization (Fig. 1B).

2.1 Initialization

The free state V F
a,d is associated with power dissipation PF

d by Kirchhoff’s laws:

PF
d =

∑
i

ki(∆V F
i,d)

2. (2)

This free state power is the power consumption of the circuit during inference, the process that
typically requires the majority of energy in AI. We would like the learning machine to find solutions
to the learning task that minimize the cost function C while keeping the free power dissipation PF

relatively low. Eq. 2 suggests that lower conductances ki produce lower overall power dissipation.
Indeed, we find that initializing the network with lower conductance values, the network learns
solutions to the learning problem that dissipate less power (Fig. 1C), with no cost in error but some
cost in training time. This trend of linear scaling of the free power with conductance initialization
continues until the conductances are initialized close to their allowed minimal values; at that point
the power saturates at a low value (Fig. 1D).

2.2 Modified learning rule

Another way to encourage the circuit to learn more power-efficient solutions is to utilize a local
learning rule that minimizes both the error and free power at the same time. For example, we can
introduce a new cost function Cλ = C + λPF , with λ ≥ 0 the power optimization amplitude, a
hyper-parameter that sets the relative importance of error and power minimization. Crucially, by
substituting the surrogate contrastive function for C, this form admits a local, physically-realizable
learning rule similar to Eq. 1:

k̇
(λ)
i,d = −α

∂

∂ki
Cλ = αη−1{(1− λ)(∆V F

i,d)
2 − (∆V C

i,d)
2}. (3)

For over-parameterized networks, the network finds learning solutions with no error C0(ki) = 0, and
a quadratic error landscapes forms around these solutions. In such cases we can analyze this learning
rule analytically to find how the error and free power scale as we introduce this power optimization λ.
We find that the error scales quadratically, Cλ ∼ λ2, and the power is reduced by a linear amount
PF
0 − PF

λ ∼ λ, as seen in simulations for linear regression in resistor networks (Fig. 2A).

As we increase the power optimization parameter λ beyond the infinitesimal regime, we see a
continuation of these trends (Fig. 2B): the free power found for the learning solution is decreased
considerably while the error keeps increasing. These trends underscore an emergent trade-off between
performance and power-efficiency of learned solutions established by this kind of a physical learning
rule. This is clearly seen in the Pareto front in Fig. 2C. Depending on the desired level of performance
(error) the operator of the learning circuit can choose the power optimization level λ to increase the
power efficiency associated with using this machine for inference. We can also measure the total
energy used in learning by the circuit by integrating over the free state power during the training
process, until the error reaches its minimal value. We find that increasing the power optimization
parameter λ reduces this training energy (Fig. 2B), improving the power efficiency of the learning
process as well as the inference.
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Figure 2: Emergent trade-off between error and power-efficiency in physical learning circuits. (A)
Simulation results for self-learning circuits trained with Eq. 3 to perform linear regression with
varying power optimization parameter λ. We observe that for low λ, linear improvement in power-
efficiency for inference and a quadratically scaling error, consistent with analytical predictions. (B)
For larger λ, the power dissipation of the trained network is reduced substantially, as well as the
overall energy expended by the circuit to learn this solution (training energy). (C) These results reveal
a trade-off between performance and power efficiency, evident in a Pareto front. A trainer can choose
the hyper-parameter λ to adjust the power consumption and performance of the learned solutions.
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Figure 3: Power-efficient learning rules realized in a laboratory implementation of a physical learning
circuit. (A) Photo of the experimental learning circuit, showing the network structure and self-learning
elements [25]. (B) The circuit learns on its own to perform input-to-output mapping tasks, reducing
the error to a floor set by experimental noise as well as the power optimization parameter λ. Increasing
λ admits solutions with worse performance (higher error). (C) At the same time, increased power
optimization helps the circuit learn more power-efficient solutions. (D) A trade-off emerges between
the final trained error and power-efficiency, qualitatively similar to what is predicted analytically and
computationally.

3 Physical experiments

We next test the modified learning rule in laboratory experiments. We use an experimental network
of variable resistors implementing Coupled Learning, similar to realizations in previous works
[22, 23, 24]. However, in this new implementation of the experiment, transistors replace the digital
potentiometers in the role of variable resistors [25]. This circuit implements the continuous Coupled
Learning rule (Eq. 1) for analog learning, as each resistance element is set by the charge of a
capacitor on the gate of the transistor. Modifications to the learning rule of the form of Eq. 3 are
achieved by varying the measurement amplification from the free and clamped networks. Unlike
previous implementations, this new learning circuit operates continuously in time, with the clamped
state value updated automatically via an electronic feedback loop. Training length is thus measured
in real time rather than training steps. Because of unavoidable noise in the experiment, η ≪ 1 is
unobtainable; as the clamped state approaches the free state their difference becomes more and
more difficult to measure. We therefore use a finite value η = 0.22 for these experiments, with an
effective learning rate of α = 1

24ms . Experiments lasted 20 seconds each, and the conductance values
completely settled at the end of each trial. The network architecture is a 4x4 square lattice of edges
(Fig. 3A) with periodic boundary conditions, and edges are initialized with uniform conductance
approximately in the middle of their range at the start of each experiment.

The network was trained for 150 two-source, two-target simple tasks, wherein the sources were held
at the low and high end of the allowable range (0V and approximately 0.45V , respectively), with the
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two desired target outputs at either 20 and 80% or at 10 and 90% of this range, respectively. Across
these experiments, λ was varied with values ranging 0 − 0.055. In all cases the network was able
to lower the error, as shown for typical error vs training time curves in Fig. 3B. For these tasks,
the network also consistently lowered the power of its free state, as shown for the complementary
power curves over training time in Fig. 3C. Consistent with theoretical predictions, error and power
increased and decreased (respectively) with increasing λ, with their trade-off shown in Fig. 3D.
White diamonds correspond to the mean error and free power of all experiments performed with the
same value of λ. These results agree qualitatively with trade-off of learning performance and power
efficiency studied in simulations in the previous section.

4 Concluding remarks

Finding power-efficient ways to construct and train learning systems is an important challenge that
must be overcome to maintain the rapid development in machine learning applications in a warming
world. While most efforts in neuromorphic computing focus on power-efficient learning hardware,
we emphasize that additional significant energy savings can be achieved via learning algorithms and
initialization. Such learning may lower not only the energy necessary for inference, but the energy
required to train the system for its task.

Our results show that physical learning machines, in particular learning adaptive circuits, can be
encouraged to find power-efficient solutions to computational learning tasks like regression. One way
to achieve this is by judicious initialization of the circuit conductances. Less obvious is the idea that
modified learning rules, still permitting locality and physical realizability, can optimize error and
power consumption simultaneously. Using such power optimization as a hyper-parameter enables the
trainer to choose whether to emphasize lower power or lower error according to their needs. While
we show power-efficient learning is practical and realizable for learning circuits and regression tasks,
it is likely also viable for other implementations of learning machines and computational tasks (e.g.
classification). The benefit of power-efficient learning in saving power for such cases is an important
subject to future study.

Broader Impact

While computational machine learning is extremely useful and widely applicable, large scale de-
ployment of artificial intelligence raises important sustainability issues. The development of power-
efficient learning systems is a major motivation for neuromorphic hardware mimicking power-efficient
media like our brain. In this work, we go beyond power-efficient learning hardware to study power-
efficient learning algorithms that can be implemented in such hardware, allowing even further
reduction in power consumption. We study such algorithms in the context of physical self-learning
machines, a new type of neuromorphic hardware that has recently been realized in the lab. We show
that power-efficient learning rules are indeed physically realizable and effective, and discuss the
emergence of a trade-off between power efficiency and performance.
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