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Abstract
Graph Neural Networks (GNNs) have proven ef-
fective for learning from graph-structured data
through their neighborhood-based message pass-
ing framework. Many hierarchical graph cluster-
ing pooling methods modify this framework by
introducing clustering-based strategies, enabling
the construction of more expressive and powerful
models. However, all of these message passing
framework heavily rely on the connectivity struc-
ture of graphs, limiting their ability to capture
the rich geometric features inherent in geometric
graphs. To address this, we propose Rhomboid
Tiling (RT) clustering, a novel clustering method
based on the rhomboid tiling structure, which per-
forms clustering by leveraging the complex geo-
metric information of the data and effectively ex-
tracts its higher-order geometric structures. More-
over, we design RTPool, a hierarchical graph clus-
tering pooling model based on RT clustering for
graph classification tasks. The proposed model
demonstrates superior performance, outperform-
ing 21 state-of-the-art competitors on all the 7
benchmark datasets.

1. Introduction
Graph Neural Networks (GNNs) have emerged as a pow-
erful framework for learning from graph-structured data,
which is pervasive in diverse domains such as social net-
works (Guo & Wang, 2020; Min et al., 2021), cheminformat-
ics (Jiang et al., 2021; Kojima et al., 2020), and computa-
tional biology (Li et al., 2021). The foundation of GNNs lies
in message passing, where nodes and edges exchange and
aggregate message from their neighbors. This mechanism
enables GNNs to capture both local and global relationships
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within the graph, extracting deep structural features for var-
ious graph-related tasks, such as node classification, link
prediction, and graph classification. The versatility of GNNs
enables them to address a range of real-world challenges,
including identifying user roles or group memberships in
social networks (Hamilton et al., 2017), predicting molecu-
lar interactions or protein-protein interactions (Huang et al.,
2020; Réau et al., 2023), and predicting molecular prop-
erties (Wieder et al., 2020; Shen et al., 2023; Cai et al.,
2022).

The message aggregation process is a fundamental com-
ponent of GNNs, and the development of novel message
aggregation mechanisms constitutes a critical direction for
advancing GNN architectures. Traditional models such as
GCN and GAT aggregate messages from a node’s neighbors
and update the node’s representation based on the aggre-
gated information. An alternative approach involves clus-
tering nodes in the original graph into clusters, followed
by aggregating messages within each cluster. A coarser
graph is naturally generated through this process, with each
cluster represented as a new node, enabling a hierarchical
representation of the graph. This paradigm has led to the
development of models referred to as hierarchical graph
clustering pooling, such as DiffPool (Ying et al., 2018) and
MinCutPool (Bianchi et al., 2020). These models have
shown considerable improvements in performance over tra-
ditional GNNs models. However, these clustering-based
pooling methods primarily depend on the graph’s connectiv-
ity structure and often utilize learnable matrices to determine
node assignments to clusters, instead of leveraging prede-
fined clusters derived from prior knowledge. In the case
of geometric graphs, such as molecular graphs, the connec-
tivity information alone may be insufficient to capture the
rich geometric features inherent in the data. As a result,
these methods face challenges in effectively incorporating
geometric properties, limiting their ability to fully exploit
the underlying structure of geometric graphs.

We propose a novel clustering method based on the rhom-
boid tiling structure for geometric graph deep learning. This
method is inspired by the concept of Alpha shape, which is
widely used in reconstructing 3D shapes from data, such as
molecular surface reconstruction (Edelsbrunner & Mücke,
1994; Liang et al., 1998). The core idea of Alpha shapes
is to partition data using spheres, naturally enabling the
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construction of clustering methods. In fact, Alpha shapes
have already been applied in clustering tasks in fields like
cosmology (Gerke et al., 2012). Rhomboid tiling struc-
tures generalize Alpha shapes by capturing higher-order
geometric information of point clouds while maintaining a
natural hierarchical structure. Each layer of this structure
corresponds to a high-order Delaunay complex (see Fig-
ure 1 D), where each vertex represents a substructure of
the point cloud separated by a sphere from the remaining
points. Consequently, each vertex can be regarded as a clus-
ter of the point cloud. Moreover, the hierarchical nature of
rhomboid tiling allows for further clustering of these clus-
ters, enabling a hierarchical clustering method. This new
clustering method is entirely driven by the geometric struc-
ture of the data and effectively uncovers complex geometric
information that is difficult to extract using standard graph
representations. Based on this method, we designed a graph
clustering pooling model for graph classification tasks.

Our main contributions are as follows:

1. We design a hierarchical clustering method, RT cluster-
ing, based on the rhomboid tiling structure to geometrically
cluster data.

2. We provide a theoretical analysis of the optimal architec-
tures for RT clustering and introduce a weighting mecha-
nism to represent the importance of individual points within
clusters.

3. We develop a graph clustering pooling model, RTPool,
based on RT clustering and validate its performance on
multiple graph classification tasks. Our model outperforms
21 state-of-the-art competitors on 7 benchmark datasets
from chemistry and bioinformatics.

2. Related Work
Graph Neural network and Graph Clustering Pooling
Graph Neural Networks (GNNs) have emerged as power-
ful tools for learning graph-structured data, with various
architectures differing in their message aggregation mech-
anisms. The Graph Convolutional Network (GCN) aggre-
gates node information using a neighborhood averaging
approach weighted by normalized adjacency matrix entries,
effectively capturing local smoothness (Kipf & Welling,
2017). The Graph Attention Network (GAT), on the other
hand, employs attention mechanisms to learn the importance
of neighboring nodes dynamically, allowing for more flex-
ible aggregation based on node relationships. (Veličković
et al., 2018) The Graph Isomorphism Network (GIN) uti-
lizes sum-based aggregation, theoretically achieving maxi-
mal expressiveness among GNNs by distinguishing different
graph structures (Xu et al., 2018). Another message aggre-
gation mechanism involves clustering the nodes in a graph,
performing message aggregation within each cluster, and

updating the underlying graph into a coarsened graph where
clusters act as nodes. Models based on this mechanism are
referred to as graph clustering pooling models. DiffPool
learns a differentiable cluster assignment matrix that maps
nodes to clusters, jointly optimizing node representations
and cluster assignments to generate a coarsened graph (Ying
et al., 2018). MinCutPool, inspired by spectral clustering,
performs pooling by minimizing the normalized cut of the
graph while encouraging orthogonality in the cluster assign-
ment matrix (Bianchi et al., 2020).

Voronoi Tessellation and Delaunay Complex Voronoi
tessellation and Delaunay complex are fundamental con-
cepts in computational geometry (Fortune, 2017). Voronoi
tessellation partitions a space into regions around a set of
points, such that each region consists of all points closer to
its corresponding seed point than to any other. The Delau-
nay complex, on the other hand, is a dual structure of the
Voronoi tessellation, comprising simplices formed by con-
necting points whose Voronoi cells share a common bound-
ary. These two concepts have been widely applied across
various domains due to their versatility and robustness in
analyzing spatial relationships. For instance, in astron-
omy, Voronoi tessellation and Delaunay complexes are used
to identify and characterize galaxy groups in large-scale
cosmic surveys (Gerke et al., 2012). In material science,
Voronoi-Delaunay analysis has been applied to study voids
in systems of nonspherical particles, providing insights into
structural properties of disordered systems (Luchnikov et al.,
1999). In protein structure analysis, it facilitates the com-
putation of solvent-accessible surfaces and atomic packing
densities (Richards, 1974).

3. Method
3.1. Rhomboid Tiling

High-Order Voronoi Tessellation High-order Voronoi
tessellation generalizes the concept of the classical Voronoi
tessellation, providing a method to partition space based
on subsets of a given point set. For a point set X ⊂ Rd,
consider each subset Q ⊂ X . The Voronoi cell associated
with Q, denoted as dom(Q), is defined as:

dom(Q) = {p ∈ Rd | ∥p−x∥ ≤ ∥p−y∥,∀x ∈ Q,∀y ∈ X\Q}.

It is important to note that dom(Q) is non-empty only when
the points in Q can be separated from all other points in X
by a sphere. That is, there must exist a sphere S such that Q
lies inside or on S, while X \Q lies outside S. This implies
that such subsets Q are, in some geometric sense, clustered
together.

All the subsets Q ⊂ X containing exactly k points define a
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Figure 1. Flowchart of the Rhomboid Tiling clustering process. A: An example geometric graph and the corresponding point cloud X ,
obtained by embedding the graph’s vertices into R2. B: 1-, 2-, and 3-order Voronoi tessellations constructed from X . C: 1-, 2-, and
3-order Delaunay complexes obtained as the nerves of the corresponding Voronoi tessellations. D: The Rhomboid Tiling constructed
based on X . E: Illustration of 1-layer Rhomboid Tiling clustering, focusing on a single rhomboid.

partition of the entire space Rd, expressed as:

Rd =
⋃

Q⊂X,|Q|=k

dom(Q).

The collection of these partitions, denoted as

Vork(X) = {dom(Q) | Q ⊂ X, |Q| = k, dom(Q) ̸= ∅},

is referred to as the order-k Voronoi tessellation. This struc-
ture enables the exploration of higher-order relationships
and geometric properties of point clusters within the space.

High-Order Delaunay Complex Similar to how the tradi-
tional Delaunay complex is defined as the nerve of the clas-
sical Voronoi tessellation, the high-order Delaunay complex
is defined as the nerve of the high-order Voronoi tessellation:

Delk(X) := Nrv(Vork(X)).

This means each vertex vQ ∈ Delk(X) corresponds to a cell
dom(Q) ∈ Vork(X), which is associated with the subset
Q ⊂ X . A set of vertices vQ1 , vQ2 , . . . , vQm forms an
(m−1)-simplex in Delk(X) if and only if the corresponding
cells dom(Q1), dom(Q2), . . . , dom(Qm) have a non-empty
intersection.

If we interpret each subset Q1, Q2, . . . , Qm as a cluster,
the simplex (vQ1

, vQ2
, . . . , vQm

) ∈ Delk(X) signifies that
these clusters are geometrically close. Thus, the high-order
Delaunay complex Delk(X) encodes the relationships be-
tween these clusters, allowing us to analyze high-order in-
teractions within the given point set.

Rhomboid Tiling To establish a natural relationship be-
tween Delaunay complexes of different orders, Edelsbrunner
introduced the concept of Rhomboid Tiling (Edelsbrunner &
Osang, 2021). The core idea of this concept is to generalize
the use of spheres for partitioning a given point set X ⊂ Rd

to relate Delaunay complexes of different orders. To achieve
this, we first consider a way to describe the partition induced
by a sphere S. Let InX(S), OnX(S), and OutX(S) denote
the subsets of X that are inside, on, and outside S, respec-
tively. Then each vertex vQ ∈ Delk(X) is mapped to Rd+1

using the following transformation:

vQ 7→ yQ :=

∑
x∈Q

x,−k

 ∈ Rd+1, (1)

It can be seen that we map the vertices of Delk(X) to the
hyperplane {(x1, x2, . . . , xd+1) ∈ Rd+1 | xd+1 = −k}.
The first d coordinates of yQ are the sum of the coordinates
of all points in the subset Q ⊂ X . yQ is the geometric
realization of vQ in Rd+1. Henceforth, unless otherwise
specified or where ambiguity arises, we will not distinguish
between vQ and yQ.

Using the vertices from different Delk(X) complexes and
an arbitrary (d − 1)−dimensional sphere S, a rhomboid
constructed based on S is defined as:

ρX(S) := conv{yQ | InX(S) ⊂ Q ⊂ InX(S)∪OnX(S)}.

The collection of all such rhomboids forms a complex called
the Rhomboid Tiling:

Rhomb(X) := {ρX(S) | S is a sphere in Rd}.
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Rhomb(X) is a polyhedral complex. To ensure that this poly-
hedral complex exhibits good combinatorial properties, we
assume that X is in general position in Rd. The concept of
general position is commonly used in geometry and carries
different meanings in various contexts. In this paper, we
define X to be in general position in Rd if no d+1 points in
X lie on the same (d− 1)-dimensional plane, and no d+ 2
points lie on the same (d− 1)-dimensional sphere. All the
data used in this study satisfy this condition.

Edelsbrunner proved that the intersection of Rhomb(X)
with the hyperplane {(x1, x2, . . . , xd+1) ∈ Rd+1 | xd+1 =
−k} corresponds precisely to the order-k Delaunay com-
plex Delk(X) when X is in general position in Rd (Edels-
brunner & Osang, 2021). Moreover, it can be proven that
Rhomb(X) ∩ {(x1, x2, . . . , xd+1) ∈ Rd+1 | xd+1 ≥ −k}
is homotopy equivalent to Delk(X) (Corbet et al., 2023).
This indicates that if the portion of Rhomb(X) where the
last coordinate is less than −k is discarded, the remaining
part can be continuously deformed into Delk(X).

To aid understanding, we provide a concrete example in the
Appendix G that illustrates how to construct a rhomboid
tiling from a 2D point cloud.

3.2. Rhomboid Tiling Clustering (RT Clustering)

As previously mentioned, each vertex of Delk(X) can be
interpreted as a cluster of the point cloud X ⊂ Rd, where
the cluster contains exactly k points. This cluster arises
from partitioning the point cloud using spheres, ensuring
that geometrically close points are grouped into the same
cluster while avoiding the formation of excessive clusters in
dense regions.

This concept can be extended further. Instead of clustering
the points in X to form the vertices of Delk1(X), we can de-
fine a second-level clustering on the vertex set of Delk1(X),
such that the resulting clusters correspond bijectively to the
vertices of Delk2

(X)(k2 > k1). This second-level cluster-
ing is defined through the following relation:

vQ ∼ vQ′ ⇐⇒ ∃σ ∈ Rhomb(X) such that vQ, vQ′ ∈ σ,

where vQ and vQ′ are vertices in Delk1(X) and
Delk2

(X) (k2 > k1).

Using this relation, we can define the cluster associated with
a vertex vQ′ as:

CQ′ = {vQ ∈ Delk1
(X) | vQ ∼ vQ′},

where Q′ is a subset of X such that vQ′ ∈ Delk2
(X). In this

way, the vertices in Delk1(X) are clustered into groups that
correspond bijectively to the vertices in Delk2(X). Figure 1
shows the flowchart of rhomboid tiling clustering.

The following theorem provides a necessary and sufficient

condition for vQ to belong to the cluster CQ′ , offering a
geometric explanation of the Rhomboid Tiling Clustering:

Theorem 3.1. Vertice vQ ∈ Delk1(X) belongs to the clus-
ter CQ′ if and only if ∃(d− 1)-dimensional sphere S such
that:

• vQ′ ∈ Delk2
(X) with k2 > k1,

• InX(S) ⊂ Q ∩Q′,

• Q ∪Q′ ⊂ InX(S) ∪ OnX(S)

This theorem illustrates that the underlying idea of Rhom-
boid Tiling Clustering is similar to concepts like Alpha
shapes, where spheres are used to partition a given point set
X . These partitions are then used to define geometric rela-
tionships among the points, enabling clustering of the points
or further clustering of the already-formed clusters. This
method ensures that points within the same cluster are close
in the sense of geometric proximity, while the clustering
structure also encodes higher-order geometric relationships
within the point set X .

Next, we discuss a more specific and practical scenario: the
point set X lies in R3 and is in general position. In this
case, the following theorem provides guidance on how to
choose appropriate values of k1 and k2 to cluster the points
in Delk1

(X) into the clusters corresponding to the points in
Delk2

(X).

Theorem 3.2. Suppose X is in general position in R3.
Considering the vertices in Delk1

(X) and Delk2
(X) with

k1 < k2 ≤ |X|, we have:

Case 1: k2−k1 > 4, then for any vQ ∈ Delk1
(X), vQ does

not belong to any cluster corresponding to the vertices in
Delk2(X).

Case 2: 1 ≤ k2 − k1 ≤ 2, then for any vQ ∈ Delk1
(X),

there exists vQ′ ∈ Delk2(X) such that vQ ∈ CQ′ .

Case 3: k2 − k1 = 1, then for any Q ⊂ Q′ with vQ ∈
Delk1

(X) and vQ′ ∈ Delk2
(X), we have vQ ∈ CQ′ .

Note: In the theorem above, there is one additional case that
has not been explicitly discussed: 3 ≤ k2−k1 ≤ 4. For this
range of k2−k1, we observe in our empirical data that there
exist certain point clouds X and vertices vQ ∈ Delk1(X)
such that vQ does not belong to any cluster corresponding
to the vertices in Delk2

(X).

This theorem indicates that the step size k2 − k1 for clus-
tering should be chosen within an appropriate range. From
Theorem 3.2 Case 1, we know that k2 − k1 cannot exceed
4, as otherwise, none of the points will be clustered into
any cluster. Additionally, as noted above, k2 − k1 should
preferably not be 3 or 4, as in this case, some points may
still fail to be clustered into any cluster.
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The ideal choice for k2−k1 is 1 or 2. According to Theorem
3.2 Case 2, in this range, all points are guaranteed to be
clustered into at least one cluster. And the optimal choice
might be k2 − k1 = 1, as per Theorem 3.2 Case 3, where
vQ will be clustered into CQ′ as long as Q ⊂ Q′. If we
sequentially cluster the original information on every point
in X into Del2(X), then cluster Del2(X) into Del3(X),
and so on, eventually reaching Delk(X), the cluster CQ′

corresponding to a point in Delk(X) will contain all the
original information from points in Q′ ⊂ X .

Weight for RT Clustering When performing RT cluster-
ing, introducing a weight for each point in a cluster CQ′

might be a beneficial choice. Although points vQ1
and vQ2

may belong to the same cluster CQ′ , the geometric proxim-
ity or significance of the subsets Q1 and Q2 relative to Q′

may differ. This motivates the introduction of a weight for
each point vQ in CQ′ to quantify such relationships.

We propose using N(Q,Q′) := #{σ is a depth-(d+1) rhom-
boid | vQ, vQ′ ∈ σ}, which counts the number of depth-
(d+ 1) rhomboids simultaneously containing vQ and vQ′ ,
as a suitable weight to measure this relationship. Note
that a depth-k rhomboid refers to a k-dimensional cell in
Rhomb(X), where the corresponding sphere S satisfies
|OnX(S)| = k. A depth-(d + 1) rhomboid is the max-
imal rhomboid in Rhomb(X), assuming X is in general
position in Rd.

The following theorem explains why N(Q,Q′) is an appro-
priate choice for this weight:

Theorem 3.3. Suppose X is in general position in R3, and
vQ1 , vQ2 ∈ Delk1(X), vQ′ ∈ Delk2(X). If vQ1 , vQ2 ∈
CQ′ , then the following hold:

1. If 3 ≤ k2 − k1 ≤ 4, then Q1 ⊂ Q′ and N(Q1, Q
′) ≤

5− (k2 − k1).

2. If Q1 ̸⊂ Q′, then N(Q1, Q
′) ≤ 3− (k2 − k1).

3. If Q1 ∩Q′ ⊊ Q2 ∩Q′, then N(Q1, Q
′) ≤ N(Q2, Q

′).

When |Q′| − |Q| is large or Q ̸⊂ Q′, it can be inferred that
Q and Q′ are not geometrically closely connected. The first
and second points of the theorem above indicate that, in
such cases, N(Q,Q′) does not exceed 2.

Furthermore, when Q1 ∩Q′ ⊊ Q2 ∩Q′, it is evident that
Q2 has a closer geometric relationship with Q′ than Q1

does. The third point of the theorem also confirms that, in
this situation, N(Q1, Q

′) ≤ N(Q2, Q
′). Thus, the theorem

demonstrates that N(Q,Q′) serves as a good metric for
measuring the geometric relationship between Q and Q′.

3.3. RT Clustering-Based Model

RT Clustering-Based Pooling Model (RTPool) It is a
very natural idea to design a clustering pooling model based
on RT clustering. We start by using the incident matrix Ik to
represent which vertices of Delk(X) are contained in which
maximal rhomboids:

(Ik)(i,j) =

{
1, if vj ∈ σi,

0, otherwise.

Here, σi denotes the i-th maximal rhomboid in Rhomb(X),
and vj represents the j-th vertex of Delk(X).

To cluster the vertices of Delk1
(X) onto Delk2

(X), we con-
sider Ck2

k1
:= (Ik2

)
T · Ik1

as the clustering matrix. In fact, it
is not difficult to prove that (Ck2

k1
)(i,j) = N(Qi, Q

′
j), where

vQi
is the i-th vertex of Delk1

(X), and v′Qj
is the j-th ver-

tex of Delk2
(X). In other words, the clustering matrix Ck2

k1

defined in this way not only accounts for whether vQi
be-

longs to the cluster CQ′
j

but also incorporates the weight
N(Qi, Q

′
j) discussed in the previous section.

To construct a hierarchical pooling structure, we introduce a
tunable hyperparameter ∆k that specifies the step size in the
order of the Delaunay complexes, i.e., we let k2−k1 = ∆k.
This means that at the l-th pooling layer (l = 0, 1, 2, . . .),
node features are clustered from the order-(l∆k + 1) De-
launay complex to the order-((l + 1)∆k + 1) Delaunay
complex. Specifically, we use the matrix C

(l+1)∆k+1
l∆k+1 for

the clustering process. Each row of C(l+1)∆k+1
l∆k+1 is normal-

ized by dividing each element by the sum of the elements in
that row. The resulting row-normalized matrix is denoted as
Ĉl ∈ Rnl×nl+1 , where nl and nl+1 are the numbers of ver-
tices in Dell∆k+1(X) and Del(l+1)∆k+1(X), respectively.
The normalized matrix Ĉl is used as the clustering matrix
for pooling from layer l to layer l + 1:

Z(l+1) = Ĉl ·H(l), (2)

where H(l) is the node feature matrix at layer l. Then we
update the node features obtained after pooling using a given
underlying graph Gl+1 at layer (l + 1) and a GNNs model.
This process produces the node features for the (l + 1)-th
layer as follows:

H(l+1) = GNNs(Z(l+1), Al+1), (3)

where Al+1 is the adjacency matrix of the underlying graph
Gl+1. And after pooling reaches the final layer L, we com-
pute the final embedding Hfinal using the following formula:
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Hfinal = H(L)T · (H(L)W ),

where W is a learnable matrix of size f × 1, and f is the
feature dimension. We use a 1-layer MLP to map the final
embedding into a 2-dimensional vector, representing the
classification scores for label 0 and label 1, respectively.

The underlying graph Gl used at layer l for updating the
node feature can be defined arbitrarily, as long as its vertices
correspond one-to-one with the vertices of Dell(X). In this
paper, we consider two methods for constructing Gl:

1. The first method directly uses the 1-skeleton of Dell(X)
as Gl. We refer to this type of underlying graphs as Delau-
nay graphs.

2. The second method assumes that the original point cloud
X is associated with a given graph Gini. In our paper,
Gini is naturally defined as the corresponding chemical
or molecular graph. The vertex set of Gl is given by the
vertex set of Dell(X), {vQ1 , vQ2 , . . . }, where Q1, Q2, . . .
correspond to subsets of X of size l. An edge (vQi , vQj )
exists in Gl if and only if there exist points p ∈ Qi and
q ∈ Qj such that (p, q) is an edge in the initial graph Gini.
We refer to this type of underlying graphs as generated
graphs.

3.4. Time Complexity Analysis

We theoretically analyze the time complexity of the pro-
posed RTPool model. The following theorem characterizes
the overall computational cost:

Theorem 3.4. Let K = ∆k · L+ 1, where ∆k is the step
size and L is the number of pooling layers. Then the total
time complexity of RTPool on a point cloud in Rd of size n
is

O
(
K⌈ d+3

2 ⌉n⌊
d+1
2 ⌋ +K5n2

)
.

The first term corresponds to the cost of constructing the
rhomboid tiling up to order K, and the second term ac-
counts for the cumulative computation over all L pooling
layers. Here, ⌊·⌋ and ⌈·⌉ denote the floor and ceiling func-
tions, respectively.

In our experiments, the step size ∆k and the number of
pooling layers L are both set to at most 2, so the total order
K = ∆k · L+ 1 remains a small constant. Moreover, all of
the point clouds are in dimension d = 3. Under this setting,
the overall time complexity of RTPool simplifies to O(n2),
making it suitable for practical use.

Furthermore, empirical results in Appendix F support the
theoretical analysis, demonstrating that RTPool achieves
competitive efficiency compared to other state-of-the-art
graph pooling methods.

4. Experiments
4.1. Datasets

We evaluate the performance of RTPool on graph classifi-
cation tasks using seven real-world graph datasets from the
commonly utilized TUDataset benchmark. Among these,
three datasets represent chemical compounds, while the
remaining four datasets are molecular compounds datasets.

Chemical Compound Datasets The chemical compound
datasets include COX-2 (Sutherland et al., 2003), BZR
(Sutherland et al., 2003), and MUTAG (Debnath et al., 1991).
The COX-2 dataset comprises cyclooxygenase-2 (COX-2)
inhibitors tested for their ability to inhibit the human recom-
binant COX-2 enzyme, with compounds classified as active
or inactive. The BZR dataset includes ligands for the ben-
zodiazepine receptor (BZR), with labels indicating activity
or inactivity. The MUTAG dataset consists of chemical
compounds categorized by their mutagenic effect on a spe-
cific bacterium, with labels distinguishing mutagenic from
non-mutagenic compounds.

Molecular Compound Datasets The molecular com-
pound datasets include PTC MM, PTC MR, PTC FM, and
PTC FR (Chen et al., 2007). These datasets classify chem-
ical compounds based on their carcinogenicity in rodents:
PTC MM (male mice), PTC MR (male rats), PTC FM
(female mice), and PTC FR (female rats). Labels indicate
whether a compound is carcinogenic or non-carcinogenic.

For all datasets, compounds are represented as graphs where
vertices correspond to atoms, and edges represent chemical
bonds. Hydrogen atoms are removed during preprocessing.

4.2. Baselines

Wit-TopoPool achieves state-of-the-art performance across
the above datasets (Chen & Gel, 2023), making it our pri-
mary baseline for comparison. To ensure a fair and consis-
tent evaluation, we adopt the same seeds as Wit-TopoPool
for a 90/10 random training/test split, guaranteeing identical
training and test sets.

We evaluate the performance of RTPool by comparing
it against 21 state-of-the-art methods across four cate-
gories: (I) Graph kernel-Based Methods, including (1) Weis-
feiler–Lehman Kernel (WL) (Shervashidze et al., 2011), (2)
Weisfeiler–Lehman Optimal Assignment Kernel (WL-OA)
(Kriege et al., 2016), (3) Weisfeiler–Lehman Hash Graph
Kernel (HGK-WL) (Morris et al., 2016), (4) Shortest Path
Hash Graph Kernel (HGK-SP) (Morris et al., 2016), and
(5) Subgraph Matching Kernel (CSM) (Kriege & Mutzel,
2012); (II) Graph Neural Network-Based Methods, in-
cluding (6) Graph Convolutional Network (GCN) (Kipf
& Welling, 2017), (7) Deep Graph Convolutional Neural
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Table 1. Performance of different models on benchmark datasets. The best performance for each dataset is highlighted in bold.

Model BZR COX2 MUTAG PTC MR PTC MM PTC FM PTC FR
No. graphs 405 467 188 344 336 349 351
No. avg nodes 35.75 41.22 17.93 25.56 24.25 25.00 24.96

WL 86.16±0.97 79.67±1.32 85.75±1.96 57.97±0.49 67.28±0.97 64.80±0.85 67.64±0.74
WL-OA 87.43±0.81 81.08±0.89 86.10±1.95 62.70±1.40 66.60±1.16 66.28±1.83 67.82±5.03
HGK-WL 81.42±0.60 78.16±0.00 75.51±1.34 59.90±4.30 67.22±5.98 64.72±1.66 67.90±1.81
HGK-SP 81.99±0.30 78.16±0.00 80.90±0.48 57.26±1.41 57.52±9.98 52.41±1.79 66.91±1.46
CSM 84.54±0.65 79.78±1.04 87.29±1.25 58.24±2.44 63.30±1.70 63.80±1.00 65.51±9.82
GCN 79.34±2.43 76.53±1.82 80.42±2.07 62.26±4.80 67.80±4.00 62.39±0.85 69.80±4.40
DGCNN 79.40±1.71 79.85±2.64 85.83±1.66 58.59±2.47 62.10±14.09 60.28±6.67 65.43±11.30
GIN 85.60±2.00 80.30±5.17 89.39±5.60 64.60±7.00 67.18±7.35 64.19±2.43 66.97±6.17
SAGPool 82.95±4.91 79.45±2.98 76.78±2.12 69.41±4.40 66.67±8.57 67.65±3.72 65.71±10.69
EigenGCN 83.05±6.00 80.16±5.80 79.50±0.66 N/A N/A N/A N/A
MinCutPool 82.64±5.05 80.07±3.85 79.17±1.64 64.16±3.47 N/A N/A N/A
Top-K 79.40±1.20 80.30±4.21 67.61±3.36 64.70±6.80 67.51±5.96 65.88±4.26 66.28±3.71
DiffPool 83.93±4.41 79.66±2.64 79.22±1.02 64.85±4.30 66.00±5.36 63.00±3.40 69.80±4.40
HaarPool 83.95±5.68 82.61±2.69 90.00±3.60 66.68±3.22 69.69±5.10 65.59±5.00 69.40±5.21
PersLay 82.16±3.18 80.90±1.00 89.80±0.90 N/A N/A N/A N/A
MPR N/A N/A 84.00±8.60 66.36±6.55 68.60±6.30 63.94±5.19 64.27±3.78
FC-V 85.61±0.59 81.01±0.88 87.31±0.66 N/A N/A N/A N/A
SIN N/A N/A N/A 66.80±4.56 70.55±4.79 68.68±6.80 69.80±4.36
Wit-TopoPool 87.80±2.44 87.24±3.15 93.16±4.11 70.57±4.43 79.12±4.45 71.71±4.86 75.00±3.51
HopPool 85.37±4.36 85.11±3.74 94.74±4.76 65.71±2.85 73.59±5.27 64.15±4.62 65.71±3.71
MvPool 78.05±3.38 82.98±5.24 89.64±2.43 68.58±2.61 70.65±4.83 62.86±3.37 65.72±2.14

RTPool 88.29±0.98 92.76±1.90 94.74±3.33 78.86±1.57 82.94±2.20 77.72±1.14 82.29±2.80

Network (DGCNN) (Zhang et al., 2018), and (8) Graph
Isomorphism Network (GIN) (Xu et al., 2018); (III) Graph
Pooling-Based Methods, including (9) Self-Attention Graph
Pooling (SAGPool) (Lee et al., 2019), (10) GCNs with
Eigen Pooling (EigenGCN) (Ma et al., 2019), (11) Spec-
tral Clustering Pooling (MinCutPool) (Bianchi et al., 2020),
(12) TopKPooling with Graph U-Nets (Top-K) (Gao & Ji,
2019), (13) Differentiable Pooling (DiffPool) (Ying et al.,
2018), (14) Haar Graph Pooling (HaarPool) (Wang et al.,
2020), (15) Multi-hop Graph pooling (HopPool) (Zhang
et al., 2024), and (16) Multi-view Graph pooling (MvPool)
(Ma et al., 2024); and (IV) Topology-Based Methods, in-
cluding (17) Neural Networks for Persistence Diagrams
(PersLay) (Carrière et al., 2020), (18) Deep Graph Mapper
(MPR) (Bodnar et al., 2021a), (19) Filtration Curves with a
Random Forest (FC-V) (O’Bray et al., 2021), (20) Message
Passing Simplicial Networks (SIN) (Bodnar et al., 2021b),
and (21) Witness complex-based topological pooling (Wit-
TopoPool) (Chen & Gel, 2023).

4.3. Experiment Settings

In our study, the experiments were conducted on a machine
equipped with NVIDIA RTX A5000 GPUs with 32GB of
memory. To enhance the model’s performance across var-

ious datasets, we carefully selected appropriate hyperpa-
rameter settings, including learning rate, dropout ratio, and
number of pooling layers, detailed in the Appendix Materi-
als. The number of epochs was set to 500, and each dataset
was evaluated five times, with the mean value used as the
final metric and the standard deviation recorded.

For the baseline results, the performance of HopPool and
MvPool was obtained by running the original implementa-
tions with grid search to determine the best hyperparameters.
For all other baseline methods, we directly cite the results
from (Chen & Gel, 2023), which also adopted grid search
based on the settings specified in each original paper.

4.4. Experiment Results

The comparison of our model with 21 baseline methods
across 7 benchmark datasets is summarized in Table 1. We
also conducted an ablation study on the COX2, MUTAG,
and PTC MR datasets to analyze the impact of replacing
RTPooling with trivial mean pooling in the model, the ef-
fect of different GNNs models used for feature updates in
the pooling layers, and the influence of the choice of the
underlying graph during updates. The detailed results are
presented in Table 2, 3 and 4. Furthermore, we provide
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additional experimental analyses in Appendix, including (i)
hyperparameter sensitivity studies, (ii) graph regression task
performance, (iii) social network dataset evaluation, and (iv)
computational efficiency analysis. In all these tables, N/A
indicates that the result is not available. Values are reported
as mean accuracy ± standard deviation.

Molecular and Chemical Graphs Table 1 presents the
performance comparison among 21 baseline models on the
BZR, COX-2, MUTAG, and the four PTC datasets (PTC
MR, PTC MM, PTC FM, and PTC FR) for graph classifi-
cation tasks. The performance results for all other models
are directly from (Chen & Gel, 2023). To ensure a fair
comparison of results, we follow the same train-test split
strategy used in their work, utilize the corresponding molec-
ular or chemical compound graphs as the initial graphs, and
adopt the same node features: simple 1-hot vectors encod-
ing the atom types represented by the nodes. Our RTPool
consistently outperforms all baseline models across these
7 datasets, with the runner-up being Wit-TopoPool in all
cases. Notably, RTPool achieves an average relative im-
provement of 5.94% over the runner-up, demonstrating its
effectiveness. This significant performance gain highlights
the limitations of existing methods. All baseline models are
constrained by their reliance on graph structures and do not
fully exploit the geometric information inherent in molec-
ular or compound graphs. Our RTPool model employs a
rhomboid tiling structure that is sensitive to geometric in-
formation. It performs well in detecting subtle geometric
variations in densely packed regions of the point cloud, en-
abling it to fully leverage this geometric data. As a result,
our model can make full use of this geometric information
and consistently outperforms all the baseline approaches.

Ablation Study To assess the impact of each component
in our RTPool model, we conducted comprehensive abla-
tion experiments across multiple datasets, including COX2,
MUTAG, and PTC MR, to gain deeper insights into their
individual contributions. We designed three experiments
for the ablation study: In the first experiment, we replaced
the entire pooling component of our RTPool model with
the commonly used mean pooling and max pooling. This
experiment was conducted to validate the effectiveness of
RTPool as the pooling mechanism in graph deep learning.
In the second experiment, we used GCN, GAT, and GIN
as the models for updating node features after pooling, as
described in Equation 3. This allowed us to explore the
impact of employing different GNNs architectures for fea-
ture updates. Lastly, in the third experiment, we considered
two types of graphs: Delaunay graphs and generated graphs.
These graphs were used as the underlying structures for
updating node features at each new layer after RT clustering
pooling (see equation 3). This experiment aimed to inves-
tigate how the choice of the underlying graph affects the

performance of our model.

Table 2. Performance comparison of replacing RTPooling with
trivial mean pooling. The best performance for each dataset is
highlighted in bold

Dataset Pooling Method Accuracy

COX2
mean pool 78.72±0.85
max pool 78.31±0.81
RTPool 92.76±1.90

MUTAG
mean pool 84.21±1.37
max pool 75.53±2.26
RTPool 94.74±3.33

PTC MR
mean pool 65.71±0.00
max pool 67.43±1.40
RTPool 78.86±1.57

The results in Table 2 highlight significant advantage of
RTPool over trivial mean and max pooling across all three
datasets. Our model achieved relative accuracy gains of
10% to 20%, underscoring the value of an advanced pooling
mechanism. This substantial performance gap demonstrates
RTPool’s effectiveness in capturing both geometric and topo-
logical information, establishing it as a robust graph pooling
model that consistently drives superior performance across
tasks.

Table 3. Performance of different GNNs models used for node fea-
ture updates. The best performance for each dataset is highlighted
in bold.

Dataset GNNs Model Accuracy

COX2
GCN 88.93±0.84
GAT 87.23±1.15
GIN 92.76±1.90

MUTAG
GCN 89.47±2.33
GAT 88.73±1.48
GIN 94.74±3.33

PTC MR
GCN 74.28±0.86
GAT 71.43±1.40
GIN 78.86±1.57

Table 3 demonstrates that while the choice of GNN model
for feature updates impacts performance, the differences are
relatively modest. For example, on the COX2 dataset, the
accuracy gap between the top-performing model (GIN) and
others (GCN, GAT) is around 4%, increasing to about 5%
on the MUTAG and PTC MR datasets. Notably, GIN con-
sistently achieves the highest accuracy across all datasets,
likely due to its expressiveness and alignment with the
Weisfeiler-Lehman graph isomorphism test, which enhances
its effectiveness in graph classification tasks. These results
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suggest that GIN is the optimal choice for node feature
updates in the RTPool model.

Table 4. Performance comparison based on the choice of the un-
derlying graph for feature updates. The best performance for each
dataset is highlighted in bold.

Dataset Underlying Graph Accuracy

COX2 Delaunay 88.94±0.85
generated 92.76±1.90

MUTAG Delaunay 86.32±2.58
generated 94.74±3.33

PTC MR Delaunay 71.43±0.00
generated 78.86±1.57

Table 4 summarizes the third experiment’s results, showing
the impact of different underlying graph constructions on
model performance. As discussed in Section 3.3, we ex-
plored two approaches for constructing underlying graphs
after pooling: Delaunay graphs and generated graphs. The
table highlights a performance gap of up to 8% on the MU-
TAG dataset, underscoring the importance of graph choice.
This gap arises because RT clustering already captures ge-
ometric structure, so Delaunay graphs provide little addi-
tional information, as many Delaunay-connected nodes are
already clustered together. Moreover, RT clustering ignores
the edge semantics of the input graph, which are critical
in domains like molecular modeling where chemical bonds
encode key functional information. By reconstructing post-
pooling graphs using the original graph’s connectivity, we
preserve high-order graph structural details and better in-
tegrate both geometric and graph connectivity information.
This explains why using generated graphs consistently leads
to better performance.

Hyperparameter Sensitivity Analysis Theorem 3.2 sug-
gests that the difference ∆k = k2−k1 between consecutive
clustering levels should be set to 1 or 2, as larger values
may result in some nodes being left unclustered, leading to
information loss during pooling.

To validate this theoretical insight, we conduct a sensitivity
analysis on ∆k. The results, shown in Table 5.

We observe that RTPool achieves robust and competitive
results when ∆k = 1 or 2, aligning well with the geometric
guarantees of Theorem 3.2. In contrast, ∆k = 3 leads to
consistent performance drops across all datasets, likely due
to some nodes failing to be grouped into valid clusters. We
thus recommend setting ∆k = 1 as the default choice, with
∆k = 2 being a viable alternative that can yield even better
results on some datasets. Additional sensitivity experiments
on other hyperparameters are provided in Appendix C.

Table 5. Sensitivity of the hyperparameter ∆k = k2 − k1. The
best performance for each dataset is highlighted in bold.

Dataset ∆k Accuracy

COX2
1 89.36±2.33
2 92.76±1.90
3 86.38±1.90

MUTAG
1 94.74±3.33
2 89.64±2.36
3 88.42±2.10

PTC MR
1 76.57±1.14
2 78.86±1.57
3 69.71±1.56

5. Conclusion
This paper introduces Rhomboid Tiling (RT) clustering, a
hierarchical method designed to capture intricate high-order
geometric information from geometric graphs. Building on
this foundation, we developed RTPool, a pooling model that
achieves exceptional performance across various tasks. In
the future, we plan to extend RT clustering to topological
deep learning models.

Software and Data
The code for our proposed method is available at https:
//github.com/ZhangYipeng01/RT_pooling.
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A. Proofs of Theorems
Theorem A.1. A vertex vQ ∈ Delk1

(X) belongs to the cluster CQ′ if and only if there exists a (d− 1)-dimensional sphere
S such that:

• vQ′ ∈ Delk2
(X) with k2 > k1,

• InX(S) ⊂ Q ∩Q′,

• Q ∪Q′ ⊂ InX(S) ∪ OnX(S).

Proof. From the definition of the rhomboid associated with S, we have InX(S) ⊂ Q ⊂ InX(S) ∪ OnX(S) and InX(S) ⊂
Q′ ⊂ InX(S) ∪ OnX(S). Using these properties, it follows directly that the stated conditions are sufficient and necessary
for vQ ∈ CQ′ .

Theorem A.2. Suppose X is in general position in R3. Considering the vertices in Delk1(X) and Delk2(X) with
k1 < k2 ≤ |X|, we have:

Case 1: k2 − k1 > 4, then for any vQ ∈ Delk1(X), vQ does not belong to any cluster corresponding to the vertices in
Delk2(X).

Case 2: 1 ≤ k2 − k1 ≤ 2, then for any vQ ∈ Delk1(X), there exists vQ′ ∈ Delk2(X) such that vQ ∈ CQ′ .

Case 3: k2 − k1 = 1, then for any Q ⊂ Q′ with vQ ∈ Delk1
(X) and vQ′ ∈ Delk2

(X), we have vQ ∈ CQ′ .

Proof:

• Case 1: k2 − k1 > 4. Actually we can prove a more general case: Suppose X is in general position in Rd, then for any
vertex vQ ∈ Delk1

(X) and any vertex vQ′ ∈ Delk2
(X) with k2 ≥ k1 + d+ 1, vQ /∈ CQ′ :

From Theorem A.1, we know that Q∪Q′ −Q∩Q′ ⊂ Q∪Q′ − InX(S) ⊂ OnX(S). When k2 > k1 + d+1, we have
|OnX(S)| ≥ |Q ∪Q′ −Q ∩Q′| ≥ k2 − k1 > d+ 1. This contradicts the general position assumption, which states
that for any (d− 1)-dimensional sphere S ⊂ Rd, there can be at most d+ 1 vertices of X exactly on S. Therefore, no
such cluster exists in this case.

• Case 2: 1 ≤ k2 − k1 ≤ 2. Since vQ ∈ Delk1
(X), there exists a sphere S0 ⊂ Rd such that InX(S0) ⊂ Q ⊂

InX(S0) ∪ OnX(S0). Our goal is to find additional points v1, . . . , vm (1 ≤ m ≤ 2) and construct a sphere Sm such
that:

– S0 ⊂ Dm, here we use Dm to denote the ball bounded by the sphere Sm.
– v1, . . . , vm lie exactly on Sm,

– All other points in X −Q− {v1, . . . , vm} do not lie inside Sm.

If such points v1, . . . , vm and sphere Sm can be found, we define Q′ = Q ∪ {v1, v2, . . . , vm}. Then, it follows that
InX(Sm) ⊂ Q ∩Q′ and Q ∪Q′ ⊂ InX(Sm) ∪ OnX(Sm). By Theorem A.1, we can conclude that vQ ∈ CQ′ .

- Subcase 2.1: m = 1. Let O and R denote the center and radius of S0, respectively. For each point v ∈ X − Q,
calculate its Euclidean distance to O. Select the point v1 that is closest to O, and define S1 as the sphere centered at O
with radius |l(O, v1)|, where l(Ov, v1) denotes the line segment between the points Ov and v1; this notation will be
used to represent the line segment between any two points throughout the proof. It is straightforward to verify that S1

satisfies:

– S0 ⊂ D1,

– v1 lies exactly on S1,
– All other points in X −Q− {v1} do not lie inside S1.

- Subcase 2.2: m = 2. First, construct v1 and S1 as in the previous case. Next, for each v ∈ X−Q−{v1}, consider the
perpendicular bisector of v1 and v, and find its intersection Ov with the line passing through O and v1. Let |l(Ov, v1)|
denote the distance between Ov and v1. Select the point v2 such that |l(Ov, v1)| is minimized. Define S2 as the sphere
centered at Ov2 with radius |l(Ov2 , v1)|. Then:

12
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– v1 and v2 lie exactly on S2.
It is obvious by the construction of S2.

– S1 is contained within D2.
To demonstrate this, observe that Ov2 , O, and v1 are collinear, and the radii of the spheres S2 and S1 satisfy the
inequality |l(Ov2 , v1)| ≥ |l(O, v1)|. This ensures that, apart from the common point v1, the sphere S1 is entirely
enclosed within S2.

– All other points in X −Q− {v1, v2} do not lie inside S2.
To prove this, note that by construction, for any v ∈ X − Q − {v1, v2}, Ov lies on the perpendicular bisector
of v1 and v. Hence, the angle α(Ov, v1, v) satisfies α(Ov, v1, v) = α(Ov, v, v1) (Here α(Ov, v1, v) denotes the
angle between the line segments v1Ov and v1v; this notation will be used to represent the angle between any two
line segments throughout the proof). Since |l(Ov, v1)| ≥ |l(Ov2 , v1)|, we have α(Ov2 , v, v1) ≤ α(Ov, v, v1) =
α(Ov, v1, v) = α(Ov2 , v1, v). Since the greater side of a triangle is opposite the greater angle, |l(Ov2 , v)| ≥
|l(Ov2 , v1)|, ensuring that v does not lie inside S2. Thus, v1, v2, and S2 satisfy the required conditions.

• Case 3: k2 − k1 = 1. For any Q ⊂ Q′ with vQ ∈ Delk1
(X) and vQ′ ∈ Delk2

(X), we can write Q′ = Q ∪ {v}. The
condition vQ ∈ Delk1

(X) implies that there exists a ball D1 ⊂ R3 containing Q, and all other points in X lie outside
D1. Similarly, vQ′ ∈ Delk2

(X) implies that there exists a ball D2 ⊂ R3 containing Q ∪ {v}, and all other points in X
lie outside D2. The intersection D1 ∩D2 is non-empty because Q ⊂ D1 ∩D2.

We aim to prove the existence of a ball D such that D1 ∩D2 ⊂ D ⊂ D1 ∪D2 and v lies on the boundary of D. Let
O1 and O2 be the centers of D1 and D2, respectively, and r1 and r2 their radii. We consider two subcases to complete
the proof:

- Subcase 3.1: D1 ⊂ D2. First, consider the distance |l(O2, v)|:
- If |l(O2, v)| ≥ |l(O2, O1)|+ r1, then the ball D, centered at O2 with radius |l(O2, v)|, satisfies D1 ⊂ D ⊂ D2, and
v lies on the boundary of D.

- If |l(O2, v)| < |l(O2, O1)| + r1, consider the farthest point P on D1 along the line segment l(O2, O1), such that
|l(O2, P )| = |l(O2, O1)|+ r1 > |l(O2, v)|. The perpendicular bisector of P and v intersects l(O2, P ) at a point O.

We can prove that O lies on the line segment l(O1, O2) because v does not lie inside D1, implying |l(O1, v)| ≥ r1 =
|l(O1, P )|. Hence, the perpendicular bisector cannot intersect l(O1, P ) outside P , and O must lie on l(O1, O2).

Let D be the ball centered at O with radius |l(O, v)| = |l(O,P )|. By construction, v lies on the boundary of D, and D
contains D1 because O1 ∈ l(O,P ) and |l(O1, P )| = r1. Furthermore, since O ∈ l(O2, P ) and |l(O2, P )| ≤ r2, we
have D ⊂ D2. Thus, in this subcase, we can always find a ball D such that D1 ∩D2 = D1 ⊂ D ⊂ D2 = D1 ∪D2,
and v lies on the boundary of D.

- Subcase 3.2: D1 ̸⊂ D2. We first prove the following lemma:

Lemma. For two intersecting balls D1 and D2 with centers O1 and O2, respectively, let C be the circle formed by the
intersection of their boundaries. For any point O3 on the line segment l(O1, O2), the ball D centered at O3 with radius
equal to the distance from O3 to any point P ∈ C satisfies D1 ∩D2 ⊂ D ⊂ D1 ∪D2.

To prove this lemma, consider the plane Π containing P and the line segment l(O1, O2), and establish a 3D coordinate
system on Π: - Let the projection of P onto l(O1, O2) be the origin O(0, 0, 0). - Take the direction of O1O2 as the
x-axis, the direction of OP as the y-axis, and the direction orthogonal to Π as the z-axis. - Let the coordinates of O1

and O2 be (x1, 0, 0) and (x2, 0, 0), respectively, and let P be at (0, h, 0). Then, r21 = x2
1 + h2 and r22 = x2

2 + h2.

A point (x, y, z) lies in D1 if and only if:

(x− x1)
2 + y2 + z2 ≤ r21,

which simplifies to:
x2 − 2x1x+ y2 + z2 ≤ h2. (1)

Similarly, a point lies in D2 if and only if:

x2 − 2x2x+ y2 + z2 ≤ h2. (2)

A point lies in D if and only if:
x2 − 2(tx1 + (1− t)x2)x+ y2 + z2 ≤ h2, (3)

13



Rhomboid Tiling for Geometric Graph Deep Learning

where O3(x3, 0, 0) with x3 = tx1 + (1− t)x2 is the center of D.

By taking (1) ×t + (2) ×(1− t), we obtain (3). This implies D1 ∩D2 ⊂ D.

Furthermore, the third inequality is equivalent to:

t(x2 − 2x1x+ y2 + z2) + (1− t)(x2 − 2x2x+ y2 + z2) ≤ h2.

Now, suppose that the third inequality holds while neither the first nor the second inequalities is satisfied. Then we
have:

h2 = th2 + (1− t)h2 < t(x2 − 2x1x+ y2 + z2) + (1− t)(x2 − 2x2x+ y2 + z2) ≤ h2,

which is a contradiction. This contradiction implies that if the third inequality holds, at least one of the first or second
inequalities must also hold. This ensures that D ⊂ D1 ∪D2. And we finish the proof of the lemma.

Returning to Subcase 3.2, consider a point P ∈ C on the intersection of D1 and D2. Let H be the perpendicular
bisector of P and v. - Since |l(O2, v)| ≤ r2 = |l(O2, P )|, H intersects l(O2, P ). - Since |l(O1, v)| ≥ r1 = |l(O1, P )|,
H does not intersect l(O1, P ) internally.

By the geometric property that a line intersecting a triangle must intersect two sides and the fact that H does not intersect
l(O1, P ), H intersects the triangle O1O2P at a point O on l(O1, O2). Let D be the ball centered at O with radius
|l(O,P )| = |l(O, v)|. By construction, v lies on the boundary of D, and the lemma ensures D1 ∩D2 ⊂ D ⊂ D1 ∪D2.

In conclusion, we have proven the existence of a ball D such that v lies on the boundary of D, i.e., v ∈ OnX(S) where
S = ∂D. Furthermore, we have Q ⊂ D1 ∩D2 ⊂ D ⊂ D1 ∪D2. This implies that Q = InX(S), because the interiors
of D1 and D2 do not contain any points of X other than those in Q ∪ {v}. By Theorem A.1, it follows that vQ ∈ CQ′ .

Theorem A.3. Suppose X is in general position in R3, and vQ1 , vQ2 ∈ Delk1(X), vQ′ ∈ Delk2(X). If vQ1 , vQ2 ∈ CQ′ ,
then the following hold:

1. If 3 ≤ k2 − k1 ≤ 4, then Q1 ⊂ Q′ and N(Q1, Q
′) ≤ 5− (k2 − k1).

2. If Q1 ̸⊂ Q′, then N(Q1, Q
′) ≤ 3− (k2 − k1).

3. If Q1 ∩Q′ ⊊ Q2 ∩Q′, then N(Q1, Q
′) ≤ N(Q2, Q

′).

Proof: Let n1 = |Q1| − |Q′ ∩Q1| and n2 = |Q′| − |Q′ ∩Q1|. Then we have:

- n1 ≥ 0, n2 ≥ 0,

- n2 − n1 = k2 − k1 ≤ 4, because n2 − n1 = |Q′| − |Q1| = k2 − k1, and from Case 1 of Theorem A.2, we know
k2 − k1 ≤ 4,

- n2 + n1 ≤ 4, because n2 + n1 = (|Q1|+ |Q′| − |Q′ ∩Q1|)− |Q′ ∩Q1| = |Q′ ∪Q1| − |Q′ ∩Q1|. From Theorem A.1
and the fact that vQ1 ∈ C(Q′), we have |Q′ ∪Q1| − |Q′ ∩Q1| ≤ |InX(S) ∪ OnX(S)| − |InX(S)| = |OnX(S)| ≤ 4 for
some sphere S ⊂ R3.

From these facts, we can enumerate all possible values for the pair (n2, n1): {(4, 0), (3, 0), (3, 1), (2, 0), (2, 1), (1, 0)}.

• If 3 ≤ k2 − k1 ≤ 4, then Q1 ⊂ Q′ and N(Q1, Q
′) ≤ 5− (k2 − k1).

First, consider the case k2−k1 = 4. In this scenario, n2−n1 = 4. From the above analysis, we know (n2, n1) = (4, 0),
which implies |Q1| − |Q′ ∩ Q1| = 0, i.e., Q1 ⊂ Q′. Therefore, vQ1 and vQ′ can only lie in the depth-4 rhomboid
ρX(S), where InX(S) = Q1 and OnX(S) = Q′ −Q1, meaning N(Q1, Q

′) ≤ 1.

Next, consider the case k2 − k1 = 3. Similarly, we have (n2, n1) = (3, 0), which implies Q1 ⊂ Q′ and the fact
that the minimal rhomboid ρS(X) containing vQ1

and vQ′ could be either a depth-3 or depth-4 rhomboid with
(Q′ − Q1) ∪ (Q1 − Q′) ⊂ OnX(S). If ρS(X) is a depth-4 rhomboid, then N(Q1, Q

′) ≤ 1. If ρS(X) is a depth-3
rhomboid, it can serve as a facet for at most two depth-4 rhomboids. Therefore, N(Q1, Q

′) ≤ 2.

• If Q1 ̸⊂ Q′, then N(Q1, Q
′) ≤ 3− (k2 − k1).
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From the above analysis, Q1 ̸⊂ Q′ implies k2 − k1 < 3 and n1 = |Q1| − |Q′ ∩ Q1| > 0. First, consider the case
k2 − k1 = 2. Here, n2 − n1 = 2, so (n2, n1) = (3, 1). In this case, vQ1 and vQ′ can only lie in the depth-4 rhomboid
ρX(S), where InX(S) = Q1 ∩Q′ and OnX(S) = (Q′ −Q1) ∪ (Q1 −Q′). This means N(Q1, Q

′) ≤ 1.

Now, consider the case k2 − k1 = 1. Similarly, (n2, n1) = (2, 1). The minimal rhomboid ρS(X) containing vQ1 and
vQ′ can be either a depth-3 or depth-4 rhomboid. Thus, N(Q1, Q

′) ≤ 2.

• If Q1 ∩Q′ ⊊ Q2 ∩Q′, then N(Q1, Q
′) ≤ N(Q2, Q

′).

Since |Q1| = |Q2| = k1, the condition Q1 ∩Q′ ⊊ Q2 ∩Q′ implies Q1 ̸⊂ Q′. From the above analysis, k2 − k1 < 3,
and (n2, n1) = (3, 1) or (2, 1). Let n′

1 = |Q2|−|Q′∩Q2| and n′
2 = |Q′|−|Q′∩Q2|. The condition Q1∩Q′ ⊊ Q2∩Q′

implies n′
1 = |Q2| − |Q′ ∩Q2| < |Q1| − |Q′ ∩Q1| = n1 = 1, which forces n′

1 = 0. Hence, Q2 ⊂ Q′.

For any rhomboid ρX(S) containing vQ1 and vQ′ , we have InX(S) ⊂ Q1 ∩ Q′ ⊊ Q2 ∩ Q′, and Q2 ∪ Q′ = Q′ ⊂
Q1 ∪Q′ ⊂ InX(S) ∪ OnX(S). Therefore, ρX(S) also contains vQ2

. This implies N(Q1, Q
′) ≤ N(Q2, Q

′).

Theorem A.4. Let K = ∆k · L+ 1, where ∆k is the step size and L is the number of pooling layers. Then the total time
complexity of RTPool on a point cloud in Rd of size n is

O
(
K⌈ d+3

2 ⌉n⌊
d+1
2 ⌋ +K5n2

)
.

The first term corresponds to the cost of constructing the rhomboid tiling up to order K, and the second term accounts for
the cumulative computation over all L pooling layers. Here, ⌊·⌋ and ⌈·⌉ denote the floor and ceiling functions, respectively.

Proof: The time complexity analysis of RTPool consists of two components: (1) constructing the rhomboid tiling structure
from the input point cloud, and (2) performing graph pooling based on the rhomboid tiling.

1. Rhomboid Tiling Construction. According to Proposition 5 and Remark 8 in (Corbet et al., 2023), the number of
rhomboid cells in the tiling up to order K for a point cloud of size n ⊂ Rd is bounded by

O
(
K⌈ d+1

2 ⌉n⌊
d+1
2 ⌋

)
.

Furthermore, from (Corbet et al., 2023), the time complexity of constructing a single order-k rhomboid cell is O(k).
Therefore, the total time complexity for generating the rhomboid tiling up to order K is

O
(
K ·K⌈ d+1

2 ⌉n⌊
d+1
2 ⌋

)
= O

(
K⌈ d+3

2 ⌉n⌊
d+1
2 ⌋

)
.

2. Graph Pooling via Rhomboid Tiling. According to (Lee, 1982), the number of regions in the order-k Voronoi diagram
in R3 is bounded by O(k2(n− k)), and thus the number of vertices in the corresponding order-k Delaunay complex is also
O(k2(n− k)).

This implies that the clustering matrix constructed from the rhomboid tiling at order-k has size O(k2(n−k))×O(k2(n−k)),
and the associated node feature matrix has size O(k2(n− k))×O(1). The pooling process for each layer consists of two
steps:

• Matrix multiplication between the clustering matrix and the node feature matrix, with time complexity O(k4n2).

• Applying a GIN layer to update the features, which has time complexity O(k2(n− k)), assuming the graph remains
sparse.

As the matrix multiplication dominates, the overall complexity per layer is O(k4n2). Summing all orders up to K, the total
pooling cost becomes

O(K ·K4n2) = O(K5n2).

Combining both parts, the total time complexity of RTPool is

O
(
K⌈ d+3

2 ⌉n⌊
d+1
2 ⌋ +K5n2

)
.

This completes the proof.
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B. Hyperparameter Settings
The hyperparameters of our RTPool model follow a default configuration, as shown in Table 6. For different datasets,
specific hyperparameters were adjusted to optimize performance, with the detailed settings presented in Table 7.

Table 6. Default Hyperparameter Settings for RTPool
batch size #epochs LR #pooling layers ∆k final dropout weight decay

16 500 0.001 2 1 0.5 0.0001

The hyperparameters in Table 6 define the key settings for the RTPool model. The batch size specifies the number
of samples processed simultaneously during training, while #epochs represents the total number of complete passes
through the training dataset. The LR (learning rate) controls the step size during the optimization process. The #pooling
layers denotes the number of pooling layers in the RTPool model, determining the hierarchical depth of the pooling
process. ∆k is the step size in the pooling process. The final dropout rate helps prevent overfitting by randomly
zeroing out a fraction of neurons in the final layer. Lastly, the weight decay regularization term reduces the magnitude
of model weights to improve generalization.

Table 7. Hyperparameter Settings for Different Datasets
Dataset #pooling layers LR final dropout ∆k Others
COX2 1 0.001 0.5 2 Default
BZR 1 0.001 0.5 1 Default
PTC MR 1 0.0002 0.3 2 Default
PTC MM 2 0.0002 0.3 1 Default
PTC FR 2 0.0002 0.3 1 Default
PTC FM 2 0.0002 0.3 1 Default
MUTAG 1 0.001 0.5 1 Default

In our experiments, we only tuned three hyperparameters: #pooling layers, LR, and final dropout. For
hyperparameter sensitivity analysis, we predefined a range of candidate values and performed grid search to identify the
best-performing configuration on each dataset. Specifically, the optimal setting for each dataset was selected based on the
validation performance, while other hyperparameters were kept at their default values.

Table 8. Hyperparameter sensitivity analysis. Best performance is highlighted in bold.
(a) Learning rate sensitivity

Dataset LR Accuracy

COX2

0.0002 87.23±1.50
0.0005 87.66±0.95
0.001 92.76±1.90
0.002 88.93±1.78

MUTAG

0.0002 89.47±0.00
0.0005 91.57±2.88
0.001 94.74±3.33
0.002 93.68±2.10

PTC MR

0.0001 73.72±2.39
0.0002 78.86±1.57
0.0005 72.57±1.40
0.001 70.29±1.40

(b) #pooling layers sensitivity
Dataset #pooling Accuracy

layers

COX2 1 92.76±1.90
2 88.50±1.17

MUTAG 1 94.74±3.33
2 90.52±2.35

PTC MR 1 78.86±1.57
2 72.57±2.56

(c) final dropout sensitivity
Dataset final Accuracy

dropout

COX2
0.4 88.51±1.91
0.5 92.76±1.90
0.6 88.93±1.78

MUTAG
0.4 92.63±2.88
0.5 94.74±3.33
0.6 93.69±2.36

PTC MR
0.2 74.86±1.27
0.3 78.86±1.57
0.4 75.43±1.56
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C. Hyperparameter Sensitivity Analysis
To evaluate the robustness of our method, we conducted a sensitivity analysis on four hyperparameters: the number of
pooling layers (#pooling layers), learning rate (LR), final dropout ratio (final dropout), and the step size ∆k in
the pooling process. While our main experiments only tuned the first three, we later performed additional evaluations of ∆k
on three datasets (COX2, MUTAG, and PTC MR) to further investigate its impact.

The sensitivity analysis of the step size ∆k = k2 − k1 is presented in the main text (see Table 5) along with a detailed
discussion of its impact on model performance. Table 8 reports the sensitivity results for the other three hyperparameters
across the same datasets.

In general, we find that our model RTPool is relatively stable across a range of values, but optimal performance does depend
on careful tuning.

D. RTPool for Graph Regresssion Tasks
We demonstrate that RTPool’s applicability extends beyond graph classification to regression tasks, owing to its geometry-
preserving pooling mechanism. By explicitly incorporating geometric information during pooling, RTPool generates
graph-level representations that robustly capture essential structural features, making them universally applicable across
diverse learning objectives.

To validate this claim, we evaluate RTPool on three commonly used molecular property regression benchmarks(Wu et al.,
2018) under identical experimental conditions as our main experiments. All models, including baselines, were tuned
via grid search to ensure fair comparison. Table 9 presents the root mean square error (RMSE) comparisons with seven
state-of-the-art graph pooling methods:

Table 9. Performance comparison (RMSE) on molecular property regression datasets under standardized experimental conditions. Lower
values indicate better performance. Best results are highlighted in bold.

Model Esol FreeSolv Lipo
No. graphs 1128 642 4200
No. avg nodes 26 18 49

MinCutPool 2.1913±0.0374 4.0111±0.0170 1.3481±0.0224
StructPool 2.1749±0.0411 4.0077±0.0150 1.3422±0.1264
DiffPool 3.7699±0.2035 5.2877±0.2049 2.7431±0.0753
HaarPool 2.1035±0.0340 3.8892±0.0098 1.3361±0.0627
Wit-TopoPool 1.8783±0.1628 4.2159±0.0816 1.0916±0.5007
Hop-Pool 2.4831±0.0760 4.0030±0.0940 1.3725±0.0738
Mv-Pool 2.5691±0.0484 4.0627±0.1048 1.3746±0.0682

RTPool 2.0195±0.5318 3.6666±0.2112 1.0789±0.0496

As shown in the table, RTPool achieves the best or near-best performance across all three datasets, demonstrating its
effectiveness in graph regression tasks compared to other pooling baselines.

E. RTPool on Social Network Datasets
To extend the applicability of our RTPool model, we further explore its performance on non-geometric graphs—specifically,
social network datasets such as IMDB-BINARY and IMDB-MULTI. These graphs lack explicit node features or spatial
coordinates; thus, to adapt RTPool, a crucial step is embedding the nodes into a Euclidean space based on the graph structure
alone.

Spectral Embedding via Graph Laplacian. Given an unweighted, undirected graph G = (V,E), we construct the
normalized graph Laplacian L = I −D−1/2AD−1/2, where A is the adjacency matrix and D is the diagonal degree matrix.
We then compute the eigen-decomposition of L and select the eigenvectors corresponding to the three smallest non-zero
eigenvalues (excluding the trivial eigenvector for eigenvalue zero). These three eigenvectors form a spectral embedding that
maps each node to a point in R3, capturing global structural information through diffusion geometry. This embedding serves
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as a surrogate spatial coordinate input for RTPool, enabling it to perform pooling even in non-geometric graphs.

We applied this Laplacian-based spectral embedding approach to the IMDB-BINARY and IMDB-MULTI datasets, which
contain only graph connectivity information. We compare our model with 20 baselines, including classical graph kernels
(e.g., WL, HGK) and pooling-based GNNs (e.g., DiffPool, SAGPool, Wit-TopoPool), with most results cited from (Chen &
Gel, 2023). For Hop-Pool(Zhang et al., 2024) and Mv-Pool(Ma et al., 2024), which were not reported in that benchmark, we
implemented them based on their original papers and tuned hyperparameters via grid search to ensure fair comparison. The
performance is summarized in Table 10.

Table 10. Comparison of classification accuracy (%) on social network datasets.

Model IMDB-BINARY IMDB-MULTI
No. graphs 1000 1500
No. avg nodes 19.77 13.00

HGK-SP 73.34±0.47 51.58±0.42
HGK-WL 72.75±1.02 50.73±0.63
WL 71.15±0.47 50.25±0.72
WL-OA 74.01±0.66 49.95±0.46
DGCNN 70.00±0.90 47.80±0.90
GCN 66.53±2.33 48.93±0.88
GIN 75.10±5.10 52.30±2.80
Top-K 73.17±4.84 48.80±3.19
MinCutPool 70.77±4.89 49.00±2.83
DiffPool 68.60±3.10 45.70±3.40
EigenGCN 70.40±1.30 47.20±3.00
SAGPool 74.87±4.09 49.33±4.90
HaarPool 73.29±3.40 49.98±5.70
PersLay 71.20±0.70 48.80±0.60
FC-V 73.84±0.36 46.80±0.37
MPR 73.80±4.50 50.90±2.50
SIN 75.60±3.20 52.50±3.00
Wit-TopoPool 78.40±1.50 53.33±2.47
Hop-Pool 68.04±2.04 49.33±5.09
Mv-Pool 69.75±3.61 51.67±0.74

RTPool 73.06±3.84 53.33±1.26

As shown in Table 10, RTPool achieves competitive results across both datasets. On IMDB-MULTI, RTPool matches the
best-performing baseline (Wit-TopoPool) with an accuracy of 53.33%. Notably, this is achieved despite the lack of native
geometric information, highlighting the effectiveness of using spectral embeddings to generalize RTPool to abstract graph
domains like social networks.

F. Empirical Model Efficiency
To further evaluate the efficiency of RTPool, we compare it with several representative clustering-based pooling methods
under controlled training conditions. Specifically, all models are trained for only 100 epochs per run (rather than the default
500), and each experiment is repeated five times to report average performance and runtime. This setup helps assess how
quickly each model converges to high-quality results.

Early-Stage Performance. Table 11 shows the classification performance of different pooling methods after only 100
training epochs. Despite the reduced training time, RTPool already achieves outstanding accuracy on most datasets, often
surpassing or closely matching state-of-the-art models that typically require longer training. This demonstrates the rapid
convergence and high early-stage expressiveness of our model.
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Table 11. Accuracy (mean ± std) after only 100 training epochs. Each model is trained 5 times. RTPool shows strong early-stage
performance compared to other methods.

Model BZR COX2 MUTAG PTC MR PTC MM PTC FM PTC FR

MinCutPool 76.47±2.32 79.86±2.47 69.47±2.11 66.86±2.91 72.94±1.18 56.74±5.63 62.86±1.81
StructPool 75.63±1.04 78.72±1.79 70.53±2.58 65.74±2.68 72.90±1.18 57.71±7.32 62.29±2.14
DiffPool 78.54±0.98 77.93±3.18 73.68±3.33 69.14±2.80 67.06±2.20 68.57±3.61 68.57±1.81
HaarPool 78.05±0.00 80.64±4.58 68.42±0.38 62.29±4.20 64.71±3.72 61.14±6.66 65.67±2.25
Wit-TopoPool 80.98±2.39 80.43±1.59 85.32±2.58 71.84±1.14 72.82±4.71 68.56±4.84 68.57±4.04
Hop-Pool 78.05±1.39 80.00±1.70 87.56±4.41 61.71±2.91 70.59±0.78 58.29±1.40 63.43±1.14
Mv-Pool 75.60±1.98 79.68±1.27 73.68±10.53 64.57±4.64 68.24±1.18 57.14±0.00 65.71±1.77

RTPool 84.39±1.19 85.96±1.04 83.16±5.16 72.86±3.65 72.94±3.43 68.86±8.59 67.71±7.75

Runtime Comparison. Table 12 presents the total training time (in seconds) under the same 100-epoch setup. For RTPool,
we additionally break down the cost into the one-time tiling structure construction and model training time. While some
methods incur large computation costs (e.g., Mv-Pool, Wit-TopoPool), RTPool maintains a reasonable runtime and even
outperforms most baselines in both speed and accuracy.

Table 12. Runtime (in seconds) over 5 trials (each with 100 epochs). For RTPool, both tiling construction time and training time are
reported.

Model BZR COX2 MUTAG PTC MR PTC MM PTC FM PTC FR

MinCutPool 2297.74 2554.96 1999.89 2016.22 2482.84 2470.79 2355.13
StructPool 1602.96 1647.23 1387.76 1412.16 1663.12 1623.40 1578.65
DiffPool 2507.53 2813.80 2144.75 2235.34 2637.06 2621.80 2529.79
HaarPool 3238.15 2666.93 1787.79 1412.01 1407.39 2075.04 2022.91
Wit-TopoPool 4512.64 4904.08 7475.70 7390.13 7332.05 7370.51 7357.56
Hop-Pool 1483.80 1420.63 1190.00 1171.09 1450.05 1421.54 1355.92
Mv-Pool 11244.74 9137.48 5828.78 8935.74 8327.48 8326.58 8907.54

RTPool (constructor) 1616.06 2356.41 189.59 341.39 321.39 331.57 360.00
RTPool (training) 1117.62 1053.07 1041.59 673.77 1268.01 1708.35 306.10

These results highlight RTPool’s fast convergence and favorable runtime-accuracy trade-off, making it a practical and
scalable choice for large-scale or resource-constrained applications.

G. Illustrative Examples
To provide a more intuitive understanding of RTpool and the rhomboid tiling mechanism, we include two illustrative
examples in this appendix.

Figure 2. Visualization of the hierarchical clustering process performed by RTpool on the molecular graph of Formaldehyde. The original
molecular structure is shown on the left, followed by three successive clustering layers. Each cluster center (colored circle) is positioned
based on the geometric realization of rhomboid tiling, and is connected to its members by dashed lines.
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Figure 2 demonstrates how RTpool performs hierarchical clustering on the molecular graph of Formaldehyde. The graph is
progressively pooled through multiple layers, with nodes being aggregated into clusters at each level. The position of each
cluster center is determined by the rhomboid tiling structure, providing geometric guidance for the pooling process. This
example reveals RTpool’s strong locality-awareness, as it consistently merges spatially adjacent nodes. In this example, we
observe that RTpool tends to group geometrically close nodes into the same cluster, a phenomenon particularly evident from
pooling layer 1 to layer 2.

Figure 3. An illustrative example of generating a rhomboid tiling from a point cloud. A: Molecular graph of Formaldehyde. B: Point
cloud obtained by embedding the molecular graph into R2. C: Minimal circumcircles corresponding to each local point cluster in the
point cloud. D: Rhomboids associated with the circumcircles. E: Rhomboid tiling structure of Formaldehyde formed by the union of all
rhomboids.

Figure 3 illustrates the process of constructing a rhomboid tiling from a 2D point cloud X derived from the molecular graph
of Formaldehyde. We begin by identifying minimal circumcircles that pass through exactly three points. These circles are
used to define the rhomboids that make up the tiling.

Taking one such minimal circumcircle S1 as an example, suppose InX(S1) = ∅ and OnX(S1) = v1, v2, v3. With (ai, bi)
denoting the coordinates of vi, the associated rhomboid is formed from the convex hull of a set of lifted points:

ρX(S1) := conv{yQ | InX(S1) ⊂ Q ⊂ InX(S1) ∪ OnX(S1)},

yQ :=

∑
x∈Q

x, −k


In this case, we generate 8 such points corresponding to all subsets Q of {v1, v2, v3}, at levels ranging from 0 to 3:

• y∅ = (0, 0, 0) (origin, at level 0),
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• y{v1} = (a1, b1,−1), y{v2} = (a2, b2,−1), y{v3} = (a3, b3,−1) (three points at level 1),

• y{v1,v2} = (a1 + a2, b1 + b2,−2), y{v1,v3} = (a1 + a3, b1 + b3,−2), y{v2,v3} = (a2 + a3, b2 + b3,−2) (three points
at level 2),

• y{v1,v2,v3} = (a1 + a2 + a3, b1 + b2 + b3,−3) (one point at level 3).

The convex hull of these 8 lifted points defines a rhomboid in R3. As shown in the figure, four such rhomboids are
constructed from four distinct minimal circumcircles. Their union forms the complete rhomboid tiling structure for the
Formaldehyde point cloud.
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