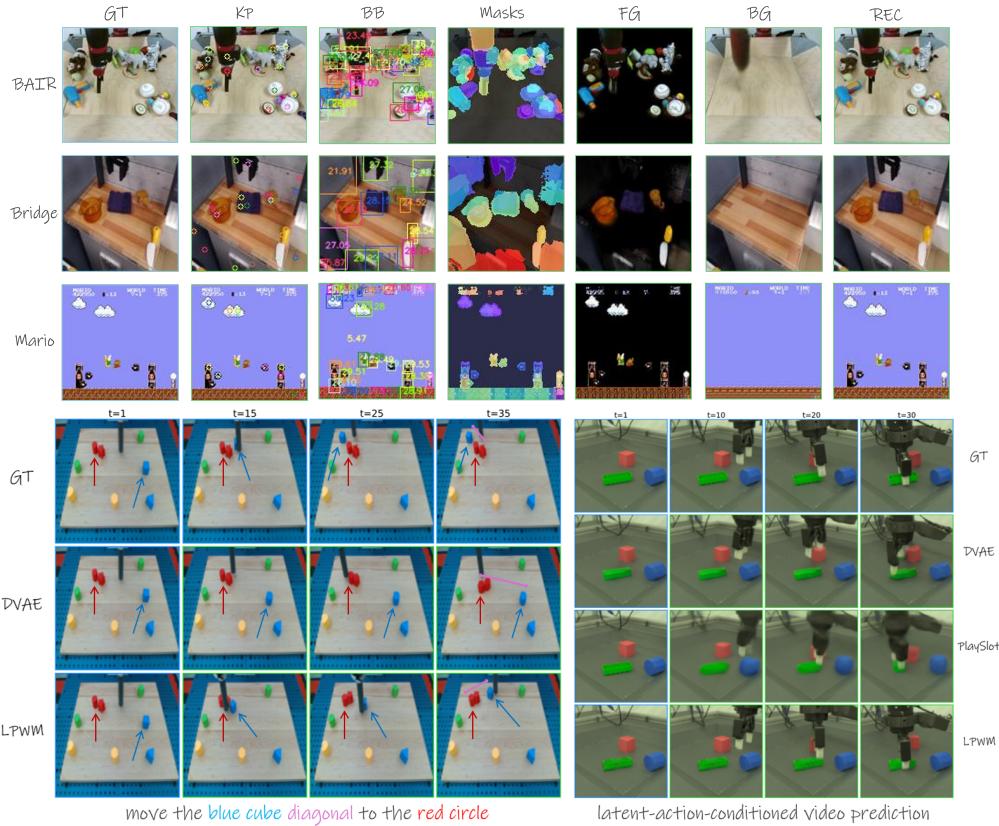


000 LATENT PARTICLE WORLD MODELS: SELF- 001 002 SUPERVISED OBJECT-CENTRIC STOCHASTIC DYNAM- 003 ICS MODELING 004

005
006 **Anonymous authors**
007 Paper under double-blind review
008

009 010 ABSTRACT 011

012
013 We introduce Latent Particle World Model (LPWM), a self-supervised object-
014 centric world model scaled to real-world multi-object datasets and applicable in
015 decision-making. LPWM autonomously discovers keypoints, bounding boxes,
016 and object masks directly from video data, enabling it to learn rich scene decom-
017 positions without supervision. Our architecture is trained end-to-end purely from
018 videos and supports flexible conditioning on actions, language, and image goals.
019 LPWM models stochastic particle dynamics via a novel latent action module and
020 achieves state-of-the-art results on diverse real-world and synthetic datasets. Be-
021 yond stochastic video modeling, LPWM is readily applicable to decision-making,
022 including goal-conditioned imitation learning, as we demonstrate in the paper.
023 Code, and pre-trained models will be made publicly available. Video rollouts are
024 available: <https://sites.google.com/view/lpwm>



052 Figure 1: Self-supervised object-centric world modeling with LPWM. Top: latent particle decomposition.
053 Bottom left: language-conditioned video generation. Bottom right: latent-action-conditioned video prediction.

054
055
056
057
1 INTRODUCTION

058 Recent years have witnessed remarkable progress in the visual fidelity of general-purpose video
 059 generation models (Blattmann et al., 2023; Yang et al., 2024b). Driven by vast datasets and expansive
 060 computational resources, these models—often built on scalable architectures like Transformers
 061 (Vaswani et al., 2017)—have achieved unprecedented realism. However, their success comes
 062 at a steep computational cost: training requires thousands of GPU hours (Zhu et al., 2024), and,
 063 due to their reliance on diffusion processes (Ho et al., 2020), inference remains slow and resource-
 064 intensive, limiting practical applications. This has sparked an important question: can we lever-
 065 age the strengths of these generative models for decision-making? For instance, by turning them
 066 into *world models*—dynamics predictors that can be externally controlled by action or goal signals,
 067 tasks such as robotic planning (Yang et al., 2023; Zhu et al., 2024) become possible. Despite their
 068 strengths in producing high-fidelity videos, these models’ resource demands can be prohibitive. In
 069 parallel, recent work (Haramati et al., 2024; Qi et al., 2025) demonstrates that incorporating in-
 070 ductive biases and leveraging more compact models can enable efficient, robust performance on
 071 complex multi-object decision-making tasks. Motivated by this, our work aims to bridge these two
 072 directions—by introducing an efficient, self-supervised, object-centric world model for video pre-
 073 diction, *and* decision-making in real-world and simulated, multi-entity environments.

074 Consider the illustrative example in Figure 2, where the
 075 dynamics of two moving objects are described alongside
 076 the caption: “The blue ball is moving diagonally towards
 077 the green square.” Text representations typically rely on
 078 semantic tokenization into words or subword units, which
 079 underpins the success of large language models (Rad-
 080 ford et al., 2018). In contrast, image representations pre-
 081 dominantly use “patchifying”—dividing the image into
 082 a fixed grid of patches without regard for semantic con-
 083 tent (Dosovitskiy et al., 2020). While this patch-based
 084 approach enables scalability and generality, it lacks the
 085 semantic intuitiveness of object-centric decompositions
 086 that can enhance the model’s ability to capture mean-
 087 ingful object interactions and relationships, crucial for
 088 understanding complex scenes, and align more naturally
 089 with language representations. Inspired by the “what-
 090 where” pathway in the human visual system (Goodale
 091 & Milner, 1992) and recent neuroscience findings (Pick-
 092 ering & Clark, 2014; Nau et al., 2018; Barnaveli et al.,
 093 2025), which suggest humans leverage internal visual-
 094 spatial world models for planning and action, combining
 095 object-centric representations with world models is
 096 a promising direction towards more effective decision-
 097 making and vision-language integration.

098 Building on this premise, recent research has focused on introducing inductive biases in the form of
 099 object-centric representations, namely Deep Latent Particles (DLP, Daniel & Tamar (2022a)), which
 100 have shown strong empirical benefits across a range of domains—including video prediction (Daniel
 101 & Tamar, 2024), reinforcement learning (RL) (Haramati et al., 2024), imitation learning (Qi et al.,
 102 2025), and microscopy (Goldenberg et al., 2025). These approaches demonstrate that, when applica-
 103 ble, object-centric representations can lead to improved downstream performance, even with smaller
 104 model sizes and less data. However, their success has so far been largely confined to specific datasets
 105 and environments, typically involving simulated scenes or simple real-world settings with isolated
 106 objects, limited camera motion, or single-agent interactions. Scaling object-centric models to han-
 107 dle the complexity of real-world multi-object environments remains a substantial challenge. While
 patch-based representations remain dominant for large-scale, general-purpose visual modeling, on-
 going advances indicate that object-centric approaches offer clear advantages for decision-making
 tasks whenever the problem structure allows. The present work aims to advance this direction by
 developing scalable, efficient world modeling grounded in object-centric decomposition.

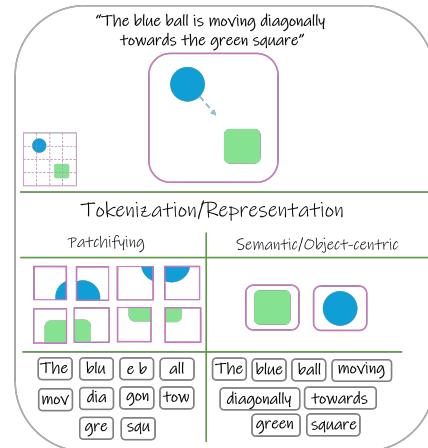


Figure 2: Representation discrepancy. Text is typically tokenized into semantically meaningful units such as words or subwords, whereas image representations are most often constructed by dividing the image into a fixed grid of patches (“patchifying”) that do not explicitly encode semantic content.

108 In this work, we introduce the Latent Particle World Model (LPWM), the first self-supervised object-
 109 centric world model capable of end-to-end training on complex real-world video data. Building
 110 upon the DLP-based video prediction framework DDLP (Daniel & Tamar, 2024), we eliminate the
 111 requirement for explicit particle tracking and propose a novel context module that predicts distribu-
 112 tions over latent actions for each particle. This approach enables stochastic dynamics sampling and
 113 enables scalability to complex environments. LPWM is trained exclusively from video observations
 114 and supports optional conditioning on actions, language, images, and multi-view inputs. Its design
 115 can accommodate a range of decision-making applications, including unconditional video predic-
 116 tion pretraining and goal-conditioned imitation learning. By integrating object-centric representa-
 117 tions with scalable stochastic dynamics modeling, LPWM advances the development of efficient
 118 and interpretable visual world models.
 119

120 Our contributions are summarized as follows: (1) We propose a self-supervised object-centric world
 121 model with a novel latent action module that supports multiple conditioning types, including ac-
 122 tions, language, images, and multi-view inputs; (2) We achieve state-of-the-art performance in
 123 object-centric video prediction on diverse real-world and simulated multi-object datasets, and (3)
 124 We demonstrate the applicability of our model to imitation learning on two complex multi-object
 125 environments, highlighting its utility for decision-making tasks.
 126

2 RELATED WORK

127 This section provides an overview of related literature relevant to latent object-centric video predic-
 128 tion and world modeling. To the best of our knowledge, LPWM is the first self-supervised object-
 129 centric model that can be trained solely from videos, supports multi-view training, and enables
 130 diverse conditioning modalities, including actions, language, and goal images. Since no existing
 131 method shares this unique combination of capabilities, we briefly review several adjacent and
 132 complementary lines of work to highlight the context and novelty of our contributions. A more detailed
 133 survey of keypoints, latent actions, and decision-making methods is provided in Appendix A.6.
 134

135 **General video prediction and latent world models:** Classic approaches encode images into latent
 136 spaces and predict future states with recurrent dynamics, often using convolutional encoders and
 137 RNNs (Finn et al., 2016a; Ha & Schmidhuber, 2018). Recent work has improved long-horizon
 138 prediction with discrete latent variables (Hafner et al., 2020b), hierarchical architectures (Wang
 139 et al., 2022), self-attention (Micheli et al., 2024), and language conditioning (Nematollahi et al.,
 140 2025), but most methods model frames holistically and lack explicit object decomposition, resulting
 141 in blurry or unstable predictions. Video diffusion models (Zhu et al., 2024) achieve high fidelity, but
 142 remain computationally intensive and do not incorporate object-centric biases.
 143

144 **Unsupervised object-centric latent video prediction and world models:** Unsupervised object-
 145 centric video prediction methods learn latent dynamics on decomposed scene elements, typically
 146 using patch-, slot-, or particle-based representations. **Patch-based approaches** (e.g., G-SWM (Lin
 147 et al., 2020a)) represent objects using local latent attributes and typically model joint dynamics with
 148 RNNs and interaction modules. These methods rely on post-hoc matching object proposals across
 149 frames for temporal consistency, which—combined with unordered object representations—limits
 150 their scalability to complex or real-world video datasets. **Slot-based approaches** (Locatello et al.,
 151 2020) typically represent scenes as a set of slots: permutation-invariant latent vectors encoding
 152 spatial and appearance information for objects. These approaches generally adopt a two-stage train-
 153 ing strategy: a slot decomposition is first learned independently, followed by a separate dynamics
 154 model trained on the inferred slots using RNNs (Nakano et al., 2023) or Transformers (Wu et al.,
 155 2022b; Villar-Corrales et al., 2023). In practice, slot-based methods suffer from inconsistent de-
 156 compositions, blurry predictions, and convergence issues (Seitzer et al., 2023). **Particle-based**
 157 **approaches**, introduced as DLP (Daniel & Tamar, 2022a), provide compact, interpretable object
 158 representations using keypoint-based latent particles with extended attributes. DDLP (Daniel &
 159 Tamar, 2024) jointly trains a Transformer dynamics model and the particle representation, allowing
 160 stable object-centric decomposition and improved modeling of complex scenes. However, DDLP
 161 relies on particle tracking and sequential encoding, which restricts parallelization and stochasticity.
 Our proposed LPWM model is a direct extension to this lineage. LPWM eliminates the need for
 explicit tracking, enabling parallel encoding of all frames, trains end-to-end, and integrates a latent
 action distribution for stochastic world modeling. This allows the model to capture transitions such

as object occlusion, appearance, or random movements (e.g., agents or grippers), and supports comprehensive conditioning via actions, language, or goal images—advancing particle-based modeling to the world model regime and addressing unsolved limitations of previous work.

Video prediction and world models with latent actions: Several recent works have introduced *latent actions*—global latent variables representing transitions between consecutive frames—to learn controllable or playable environments from videos. Models like CADDY (Menapace et al., 2021) and Genie (Bruce et al., 2024) learn discrete latent actions by quantizing inverse module outputs, and conditioning dynamics on these codes in a two-stage training scheme. AdaWorld (Gao et al., 2025) proposes a continuous latent action space with strong KL regularization. PlaySlot (Villar-Corralles & Behnke, 2025) augments slot-based object-centric video prediction with discrete latent action conditioning, demonstrating benefits of object-level decomposition for controllable modeling. In contrast, our particle-based LPWM learns continuous, per-particle latent actions end-to-end with dynamics, naturally capturing stochastic multi-object interactions. LPWM’s learned latent policy enables sampling latent actions during inference without external input, supporting stochastic video generation. It also supports diverse conditioning—including goal-conditioning—making it well-suited for post-hoc policy learning and control, as demonstrated in our experiments.

Table 1 summarizes key differences between self-supervised object-centric video prediction and world modeling methods.

Model	Obj.-Centric Rep.	Latent Actions	Action Cond.	Text Cond.	End-to-End	Dyn. Module
SCALOR (Jiang et al., 2019)	Patch	—	—	—	✓	RNN
	Patch	—	—	—	✓	RNN
	Patch	—	—	—	✓	RNN
	Patch	—	—	—	—	Transformer
	Patch+Keypt	—	✓	—	✓	RNN
PARTS (Zoran et al., 2021)	Slots	—	—	—	✓	RNN
	Slots	—	—	—	✓	RNN
	Slots	—	—	—	—	Transformer
	Slots	—	—	—	—	Transformer
	Slots	—	—	✓	—	Transformer
	Slots	—	✓	—	—	Transformer
	Discrete	—	—	—	—	Transformer
	Particles	—	—	—	—	GNN
	Particles	—	—	—	✓	Transformer
	Particles	Cont. (per)	✓	✓	✓	Transformer
DLP (Daniel & Tamar, 2022a)	Particles	—	—	—	—	GNN
DDLDP (Daniel & Tamar, 2024)	Particles	—	—	—	✓	Transformer
LPWM (Ours)	Particles	Cont. (per)	✓	✓	✓	Transformer

Table 1: Comparison of object-centric video prediction and world modeling methods across key dimensions and representation types. Please refer to Table 4 for an extended comparison.

3 BACKGROUND

Variational Autoencoders (VAEs, (Kingma & Welling, 2014)): VAEs are likelihood-based latent variable models that maximize the evidence lower bound (ELBO) on the data log-likelihood:

$$\log p_\theta(x) \geq \mathbb{E}_{q_\phi(z|x)} [\log p_\theta(x|z)] - KL(q_\phi(z|x) \| p(z)) \equiv ELBO(x),$$

where $q_\phi(z|x)$ (the *encoder*) approximates the intractable posterior, and $p_\theta(x|z)$ (the *decoder*) models the likelihood. Typically, q_ϕ , p_θ , and the prior $p(z)$ are Gaussian distributions, enabling efficient training via the *reparameterization trick*. Minimizing the negative ELBO decomposes into a reconstruction loss and a KL regularization term.

Temporal VAEs (Lee et al., 2018; Ha & Schmidhuber, 2018) extend this framework to sequential data (e.g., videos) by training to maximize the sum of ELBOs over timesteps. Here, the prior for each latent at timestep t is conditioned on previous latents through a dynamics model, i.e., $\sum_t KL(q_\phi(z^t|x_t) \| p_\xi(z^t|z^{<t}))$. This enables learning temporally coherent latent dynamics suitable for video prediction.

Deep Latent Particles (DLP, Daniel & Tamar (2022a; 2024)): a VAE-based self-supervised object-centric representation for images. Each image is modeled as a set of M foreground latent particles alongside a single background particle. A foreground particle is defined as $z_{fg} = [z_p, z_s, z_d, z_t, z_f] \in \mathbb{R}^{6+d_{obj}}$, where each component encodes a disentangled stochastic attribute: position $z_p \sim \mathcal{N}(\mu_p, \sigma_p^2) \in \mathbb{R}^2$, representing the 2D keypoint coordinates; scale $z_s \sim \mathcal{N}(\mu_s, \sigma_s^2) \in \mathbb{R}^2$, representing bounding-box size; depth $z_d \sim \mathcal{N}(\mu_d, \sigma_d^2) \in \mathbb{R}$, specifying compositing order (indicating which particles appear in front of others within the rendered scene); transparency

216 $z_t \sim \text{Beta}(a, b) \in [0, 1]$, controlling visibility; and visual features $z_f \sim \mathcal{N}(\mu_f, \sigma_f^2) \in \mathbb{R}^{d_{\text{obj}}}$, encoding
 217 appearance of the local region around the particle. The particle attributes are illustrated in Figure 8 in the Appendix.
 218 The background is represented by a single particle $z_{\text{bg}} \sim \mathcal{N}(\mu_{\text{bg}}, \sigma_{\text{bg}}^2) \in \mathbb{R}^{d_{\text{bg}}}$,
 219 fixed at the image center and modeling background visual features. DLP additionally learns an alpha
 220 channel mask per particle as part of reconstruction, enabling pixel-space foreground-background
 221 decomposition. For a detailed overview of DLP and its components, as well as improvements in-
 222 troduced in this work, see Appendix A.3. Figure 1 presents example decompositions of DLP on
 223 various datasets used in this work.

224 **Notations:** Non-latent (observed) temporal variables are denoted with subscripts indicating the
 225 temporal index, e.g., x_t , while latent variables use superscripts, e.g., z^t . For latent particles, the super-
 226 script index m denotes the particle number within the set, and subscripts refer to attribute types. For
 227 example, $z_p^{m,t}$ denotes the position (keypoint) attribute p of particle m at timestep t , whereas z_{bg}^t
 228 represents the background particle at timestep t .

229 4 LATENT PARTICLE WORLD MODELS (LPWM)

230 Our objective is to construct a *world model*—a dynamics model $\mathcal{F}(I_{0:T-1}, c) = \hat{I}_{T:T+\tau-1}$ that,
 231 given a sequence of T image observations $I_{0:T-1} \in \mathbb{R}^{T \times C \times H \times W}$ (where C is the number of chan-
 232 nels, H and W are image height and width), and *optionally* conditioning inputs c (actions, language,
 233 etc.), generates a rollout of future predictions $\hat{I}_{T:T+\tau-1} \in \mathbb{R}^{\tau \times C \times H \times W}$ in an autoregressive
 234 manner. As modeling directly in pixel space is high-dimensional and sample inefficient, we propose an
 235 end-to-end latent world model, Latent Particle World Models (LPWM), which combines a compact
 236 self-supervised object-centric latent representation, based on DLP, with a novel learned dynamics
 237 module that operates over particle latents. The model is trained end-to-end such that *the representation is trained to be predictable* by the dynamics module.

238 The **Latent Particle World Model (LPWM)** consists of four components, jointly trained end-to-
 239 end as a VAE: the ENCODER \mathcal{E}_ϕ , the DECODER \mathcal{D}_θ , the CONTEXT \mathcal{K}_ψ and the DYNAMICS \mathcal{F}_ξ . The
 240 pipeline, illustrated in Figure 3, proceeds as follows: input frames are encoded into particle sets by
 241 the ENCODER, decoded back to images by the DECODER for reconstruction loss, then processed by
 242 the CONTEXT module to sample latent actions, which are combined with particles in the DYNAMICS
 243 module to predict next-step particles states and compute per-particle KL. Below, we summarize the
 244 role of each module and describe, in the main text, the core novel contributions—particularly the con-
 245 text and dynamics modules. For completeness, extended component details, minor implementation
 246 modifications of DLP and design choices are provided in Appendix A.4.

247 **ENCODER \mathcal{E}_ϕ (Appendix A.4.1):** corresponds to the VAE’s approximate posterior $q_\phi(z|x)$. It takes
 248 as input an image frame and outputs a set of latent particles: $\mathcal{E}_\phi(x = I_t) = [\{z_{\text{fg}}^{m,t}\}_{m=0}^{M-1}, z_{\text{bg}}^t]$. Each
 249 frame I_t is represented by M foreground latent particles $\{z_{\text{fg}}^{m,t}\}_{m=0}^{M-1}$, where each particle originates
 250 from per-patch learned keypoint (see Appendix A.4.1), and one background particle z_{bg}^t . Unlike
 251 DDLP, particle filtering to a subset $L \leq M$ is deferred to the decoder to preserve particle identities
 252 and **eliminates the need for explicit tracking, a requirement in DDLP that necessitated sequential
 253 frame encoding. In contrast, the proposed approach enables encoding all frames in parallel.** Fore-
 254 ground particles are parameterized as $z_{\text{fg}}^m \in \mathbb{R}^{6+d_{\text{obj}}}$, where the first six dimensions capture explicit
 255 attributes (e.g., spatial coordinates, scale, transparency), and the remaining d_{obj} dimensions repre-
 256 sent appearance features as described in Section 3. The background particle is defined as $z_{\text{bg}} \in \mathbb{R}^{d_{\text{bg}}}$,
 257 where d_{bg} denotes the latent dimension of the background visual features. These features are en-
 258 coded from a masked version of the original image, in which regions corresponding to visible fore-
 259 ground particles are masked out, as illustrated in Figure 9 in the Appendix.

260 **DECODER \mathcal{D}_θ (Appendix A.4.2):** corresponds to the VAE’s likelihood $p_\theta(x|z)$. It takes as input a
 261 set of $L \leq M$ foreground particles together with a background particle, and reconstructs an image
 262 frame: $\mathcal{D}_\theta([\{z_{\text{fg}}^{l,t}\}_{l=0}^{L-1}, z_{\text{bg}}^t]) = \hat{I}_t$. Here, L can be less than M to allow particle filtering before
 263 rendering, based on transparency or confidence measures (Daniel & Tamar, 2024), reducing memory
 264 usage without compromising reconstruction quality. **Each particle is decoded independently into an
 265 RGBA (RGB + Alpha channel) glimpse $\tilde{x}_l^p \in \mathbb{R}^{S \times S \times 4}$, where S is the glimpse size, representing
 266 the reconstructed appearance of particle l . The alpha mask (Alpha channel) is modulated by the
 267 transparency and depth attribute of each particle, and the decoded glimpse is then placed into the full-**
 268

resolution canvas to create \hat{x}_{fg} . The background is decoded from z_{bg} using a standard upsampling network to produce \hat{x}_{bg} , and the final reconstructed image is stitched according to $\hat{x} = \alpha \odot \hat{x}_{\text{fg}} + (1 - \alpha) \odot \hat{x}_{\text{bg}}$, where α is the effective mask obtained from the compositing process.

CONTEXT \mathcal{K}_ψ : We now present the main novel component added to the DLP framework—the CONTEXT module \mathcal{K}_ψ —designed to model *stochastic dynamics* in actionless videos. In such videos, scene dynamics are not fully determined by initial frames (e.g., a ball beginning to roll (Lin et al., 2020a) where initial conditions fully determine future dynamics) but can also be influenced by external signals such as actions (e.g., a robotic gripper (Ebert et al., 2017a)).

Commonly, stochastic transitions are captured by introducing *latent actions* (Menapace et al., 2021; Bruce et al., 2024; Gao et al., 2025; Villar-Corrales & Behnke, 2025). Typically, a latent action z_c is learned through an autoencoding scheme: an inverse model infers $z_c^t = \mathcal{K}_\psi^{\text{inv}}(I_{t+1}, I_t)$ from consecutive frames, and a decoder reconstructs the future frame $\hat{I}_{t+1} = \mathcal{D}_\theta(I_t, z_c^t)$, trained via reconstruction loss. To prevent z_c^t from trivially memorizing I_{t+1} , strong regularization is applied through a vector quantization bottleneck (Bruce et al., 2024; Ye et al., 2025) or KL-regularization to a fixed prior (Gao et al., 2025). However, these approaches use a *global* latent action vector representing all changes between frames, limiting their ability to model local dynamics in multi-entity scenes (e.g., independent enemy movements in Mario or secondary contact events in robotics). A global action vector cannot naturally disentangle these local dynamics.

In this work, we introduce the CONTEXT module \mathcal{K}_ψ , a novel *per-particle* mechanism for latent action modeling. Unlike prior work (Villar-Corrales & Behnke, 2025; Gao et al., 2025), we model a latent action for each particle, directly governing the transition from $z_i^{m,t}$ to $z_i^{m,t+1}$. Regularization is not imposed via a fixed prior, but instead learned through a *latent policy*, which models the distribution of latent actions conditioned on the current state. This per-particle formulation enables the representation of multiple, simultaneous interactions, and allows stochastic sampling of latent actions at inference time, capturing multimodality (e.g., moving left or right from the same state). **The proposed module explicitly separates the modeling of latent actions (which encapsulate the stochastic aspects) from the dynamics prediction.**

Formally, the CONTEXT module takes as input a sequence of particle sets across $T + 1$ frames, **optionally** conditioned on external signals $\{c_t\}_{t=0}^T$ (e.g., control actions, goal images, or language instructions). It outputs a sequence of per-particle latent contexts:

$$\mathcal{K}_\psi(\{\{z_{\text{fg}}^{m,t}\}_{m=0}^{M-1}, z_{\text{bg}}^t, c_t\}_{t=0}^T) = \{\{z_{c,\text{fg}}^{m,t}\}_{m=0}^{M-1}, z_{c,\text{bg}}^t\}_{t=0}^{T-1}.$$

The CONTEXT module is implemented as a *causal spatio-temporal transformer* (Zhu et al., 2024), Appendix A.4.5), which jointly processes particles across space and time while ensuring autoregressive temporal dependencies. It is composed of two complementary heads: (1) **Latent inverse dynamics** $p_\psi^{\text{inv}}(z_c^t \mid z^{t+1}, z^t, \dots, z^0, c_t)$, which predicts the latent action responsible for the transition between consecutive states; (2) **Latent policy** $p_\psi^{\text{policy}}(z_c^t \mid z^t, \dots, z^0, c_t)$, which models the distribution of latent actions conditioned on the current state.

The latent policy serves as a prior that regularizes the inverse dynamics via a KL-divergence penalty in the VAE objective (Appendix A.4.6). Specifically, the latent actions are modeled as Gaussian distributions, $z_c \sim \mathcal{N}(\mu_c, \sigma_c^2)$, parameterized by the context module. At training time, latent actions are obtained through the inverse dynamics head, ensuring consistency with observed transitions. At inference time, latent actions can instead be sampled directly from the latent policy prior, enabling stochastic rollouts of the world model. Conditioning on external signals (global actions, language instructions or image-based goals) *within* the latent context module maps global scene-level signals into per-particle latent actions. For instance, given a language instruction, \mathcal{K}_ψ learns to translate it into per-particle latent actions that drive the dynamics towards satisfying the instruction. When no external conditioning is provided, \mathcal{K}_ψ simply infers latent actions from past particle trajectories. When conditioned on a goal image or a language instruction, sampling from the latent policy can be further utilized for planning in the particles space, as we demonstrate later in the experiments section. In Appendix A.4.3 we describe how the global action, language and image conditioning mechanisms are implemented. **Finally, we note that the proposed novel CONTEXT module is broadly applicable to general-purpose, non-object-centric architectures utilizing patch-based representations, as demonstrated in the experiments section.** The CONTEXT module is illustrated in Figure 3.

DYNAMICS \mathcal{F}_ξ : The dynamics module implements the VAE’s autoregressive dynamics prior $p_\xi(z^t | z^{t-1}, \dots, z^0)$. It predicts the particles at the next timestep conditioned on the current particles and their corresponding latent actions provided by the context module:

$$\mathcal{F}_\xi\left(\{\{z_{\text{fg}}^{m,t}\}_{m=0}^{M-1}, z_{\text{bg}}^t, z_c^t\}_{t=0}^{T-1}\right) = \{\{\hat{z}_{\text{fg}}^{m,t}\}_{m=0}^{M-1}, \hat{z}_{\text{bg}}^t\}_{t=1}^T.$$

It is implemented as a causal spatio-temporal transformer, where particles are conditioned on their corresponding latent actions via AdaLN (Zhu et al., 2024). The module outputs distribution parameters serving as the prior in the KL-divergence between the encoder posterior and dynamics prior.¹

Unlike DDLP (Daniel & Tamar, 2024), LPWM retains all M encoded particles with their identities (patch origins) across timesteps, removing the need to track particles over time. This results in an implicit regime where particles can move in a certain region around their origin, balancing between two extremes: patch-based methods (e.g., VideoGPT (Yan et al., 2021)), where particles are fixed patches with evolving features, and object-centric particle models (Daniel & Tamar, 2024), which track a subset of free-moving particles with explicit attributes that can traverse the entire canvas. We discuss tracking limitations and the implications of this regime in Appendix A.4.4.

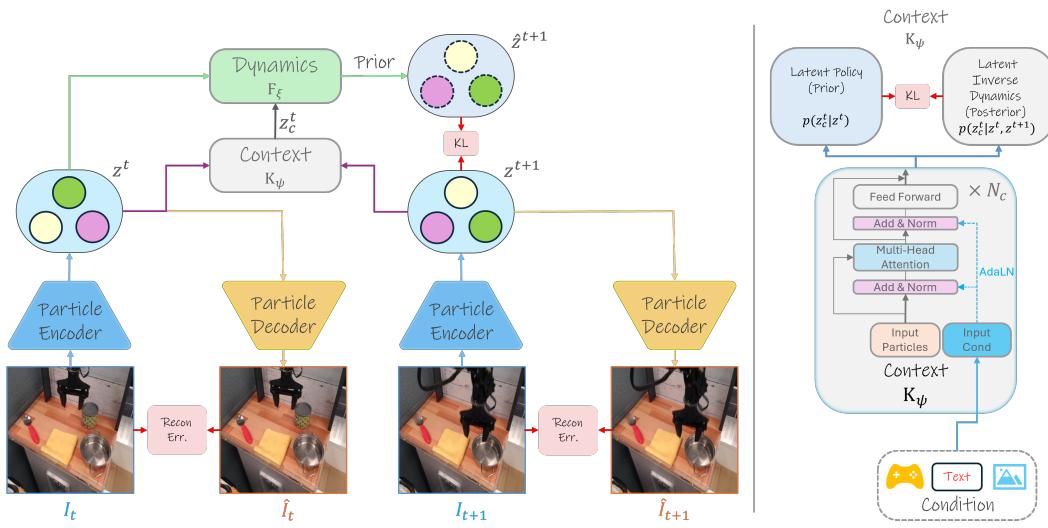


Figure 3: Latent Particle World Model architecture. Left: Input frames are encoded into particle sets by the ENCODER and decoded back to images by the DECODER. The CONTEXT module then processes the particles to sample latent actions, which are combined with the particles in the DYNAMICS module to predict next-step particle states. Right: The CONTEXT module models the per-particle latent action distribution. During training, we use the latent inverse dynamics head, while at inference, the latent policy is employed for sampling.

Optimization and Training Details: LPWM, following DDLP, is trained by maximizing a temporal ELBO, or minimizing the sum of reconstruction errors and KL-divergences, decomposed into a *static* term for the first frame and a *dynamic* term for subsequent frames: $\mathcal{L}_{\text{LPWM}} = -\sum_{t=0}^{T-1} \text{ELBO}(x_t = I_t) = \mathcal{L}_{\text{static}} + \mathcal{L}_{\text{dynamic}}$. The static term covers the single-frame setting, computing per-particle KL with respect to fixed priors, and adds regularization on particle transparency. The dynamic term includes KL losses for both latent actions and predicted future particles. All KL terms are evaluated in closed-form. Both losses also include frame-wise reconstruction loss: pixel-wise MSE for simulated datasets, or MSE and LPIPS (Hoshen et al., 2019) for real-world data. A key difference from DDLP is that KL contributions are masked using the particle transparency attribute (Lin et al., 2020a), so only visible particles affect the KL loss. Full loss details are provided in Appendix A.4.6. For all experiments, the dimension of the latent actions is set to $d_{\text{ctx}} = 7$. Models are optimized end-to-end with Adam (Kingma & Ba, 2014) with a learning rate of 8×10^{-5} and implemented in PyTorch (Paszke et al., 2017). Hyperparameter details are in Appendix A.9. Code and pretrained models will be released publicly.

¹The priors for the first timestep particles are fixed hyperparameters, consistent with DLP’s single-image setup.

378 **5 EXPERIMENTS**
 379

380 We design our experimental suite with the following key goals: (1) benchmark LPWM on uncondi-
 381 tional and conditional video prediction across real-world and synthetic datasets; (2) analyze the
 382 impact of LPWM’s design choices through ablation studies; and (3) demonstrate a practical imita-
 383 tion learning application on diverse, multi-object, long-horizon tasks and environments.
 384

385 **5.1 SELF-SUPERVISED OBJECT-CENTRIC VIDEO PREDICTION AND GENERATION**
 386

387 We evaluate LPWM across multiple video prediction settings, including unconditional, action-
 388 conditioned, and language-conditioned scenarios. Additional demonstrations of image condition-
 389 ing and multi-view training, particularly for goal-conditioned imitation learning, are presented in
 390 Section 5.2.

391 **Datasets:** we evaluate our approach on a diverse set of datasets, spanning real-world and simu-
 392 lated domains with varying dynamics and interaction densities. Simulated datasets include `OBJ3D`,
 393 featuring dense interactions and deterministic 3D physics (Lin et al., 2020a), `PHYRE`, a sparse in-
 394 teraction 2D physical reasoning benchmark with deterministic dynamics (Bakhtin et al., 2019), and
 395 `Mario`, a stochastic 2D dataset with dense interactions from expert Super Mario Bros gameplay
 396 videos (Smirnov et al., 2021). Real-world datasets encompass robotic datasets such as `Sketchy`
 397 with sparse stochastic interactions (Cabi et al., 2019), `BAIR` and `Bridge` featuring dense, stochas-
 398 tic robotic manipulation with and without language instructions (Ebert et al., 2017a; Walke et al.,
 399 2023), and `LanguageTable` featuring language-guided, dense object rearrangements (Lynch
 400 et al., 2023). Unless stated otherwise, all datasets are trained at 128×128 resolution. We pro-
 401 vide a detailed description of each dataset in Appendix A.7.

402 **Baselines:** Our main baseline is a non-object-centric patch-based dynamics VAE (DVAE) world
 403 model, where “particles” correspond to fixed grid patch embeddings matching the number of LPWM
 404 particles, M . This baseline shares the same architecture and parameter count as LPWM and sup-
 405 ports identical conditioning but lacks explicit attribute modeling. It closely resembles large-scale
 406 video generation models using patch-based tokenization (Yan et al., 2021; Yang et al., 2024b). Un-
 407 like pre-trained or quantized patch embeddings, ours are learned end-to-end like LPWM’s parti-
 408 cles, with a higher latent dimension to offset the absence of object-centric structure. When ap-
 409 plicable, we also compare against recent object-centric video prediction methods, including the
 410 slot-based `PlaySlot` (Villar-Corrales & Behnke, 2025) for latent-action-conditioned tasks; and for
 411 deterministic dynamics datasets, the patch-based `G-SWM` (Lin et al., 2020a), the slot-based `Slot-
 412 Former/OCVP` (Wu et al., 2022b; Villar-Corrales et al., 2023), and the particle-based `DDLP` (Daniel
 413 & Tamar, 2024). Extended baseline details are provided in Appendix A.8.

414 **Metrics:** For latent-action-conditioned video prediction and datasets with deterministic dynamics,
 415 we report standard visual similarity metrics—`PSNR`, `SSIM` (Wang et al., 2004), and `LPIPS` (Zhang
 416 et al., 2018)—to compare generated sequences against ground truth². For stochastic video genera-
 417 tion, we compute the Fréchet Video Distance (`FVD`, Unterthiner et al. (2018); Hu (2023)) to evaluate
 418 the distributional similarity between generated and real video sets.

419 **Results:** LPWM outperforms all baselines on `LPIPS` and `FVD` metrics across stochastic dynamic
 420 datasets under various conditioning settings (Table 2). It effectively preserves *object permanence*
 421 throughout generation (Figure 1) and models complex object interactions, unlike competing methods
 422 that exhibit blurring or deformation. LPWM also supports multi-modal sampling, producing diverse
 423 plausible rollouts from identical initial conditions (see Appendix A.10 and videos). Compared to
 424 the slot-based `PlaySlot` baseline, which suffers from object drifting and blurry reconstructions due
 425 to global latent actions and limited number of slots, LPWM’s per-particle latent actions and low-
 426 dimensional representation scale effectively to many-object scenarios. DVAE, a non-object-centric
 427 baseline, performs well on synthetic data but lacks robustness on real-world datasets, highlighting
 428 the advantages of object-centric modeling. Finally, we demonstrate that a compact LPWM model
 429 trained on `BAIR-64` matches larger video generation models in `FVD` (89.4, Table 9), emphasizing
 430 how object-centric inductive biases enable superior modeling of object interactions beyond what

431 ²Our evaluation follows the `DDLP` protocol (Daniel & Tamar, 2024) using the open-source `PIQA` li-
 432 brary (Rozet, 2022) for perceptual metrics.

scale alone achieves. Extended results are in Appendix A.10 and videos are available: <https://sites.google.com/view/lpwm>.

Dataset	Sketchy-U				BAIR-U				Mario-U			
Setting	$t : 20, c : 6, p : 44$				$t : 16, c : 1, p : 15$				$t : 20, c : 6, p : 34$			
	PSNR↑	SSIM↑	LPIPS↓	FVD↓	PSNR↑	SSIM↑	LPIPS↓	FVD↓	PSNR↑	SSIM↑	LPIPS↓	FVD↓
DVAE	25.75±3.85	0.86±0.08	0.113±0.06	140.06	26±2.2	0.90±0.03	0.063±0.02	164.41	23.35±4.28	0.93±0.04	0.087±0.05	277.41
PlayShot	22.63±3.90	0.80±0.09	0.275±0.06	—	17.56±1.50	0.57±0.05	0.483±0.03	—	16.38±2.78	0.68±0.1	0.314±0.09	—
LPWM (Ours)	28.41±3.8	0.91±0.06	0.070±0.04	85.45	25.66±1.52	0.89±0.02	0.062±0.02	163.91	27.50±5.52	0.95±0.04	0.035±0.02	195.95
Dataset	Sketchy-A				LanguageTable-A				LanguageTable-L			
Setting	$t : 20, c : 6, p : 44$				$t : 20, c : 1, p : 15$				$t : 20, c : 1, p : 15$			
	PSNR↑	SSIM↑	LPIPS↓		PSNR↑	SSIM↑	LPIPS↓		FVD↓		FVD↓	
DVAE	25.33±4.2	0.85±0.09	0.111±0.06	—	29.29±5.28	0.94±0.04	0.038±0.02	—	26.78	—	146.85	—
LPWM (Ours)	27.06±4.26	0.88±0.09	0.083±0.05	—	29.5±5.06	0.94±0.04	0.037±0.02	—	15.96	—	47.78	—

Table 2: Quantitative results on latent-action-conditioned (U), action-conditioned (A), and language-conditioned (L) video prediction. FVD is reported for stochastic generation by sampling from the latent policy. t is the training horizon, c is the conditional frames at inference, and p is the predicted frames at inference.

Ablation Analysis: We conduct a series of ablation studies on our design choices, including global versus per-particle latent actions, the dimensionality of the latent action vector, and types of positional embeddings. As detailed in Appendix A.10.3, our results demonstrate that per-particle latent actions are essential for achieving strong performance and that the model is robust to latent action dimension near the effective particle dimension ($6 + d_{\text{obj}}$). Furthermore, embedding positional information via AdaLN outperforms standard additive positional embeddings.

5.2 IMITATION LEARNING WITH PRE-TRAINED LPWM

Pre-training LPWM on actionless video datasets enables it to predict video dynamics using latent actions, suggesting that these latent actions capture actionable information. Assuming access to ground-truth actions and that the latent actions effectively encode dynamics, learning a simple mapping from latent actions to true actions may suffice to derive a policy, which we verify next. Formally, once paired video-action trajectories ($I_{0:T}, a_{0:T-1}$) are available (e.g., collected post-hoc), pre-trained LPWMs can be adapted to goal-conditioned imitation tasks using image-based goals (details in Appendix A.4.3). For each trajectory, image sequences are encoded by a frozen LPWM to produce per-particle latent actions $\{z_c^{m,t}\}_{m=0}^M$ via the latent inverse dynamics head $p_{\psi}^{\text{inv}}(z_c^t \mid z \leq T)$. Policy learning maps latent actions to global actions using a simple, compact, two-layer attention pooling transformer (Haramati et al., 2024). At inference, given a goal image and a rollout horizon k , LPWM is autoregressively unrolled for $k + 1$ steps to generate particles and their k latent actions. The trained mapping network outputs a sequence of k global actions, which are executed sequentially in the environment (Zhao et al., 2023); this process is repeated until the maximum number of environment steps is reached. Implementation and training details are described in Appendix A.5.

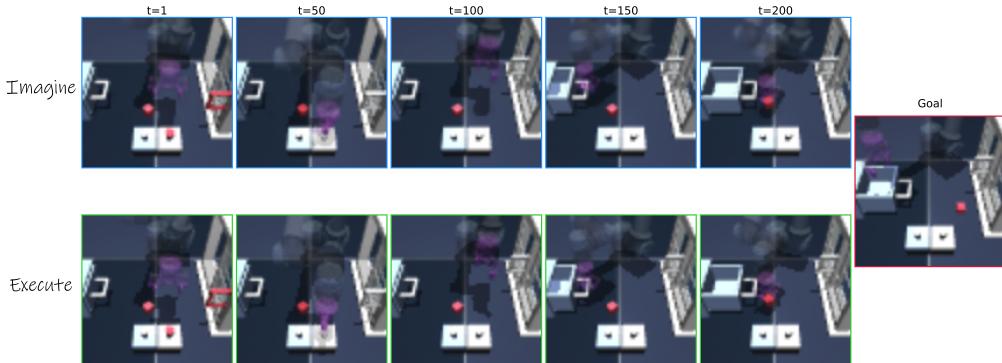
Task	EC Diffusion Policy	EC Diffuser	LPWM (Ours)	Task	GCIVL	HIQL	LPWM (Ours)
1 Cube	88.7 ± 3	94.8 ± 1.5	92.7 ± 4.5	task1	84 ± 4	80 ± 6	100 ± 0
2 Cubes	38.8 ± 10.6	91.7 ± 3	74 ± 4	task2	24 ± 8	81 ± 7	6 ± 9
3 Cubes	66.8 ± 17	89.4 ± 2.5	62.1 ± 4.4	task3	16 ± 8	61 ± 11	89 ± 9

Table 3: Imitation learning results (success rates) on PandaPush (left) and OGBench-Scene (right).

Environments: PandaPush challenges manipulation of up to three cubes observed from two camera views, while OGBench-Scene evaluates long-horizon planning involving diverse objects such as drawers and buttons. We train a single LPWM per environment that *encompasses all tasks*, whereas for PandaPush, the baselines train separate policies for each task, effectively giving them an advantage by optimizing individually for each task.

Results: Table 3 summarizes performance compared to the two best baselines in each (full results in Tables 12 and 13). On PandaPush, LPWM outperforms all baselines except EC Diffuser and matches its performance on the 1-cube task. We employ the multi-view LPWM variant here, modeling particle dynamics from multiple views simultaneously, highlighting the framework’s flexibility (see Appendix A.4.5). On OGBench, despite the challenge of highly suboptimal, unstructured ‘play’ data hindering behavioral cloning, our method achieves strong results on tasks involving up to four atomic behaviors (task1 and task3), outperforming all baselines on these. **For task4 and task5, all methods fail (with the exception of HIQL attaining 20% success rate on task4).** Although we employ a relatively simple policy, LPWM demonstrates competitive performance, underscoring its potential for decision-making applications. **Figure 4 visualizes an example imagined**

486 trajectory alongside environment execution on `OGBench`, and rollout videos are available on the
 487 project website. Full results, baseline details and more visualizations are in Appendix A.10.4.
 488



502
 503 Figure 4: LPWM generated goal-conditioned imagined trajectories (top)
 504 executions (bottom) through a learned mapping to actions on
 505 `OGBench-Scene`. The imagined trajectories closely match the actual executions,
 506 demonstrating LPWM’s predictive accuracy.

507 6 CONCLUSION

508
 509 We introduced Latent Particle World Model (LPWM), advancing self-supervised object-centric
 510 world modeling for real-world data. LPWM discovers keypoints, bounding boxes, and masks in a
 511 fully self-supervised fashion, decomposing scenes into latent particles whose temporal evolution is
 512 modeled by novel latent action and dynamics modules. This design enables state-of-the-art stochastic
 513 object-centric video generation while flexibly supporting action, language, and image condition-
 514 ing, as well as multi-view inputs. LPWM shows strong potential for decision-making tasks,
 515 including imitation learning as demonstrated here.

516 **Limitations:** LPWM presently depends on datasets exhibiting small camera motion and recurring
 517 scenarios, such as robotics or video games; it is not yet applicable to general-purpose large-scale
 518 video data. Future work could address scaling to diverse datasets, unified multi-modal condition-
 519 ing (e.g., simultaneous action, language, and image signals), and integration with explicit reward
 520 modeling for reinforcement learning.

521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539

540 7 ETHICS STATEMENT
541

542 This work introduces a video generation model evaluated on both simulated and real-world robotics
543 datasets. As discussed in the limitations above, our model is not demonstrated on general-purpose
544 video data or applied to sensitive content. All datasets used are either publicly available or collected
545 in controlled, non-sensitive environments. We do not foresee ethical or societal risks arising from
546 this work as presented; however, as with any generative model, future extensions to broader or less-
547 controlled domains should carefully consider potential misuse and ensure responsible deployment.

548 8 REPRODUCIBILITY STATEMENT
549
550

551 We strive to facilitate reproducibility and transparency in self-supervised object-centric world mod-
552 eling. To this end, we provide code excerpts throughout the appendix, along with extended imple-
553 mentation details and the full list of hyperparameters in Appendix A.9. We will release our source
554 code and pre-trained model checkpoints for all variants described in this work. These resources aim
555 to make it straightforward for others to build upon our framework.

556 557 REFERENCES
558

559 Elio Alonso, Adam Jolley, Vincent Micheli, Anssi Kanervisto, Amos J Storkey, Tim Pearce, and
560 François Fleuret. Diffusion for world modeling: Visual details matter in atari. *Advances in
561 Neural Information Processing Systems*, 37:58757–58791, 2024.

562 Mohammad Babaeizadeh, Mohammad Taghi Saffar, Suraj Nair, Sergey Levine, Chelsea Finn,
563 and Dumitru Erhan. Fitvid: Overfitting in pixel-level video prediction. *arXiv preprint
564 arXiv:2106.13195*, 2021.

565 Anton Bakhtin, Laurens van der Maaten, Justin Johnson, Laura Gustafson, and Ross Girshick.
566 Phyre: A new benchmark for physical reasoning. *Advances in Neural Information Processing
567 Systems*, 32, 2019.

568 Irina Barnaveli, Simone Viganò, Daniel Reznik, Patrick Haggard, and Christian F Doeller.
569 Hippocampal-entorhinal cognitive maps and cortical motor system represent action plans and
570 their outcomes. *Nature Communications*, 16(1):4139, 2025.

572 Peter Battaglia, Razvan Pascanu, Matthew Lai, Danilo Jimenez Rezende, et al. Interaction networks
573 for learning about objects, relations and physics. *Advances in neural information processing
574 systems*, 29, 2016.

575 Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel Mendelevitch, Maciej Kilian, Dominik
576 Lorenz, Yam Levi, Zion English, Vikram Voleti, Adam Letts, et al. Stable video diffusion: Scaling
577 latent video diffusion models to large datasets. *arXiv preprint arXiv:2311.15127*, 2023.

578 Alexandre Brown and Glen Berseth. Segdac: Segmentation-driven actor-critic for visual reinforce-
579 ment learning. *arXiv preprint arXiv:2508.09325*, 2025.

581 Jake Bruce, Michael D Dennis, Ashley Edwards, Jack Parker-Holder, Yuge Shi, Edward Hughes,
582 Matthew Lai, Aditi Mavalankar, Richie Steigerwald, Chris Apps, et al. Genie: Generative inter-
583 active environments. In *Forty-first International Conference on Machine Learning*, 2024.

584 Christopher P Burgess, Loic Matthey, Nicholas Watters, Rishabh Kabra, Irina Higgins, Matt
585 Botvinick, and Alexander Lerchner. Monet: Unsupervised scene decomposition and represen-
586 tation. *arXiv preprint arXiv:1901.11390*, 2019.

587 Serkan Cabi, Sergio Gómez Colmenarejo, Alexander Novikov, Ksenia Konyushkova, Scott Reed,
588 Rae Jeong, Konrad Zolna, Yusuf Aytar, David Budden, Mel Vecerik, et al. Scaling data-
589 driven robotics with reward sketching and batch reinforcement learning. *arXiv preprint
590 arXiv:1909.12200*, 2019.

592 Jun Cen, Chaohui Yu, Hangjie Yuan, Yuming Jiang, Siteng Huang, Jiayan Guo, Xin Li, Yibing
593 Song, Hao Luo, Fan Wang, et al. Worldvla: Towards autoregressive action world model. *arXiv
594 preprint arXiv:2506.21539*, 2025.

594 Cheng Chi, Siyuan Feng, Yilun Du, Zhenjia Xu, Eric Cousineau, Benjamin Burchfiel, and Shuran
 595 Song. Diffusion policy: Visuomotor policy learning via action diffusion. In *Proceedings of*
 596 *Robotics: Science and Systems (RSS)*, 2023.

597

598 Aidan Clark, Jeff Donahue, and Karen Simonyan. Adversarial video generation on complex datasets.
 599 *arXiv preprint arXiv:1907.06571*, 2019.

600 Jeremy A Collins, Lorand Cheng, Kunal Aneja, Albert Wilcox, Benjamin Joffe, and Animesh
 601 Garg. Amplify: Actionless motion priors for robot learning from videos. *arXiv preprint*
 602 *arXiv:2506.14198*, 2025.

603

604 Eric Crawford and Joelle Pineau. Spatially invariant unsupervised object detection with convolutional
 605 neural networks. In *AAAI*, 2019.

606 Zichen Cui, Hengkai Pan, Aadhithya Iyer, Siddhant Haldar, and Lerrel Pinto. Dynamo: In-domain
 607 dynamics pretraining for visuo-motor control. *Advances in Neural Information Processing Systems*,
 608 37:33933–33961, 2024.

609

610 Tal Daniel. Ddlp: Unsupervised object-centric video prediction with deep dynamic latent particles.
 611 <https://github.com/taldatech/ddlp>, 2024.

612 Tal Daniel and Aviv Tamar. Unsupervised image representation learning with deep latent particles.
 613 In *Proceedings of the 39th International Conference on Machine Learning*, volume 162 of
 614 *Proceedings of Machine Learning Research*, pp. 4644–4665. PMLR, 17–23 Jul 2022a.

615

616 Tal Daniel and Aviv Tamar. Unsupervised image representation learning with deep latent particles.
 617 <https://github.com/taldatech/deep-latent-particles-pytorch>, 2022b.

618

619 Tal Daniel and Aviv Tamar. DDLP: Unsupervised object-centric video prediction with deep dynamic
 620 latent particles. *Transactions on Machine Learning Research*, 2024. ISSN 2835-8856.

621

622 Aram Davtyan, Sepehr Sameni, and Paolo Favaro. Efficient video prediction via sparsely conditioned
 623 flow matching. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp.
 624 23263–23274, 2023.

625

626 Antoine Dedieu, Joseph Ortiz, Xinghua Lou, Carter Wendelken, Wolfgang Lehrach, J Swaroop
 627 Guntupalli, Miguel Lazaro-Gredilla, and Kevin Patrick Murphy. Improving transformer world
 628 models for data-efficient rl. *arXiv preprint arXiv:2502.01591*, 2025.

629

630 Emily Denton and Rob Fergus. Stochastic video generation with a learned prior. In *International
 631 conference on machine learning*, pp. 1174–1183. PMLR, 2018.

632

633 Aniket Didolkar, Andrii Zadaianchuk, Anirudh Goyal, Mike Mozer, Yoshua Bengio, Georg Mar-
 634 tius, and Maximilian Seitzer. Zero-shot object-centric representation learning. *arXiv preprint*
 635 *arXiv:2408.09162*, 2024.

636

637 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
 638 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
 639 image is worth 16x16 words: Transformers for image recognition at scale. *arXiv preprint*
 640 *arXiv:2010.11929*, 2020.

641

642 Frederik Ebert, Chelsea Finn, Alex X Lee, and Sergey Levine. Self-supervised visual planning with
 643 temporal skip connections. *CoRL*, 12(16):23, 2017a.

644

645 Frederik Ebert, Chelsea Finn, Alex X Lee, and Sergey Levine. Self-supervised visual planning with
 646 temporal skip connections. In *CoRL*, pp. 344–356, 2017b.

647

648 Ashley Edwards, Himanshu Sahni, Yannick Schroecker, and Charles Isbell. Imitating latent policies
 649 from observation. In *International conference on machine learning*, pp. 1755–1763. PMLR, 2019.

650

651 Gamaleldin Fathy Elsayed, Aravindh Mahendran, Sjoerd van Steenkiste, Klaus Greff, Michael Cur-
 652 tis Mozer, and Thomas Kipf. SAVi++: Towards end-to-end object-centric learning from real-
 653 world videos. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.),
 654 *Advances in Neural Information Processing Systems*, 2022.

648 Martin Engelcke, Adam R Kosiorek, Oiwi Parker Jones, and Ingmar Posner. Genesis: Gener-
 649 ative scene inference and sampling with object-centric latent representations. *arXiv preprint*
 650 *arXiv:1907.13052*, 2019.

651

652 Martin Engelcke, Oiwi Parker Jones, and Ingmar Posner. Genesis-v2: Inferring unordered object
 653 representations without iterative refinement. *arXiv preprint arXiv:2104.09958*, 2021.

654

655 Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image
 656 synthesis. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recogni-*
 657 *tion*, pp. 12873–12883, 2021.

658

659 Benjamin Eysenbach, Tianjun Zhang, Sergey Levine, and Russ R Salakhutdinov. Contrastive learn-
 660 ing as goal-conditioned reinforcement learning. *Advances in Neural Information Processing Sys-*
 661 *tems*, 35:35603–35620, 2022.

662

663 Stefano Ferraro, Pietro Mazzaglia, Tim Verbelen, Bart Dhoedt, and Sai Rajeswar. Represent-
 664 ing positional information in generative world models for object manipulation. *arXiv preprint*
 665 *arXiv:2409.12005*, 2024.

666

667 Stefano Ferraro, Pietro Mazzaglia, Tim Verbelen, and Bart Dhoedt. Focus: object-centric world
 668 models for robotic manipulation. *Frontiers in Neurorobotics*, 19:1585386, 2025.

669

670 Chelsea Finn, Ian Goodfellow, and Sergey Levine. Unsupervised learning for physical interaction
 671 through video prediction. *Advances in neural information processing systems*, 29, 2016a.

672

673 Chelsea Finn, Xin Yu Tan, Yan Duan, Trevor Darrell, Sergey Levine, and Pieter Abbeel. Deep spatial
 674 autoencoders for visuomotor learning. In *2016 IEEE International Conference on Robotics and*
 675 *Automation (ICRA)*, pp. 512–519. IEEE, 2016b.

676

677 Shenyuan Gao, Siyuan Zhou, Yilun Du, Jun Zhang, and Chuang Gan. Adaworld: Learning adaptable
 678 world models with latent actions. *arXiv preprint arXiv:2503.18938*, 2025.

679

680 Xiaojie Gao, Yueming Jin, Qi Dou, Chi-Wing Fu, and Pheng-Ann Heng. Accurate grid keypoint
 681 learning for efficient video prediction. In *2021 IEEE/RSJ International Conference on Intelligent*
 682 *Robots and Systems (IROS)*, pp. 5908–5915. IEEE, 2021.

683

684 Ofri Goldenberg, Tal Daniel, Dafei Xiao, Yael Shalev Ezra, and Yoav Shechtman. Physics-informed
 685 generative model for 3d localization microscopy. *bioRxiv*, pp. 2025–07, 2025.

686

687 Xinrui Gong, Oliver Hahn, Christoph Reich, Krishnakant Singh, Simone Schaub-Meyer, Daniel
 688 Cremers, and Stefan Roth. Motion-refined dinosaur for unsupervised multi-object discovery.
 689 *arXiv preprint arXiv:2509.02545*, 2025.

690

691 Melvyn A. Goodale and A. David Milner. Separate visual pathways for perception and action.
 692 *Trends in Neurosciences*, 15:20–25, 1992.

693

694 Klaus Greff, Raphaël Lopez Kaufman, Rishabh Kabra, Nick Watters, Christopher Burgess, Daniel
 695 Zoran, Loic Matthey, Matthew Botvinick, and Alexander Lerchner. Multi-object representation
 696 learning with iterative variational inference. In *International Conference on Machine Learning*,
 697 pp. 2424–2433. PMLR, 2019.

698

699 David Ha and Jürgen Schmidhuber. World models. *arXiv preprint arXiv:1803.10122*, 2018.

700

701 Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learn-
 702 ing behaviors by latent imagination. In *International Conference on Learning Representations*,
 703 2020a.

704

705 Danijar Hafner, Timothy Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari with dis-
 706 crete world models. *arXiv preprint arXiv:2010.02193*, 2020b.

707

708 Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains
 709 through world models. *arXiv preprint arXiv:2301.04104*, 2023.

702 Dan Haramati, Tal Daniel, and Aviv Tamar. Entity-centric reinforcement learning for object ma-
 703 nipulation from pixels. In *The Twelfth International Conference on Learning Representations*,
 704 2024.

705 Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick,
 706 Shakir Mohamed, and Alexander Lerchner. beta-VAE: Learning basic visual concepts with a
 707 constrained variational framework. In *International Conference on Learning Representations*,
 708 2017.

709 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in*
 710 *Neural Information Processing Systems*, 33:6840–6851, 2020.

711 Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J
 712 Fleet. Video diffusion models. *Advances in neural information processing systems*, 35:8633–
 713 8646, 2022.

714 Tobias Höppe, Arash Mehrjou, Stefan Bauer, Didrik Nielsen, and Andrea Dittadi. Diffusion models
 715 for video prediction and infilling. *arXiv preprint arXiv:2206.07696*, 2022.

716 Yedid Hoshen, Ke Li, and Jitendra Malik. Non-adversarial image synthesis with generative la-
 717 tent nearest neighbors. In *Proceedings of the IEEE Conference on Computer Vision and Pattern*
 718 *Recognition*, pp. 5811–5819, 2019.

719 Junyao Hu. Common metrics on video quality. https://github.com/JunyaoHu/common_
 720 *metrics_on_video_quality/*, 2023.

721 Yucheng Hu, Yanjiang Guo, Pengchao Wang, Xiaoyu Chen, Yen-Jen Wang, Jianke Zhang, Koushil
 722 Sreenath, Chaochao Lu, and Jianyu Chen. Video prediction policy: A generalist robot policy with
 723 predictive visual representations. In *Forty-second International Conference on Machine Learning*,
 724 2025.

725 Max Jaderberg, Karen Simonyan, Andrew Zisserman, et al. Spatial transformer networks. *Advances*
 726 *in neural information processing systems*, 28:2017–2025, 2015.

727 Tomas Jakab, Ankush Gupta, Hakan Bilen, and Andrea Vedaldi. Unsupervised learning of object
 728 landmarks through conditional image generation. In *Proceedings of the 32nd International Con-
 729 ference on Neural Information Processing Systems*, pp. 4020–4031, 2018.

730 Joel Jang, Seonghyeon Ye, Zongyu Lin, Jiannan Xiang, Johan Bjorck, Yu Fang, Fengyuan Hu,
 731 Spencer Huang, Kaushil Kundalia, Yen-Chen Lin, et al. Dreamgen: Unlocking generalization in
 732 robot learning through video world models. *arXiv preprint arXiv:2505.12705*, 2025.

733 Michael Janner, Yilun Du, Joshua Tenenbaum, and Sergey Levine. Planning with diffusion for
 734 flexible behavior synthesis. In *International Conference on Machine Learning*, 2022.

735 Youngjoon Jeong, Junha Chun, Soonwoo Cha, and Taesup Kim. Object-centric world model for
 736 language-guided manipulation. *arXiv preprint arXiv:2503.06170*, 2025.

737 Jindong Jiang, Sepehr Janghorbani, Gerard De Melo, and Sungjin Ahn. Scalor: Generative world
 738 models with scalable object representations. *arXiv preprint arXiv:1910.02384*, 2019.

739 Justin Johnson, Bharath Hariharan, Laurens Van Der Maaten, Li Fei-Fei, C Lawrence Zitnick, and
 740 Ross Girshick. Clevr: A diagnostic dataset for compositional language and elementary visual
 741 reasoning. In *Proceedings of the IEEE conference on computer vision and pattern recognition*,
 742 pp. 2901–2910, 2017.

743 Nikola Jukić, Tim Lebailly, and Tinne Tuytelaars. Object-centric pretraining via target encoder
 744 bootstrapping. In *The Thirteenth International Conference on Learning Representations*, 2025.

745 Rishabh Kabra, Daniel Zoran, Goker Erdogan, Loic Matthey, Antonia Creswell, Matt Botvinick,
 746 Alexander Lerchner, and Chris Burgess. Simone: View-invariant, temporally-abstacted object
 747 representations via unsupervised video decomposition. *Advances in Neural Information Process-
 748 ing Systems*, 34:20146–20159, 2021.

756 Ioannis Kakogeorgiou, Spyros Gidaris, Konstantinos Karantzalos, and Nikos Komodakis. Spot:
 757 Self-training with patch-order permutation for object-centric learning with autoregressive trans-
 758 formers. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
 759 nition*, pp. 22776–22786, 2024.

760 Yunji Kim, Seonghyeon Nam, In Cho, and Seon Joo Kim. Unsupervised keypoint learning for
 761 guiding class-conditional video prediction. *Advances in neural information processing systems*,
 762 32, 2019.

764 Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *International
 765 Conference on Learning Representations*, 12 2014.

767 Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In *ICLR*, 2014.

768 Thomas Kipf, Gamaleldin F Elsayed, Aravindh Mahendran, Austin Stone, Sara Sabour, Georg
 769 Heigold, Rico Jonschkowski, Alexey Dosovitskiy, and Klaus Greff. Conditional object-centric
 770 learning from video. *arXiv preprint arXiv:2111.12594*, 2021.

772 Albina Klepach, Alexander Nikulin, Ilya Zisman, Denis Tarasov, Alexander Derevyagin, Andrei
 773 Polubarov, Nikita Lyubaykin, and Vladislav Kurenkov. Object-centric latent action learning.
 774 *arXiv preprint arXiv:2502.09680*, 2025.

775 Jannik Kossen, Karl Stelzner, Marcel Hüssing, Claas Voelcker, and Kristian Kersting. Struc-
 776 tured object-aware physics prediction for video modeling and planning. *arXiv preprint
 777 arXiv:1910.02425*, 2019.

779 Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit q-
 780 learning. In *International Conference on Learning Representations*, 2022. URL <https://openreview.net/forum?id=68n2s9ZJWF8>.

782 Tejas Kulkarni, Ankush Gupta, Catalin Ionescu, Sebastian Borgeaud, Malcolm Reynolds, Andrew
 783 Zisserman, and Volodymyr Mnih. Unsupervised learning of object keypoints for perception and
 784 control. *arXiv preprint arXiv:1906.11883*, 2019.

786 Guillaume Le Moing, Jean Ponce, and Cordelia Schmid. Ccvs: Context-aware controllable video
 787 synthesis. *Advances in Neural Information Processing Systems*, 34:14042–14055, 2021.

789 Alex X Lee, Richard Zhang, Frederik Ebert, Pieter Abbeel, Chelsea Finn, and Sergey Levine.
 790 Stochastic adversarial video prediction. *arXiv preprint arXiv:1804.01523*, 2018.

792 Seungjae Lee, Yibin Wang, Haritheja Etukuru, H Jin Kim, Nur Muhammad Mahi Shafullah, and
 793 Lerrel Pinto. Behavior generation with latent actions. In *Forty-first International Conference on
 794 Machine Learning*, 2024.

795 Yunzhu Li, Antonio Torralba, Animashree Anandkumar, Dieter Fox, and Animesh Garg. Causal
 796 discovery in physical systems from videos. *arXiv preprint arXiv:2007.00631*, 2020.

797 Zhixuan Lin, Yi-Fu Wu, Skand Peri, Bofeng Fu, Jindong Jiang, and Sungjin Ahn. Improving gen-
 798 erative imagination in object-centric world models. In *International Conference on Machine
 799 Learning*, pp. 6140–6149. PMLR, 2020a.

801 Zhixuan Lin, Yi-Fu Wu, Skand Vishwanath Peri, Weihao Sun, Gautam Singh, Fei Deng, Jindong
 802 Jiang, and Sungjin Ahn. Space: Unsupervised object-oriented scene representation via spatial
 803 attention and decomposition. *arXiv preprint arXiv:2001.02407*, 2020b.

804 Francesco Locatello, Dirk Weissenborn, Thomas Unterthiner, Aravindh Mahendran, Georg Heigold,
 805 Jakob Uszkoreit, Alexey Dosovitskiy, and Thomas Kipf. Object-centric learning with slot atten-
 806 tion. *arXiv preprint arXiv:2006.15055*, 2020.

808 Pauline Luc, Aidan Clark, Sander Dieleman, Diego de Las Casas, Yotam Doron, Albin Cassirer, and
 809 Karen Simonyan. Transformation-based adversarial video prediction on large-scale data. *arXiv
 810 preprint arXiv:2003.04035*, 2020.

810 Corey Lynch, Mohi Khansari, Ted Xiao, Vikash Kumar, Jonathan Tompson, Sergey Levine, and
 811 Pierre Sermanet. Learning latent plans from play. In *Conference on robot learning*, pp. 1113–
 812 1132. Pmlr, 2020.

813

814 Corey Lynch, Ayzaan Wahid, Jonathan Tompson, Tianli Ding, James Betker, Robert Baruch, Travis
 815 Armstrong, and Pete Florence. Interactive language: Talking to robots in real time. *IEEE Robotics
 816 and Automation Letters*, 2023.

817

818 Xin Ma, Yaohui Wang, Xinyuan Chen, Gengyun Jia, Ziwei Liu, Yuan-Fang Li, Cunjian Chen, and
 819 Yu Qiao. Latte: Latent diffusion transformer for video generation. *Transactions on Machine
 820 Learning Research*, 2025. ISSN 2835-8856.

821

822 Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong Guo, Michelle Lu, Kier Storey, Miles Macklin,
 823 David Hoeller, Nikita Rudin, Arthur Allshire, Ankur Handa, and Gavriel State. Isaac gym: High
 824 performance gpu-based physics simulation for robot learning, 2021.

825

826 Willi Menapace, Stéphane Lathuilière, Sergey Tulyakov, Aliaksandr Siarohin, and Elisa Ricci.
 827 Playable video generation. In *Proceedings of the IEEE/CVF Conference on Computer Vision
 828 and Pattern Recognition*, pp. 10061–10070, 2021.

829

830 Willi Menapace, Stéphane Lathuilière, Aliaksandr Siarohin, Christian Theobalt, Sergey Tulyakov,
 831 Vladislav Golyanik, and Elisa Ricci. Playable environments: Video manipulation in space and
 832 time. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*,
 833 pp. 3584–3593, 2022.

834

835 Vincent Micheli, Eloi Alonso, and François Fleuret. Transformers are sample-efficient world mod-
 836 els. In *The Eleventh International Conference on Learning Representations*, 2023.

837

838 Vincent Micheli, Eloi Alonso, and François Fleuret. Efficient world models with context-aware
 839 tokenization. In *International Conference on Machine Learning*, pp. 35623–35638. PMLR, 2024.

840

841 Cheol-Hui Min, Jinseok Bae, Junho Lee, and Young Min Kim. Gatsbi: Generative agent-centric
 842 spatio-temporal object interaction. In *Proceedings of the IEEE/CVF Conference on Computer
 843 Vision and Pattern Recognition*, pp. 3074–3083, 2021.

844

845 Matthias Minderer, Chen Sun, Ruben Villegas, Forrester Cole, Kevin P Murphy, and Honglak Lee.
 846 Unsupervised learning of object structure and dynamics from videos. *Advances in Neural Infor-
 847 mation Processing Systems*, 32, 2019.

848

849 Malte Mosbach, Jan Niklas Ewertz, Angel Villar-Corrales, and Sven Behnke. Sold: Slot object-
 850 centric latent dynamics models for relational manipulation learning from pixels. *arXiv preprint
 851 arXiv:2410.08822*, 2024.

852

853 Akihiro Nakano, Masahiro Suzuki, and Yutaka Matsuo. Interaction-based disentanglement of en-
 854 tities for object-centric world models. In *The Eleventh International Conference on Learning
 855 Representations*, 2023.

856

857 Charlie Nash, João Carreira, Jacob Walker, Iain Barr, Andrew Jaegle, Mateusz Malinowski, and
 858 Peter Battaglia. Transframer: Arbitrary frame prediction with generative models. *arXiv preprint
 859 arXiv:2203.09494*, 2022.

860

861 Matthias Nau, Joshua B Julian, and Christian F Doeller. How the brain’s navigation system shapes
 862 our visual experience. *Trends in cognitive sciences*, 22(9):810–825, 2018.

863

864 Iman Nematollahi, Branton DeMoss, Akshay L Chandra, Nick Hawes, Wolfram Burgard, and Ing-
 865 mar Posner. Lumos: Language-conditioned imitation learning with world models. *arXiv preprint
 866 arXiv:2503.10370*, 2025.

867

868 Seohong Park, Dibya Ghosh, Benjamin Eysenbach, and Sergey Levine. Hiql: Offline goal-
 869 conditioned rl with latent states as actions. *Advances in Neural Information Processing Systems*,
 870 36:34866–34891, 2023.

864 Seohong Park, Kevin Frans, Benjamin Eysenbach, and Sergey Levine. Ogbench: Benchmarking
 865 offline goal-conditioned rl. In *International Conference on Learning Representations (ICLR)*,
 866 2025.

867 Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
 868 Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
 869 PyTorch. In *NIPS Autodiff Workshop*, 2017.

870 William Peebles and Saining Xie. Scalable diffusion models with transformers. In *Proceedings of*
 871 *the IEEE/CVF international conference on computer vision*, pp. 4195–4205, 2023.

872 Martin John Pickering and Andy Clark. Getting ahead: forward models and their place in cognitive
 873 architecture. *Trends in Cognitive Sciences*, 18:451–456, 2014.

874 Carl Qi, Dan Haramati, Tal Daniel, Aviv Tamar, and Amy Zhang. EC-diffuser: Multi-object ma-
 875 nipulation via entity-centric behavior generation. In *The Thirteenth International Conference on*
 876 *Learning Representations*, 2025.

877 Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language under-
 878 standing by generative pre-training. 2018.

879 Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
 880 Zhou, Wei Li, Peter J Liu, et al. Exploring the limits of transfer learning with a unified text-to-text
 881 transformer. *J. Mach. Learn. Res.*, 21(140):1–67, 2020.

882 Ruslan Rakhimov, Denis Volkonskiy, Alexey Artemov, Denis Zorin, and Evgeny Burnaev. Latent
 883 video transformer. *arXiv preprint arXiv:2006.10704*, 2020.

884 Zhongwei Ren, Yunchao Wei, Xun Guo, Yao Zhao, Bingyi Kang, Jiashi Feng, and Xiaojie Jin. Vide-
 885 oworld: Exploring knowledge learning from unlabeled videos. In *Proceedings of the Computer*
 886 *Vision and Pattern Recognition Conference*, pp. 29029–29039, 2025.

887 François Rozet. Pytorch image quality assessment. [https://github.com/](https://github.com/francois-rozet/piqa)
 888 [francois-rozet/piqa](https://github.com/francois-rozet/piqa), 2022.

889 Alexander Rubinstein, Ameya Prabhu, Matthias Bethge, and Seong Joon Oh. Are we done with
 890 object-centric learning? *arXiv preprint arXiv:2504.07092*, 2025.

891 Mehdi SM Sajjadi, Daniel Duckworth, Aravindh Mahendran, Sjoerd van Steenkiste, Filip Pavetić,
 892 Mario Lučić, Leonidas J Guibas, Klaus Greff, and Thomas Kipf. Object scene representation
 893 transformer. *arXiv preprint arXiv:2206.06922*, 2022.

894 Nedko Savov, Naser Kazemi, Mohammad Mahdi, Danda Pani Paudel, Xi Wang, and Luc Van Gool.
 895 Exploration-driven generative interactive environments. In *Proceedings of the Computer Vision*
 896 *and Pattern Recognition Conference*, pp. 27597–27607, 2025.

897 Dominik Schmidt and Minqi Jiang. Learning to act without actions. *arXiv preprint*
 898 *arXiv:2312.10812*, 2023.

899 Maximilian Seitner, Max Horn, Andrii Zadaianchuk, Dominik Zietlow, Tianjun Xiao, Carl-Johann
 900 Simon-Gabriel, Tong He, Zheng Zhang, Bernhard Schölkopf, Thomas Brox, and Francesco Lo-
 901 catello. Bridging the gap to real-world object-centric learning. In *The Eleventh International*
 902 *Conference on Learning Representations*, 2023.

903 Gaurav Shrivastava and Abhinav Shrivastava. Continuous video process: Modeling videos as contin-
 904 uous multi-dimensional processes for video prediction. *arXiv preprint arXiv:2412.04929*, 2024.

905 Gautam Singh, Fei Deng, and Sungjin Ahn. Illiterate dall-e learns to compose. *arXiv preprint*
 906 *arXiv:2110.11405*, 2021.

907 Gautam Singh, Yeongbin Kim, and Sungjin Ahn. Neural block-slot representations. *arXiv preprint*
 908 *arXiv:2211.01177*, 2022a.

909 Gautam Singh, Yi-Fu Wu, and Sungjin Ahn. Simple unsupervised object-centric learning for com-
 910 plex and naturalistic videos. *arXiv preprint arXiv:2205.14065*, 2022b.

918 Gautam Singh, Yeongbin Kim, and Sungjin Ahn. Neural systematic binder. In *The Eleventh Inter-*
 919 *national Conference on Learning Representations*, 2023.

920

921 Dmitriy Smirnov, Michael Gharbi, Matthew Fisher, Vitor Guizilini, Alexei A. Efros, and Justin
 922 Solomon. MarioNette: Self-supervised sprite learning. *Conference on Neural Information Pro-*
 923 *cessing Systems*, 2021.

924 Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning structured output representation using deep
 925 conditional generative models. In *NIPS*, 2015.

926

927 Yeon-Ji Song, Suhyung Choi, Jaein Kim, Jin-Hwa Kim, and Byoung-Tak Zhang. Unsupervised
 928 dynamics prediction with object-centric kinematics. *arXiv preprint arXiv:2404.18423*, 2024.

929 Aleksandar Stanić and Jürgen Schmidhuber. R-sqair: relational sequential attend, infer, repeat.
 930 *arXiv preprint arXiv:1910.05231*, 2019.

931

932 Jennifer J Sun, Serim Ryou, Roni H Goldshmid, Brandon Weissbourd, John O Dabiri, David J
 933 Anderson, Ann Kennedy, Yisong Yue, and Pietro Perona. Self-supervised keypoint discovery in
 934 behavioral videos. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*
 935 *Recognition*, pp. 2171–2180, 2022.

936 Yang Tian, Sizhe Yang, Jia Zeng, Ping Wang, Dahua Lin, Hao Dong, and Jiangmiao Pang. Pre-
 937 dictive inverse dynamics models are scalable learners for robotic manipulation. *arXiv preprint*
 938 *arXiv:2412.15109*, 2024.

939

940 Thomas Unterthiner, Sjoerd Van Steenkiste, Karol Kurach, Raphael Marinier, Marcin Michalski,
 941 and Sylvain Gelly. Towards accurate generative models of video: A new metric & challenges.
 942 *arXiv preprint arXiv:1812.01717*, 2018.

943

944 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 945 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural informa-*
 946 *tion processing systems*, 30, 2017.

947

948 Rishi Veerapaneni, John D Co-Reyes, Michael Chang, Michael Janner, Chelsea Finn, Jiajun Wu,
 949 Joshua Tenenbaum, and Sergey Levine. Entity abstraction in visual model-based reinforcement
 950 learning. In *Conference on Robot Learning*, pp. 1439–1456. PMLR, 2020.

951

952 Angel Villar-Corralles. Playslot: Learning inverse latent dynamics for controllable object-centric
 953 video prediction and planning. <https://github.com/angelvillar96/PlaySlot>,
 954 2025.

955

956 Angel Villar-Corralles and Sven Behnke. Playslot: Learning inverse latent dynamics for controllable
 957 object-centric video prediction and planning. In *International Conference on Machine Learning*
 958 (*ICML*), 2025.

959

960 Angel Villar-Corralles, Ismail Wahdan, and Sven Behnke. Object-centric video prediction via de-
 961 coupling of object dynamics and interactions. In *International Conference on Image Processing*
 962 (*ICIP*), 2023.

963

964 Angel Villar-Corralles, Gjergj Pilepi, and Sven Behnke. Object-centric image to video generation
 965 with language guidance. *arXiv preprint arXiv:2502.11655*, 2025.

966

967 Ruben Villegas, Jimei Yang, Yuliang Zou, Sungryull Sohn, Xunyu Lin, and Honglak Lee. Learning
 968 to generate long-term future via hierarchical prediction. In *international conference on machine*
 969 *learning*, pp. 3560–3569. PMLR, 2017.

970

971 Ruben Villegas, Arkanath Pathak, Harini Kannan, Dumitru Erhan, Quoc V Le, and Honglak Lee.
 972 High fidelity video prediction with large stochastic recurrent neural networks. *Advances in Neural*
 973 *Information Processing Systems*, 32, 2019.

974

975 Vikram Voleti, Alexia Jolicoeur-Martineau, and Chris Pal. Mcvd-masked conditional video diffusion
 976 for prediction, generation, and interpolation. *Advances in neural information processing systems*,
 977 35:23371–23385, 2022.

972 Homer Walke, Kevin Black, Abraham Lee, Moo Jin Kim, Max Du, Chongyi Zheng, Tony Zhao,
 973 Philippe Hansen-Estruch, Quan Vuong, Andre He, Vivek Myers, Kuan Fang, Chelsea Finn, and
 974 Sergey Levine. Bridgedata v2: A dataset for robot learning at scale. In *Conference on Robot
 975 Learning (CoRL)*, 2023.

976 Jacob Walker, Ali Razavi, and Aäron van den Oord. Predicting video with vqvae. *arXiv preprint
 977 arXiv:2103.01950*, 2021.

979 Tongzhou Wang, Antonio Torralba, Phillip Isola, and Amy Zhang. Optimal goal-reaching reinforce-
 980 ment learning via quasimetric learning. In *International Conference on Machine Learning*, pp.
 981 36411–36430. PMLR, 2023.

982 Xingrui Wang, Xin Li, Yaosi Hu, Hanxin Zhu, Chen Hou, Cuiling Lan, and Zhibo Chen. Tiv-
 983 diffusion: Towards object-centric movement for text-driven image to video generation. In *Pro-
 984 ceedings of the AAAI Conference on Artificial Intelligence*, volume 39, pp. 7988–7996, 2025a.

985 Yunbo Wang, Haixu Wu, Jianjin Zhang, Zhifeng Gao, Jianmin Wang, Philip Yu, and Mingsheng
 986 Long. Predrnn: A recurrent neural network for spatiotemporal predictive learning. *IEEE Trans-
 987 actions on Pattern Analysis and Machine Intelligence*, 2022.

988 Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment:
 989 from error visibility to structural similarity. *IEEE transactions on image processing*, 13(4):600–
 990 612, 2004.

991 Zizhao Wang, Kaixin Wang, Li Zhao, Peter Stone, and Jiang Bian. Dyn-o: Building structured
 992 world models with object-centric representations. *arXiv preprint arXiv:2507.03298*, 2025b.

993 Marissa A Weis, Kashyap Chitta, Yash Sharma, Wieland Brendel, Matthias Bethge, Andreas Geiger,
 994 and Alexander S Ecker. Benchmarking unsupervised object representations for video sequences.
 995 *J. Mach. Learn. Res.*, 22:183–1, 2021.

996 Ronald J. Williams and David Zipser. A learning algorithm for continually running fully recurrent
 997 neural networks. *Neural Comput.*, 1:270–280, jun 1989.

998 Bohan Wu, Suraj Nair, Roberto Martin-Martin, Li Fei-Fei, and Chelsea Finn. Greedy hierarchi-
 999 cal variational autoencoders for large-scale video prediction. In *Proceedings of the IEEE/CVF
 1000 Conference on Computer Vision and Pattern Recognition*, pp. 2318–2328, 2021a.

1001 Chenfei Wu, Jian Liang, Lei Ji, Fan Yang, Yuejian Fang, Dixin Jiang, and Nan Duan. Nüwa: Visual
 1002 synthesis pre-training for neural visual world creation. In *European conference on computer
 1003 vision*, pp. 720–736. Springer, 2022a.

1004 Yi-Fu Wu, Jaesik Yoon, and Sungjin Ahn. Generative video transformer: Can objects be the words?
 1005 In Marina Meila and Tong Zhang (eds.), *Proceedings of the 38th International Conference on
 1006 Machine Learning*, volume 139 of *Proceedings of Machine Learning Research*, pp. 11307–11318.
 1007 PMLR, 18–24 Jul 2021b.

1008 Ziyi Wu, Nikita Dvornik, Klaus Greff, Thomas Kipf, and Animesh Garg. Slotformer: Unsupervised
 1009 visual dynamics simulation with object-centric models. *arXiv preprint arXiv:2210.05861*, 2022b.

1010 Amber Xie, Oleh Rybkin, Dorsa Sadigh, and Chelsea Finn. Latent diffusion planning for imitation
 1011 learning. *arXiv preprint arXiv:2504.16925*, 2025.

1012 Zhengtong Xu, Qiang Qiu, and Yu She. Vilp: Imitation learning with latent video planning. *IEEE
 1013 Robotics and Automation Letters*, 2025.

1014 Wilson Yan, Yunzhi Zhang, Pieter Abbeel, and Aravind Srinivas. Videogpt: Video generation using
 1015 vq-vae and transformers. *arXiv preprint arXiv:2104.10157*, 2021.

1016 Mengjiao Yang, Yilun Du, Kamyar Ghasemipour, Jonathan Tompson, Dale Schuurmans, and Pieter
 1017 Abbeel. Learning interactive real-world simulators. *arXiv preprint arXiv:2310.06114*, 1(2):6,
 1018 2023.

1026 Mingyu Yang, Junyou Li, Zhongbin Fang, Sheng Chen, Yangbin Yu, Qiang Fu, Wei Yang, and
 1027 Deheng Ye. Playable game generation. *arXiv preprint arXiv:2412.00887*, 2024a.

1028

1029 Zhuoyi Yang, Jiayan Teng, Wendi Zheng, Ming Ding, Shiyu Huang, Jiazheng Xu, Yuanming Yang,
 1030 Wenyi Hong, Xiaohan Zhang, Guanyu Feng, et al. Cogvideox: Text-to-video diffusion models
 1031 with an expert transformer. *arXiv preprint arXiv:2408.06072*, 2024b.

1032

1033 Seonghyeon Ye, Joel Jang, Byeongguk Jeon, Se June Joo, Jianwei Yang, Baolin Peng, Ajay Man-
 1034 dlekar, Reuben Tan, Yu-Wei Chao, Bill Yuchen Lin, Lars Liden, Kimin Lee, Jianfeng Gao, Luke
 1035 Zettlemoyer, Dieter Fox, and Minjoon Seo. Latent action pretraining from videos. In *The Thir-
 1036 teenth International Conference on Learning Representations*, 2025.

1037

1038 Kexin Yi, Chuang Gan, Yunzhu Li, Pushmeet Kohli, Jiajun Wu, Antonio Torralba, and Joshua B
 1039 Tenenbaum. Clevrer: Collision events for video representation and reasoning. *arXiv preprint
 1040 arXiv:1910.01442*, 2019.

1041

1042 Jiwen Yu, Yiran Qin, Xintao Wang, Pengfei Wan, Di Zhang, and Xihui Liu. Gamefactory: Creating
 1043 new games with generative interactive videos. *arXiv preprint arXiv:2501.08325*, 2025.

1044

1045 Lijun Yu, Yong Cheng, Kihyuk Sohn, José Lezama, Han Zhang, Huiwen Chang, Alexander G
 1046 Hauptmann, Ming-Hsuan Yang, Yuan Hao, Irfan Essa, et al. Magvit: Masked generative video
 1047 transformer. *arXiv preprint arXiv:2212.05199*, 2022.

1048

1049 Andrii Zadaianchuk, Georg Martius, and Fanny Yang. Self-supervised reinforcement learning with
 1050 independently controllable subgoals. In *Conference on Robot Learning*, pp. 384–394. PMLR,
 1051 2022.

1052

1053 Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
 1054 effectiveness of deep features as a perceptual metric. In *Proceedings of the IEEE conference on
 1055 computer vision and pattern recognition*, pp. 586–595, 2018.

1056

1057 Weipu Zhang, Gang Wang, Jian Sun, Yetian Yuan, and Gao Huang. Storm: Efficient stochastic
 1058 transformer based world models for reinforcement learning. *Advances in Neural Information
 1059 Processing Systems*, 36:27147–27166, 2023.

1060

1061 Weipu Zhang, Adam Jolley, Trevor McInroe, and Amos Storkey. Objects matter: object-centric
 1062 world models improve reinforcement learning in visually complex environments. *arXiv preprint
 1063 arXiv:2501.16443*, 2025.

1064

1065 Tony Z Zhao, Vikash Kumar, Sergey Levine, and Chelsea Finn. Learning fine-grained bimanual
 1066 manipulation with low-cost hardware. *arXiv preprint arXiv:2304.13705*, 2023.

1067

1068 Fangqi Zhu, Hongtao Wu, Song Guo, Yuxiao Liu, Chilam Cheang, and Tao Kong. Irasim: Learning
 1069 interactive real-robot action simulators. *arXiv preprint arXiv:2406.14540*, 2024.

1070

1071 Daniel Zoran, Rishabh Kabra, Alexander Lerchner, and Danilo J. Rezende. Parts: Unsupervised seg-
 1072 mentation with slots, attention and independence maximization. In *Proceedings of the IEEE/CVF
 1073 International Conference on Computer Vision (ICCV)*, pp. 10439–10447, October 2021.

1074

1075

1076

1077

1078

1079

1080 **A APPENDIX**
10811082 **A.1 LARGE LANGUAGE MODELS (LLMs) ASSISTANCE DISCLOSURE**
10831084 We used large language models (LLMs) to assist in polishing the writing and improving grammar
1085 on a sentence level. All suggestions were reviewed and approved by the authors.
10861087 **A.2 PRELIMINARIES: SPATIAL SOFTMAX (SSM) AND SPATIAL TRANSFORMER NETWORK**
1088 **(STN)**
10891090 We first review two core building blocks of the Deep Latent Particles (DLP, Daniel & Tamar, 2022a;
1091 2024) model, an object-centric latent representation with disentangled attributes, before formally
1092 defining DLP. The *Spatial Softmax* (SSM, Jakab et al., 2018; Finn et al., 2016b) is commonly used
1093 for self-supervised extraction of keypoints from feature maps. The *Spatial Transformer Network*
1094 (STN, Jaderberg et al., 2015) provides a differentiable mechanism for spatial transformations: given
1095 a set of keypoint locations, it enables the model to extract localized patches from the image and to
1096 recompose the image from such patches using parameterized affine transformations.
10971098 **Spatial Softmax (SSM).** The spatial softmax, also known as the soft-argmax, can be viewed as a dif-
1099 ferentiable relaxation of the argmax operator: rather than selecting a single coordinate, it computes
1100 the expected coordinate under a probability distribution. Given a heatmap $\tilde{\mathcal{H}} \in \mathbb{R}^{H \times W}$, typically
1101 obtained from CNN feature maps of an image or patch, the softmax function is applied over the
1102 spatial dimensions to normalize $\tilde{\mathcal{H}}$ into a probability distribution \mathcal{H} . Each entry $h_{ij} = \mathcal{H}(i, j)$ then
1103 represents the probability of a keypoint being located at position (i, j) . From this distribution, the
1104 mean coordinate (μ_x, μ_y) and the covariance values σ_x^2, σ_y^2 , and σ_{xy} , following Sun et al. (2022),
1105 are computed:
1106

1107
1108
$$\mu_x = \sum_i x_i \sum_j \mathcal{H}(i, j), \quad \mu_y = \sum_j y_j \sum_i \mathcal{H}(i, j),$$

1109
1110
$$\sigma_x^2 = \sum_{ij} (x_i - \mu_x)^2 \mathcal{H}(i, j), \quad \sigma_y^2 = \sum_{ij} (y_j - \mu_y)^2 \mathcal{H}(i, j),$$

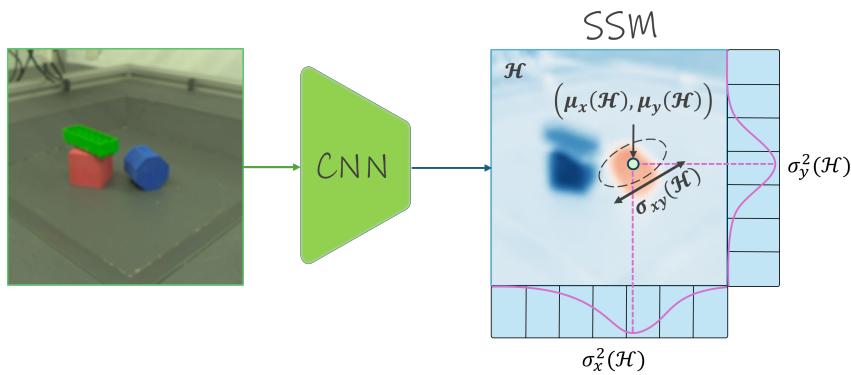
1111
1112
$$\sigma_{xy} = \sum_{ij} (x_i - \mu_x)(y_j - \mu_y) \mathcal{H}(i, j).$$

1113
1114

1115 Here, $\sum_j \mathcal{H}(i, j)$ and $\sum_i \mathcal{H}(i, j)$ correspond to the marginal distributions along each axis. The co-
1116 ordinate grids $\{x_i\}$ and $\{y_j\}$ are defined as normalized continuous values, typically spanning $[-1, 1]$
1117 across the width and height, rather than raw pixel indices. The process is illustrated in Figure 5 and
1118 we provide a PyTorch-style code in Figure 6. Intuitively, sharply peaked activations yield low co-
1119 variance values, typically corresponding to salient structures such as objects, corners, or edges. In
1120 contrast, broadly spread activations tend to produce high covariances, which are characteristic of
1121 background or less informative regions. Thus, covariance values provide a natural criterion for de-
1122 tecting and filtering meaningful locations. Since the SSM is fully differentiable, the heatmaps are
1123 optimized end-to-end through the reconstruction objective, encouraging the model to attend to the
1124 most informative regions of the scene.
11251126 **Spatial Transformer Network (STN).** A Spatial Transformer Network (STN; Jaderberg et al.,
1127 2015) is a learnable module that performs spatial transformations on input data in a fully differen-
1128 tiable manner. Such transformations include translation, scaling, rotation, and more general warping.
1129 In our context, we focus on the core differentiable operation underlying STNs: **grid sampling**.
11301131 Given an input image $I \in \mathbb{R}^{C \times H \times W}$, an affine transformation matrix
1132

1133
$$A = \begin{bmatrix} a_{11} & a_{12} & t_x \\ a_{21} & a_{22} & t_y \end{bmatrix}$$

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147



1148 Figure 5: Spatial-softmax. Given a heatmap $\tilde{\mathcal{H}} \in \mathbb{R}^{H \times W}$, the softmax function is applied over the
1149 spatial dimensions to normalize $\tilde{\mathcal{H}}$ into a probability distribution \mathcal{H} . These values are then used to
1150 compute the expected coordinate values for each axis, and their covariance.
1151

1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

```

1  def spatial_softmax(heatmap, kp_range=(-1, 1)):
2      """
3          Spatial Softmax with Marginalization for keypoint detection.
4          Args:
5              heatmap: [B, K, H, W] input heatmaps
6              kp_range: coordinate range for normalization (default: (-1, 1))
7          Returns:
8              kp: [B, K, 2] expected keypoint coordinates [y, x]
9              var: [B, K, 3] variance estimates [var_y, var_x, cov_yx]
10         """
11     batch_size, n_kp, height, width = heatmap.shape
12
13     # 1. Flatten and apply softmax
14     logits = heatmap.view(batch_size, n_kp, -1)  # [B, K, H*W]
15     scores = torch.softmax(logits, dim=-1)
16     scores = scores.view(batch_size, n_kp, height, width)  # [B, K, H, W]
17
18     # 2. Create coordinate axes
19     y_axis = torch.linspace(kp_range[0], kp_range[1], height,
20                             device=scores.device).type_as(scores)
21     x_axis = torch.linspace(kp_range[0], kp_range[1], width,
22                             device=scores.device).type_as(scores)
23
24     # 3. Marginalize over dimensions
25     sm_h = scores.sum(dim=-1)  # [B, K, H] - marginalize over width
26     sm_w = scores.sum(dim=-2)  # [B, K, W] - marginalize over height
27
28     # 4. Compute expected coordinates
29     kp_y = torch.sum(sm_h * y_axis, dim=-1)  # [B, K]
30     kp_x = torch.sum(sm_w * x_axis, dim=-1)  # [B, K]
31     kp = torch.stack([kp_y, kp_x], dim=-1)  # [B, K, 2]
32
33     # 5. Compute variance: Var(X) = E[X^2] - (E[X])^2
34     y_sq = (scores * (y_axis.unsqueeze(-1) ** 2)).sum(dim=(-2, -1))
35     var_y = (y_sq - kp_y ** 2).clamp_min(1e-6)  # [B, K]
36
37     x_sq = (scores * (x_axis.unsqueeze(-2) ** 2)).sum(dim=(-2, -1))
38     var_x = (x_sq - kp_x ** 2).clamp_min(1e-6)  # [B, K]
39
40     # 6. Compute covariance: Cov(X, Y) = E[XY] - E[X]E[Y]
41     xy = (scores * (y_axis.unsqueeze(-1) * x_axis.unsqueeze(-2))).sum(dim=(-2, -1))
42     cov_yx = xy - kp_y * kp_x  # [B, K]
43
44     var = torch.stack([var_y, var_x, cov_yx], dim=-1)  # [B, K, 3]
45
46     return kp, var

```

Figure 6: PyTorch-style code of Spatial Softmax for keypoint detection.

1188 maps normalized target coordinates $(x^t, y^t) \in [-1, 1]^2$ in the output grid to source coordinates
 1189 (x^s, y^s) in the input:

$$\begin{bmatrix} x^s \\ y^s \\ 1 \end{bmatrix} = A \begin{bmatrix} x^t \\ y^t \\ 1 \end{bmatrix}.$$

1193 The resulting sampling grid $\mathcal{G} = \{(x^s, y^s)\}$ specifies where to fetch pixels from the input image.
 1194 The *grid sampling* operation then computes the transformed image \hat{I} via bilinear interpolation:
 1195

$$\hat{I}(x^t, y^t) = \sum_{i,j} I(i, j) \max(0, 1 - |x^s - j|) \max(0, 1 - |y^s - i|).$$

1199 This interpolation ensures that the transformation is differentiable with respect to both the sampling
 1200 locations and the input image. In DLP, this mechanism is used in two ways:

- 1201 1. **Encoding:** extracting glimpses from the input image, parameterized by each particle's
 1202 attributes (position and scale).
- 1203 2. **Decoding:** stitching back the reconstructed image from the decoded particle glimpses.

1205 Thus, the encoder and decoder construct particle-specific affine transformations, generate the corre-
 1206 sponding sampling grids, and warp the images or patches via differentiable grid sampling. Impor-
 1207 tantly, both grid generation and sampling are natively implemented in modern frameworks such as
 1208 PyTorch (Paszke et al., 2017). A minimal PyTorch-style code snippet is provided in Figure 7.

```

1  def spatial_transform(
2      image, z_pos, z_scale, out_dims, inverse=False, eps=1e-9, padding_mode="zeros"
3  ):
4      """
5          Differentiable spatial transform using grid sampling.
6
7          Args:
8              image: [B, C, H, W] input tensor.
9              z_pos: [B, 2] position (tx, ty).
10             z_scale: [B, 2] scale factors (sx, sy).
11             out_dims: (B, C, H_out, W_out) desired output size.
12             inverse: if False (default), encoding transform (image -> glimpse).
13                 if True, decoding transform (glimpse -> image).
14             eps: small constant for numerical stability.
15             padding_mode: padding for out-of-bounds sampling.
16
17             # 1. Construct 2x3 affine transform matrix
18             theta = torch.zeros(image.shape[0], 2, 3, device=image.device)
19
20             # scaling
21             theta[:, 0, 0] = z_scale[:, 1] if not inverse else 1 / (z_scale[:, 1] + eps)
22             theta[:, 1, 1] = z_scale[:, 0] if not inverse else 1 / (z_scale[:, 0] + eps)
23
24             # translation
25             theta[:, 0, 2] = z_pos[:, 1] if not inverse else -z_pos[:, 1] / (z_scale[:, 1] + eps)
26             theta[:, 1, 2] = z_pos[:, 0] if not inverse else -z_pos[:, 0] / (z_scale[:, 0] + eps)
27
28             # 2. Construct grid and apply bilinear sampling
29             grid = F.affine_grid(theta, torch.Size(out_dims), align_corners=False)
30             return F.grid_sample(image, grid, mode='bilinear',
31                                 align_corners=False, padding_mode=padding_mode)
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
617
618
619
619
620
621
622
623
624
625
625
626
626
627
627
628
628
629
629
630
630
631
631
632
632
633
633
634
634
635
635
636
636
637
637
638
638
639
639
640
640
641
641
642
642
643
643
644
644
645
645
646
646
647
647
648
648
649
649
650
650
651
651
652
652
653
653
654
654
655
655
656
656
657
657
658
658
659
659
660
660
661
661
662
662
663
663
664
664
665
665
666
666
667
667
668
668
669
669
670
670
671
671
672
672
673
673
674
674
675
675
676
676
677
677
678
678
679
679
680
680
681
681
682
682
683
683
684
684
685
685
686
686
687
687
688
688
689
689
690
690
691
691
692
692
693
693
694
694
695
695
696
696
697
697
698
698
699
699
700
700
701
701
702
702
703
703
704
704
705
705
706
706
707
707
708
708
709
709
710
710
711
711
712
712
713
713
714
714
715
715
716
716
717
717
718
718
719
719
720
720
721
721
722
722
723
723
724
724
725
725
726
726
727
727
728
728
729
729
730
730
731
731
732
732
733
733
734
734
735
735
736
736
737
737
738
738
739
739
740
740
741
741
742
742
743
743
744
744
745
745
746
746
747
747
748
748
749
749
750
750
751
751
752
752
753
753
754
754
755
755
756
756
757
757
758
758
759
759
760
760
761
761
762
762
763
763
764
764
765
765
766
766
767
767
768
768
769
769
770
770
771
771
772
772
773
773
774
774
775
775
776
776
777
777
778
778
779
779
780
780
781
781
782
782
783
783
784
784
785
785
786
786
787
787
788
788
789
789
790
790
791
791
792
792
793
793
794
794
795
795
796
796
797
797
798
798
799
799
800
800
801
801
802
802
803
803
804
804
805
805
806
806
807
807
808
808
809
809
810
810
811
811
812
812
813
813
814
814
815
815
816
816
817
817
818
818
819
819
820
820
821
821
822
822
823
823
824
824
825
825
826
826
827
827
828
828
829
829
830
830
831
831
832
832
833
833
834
834
835
835
836
836
837
837
838
838
839
839
840
840
841
841
842
842
843
843
844
844
845
845
846
846
847
847
848
848
849
849
850
850
851
851
852
852
853
853
854
854
855
855
856
856
857
857
858
858
859
859
860
860
861
861
862
862
863
863
864
864
865
865
866
866
867
867
868
868
869
869
870
870
871
871
872
872
873
873
874
874
875
875
876
876
877
877
878
878
879
879
880
880
881
881
882
882
883
883
884
884
885
885
886
886
887
887
888
888
889
889
890
890
891
891
892
892
893
893
894
894
895
895
896
896
897
897
898
898
899
899
900
900
901
901
902
902
903
903
904
904
905
905
906
906
907
907
908
908
909
909
910
910
911
911
912
912
913
913
914
914
915
915
916
916
917
917
918
918
919
919
920
920
921
921
922
922
923
923
924
924
925
925
926
926
927
927
928
928
929
929
930
930
931
931
932
932
933
933
934
934
935
935
936
936
937
937
938
938
939
939
940
940
941
941
942
942
943
943
944
944
945
945
946
946
947
947
948
948
949
949
950
950
951
951
952
952
953
953
954
954
955
955
956
956
957
957
958
958
959
959
960
960
961
961
962
962
963
963
964
964
965
965
966
966
967
967
968
968
969
969
970
970
971
971
972
972
973
973
974
974
975
975
976
976
977
977
978
978
979
979
980
980
981
981
982
982
983
983
984
984
985
985
986
986
987
987
988
988
989
989
990
990
991
991
992
992
993
993
994
994
995
995
996
996
997
997
998
998
999
999
1000
1000
1001
1001
1002
1002
1003
1003
1004
1004
1005
1005
1006
1006
1007
1007
1008
1008
1009
1009
1010
1010
1011
1011
1012
1012
1013
1013
1014
1014
1015
1015
1016
1016
1017
1017
1018
1018
1019
1019
1020
1020
1021
1021
1022
1022
1023
1023
1024
1024
1025
1025
1026
1026
1027
1027
1028
1028
1029
1029
1030
1030
1031
1031
1032
1032
1033
1033
1034
1034
1035
1035
1036
1036
1037
1037
1038
1038
1039
1039
1040
1040
1041
1041
1042
1042
1043
1043
1044
1044
1045
1045
1046
1046
1047
1047
1048
1048
1049
1049
1050
1050
1051
1051
1052
1052
1053
1053
1054
1054
1055
1055
1056
1056
1057
1057
1058
1058
1059
1059
1060
1060
1061
1061
1062
1062
1063
1063
1064
1064
1065
1065
1066
1066
1067
1067
1068
1068
1069
1069
1070
1070
1071
1071
1072
1072
1073
1073
1074
1074
1075
1075
1076
1076
1077
1077
1078
1078
1079
1079
1080
1080
1081
1081
1082
1082
1083
1083
1084
1084
1085
1085
1086
1086
1087
1087
1088
1088
1089
1089
1090
1090
1091
1091
1092
1092
1093
1093
1094
1094
1095
1095
1096
1096
1097
1097
1098
1098
1099
1099
1100
1100
1101
1101
1102
1102
1103
1103
1104
1104
1105
1105
1106
1106
1107
1107
1108
1108
1109
1109
1110
1110
1111
1111
1112
1112
1113
1113
1114
1114
1115
1115
1116
1116
1117
1117
1118
1118
1119
1119
1120
1120
1121
1121
1122
1122
1123
1123
1124
1124
1125
1125
1126
1126
1127
1127
1128
1128
1129
1129
1130
1130
1131
1131
1132
1132
1133
1133
1134
1134
1135
1135
1136
1136
1137
1137
1138
1138
1139
1139
1140
1140
1141
1141
1142
1142
1143
1143
1144
1144
1145
1145
1146
1146
1147
1147
1148
1148
1149
1149
1150
1150
1151
1151
1152
1152
1153
1153
1154
1154
1155
1155
1156
1156
1157
1157
1158
1158
1159
1159
1160
1160
1161
1161
1162
1162
1163
1163
1164
1164
1165
1165
1166
1166
1167
1167
1168
1168
1169
1169
1170
1170
1171
1171
1172
1172
1173
1173
1174
1174
1175
1175
1176
1176
1177
1177
1178
1178
1179
1179
1180
1180
1181
1181
1182
1182
1183
1183
1184
1184
1185
1185
1186
1186
1187
1187
1188
1188
1189
1189
1190
1190
1191
1191
1192
1192
1193
1193
1194
1194
1195
1195
1196
1196
1197
1197
1198
1198
1199
1199
1200
1200
1201
1201
1202
1202
1203
1203
1204
1204
1205
1205
1206
1206
1207
1207
1208
1208
1209
1209
1210
1210
1211
1211
1212
1212
1213
1213
1214
1214
1215
1215
1216
1216
1217
1217
1218
1218
1219
1219
1220
1220
1221
1221
1222
1222
1223
1223
1224
1224
1225
1225
1226
1226
1227
1227
1228
1228
1229
1229
1230
1230
1231
1231
1232
1232
1233
1233
1234
1234
1235
1235
1236
1236
1237
1237
1238
1238
1239
1239
1240
1240
1241
1241
1242
1242
1243
1243
1244
1244
1245
1245
1246
1246
1247
1247
1248
1248
1249
1249
1250
1250
1251
1251
1252
1252
1253
1253
1254
1254
1255
1255
1256
1256
1257
1257
1258
1258
1259
1259
1260
1260
1261
1261
1262
1262
1263
1263
1264
1264
1265
1265
1266
1266
1267
1267
1268
1268
1269
1269
1270
1270
1271
1271
1272
1272
1273
1273
1274
1274
1275
1275
1276
1276
1277
1277
1278
1278
1279
1279
1280
1280
1281
1281
1282
1282
1283
1283
1284
1284
1285
1285
1286
1286
1287
1287
1288
1288
1289
1289
1290
1290
1291
1291
1292
1292
1293
1293
1294
1294
1295
1295
1296
1296
1297
1297
1298
1298
1299
1299
1300
1300
1301
1301
1302
1302
1303
1303
1304
1304
1305
1305
1306
1306
1307
1307
1308
1308
1309
1309
1310
1310
1311
1311
1312
1312
1313
1313
1314
1314
1315
1315
1316
1316
1317
1317
1318
1318
1319
1319
1320
1320
1321
1321
1322
1322
1323
1323
1324
1324
1325
1325
1326
1326
1327
1327
1328
1328
1329
1329
1330
1330
1331
1331
1332
1332
1333
1333
1334
1334
1335
1335
1336
1336
1337
1337
1338
1338
1339
1339
1340
1340
1341
1341
1342
1342
1343
1343
1344
1344
1345
1345
1346
1346
1347
1347
1348
1348
1349
1349
1350
1350
1351
1351
1352
1352
1353
1353
1354
1354
1355
1355
1356
1356
1357
1357
1358
1358
1359
1359
1360
1360
1361
1361
1362
1362
1363
1363
1364
1364
1365
1365
1366
1366
1367
1367
1368
1368
1369
1369
1370
1370
1371
1371
1372
1372
1373
1373
1374
1374
1375
1375
1376
1376
1377
1377
1378
1378
1379
1379
1380
1380
1381
1381
1382
1382
1383
1383
1384
1384
1385
1385
1386
1386
1387
1387
1388
1388
1389
1389
1390
1390
1391
1391
1392
1392
1393
1393
1394
1394
1395
1395
1396
1396
1397
1397
1398
1398
1399
1399
1400
1400
1401
1401
1402
1402
1403
1403
1404
1404
1405
1405
1406
1406
1407
1407
1408
1408
1409
1409
1410
1410
1411
1411
1412
1412
1413
1413
1414
1414
1415
1415
1416
1416
1417
1417
1418
1418
1419
1419
1420
1420
1421
1421
1422
1422
1423
1423
1424
1424
1425
1425
1426
1426
1427
1427
1428
1428
1429
1429
1430
1430
1431
1431
1432
1432
1433
1433
1434
1434
1435
1435
1436
1436
1437
1437
1438
1438
1439
1439
1440
1440
1441
1441
1442
1442
1443
1443
1444
1444
1445
1445
1446
1446
1447
1447
1448
1448
1449
1449
1450
1450
1451
1451
1452
1452
1453
1453
1454
1454
1455
1455
1456
1456
1457
1457
1458
1458
1459
1459
1460
1460
1461
1461
1462
1462
1463
1463
1464
1464
1465
1465
1466
1466
1467
1467
1468
1468
1469
1469
1470
1470
1471
1471
1472
1472
1473
1473
1474
1474
1475
1475
1476
1476
1477
1477
147
```

1242 where each component corresponds to a disentangled stochastic attribute: position z_p , scale z_s ,
 1243 depth z_d , transparency z_t , and visual features z_f . The background is represented by a single abstract
 1244 particle z_{bg} , fixed at the center of the image and parameterized only by d_{bg} background features.
 1245 Formally,

$$z_{\text{bg}} \sim \mathcal{N}(\mu_{\text{bg}}, \sigma_{\text{bg}}^2) \in \mathbb{R}^{d_{\text{bg}}}.$$

1246 We now detail the role of each attribute:
 1247

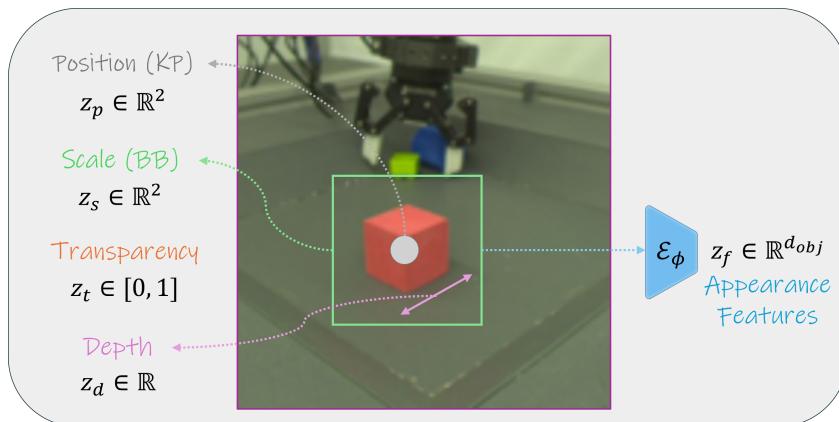
1248 **Position** $z_p \in \mathbb{R}^2$: encodes the spatial location of the particle, i.e., its (x, y) coordinates within
 1249 $[-1, 1]$. Following object-centric models such as G-SWM (Lin et al., 2020a) and SCALOR (Jiang
 1250 et al., 2019), z_p is modeled as a Gaussian $\mathcal{N}(\mu_p, \sigma_p^2)$. In DLP, the prior for z_p is derived from SSM
 1251 over patches, which ensures that positions carry explicit spatial meaning.

1252 **Scale** $z_s \in \mathbb{R}^2$: defines the particle’s height and width (i.e., bounding box size). It is modeled as
 1253 $\mathcal{N}(\mu_s, \sigma_s^2)$ and passed through a Sigmoid activation to constrain values to $[0, 1]$.

1254 **Depth** $z_d \in \mathbb{R}$: specifies the relative ordering of particles when reconstructing the scene, and mod-
 1255 eled as $\mathcal{N}(\mu_d, \sigma_d^2)$. While z_d determines the compositing order of decoded objects, it does not
 1256 necessarily correspond to physical 3D depth, since DLP is trained on monocular RGB inputs.

1257 **Transparency** $z_t \in [0, 1]$: controls whether and to what extent a particle contributes to the recon-
 1258 structed image. A value of $z_t = 0$ corresponds to a fully transparent (inactive) particle, $z_t = 1$ to a
 1259 fully visible particle, and intermediate values capture partial visibility. Unlike many object-centric
 1260 models that use a Bernoulli “presence” variable, we model transparency with a Beta distribution,
 1261 $z_t \sim \text{Beta}(a_t, b_t)$. This has two key advantages: (1) the Beta distribution is continuous and re-
 1262 parameterizable, enabling stable gradient-based optimization without discrete relaxations, and (2) it
 1263 naturally supports intermediate values, making it possible to represent partially occluded or semi-
 1264 transparent objects. Moreover, like Gaussian and Bernoulli, the Beta distribution has a closed-form
 1265 KL divergence that can be easily plugged in the VAE’s objective function.

1266 **Visual features** $z_f \in \mathbb{R}^{d_{\text{obj}}}$, $z_{\text{bg}} \in \mathbb{R}^{d_{\text{bg}}}$: encode the appearance of foreground particles, i.e., the
 1267 keypoint’s surrounding region, and the background, respectively. Both are modeled as Gaussian
 1268 latents: $z_f \sim \mathcal{N}(\mu_f, \sigma_f^2)$ and $z_{\text{bg}} \sim \mathcal{N}(\mu_{\text{bg}}, \sigma_{\text{bg}}^2)$.



1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 Figure 8: A Deep Latent Particle. Each component of a latent particle corresponds to a disentangled
 stochastic attribute: position z_p , scale z_s , depth z_d , transparency z_t , and visual features z_f . Further
 details are provided in Section 3 of the main text and Section A.3 of the Appendix.

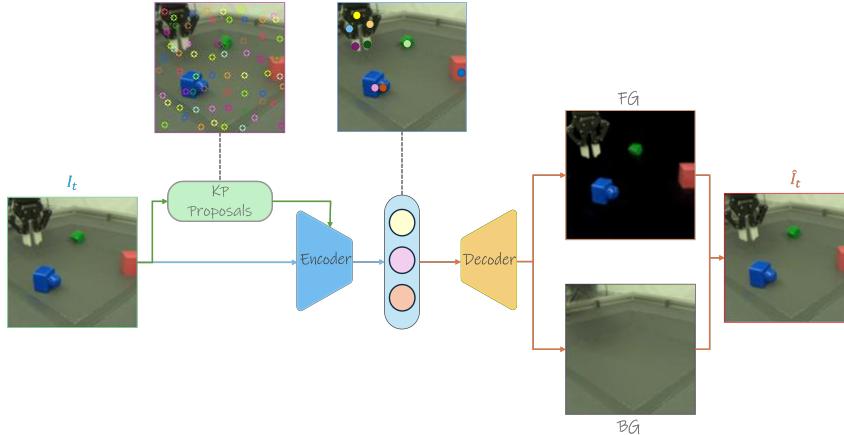
A.4 LATENT PARTICLE WORLD MODELS - EXTENDED METHOD DETAILS

1296 In this section, we provide a detailed overview of our method.

1297 Our goal is to design a *world model*, i.e., a dynamics model $\mathcal{F}(I_{0:T-1}, c) = \hat{I}_{T:T+\tau-1}$ that takes in
 1298 a sequence of T image observations $I_{0:T-1} \in \mathbb{R}^{T \times C \times H \times W}$ (a video), where C is the number of im-
 1299 age channels (typically 3 for RGB) and H and W are the height and width of the images respectively,

1296 and *optionally* a sequence of conditioning signals c (e.g., action sequence or language instruction),
 1297 and predicts a sequence of future observations τ autoregressively $\hat{I}_{T:T+\tau-1} \in \mathbb{R}^{\tau \times C \times H \times W}$. We
 1298 note that our world model need not be conditioned on c and can be trained only with videos, i.e.
 1299 $c = \emptyset$, as we explain later in the section. As the original image pixel space is high-dimensional, we
 1300 propose an end-to-end latent world model, termed Latent Particle World Models (LPWM), which
 1301 learns a compact self-supervised object-centric latent representation for the images, based on an
 1302 improved version of the Deep Latent Particles (DLP, Daniel & Tamar, 2022a; 2024) representation,
 1303 DLPv3, and a novel dynamics module learned over the latent particle space. The model is trained
 1304 end-to-end such that the representation is trained to be predictable by the dynamics module, and as
 1305 such does not require pre-trained image tokenization of any sort.

1306 The **Latent Particle World Model (LPWM)** consists of four components, jointly trained end-to-
 1307 end as a variational autoencoder (VAE, Kingma & Welling, 2014): the **ENCODER** \mathcal{E}_ϕ , the **DECODER**
 1308 \mathcal{D}_θ , the **CONTEXT** \mathcal{K}_ψ and the **DYNAMICS** \mathcal{F}_ξ . The general pipeline operates as follows: input
 1309 frames are first encoded by the **ENCODER** into sets of particles, which are then decoded by the **DE-
 1310 CODER** to reconstruct images and compute the reconstruction loss. The resulting sequence of latent
 1311 particles is passed to the **CONTEXT** module, which generates distributions over latent actions. The
 1312 sampled latent actions—together with the particles themselves—are processed by the **DYNAMICS**
 1313 module to predict the next-step particle states, where the KL is computed per-particle. Below, we
 1314 provide a high-level overview of each component and a detailed description is provided in subse-
 1315 quent sections. A high-level schematic of the encoding and decoding process is shown in Figure 9,
 1316 and an overview of the full architecture is shown in Figure 3.



1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333 Figure 9: Encoding and decoding particles in DLP. Input image is first used to generate *keypoint*
 1334 *proposals*, that, jointly with input image are used to encode a set of particles by the **ENCODER**,
 1335 which is then decoded by the **DECODER**. Further details are provided in Section 4 of the main text
 1336 and Section A.4 of the Appendix.

1337 **ENCODER (Section A.4.1):** corresponds to the VAE’s approximate posterior $q_\phi(z|x)$. It takes as
 1338 input an image frame and outputs a set of latent particles:
 1339

$$\mathcal{E}_\phi(x = I_t) = [\{z_{\text{fg}}^{m,t}\}_{m=0}^{M-1}, z_{\text{bg}}^t].$$

1340 Each frame I_t is represented by M foreground latent particles $\{z_{\text{fg}}^{m,t}\}_{m=0}^{M-1}$, where each particle orig-
 1341 inates from per-patch learned keypoint (see Section A.4.1), and one background particle z_{bg}^t . Unlike
 1342 DDLP, particle filtering to a subset $L \leq M$ is deferred to the decoder to preserve particle identities
 1343 and avoid explicit tracking in downstream modules. Foreground particles are parameterized as
 1344

$$z_{\text{fg}}^m \in \mathbb{R}^{6+d_{\text{obj}}},$$

1345 where the first six dimensions capture explicit attributes (e.g., spatial coordinates, scale, trans-
 1346 parency), and the remaining d_{obj} dimensions represent appearance features. The background particle
 1347 is defined as
 1348

$$z_{\text{bg}} \in \mathbb{R}^{d_{\text{bg}}},$$

1350 with d_{bg} encoding the global appearance of the background.
 1351

1352 **DECODER (Section A.4.2):** corresponds to the VAE’s likelihood $p_{\theta}(x|z)$. It takes as input a set of
 1353 $L \leq M$ foreground particles together with a background particle, and reconstructs an image frame:
 1354

$$1355 \mathcal{D}_{\theta}([\{z_{\text{fg}}^{l,t}\}_{l=0}^{L-1}, z_{\text{bg}}^t]) = \hat{I}_t.$$

1356 Here, L denotes the number of foreground particles provided to the decoder, which can be smaller
 1357 than the M particles produced by the encoder. Particles can be filtered based on their confidence –
 1358 e.g., using their variance scores (Daniel & Tamar, 2024), or transparency values prior to rendering
 1359 the frame, with the purpose of reducing the memory footprint without degrading the reconstruction
 1360 performance.
 1361

1362 **CONTEXT (Section A.4.3):** a novel mechanism for modeling latent actions, i.e., the transitions that
 1363 move a particle from z_i^t to z_i^{t+1} . These latent actions provide the dynamics model with per-particle
 1364 context, capturing events such as the stochastic movement of a gripper in a robotic video or the
 1365 appearance of a new object in the scene. Throughout the paper, we use the terms *latent context* and
 1366 *latent actions* interchangeably. Formally, the module takes as input a sequence of particle sets across
 1367 $T + 1$ frames, optionally conditioned on external signals $\{c_t\}_{t=0}^T$ (e.g., control actions or language
 1368 instructions), and outputs a sequence of per-particle latent contexts:
 1369

$$1370 \mathcal{K}_{\psi}(\{\{z_{\text{fg}}^{m,t}\}_{m=0}^{M-1}, z_{\text{bg}}^t, c_t\})_{t=0}^T = \{\{z_{c,\text{fg}}^{m,t}\}_{m=0}^{M-1}, z_{c,\text{bg}}^t\}_{t=0}^{T-1}.$$

1371 The CONTEXT module consists of two complementary heads:
 1372

- 1373 • **Latent inverse dynamics** $p_{\psi}^{\text{inv}}(z_c^t \mid z^{t+1}, z^t, \dots, z^0, c_t)$, which predicts the latent action
 1374 responsible for the transition between consecutive states.
- 1375 • **Latent policy** $p_{\psi}^{\text{policy}}(z_c^t \mid z^t, \dots, z^0, c_t)$, which models the distribution of latent actions
 1376 given the current state.

1377 In practice, the model does not output particles directly, but instead produces the parameters of their
 1378 predictive distribution (e.g., Gaussian means and variances). The latent policy acts as a prior that
 1379 regularizes the inverse dynamics via a KL-divergence term in the VAE objective (Section A.4.6).
 1380 During training, latent actions are inferred through the inverse dynamics head. At inference time,
 1381 actions can instead be sampled from the policy prior, enabling stochastic rollout of the world model.
 1382

1383 **DYNAMICS (Section A.4.4):** corresponds to the VAE’s autoregressive dynamics prior
 1384 $p_{\xi}(z^t \mid z^{t-1}, \dots, z^0)$. It predicts the next-step particles conditioned on the current particles and their
 1385 associated latent actions:
 1386

$$1387 \mathcal{F}_{\xi}(\{\{z_{\text{fg}}^{m,t}\}_{m=0}^{M-1}, z_{\text{bg}}^t, z_c^t\})_{t=0}^{T-1} = \{\{\hat{z}_{\text{fg}}^{m,t}\}_{m=0}^{M-1}, \hat{z}_{\text{bg}}^t\}_{t=1}^T.$$

1388 Similarly to the context module, the model outputs the parameters of the distributions, which serve
 1389 as the prior in the KL-divergence calculation part of the VAE training objective.
 1390

1391 **Loss (Section A.4.6):** Latent Particle World Models are trained by maximizing a temporal ELBO,
 1392 which decomposes into a *static* term (for the first frame) and a *dynamic* term (for subsequent frames).
 1393 For brevity, we omit the particle index m , and note that both dynamics and context losses are
 1394 summed over all M particles.
 1395

1396 **Static ELBO.** For the initial frame x_0 , we optimize

$$1397 \mathcal{L}_{\text{static}} = \mathcal{L}_{\text{rec}}(x_0, \hat{x}_0) + \beta_{\text{KL}} \text{KL}(q_{\phi}(z^0 \mid x_0) \parallel p(z^0)) + \beta_{\text{reg}} \mathcal{L}_{\text{reg}}(z_t^0),$$

1398 where z^0 denotes the set of particle attributes and features. The KL is computed in a *masked form*,
 1399 where each particle’s contribution is weighted by its transparency attribute z_t^m , such that particles
 1400 with $z_t^m \approx 0$ (inactive) have negligible effect. The transparency regularizer is defined as
 1401

$$1402 \mathcal{L}_{\text{reg}} = \sum_{m=0}^{M-1} (z_t^m)^2,$$

1403 which penalizes the total transparency values across particles and thus encourages sparse explanations
 1404 of the scene, i.e., only a small subset of particles remain active.
 1405

1404 **Dynamic ELBO.** For frames $t \geq 1$, the loss is
 1405

$$\begin{aligned} 1406 \quad \mathcal{L}_{\text{dynamic}} = \sum_{t=1}^{T-1} & \left[\mathcal{L}_{\text{rec}}(x_t, \hat{x}_t) \right. \\ 1407 \quad & + \beta_{\text{dyn}} \text{KL}\left(q_{\phi}(z^t | x_t) \| p_{\xi}(z^t | z^{<t}, z_c^{<t})\right) \\ 1408 \quad & \left. + \beta_{\text{ctx}} \text{KL}\left(p_{\psi}^{\text{inv}}(z_c^t | z^{\leq t+1}) \| p_{\psi}^{\text{policy}}(z_c^t | z^{\leq t})\right) \right]. \\ 1412 \end{aligned} \quad (1)$$

1413 where z_c^t denotes latent context (action) variables. The dynamics KL is masked as above, while the
 1414 context KL is not, allowing context variables to also explain transitions between active and inactive
 1415 states.

1416 **Priors.** The static prior parameters are fixed: Gaussian means and covariances for attributes and
 1417 visual features, and (a, b) parameters of a Beta distribution for transparency (see Appendix A.9).

1419 **Reconstruction.** The reconstruction term is defined as pixel-wise MSE in simulated environments,
 1420 and as a perceptual loss in real-world data:

$$1421 \quad \mathcal{L}_{\text{rec}} = \begin{cases} \|x - \hat{x}\|_2^2, & \text{for simulated environments,} \\ 1422 \quad \|x - \hat{x}\|_2^2 + \gamma \|\phi(x) - \phi(\hat{x})\|_2^2, & \text{for real-world datasets,} \\ 1423 \end{cases}$$

1425 where $\phi(\cdot)$ denotes VGG features as in LPIPS (Hoshen et al., 2019), and $\gamma = 0.1$ controls the
 1426 perceptual loss contribution.

1427 In the following sections, we describe the technical and implementation details of each component,
 1428 with the differences from DLPv2 and DDP (Daniel & Tamar, 2024) highlighted in *italics*. In
 1429 Section A.10.1, we compare the proposed DLPv3 to DLPv2 and DLP on image reconstruction in
 1430 the single-image setting, demonstrating the effect of these modifications.

1431 A.4.1 ENCODER \mathcal{E}_{ϕ}

1433 We now describe the image encoding process from pixels to latent particles. The encoder operates
 1434 per-frame (i.e., non-temporally; all frames are processed independently in parallel) and serves as the
 1435 posterior of the VAE. The scheme largely follows DLPv2 (Daniel & Tamar, 2024); for completeness,
 1436 we provide the details here and highlight the modifications introduced in DLPv3.

1437 DLP learns an object-centric particle representation by disentangling *position* from *appearance*
 1438 within a conditional VAE framework (Sohn et al., 2015). Specifically, keypoint proposals are first
 1439 generated to represent candidate particle positions, after which additional attributes such as scale
 1440 and transparency are extracted from regions centered around these proposals. The overall encoding
 1441 steps are illustrated in Figure 10.

1442 The encoder’s role is to produce the posterior distribution over latent particles for a given image.
 1443 Formally, it models the approximate posterior as

$$1445 \quad q_{\phi}(z|x) = q_{\phi}(z_a|x) \times q_{\phi}(z_o, z_s, z_d, z_t|x, z_a) \times q_{\phi}(z_f|x, z_p, z_s),$$

1446 where z_a denotes the keypoint proposals and z_o the offsets that together form the particle positions
 1447 $z_p = z_a + z_o$. This modular factorization improves performance: keypoint proposals from the spatial
 1448 softmax (SSM) layer tend to capture regions of interest but are not guaranteed to align with object
 1449 centers. Offsets, in contrast, are predicted by a neural network and can accurately adjust proposals
 1450 to object centers—a property that is crucial for modeling object dynamics. The encoding process is
 1451 hierarchical and involves of 3 steps: (1) *keypoint proposals* - a patch-based network with a spatial
 1452 softmax layer generates candidate particle locations; (2) *attribute encoding* - offsets, scales, depths,
 1453 and transparency are inferred for each particle, and (3) *appearance encoding* - foreground particle
 1454 features and global background features are extracted. We now describe each step in detail.

1455 **Keypoint proposals.** Given an input image $x \in \mathbb{R}^{C \times H \times W}$, we divide it into M non-overlapping
 1456 patches of size $D \times D$ (typically $D \in \{8, 16\}$). Each patch is processed by the *proposal encoder*
 1457 $q_{\phi}(z_a|x)$, a lightweight convolutional neural network (CNN), followed by a spatial softmax (SSM)

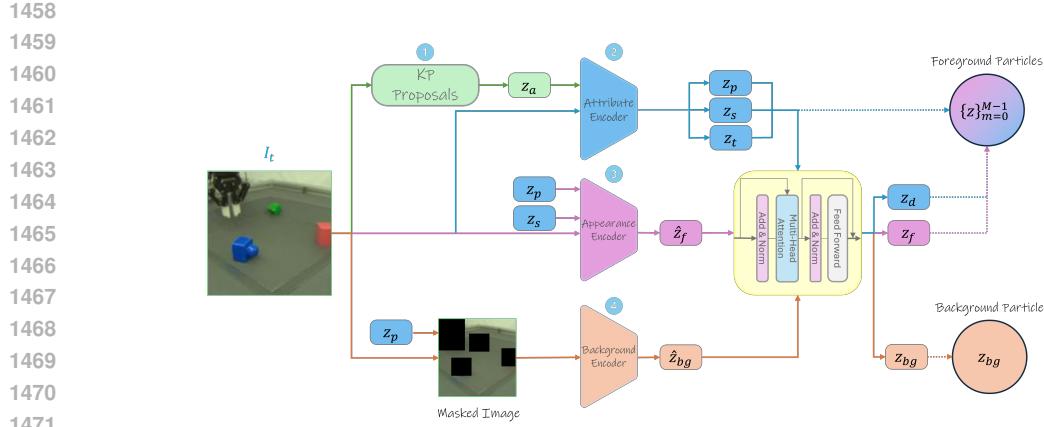


Figure 10: Encoding particles in DLP. The encoding process involves 4 steps: (1) *keypoint proposals* - a patch-based network with a spatial softmax layer generates candidate particle locations; (2) *attribute encoding* - offsets, scales, depths, and transparencies are inferred for each particle; (3) *appearance encoding* - foreground particle features, and (4) *background encoding* - global background features are extracted from the keypoint-masked image.

layer, which produces a single keypoint proposal z_a per patch. In DLPv2, these proposals were filtered down to a smaller set of size L using the variance of the SSM distribution. In DLPv3, we instead postpone filtering until after other particle attributes have been estimated, which yields more reliable selection. In LPWM, filtering is deferred even further: particles are never removed in the encoder, but instead filtered in the decoder, ensuring that positional identity is preserved for downstream dynamics modeling. Nevertheless, for the single-image training setting, where only object-centric decomposition is learned and no dynamics are modeled, we retain the option of applying encoder-side filtering.

Attribute encoding. To infer the position offset z_o , scale z_s , depth z_d , and transparency z_t of each particle, we extract glimpses of size $S \times S$, where $S \geq D$, centered at the keypoint proposals z_a using an STN.³ These glimpses are processed by the *attribute encoder* $q_\phi(z_o, z_s, z_d, z_t | x, z_a)$, implemented as a small CNN followed by a fully connected layer, which outputs the distribution parameters described in Section A.3 for each particle. The encoder’s weights are shared across all particles.

Appearance encoding. The visual features of each particle are extracted with the *appearance encoder* $q_\phi(z_f | x, z_p, z_s)$. As in the attribute stage, an STN is used to obtain glimpses of size S , but here the transformation is conditioned on both the particle position $z_p = z_a + z_o$ and the learned scale z_s , rather than a fixed patch ratio. This allows the glimpse size to adapt when objects are smaller or larger than the nominal $S \times S$ region. Since all stages rely on STN, the entire pipeline remains fully differentiable. The appearance encoder has the same architecture as the attribute encoder and outputs the Gaussian distribution parameters for the particle’s visual features. In addition to object particles, we allocate a background particle anchored at the image center. Its features z_{bg} are inferred by a dedicated *background encoder* $q_\phi(z_{bg} | x, z_p)$ which operates on a masked version of the input image. Specifically, the posterior keypoints z_p , along with their transparencies z_t , are used to generate M masks of size $S \times S$, each masking out the region corresponding to a particle, leaving the background regions visible for encoding.

DLPv3 encoding modifications. In DLPv3, we introduce several changes to the encoding process aimed at improving stability and performance:

³The affine transformation in this stage uses a fixed scale corresponding to the patch size S , a predefined hyperparameter (typically 0.125 or 0.25 of the image size; we assume square images with $H = W$).

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

- Depth via particle attention.** Instead of predicting the depth attribute z_d during the attribute encoding stage, we introduce an attention layer applied *after* attribute encoding. This attention layer takes as input all particles, including the background particle, and outputs the depth values $\{z_d^m\}_{m=0}^{M-1}$. The motivation is that relative depth is inherently a global property, best estimated by jointly considering all particle positions and features rather than independently.
- Residual appearance encoding.** The same attention layer is also used to refine appearance features. Specifically, in the appearance encoding stage, we first compute a deterministic feature embedding \hat{z}_f for each particle. The attention layer then outputs a residual Δz_f and variance σ_f^2 , such that the final appearance distribution is

$$q_\phi(z_f \mid x, z_p, z_s) = \mathcal{N}(z_f \mid \hat{z}_f + \Delta z_f, \sigma_f^2).$$

This residual modeling improves performance by allowing the network to adjust features based on contextual information from all particles.

- Stable transparency parameterization.** In DLPv2, the Beta distribution parameters (a, b) for transparency were modeled as $a = \exp(y_a)$, $b = \exp(y_b)$, where y_a, y_b are the outputs of the network, which could lead to excessively large concentration values and unstable training. In DLPv3, we reparameterize them as

$$a = r_{\max} \sigma(y_a) + r_{\min} (1 - \sigma(y_a)), \quad b = r_{\max} \sigma(y_b) + r_{\min} (1 - \sigma(y_b)),$$

where $\sigma(\cdot)$ is the sigmoid function, $r_{\min} = 10^{-4}$, and $r_{\max} = 100$. This constrains (a, b) to a bounded range, leading to smoother and more stable optimization.

A.4.2 DECODER \mathcal{D}_θ

The decoder architecture is designed to mirror the object-centric structure of the latent representation. Each particle is decoded into a localized appearance patch, positioned and scaled according to its spatial attributes, while transparency and depth resolve visibility and occlusions. This compositional design parallels classical graphics pipelines, local rendering, spatial transformation, and alpha compositing, but is learned end-to-end from data, enabling the model to reconstruct complex scenes in a structured and interpretable manner.

The decoder models the likelihood

$$p_\theta(x \mid z) = p_\theta(x \mid z_{\text{fg}} = \{z_p, z_s, z_d, z_t, z_f\}, z_{\text{bg}})$$

and is composed of a *particle decoder* and a *background decoder*, as illustrated in Figure 11.

Particle decoder. Each particle is decoded independently into an RGBA (RGB + Alpha) glimpse $\tilde{x}_i^p \in \mathbb{R}^{S \times S \times 4}$, representing the reconstructed appearance of particle i . The particle decoder consists of a fully connected layer followed by a small upsampling CNN that maps the latent feature vector $z_f^{(i)}$ into this glimpse.

The alpha channel encodes a soft segmentation mask for the particle. The depth z_d and transparency z_t attributes modulate this mask, determining both the effective visibility and the compositing order of the particle. The spatial attributes (z_p, z_s) specify the particle's position and scale, and are applied to the decoded glimpse using a Spatial Transformer Network (STN) to place it into the full-resolution canvas \hat{x}_{fg} .

The transparency and depth factorization process, which governs the stitching of multiple particles, is summarized in Figure 12.

Background decoder. The background is decoded from z_{bg} using a standard VAE-style network: a fully connected layer followed by an upsampling CNN produces \hat{x}_{bg} , and the final reconstructed image is produced according to

$$\hat{x} = \alpha \odot \hat{x}_{\text{fg}} + (1 - \alpha) \odot \hat{x}_{\text{bg}},$$

where α is the effective mask obtained from the compositing process (Figure 12).

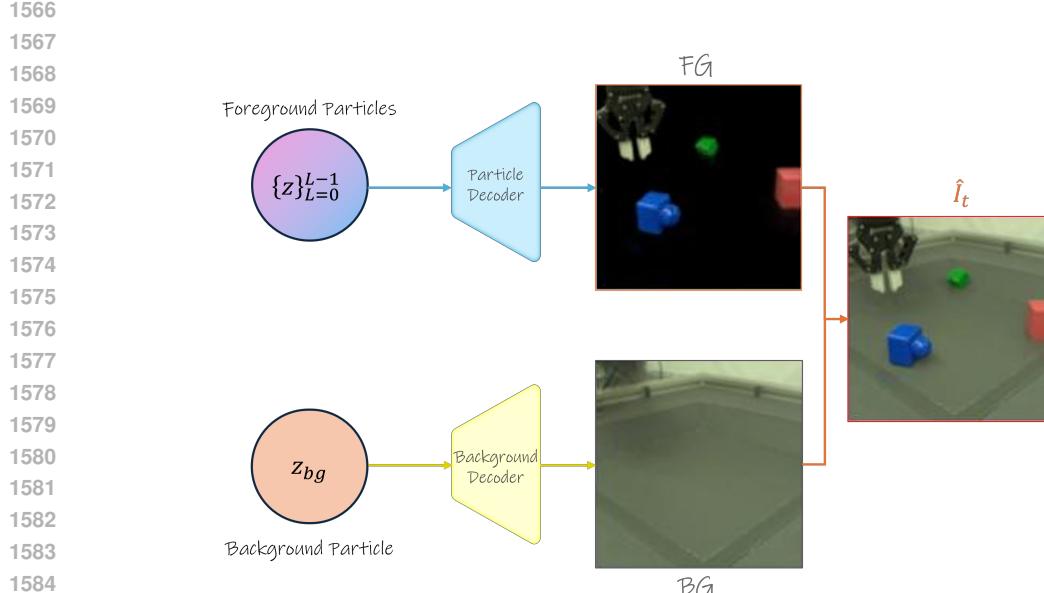


Figure 11: Decoding particles in DLP. Each particle is decoded into a localized appearance patch, positioned and scaled according to its spatial attributes, while transparency and depth resolve visibility and occlusions. The background is decoded with a standard upsampling CNN-based network. Finally, the foreground and background components are stitched using the effective alpha masks.

```

1  def factor_alpha_map(alpha_obj, rgb_obj, z_t, z_d):
2      # alpha_obj: [B, N, 1, h, w], per-particle alpha maps
3      # rgb_obj: [B, N, 3, h, w], per-particle RGB patches
4      # z_t: [B, N, 1], transparency attributes
5      # z_d: [B, N, 1], depth attributes
6
7      # Apply transparency
8      alpha_obj = alpha_obj * z_t
9
10     # Mask RGB channels with alpha
11     rgba_obj = alpha_obj * rgb_obj
12
13     # Depth-based importance map
14     importance = alpha_obj * sigmoid(-z_d)
15
16     # Normalize importance weights
17     importance = importance / (importance.sum(dim=1, keepdim=True) + 1e-5)
18
19     # Composite objects according to importance
20     objects_canvas = (rgba_obj * importance).sum(dim=1)
21
22     # Background mask
23     bg_mask = 1 - (alpha_obj * importance).sum(dim=1)
24
25     return objects_canvas, bg_mask

```

Figure 12: PyTorch-style pseudocode of the transparency and depth factorization used for compositing particles.

In DLPv3, we defer the particle filtering process to the decoder stage. Instead of rendering all M particles, we only render a subset of $L \leq M$ particles, where filtering is based on the particles' positional variance and transparency. This design serves two purposes: (i) preserving the full set of particles after encoding, which is important for downstream dynamics modeling, and (ii) reducing computational and memory cost during rendering, since many particles may be inactive or redundant. The filtering procedure is described below.

1620
 1621 **Particle filtering.** During training, we retain the top- L particles with the lowest positional vari-
 1622 ance (i.e., highest spatial confidence). Formally, the positional variance of a particle is defined
 1623 as
 1624

$$V(z) = \sigma_x^2 + \sigma_y^2 + \sigma_{xy} + \sum_{j \in \{0,1\}} \log \sigma_{o,j}^2,$$

1625 where σ_x^2 , σ_y^2 , and σ_{xy} denote the variance and covariance terms from the spatial softmax proposal,
 1626 and $\sigma_{o,j}^2$ is the variance of the offset distribution predicted by the attribute encoder along axis j . We
 1627 use the log-variance for the offset term to account for scale differences between the empirical vari-
 1628 ance from the spatial softmax and the learned offset uncertainty. This choice is motivated by prior
 1629 work (Daniel & Tamar, 2022a), which demonstrated that particles with low positional variance tend
 1630 to correspond to salient and meaningful parts of the scene, such as objects or object parts. At infer-
 1631 ence time, where particles are generated autoregressively, we simply discard all particles with zero
 1632 transparency, i.e., $z_t = 0$.
 1633

A.4.3 CONTEXT \mathcal{K}_ψ

1634 We now present the main novel additional component to the DLP framework—the CONTEXT mod-
 1635 ule \mathcal{K}_ψ —designed to address the problem of *stochastic dynamics* in actionless videos. In such
 1636 videos, scene dynamics are not fully determined by the first frames (e.g., a ball starting to roll in
 1637 OJB3D (Lin et al., 2020a) or CLEVRER (Yi et al., 2019)), but also by external signals such as actions
 1638 (e.g., a robotic gripper moving in the BAIR dataset (Ebert et al., 2017a)).
 1639

1640 A common approach to capture such stochastic transitions is to introduce *latent actions* (Menapace
 1641 et al., 2021; Bruce et al., 2024; Gao et al., 2025; Villar-Corralles & Behnke, 2025). Typically, a
 1642 latent action z_c is learned in an autoencoding scheme: an inverse model infers $z_c^t = \mathcal{K}_\psi^{\text{inv}}(I_{t+1}, I_t)$
 1643 from two consecutive frames, and a decoder reconstructs the future frame $\hat{I}_{t+1} = \mathcal{D}_\theta(I_t, z_c^t)$, with
 1644 training driven by reconstruction loss. To avoid degenerate solutions where z_c^t memorizes I_{t+1} , z_c is
 1645 strongly regularized, either via a vector-quantization (VQ) bottleneck (Bruce et al., 2024; Ye et al.,
 1646 2025) or a variational bottleneck with KL-regularization to a fixed prior (Gao et al., 2025). Crucially,
 1647 in these designs, the latent action is *global*: a single vector encodes all changes between two frames.
 1648 While this aligns with how agents are typically controlled (e.g., joint positions in robotics, discrete
 1649 actions in video games), it is limited in multi-entity settings. For example, in Mario, enemies move
 1650 independently of the player’s true action space, and in robotics, contact events can induce secondary
 1651 object interactions. A global action vector cannot naturally disentangle these local dynamics.
 1652

1653 In this work, we introduce the CONTEXT module \mathcal{K}_ψ , a novel per-particle mechanism for latent
 1654 action modeling. Unlike prior work (Villar-Corralles & Behnke, 2025; Gao et al., 2025), we model
 1655 a latent action for each particle, directly governing the transition from $z_i^{m,t}$ to $z_i^{m,t+1}$. Regulariza-
 1656 tion is not imposed via a fixed prior, but instead learned through a *latent policy*, which models the
 1657 distribution of latent actions conditioned on the current state. This per-particle formulation enables
 1658 the representation of multiple, simultaneous interactions, and allows stochastic sampling of latent
 1659 actions at inference time, capturing multimodality (e.g., moving left or right from the same state).
 1660

1661 Finally, we extend \mathcal{K}_ψ to support external conditioning signals such as global actions (e.g., ground-
 1662 truth gripper controls), language instructions, or image-based goals. Importantly, conditioning
 1663 *within* the latent context module maps global scene-level signals into per-particle latent actions. For
 1664 instance, given a language instruction, \mathcal{K}_ψ learns to translate it into per-particle latent actions that
 1665 drive the dynamics towards satisfying the instruction. When no external conditioning is provided,
 1666 \mathcal{K}_ψ simply infers latent actions from past particle trajectories.
 1667

1668 Formally, the CONTEXT module takes as input a sequence of particle sets across $T + 1$ frames,
 1669 **optionally** conditioned on external signals $\{c_t\}_{t=0}^T$ (e.g., control actions, goal images, or language
 1670 instructions). It outputs a sequence of per-particle latent contexts:
 1671

$$\mathcal{K}_\psi(\{\{z_{\text{fg}}^{m,t}\}_{m=0}^{M-1}, z_{\text{bg}}^t, c_t\}_{t=0}^T) = \{\{\{z_{c,\text{fg}}^{m,t}\}_{m=0}^{M-1}, z_{c,\text{bg}}^t\}\}_{t=0}^{T-1}.$$

1672 The CONTEXT module is implemented as a *causal spatio-temporal transformer* (Zhu et al., 2024),
 1673 which jointly processes particles across space and time while ensuring autoregressive temporal
 1674 dependencies. It is composed of two complementary heads:

- **Latent inverse dynamics** $p_{\psi}^{\text{inv}}(z_c^t \mid z^{t+1}, z^t, \dots, z^0, c_t)$, which predicts the latent action responsible for the transition between consecutive states.
- **Latent policy** $p_{\psi}^{\text{policy}}(z_c^t \mid z^t, \dots, z^0, c_t)$, which models the distribution of latent actions conditioned on the current state.

The latent policy serves as a prior that regularizes the inverse dynamics via a KL-divergence penalty in the VAE objective (Section A.4.6). Specifically, the latent actions are modeled as Gaussian distributions, $z_c \sim \mathcal{N}(\mu_c, \sigma_c^2)$, parameterized by the context module. At training time, latent actions are obtained through the inverse dynamics head, ensuring consistency with observed transitions. At inference time, latent actions can instead be sampled directly from the latent policy prior, enabling stochastic rollouts of the world model. When conditioned on a goal image or a language instruction, sampling from the latent policy can be further utilized for planning in the particles space, as we demonstrate in the experiments section (Section 5.2). The CONTEXT module is illustrated in Figure 3.

We now describe how different optional conditioning mechanisms are implemented.

Action conditioning. Given a sequence of T global actions $\{c_t\}_{t=0}^{T-1} = \{a^t\}_{t=0}^{T-1}$ (e.g., robotic gripper joint positions), each action is projected to the transformer’s inner dimension and then *repeated for all M input particles*, such that the same global action conditions every particle at timestep t . Conditioning is applied via adaptive layer normalization (AdaLN, (Peebles & Xie, 2023)), enabling global actions to modulate the particle representations consistently across the scene.

Language conditioning. Given a language instruction, we embed its K tokens with a pretrained T5-large model (Raffel et al., 2020) to obtain a sequence of embeddings $c_t = \{l_k\}_{k=0}^{K-1}$. These embeddings are projected to the transformer’s inner dimension and appended to the M particle embeddings along the sequence dimension, resulting in $M + K$ inputs at every timestep $t = 0, \dots, T - 1$. The joint set of particle and language embeddings is processed by self-attention, after which the language embeddings are discarded. We found this self-attention conditioning more effective than cross-attention, consistent with prior work in video generation (Yang et al., 2024b).

Goal image conditioning. Given a goal image I_g , we encode it into M particles (plus a background particle) using the particle encoder ENCODER. The resulting goal particle set $c_t = \{z_g^m\}_{m=0}^{M-1}$ is repeated across all T timesteps and used to condition the corresponding particles $\{z^i\}$ through AdaLN. This allows each particle to be guided toward its goal state in a temporally consistent manner.

A.4.4 DYNAMICS \mathcal{F}_{ξ}

The dynamics module implements the VAE’s autoregressive dynamics prior $p_{\xi}(z^t \mid z^{t-1}, \dots, z^0)$. It predicts the particles at the next timestep conditioned on the current particles and their corresponding latent actions provided by the context module:

$$\mathcal{F}_{\xi}\left(\{[z_{\text{fg}}^{m,t}]_{m=0}^{M-1}, z_{\text{bg}}^t, z_c^t\}_{t=0}^{T-1}\right) = \{[\hat{z}_{\text{fg}}^{m,t}]_{m=0}^{M-1}, \hat{z}_{\text{bg}}^t\}_{t=1}^T.$$

Here z_c^t denotes the latent actions at timestep t . The dynamics module \mathcal{F}_{ξ} is implemented as a causal spatio-temporal transformer, where particles are conditioned on their corresponding latent actions through adaptive layer normalization (AdaLN (Zhu et al., 2024)).

As in the other components, \mathcal{F}_{ξ} outputs distribution parameters that serve as the prior in the KL-divergence term between the posterior encoder \mathcal{E}_{ϕ} and the dynamics prior.⁴

Differently from DDLP (Daniel & Tamar, 2024), LPWM does not rely on tracking a subset of particles across timesteps. Instead, it keeps the entire set of M encoded particles along with their identities (i.e., the patches they originated from). This induces a particle-grid regime: each particle is constrained to move only within a local region around its original patch center, and when it reaches the limits of this region, its features are transferred to nearby particles. This mechanism is illustrated in Figure 13.

⁴The priors for the particles in the first timestep are fixed hyperparameters, consistent with the single-image training setup of DLP.

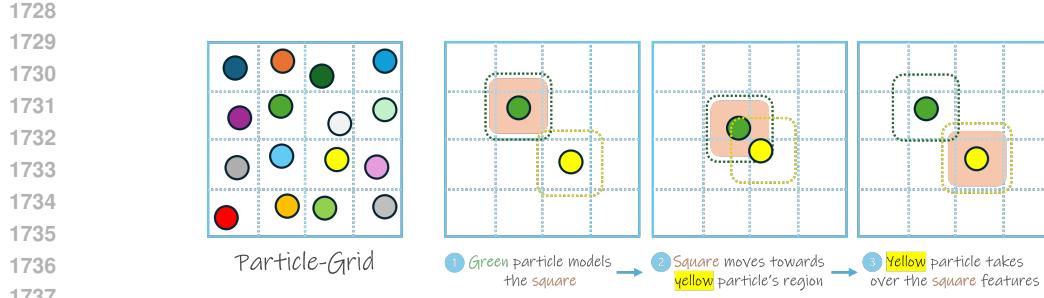


Figure 13: Particle-grid regime. Each particle is constrained to move only within a local region around its original patch center, and when it reaches the limits of this region, its features are transferred to nearby particles.

This design balances between two extremes. On one side are patch-based approaches (e.g., VideoGPT (Yan et al., 2021)), where “particles” are fixed at patch centers and only patch features evolve over time. On the other side are object-centric particle models (Daniel & Tamar, 2024), where a subset of free-moving particles with explicit attributes (e.g., position) can traverse the entire canvas, but their identities must be tracked across time. The latter assumption may hold in controlled settings—for instance, videos with deterministic dynamics and moderate frame rates—but it fails in more general video data where actions or stochastic events occur.

As discussed in Daniel & Tamar (2024), relying on tracking introduces two key limitations: (1) the tracking algorithm assumes sufficiently small frame-to-frame displacements, which constrains the model to certain frame rates; and (2) since the tracked subset of particles is fixed, the model cannot naturally represent events such as new objects entering the scene without additional mechanisms (Lin et al., 2020a).

In contrast, purely patch-based dynamics models avoid these issues by predicting only fixed patch features without explicit attributes (e.g., keypoints). While more general, such models struggle to capture fine-grained object interactions and relations (Lin et al., 2020a; Wu et al., 2022b; Daniel & Tamar, 2024). LPWM, through its particle-grid design, aims to combine the generality of patch-based models with the expressivity of object-centric particles.

A.4.5 TRANSFORMER ARCHITECTURE AND MULTI-VIEW

Spatio-temporal transformer. Given a temporal input sequence of particle sets with shape $[B, T, M, D]$, where B is batch size, T is temporal horizon, M is the number of particles, and D is the embedding dimension, a standard transformer block applies multi-head attention over all $T \times M$ tokens, resulting in quadratic computation cost. To reduce this, LPWM employs a memory-efficient spatio-temporal attention mechanism (Ma et al., 2025; Zhu et al., 2024) (see Figure 14), which decomposes each spatio-temporal block into two stages: (1) a spatial block that processes all M particles at each timestep independently ($[B \times T, M, D]$), and (2) a temporal block that captures temporal dependencies for each particle across time ($[B \times M, T, D]$).

For conditioning, we use adaptive layer normalization (AdaLN) (Peebles & Xie, 2023). Given a condition vector c and intermediate feature z , AdaLN modulates transformer block activations as:

$$\begin{aligned} \alpha_1, \alpha_2, \beta_1, \beta_2, \gamma_1, \gamma_2 &= \text{MLP}(c), \\ z &= z + \alpha_1 \cdot \text{Self-Attention}(\gamma_1 \cdot \text{RMSNorm}(z) + \beta_1), \\ z &= z + \alpha_2 \cdot \text{MLP}(\gamma_2 \cdot \text{RMSNorm}(z) + \beta_2). \end{aligned}$$

This mechanism is used to incorporate positional and temporal information within the transformer in addition to other conditional inputs such as actions, language tokens or images. During training, we use teacher forcing (Williams & Zipser, 1989), while inference is performed autoregressively.

Multi-view support. We extend LPWM to jointly train on multiple camera views by synchronizing particle dynamics across views. Multi-view training is crucial for decision-making tasks with occlusions, such as multi-object manipulation (Haramati et al., 2024; Qi et al., 2025), where an object

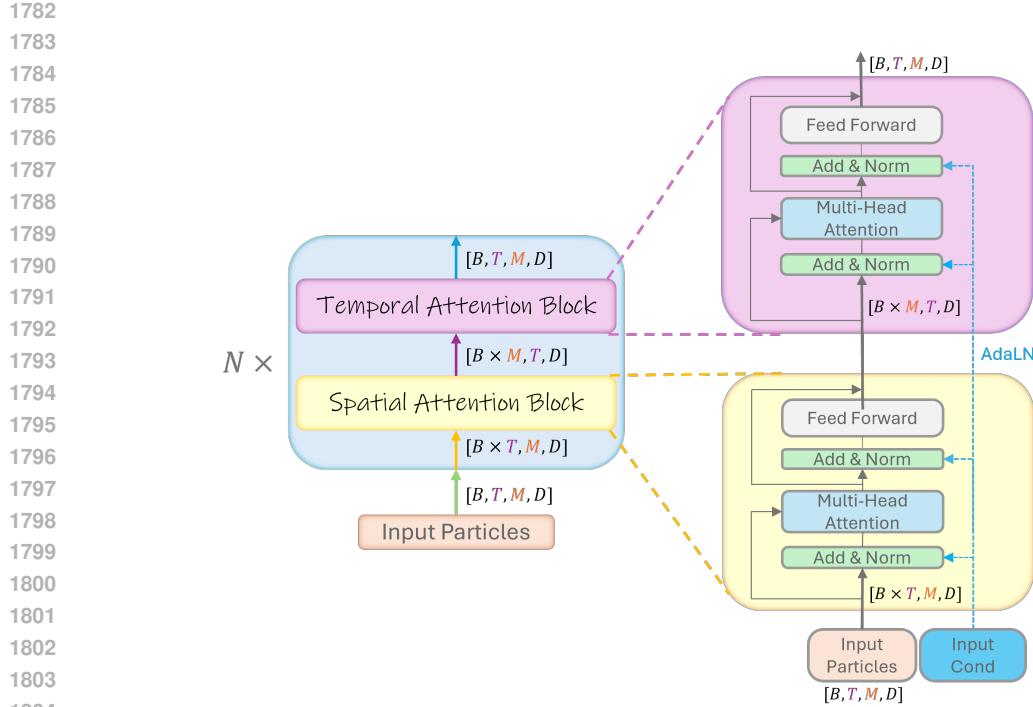


Figure 14: Spatio-temporal transformer block. It consists of (1) a spatial block that independently processes all M particles at each timestep, with shape $[B \times T, M, D]$, and (2) a temporal block that captures each particle’s temporal dependencies across the full horizon, with shape $[B \times M, T, D]$. Here, B is batch size, T is temporal horizon, M is number of particles, and D is the embedding dimension.

hidden in one view may be visible in another, enabling agents to form a more complete representation of the scene. To achieve this, images from V views are each encoded into M particles, which are then concatenated into a single set of $V \cdot M$ particles. Each particle is augmented with a view embedding to indicate its origin. The latent action and dynamics modules process the entire multi-view particle set jointly, allowing particles from different views to attend to each other and integrate information across viewpoints.

A.4.6 LOSS \mathcal{L}

Latent Particle World Models are trained as a variational autoencoder (VAE), with the objective of maximizing the temporal evidence lower bound (ELBO), as in prior VAE-based video prediction models (Denton & Fergus, 2018; Lin et al., 2020a; Daniel & Tamar, 2024). The ELBO decomposes into a reconstruction term and a KL-divergence term between the posterior particle distributions and the prior predicted by the dynamics model. We further distinguish between two regimes: a *static* ELBO, where the KL-divergence is computed against fixed priors for the first timestep (equivalent to the single-image DLP objective), and a *dynamic* ELBO, where the prior is given by the autoregressive dynamics predictions. Formally,

$$\mathcal{L}_{\text{LPWM}} = - \sum_{t=0}^{T-1} \text{ELBO}(x_t = I_t) = \mathcal{L}_{\text{static}} + \mathcal{L}_{\text{dynamic}}. \quad (2)$$

We next detail the formulation of the static and dynamic components.

Static ELBO: Building on DLPv2 (Daniel & Tamar, 2024), given an input image $x \in \mathbb{R}^{C \times H \times W}$, the loss in DLPv3 is defined as:

$$\mathcal{L}_{\text{static}} = \mathcal{L}_{\text{rec}}(x, \hat{x}) + \beta_{\text{KL}} \mathcal{L}_{\text{KL}}(z) + \beta_{\text{reg}} \mathcal{L}_{\text{reg}}(z_t), \quad (3)$$

where \hat{x} is the reconstructed image, $\mathcal{L}_{\text{rec}}(x, \hat{x})$ is the reconstruction loss, $z = [z_{\text{fg}}^m]_{m=0}^{M-1}, z_{\text{bg}}$ are the posterior particle distribution parameters, $\mathcal{L}_{\text{KL}}(z)$ is the KL-divergence between the poste-

1836 prior and fixed priors, z_t is the *transparency* attribute of each particle, $\mathcal{L}_{\text{reg}}(z_t)$ is a regularization
 1837 loss applied over the transparency values, and $\beta_{\text{KL}}, \beta_{\text{reg}}$ are scalar hyperparameters balancing the
 1838 losses (Higgins et al., 2017). For the single-image setting (i.e., no temporal dynamics), $\mathcal{L}_{\text{static}}$ is the
 1839 only objective. Below we detail the KL-divergence and regularization terms.
 1840

1841 **KL-divergence loss \mathcal{L}_{KL} :** For all M particles, we compute the KL-divergence of each attribute
 1842 distribution with respect to its fixed prior, except for the background particle which only has visual
 1843 features. *In DLPv3, we adopt the masked KL-divergence (Lin et al., 2020a), where the mask is*
 1844 *defined by the transparency attribute z_t (e.g., particles with $z_t = 0$ do not contribute to the KL*
 1845 *term):*

$$\begin{aligned} \mathcal{L}_{\text{KL}}(z) = & \sum_{m=0}^{M-1} \left(\sum_{\text{att} \in \{o, s, d\}} \text{KL}(q_{\phi}(z_{\text{att}}^m | x, z_a^m) \| p_{\text{att}}(z)) \odot z_t^m \right. \\ & + \text{KL}(q_{\phi}(z_t^m | x, z_a^m)) + \beta_f \text{KL}(q_{\phi}(z_f^m | x, z_p)) \odot z_t^m \Big) \\ & + \beta_f \text{KL}(q_{\phi}(z_{\text{bg}} | x, z_p) \| p_{\text{bg}}(z)), \end{aligned} \quad (4)$$

1853 where o, s, d denote the offset (z_o), scale (z_s), and depth (z_d) attributes, z_a is the keypoint proposal,
 1854 z_t is the transparency, $z_p = z_a + z_o$ is the final particle position, z_f is the visual features attribute, and
 1855 β_f is a fixed hyperparameter balancing explicit and visual attributes ($\beta_f = 0.01$ in all experiments).
 1856 Note that the KL for the transparency attribute is *not* masked.
 1857

1858 **Transparency regularization \mathcal{L}_{reg} :** *In DLPv3, to prevent the trivial solution where all particles*
 1859 *remain active ($z_t = 1$) and sit at patch centers (i.e., a patch-based decomposition), we apply an L_2*
 1860 *penalty on transparency:*

$$\mathcal{L}_{\text{reg}} = \sum_{m=0}^{M-1} (z_t^m)^2. \quad (5)$$

1864 This penalty encourages *sparsity* in transparency so that only a subset of particles is active ($z_t > 0$).
 1865 Since inactive particles do not contribute to reconstruction, the remaining active particles must cover
 1866 more of the scene and are thereby incentivized to move off patch centers and lock onto salient ob-
 1867 jects. This yields a more object-centric decomposition and reduces per-particle appearance variance
 1868 in decoding (e.g., a moving ball is better captured by a single active particle than by several fixed
 1869 patches). In practice, we set $\beta_{\text{reg}} = \beta_{\text{KL}}$.
 1870

1871 **Dynamic ELBO.** The dynamic component of the ELBO consists of three terms: the frame recon-
 1872 struction loss, the particle dynamics KL, and the context KL:
 1873

$$\begin{aligned} \mathcal{L}_{\text{dynamic}} = & \sum_{t=1}^{T-1} \left(\mathcal{L}_{\text{rec}}(x_t, \hat{x}_t) \right. \\ & + \beta_{\text{dyn}} \text{KL}[q_{\phi}(z^t | x_t) \| p_{\xi}(z^t | z^{0:t-1}, z_c^{0:t-1})] \\ & \left. + \beta_{\text{ctx}} \text{KL}[p_{\psi}^{\text{inv}}(z_c^t | z^{0:t+1}) \| p_{\psi}^{\text{policy}}(z_c^t | z^{0:t})] \right). \end{aligned} \quad (6)$$

1880 where \mathcal{L}_{rec} is the reconstruction error as defined in the static ELBO. Here, z denotes all particles
 1881 and their attributes (including the background particle), while z_c denotes the latent actions. The
 1882 coefficients β_{dyn} and β_{ctx} weight the two KL terms (in practice we set $\beta_{\text{ctx}} = \beta_{\text{dyn}}$). Note that
 1883 for brevity we omitted the particle index m ; in practice, the summation is carried out over all M
 1884 particles for both the dynamics and context losses.
 1885

1886 For the particle dynamics KL, we adopt the same *masked* formulation as in the static ELBO, without
 1887 distinguishing between explicit attributes and visual features. For the context KL, however, we do
 1888 not apply masking: latent actions must also capture discrete events where particles switch between
 1889 inactive ($z_t = 0$) and active ($z_t = 1$). Optimizing this loss end-to-end regularizes the posterior
 1890 particle distributions to remain predictable under the learned particle dynamics and latent action
 1891 models. Intuitively, the context KL enforces agreement between the inverse model of latent actions

(which infers actions from observed transitions) and the policy prior (which proposes actions given the current state), ensuring coherent action-conditioned dynamics.

Finally, we specify the choice of priors and reconstruction losses used in practice.

Priors: For the fixed static prior distribution parameters, we define means and covariances for Gaussian distributions over all attributes and visual features, and (a, b) in the Beta distribution for the transparency attribute. These are treated as hyperparameters and detailed in Section A.9.

Reconstruction objective: We use either the standard pixel-wise mean squared error (MSE) for simulated environments, or an LPIPS-based L_2 perceptual loss (Hoshen et al., 2019) for real-world datasets. When using LPIPS, the total reconstruction loss is the sum of the pixel-wise MSE and a VGG-feature-wise MSE, with the LPIPS feature loss weighted by $\gamma = 0.1$. Formally,

$$\mathcal{L}_{\text{rec}} = \begin{cases} \|x - \hat{x}\|_2^2, & \text{for simulated environments,} \\ \|x - \hat{x}\|_2^2 + \gamma \|\phi(x) - \phi(\hat{x})\|_2^2, & \text{for real-world datasets,} \end{cases}$$

where $\phi(\cdot)$ denotes VGG features.

A.5 POLICY LEARNING WITH LATENT PARTICLE WORLD MODELS

Pre-training a Latent Particle World Model (LPWM) enables the extraction of rich latent dynamics from large-scale, actionless video datasets. Once paired video-action data becomes available, such pre-trained LPWMs can be leveraged for downstream policy learning. In this work, we demonstrate this ability in goal-conditioned settings, where the goal can be specified with an image or a language instruction.

The key idea is to use the CONTEXT module (\mathcal{K}_ψ) to learn a mapping from per-particle latent actions $\{z_c^{m,t}\}_{m=0}^M$ to the ground-truth (GT) environment actions a_t . While the latent actions encode the transition from latent state z^t to z^{t+1} , LPWM produces a latent action per particle; thus, the mapping network must first aggregate information across particles to predict a single global action.

To address this, we design the mapping network m_ω as an *attention pooling* network (Dosovitskiy et al., 2020; Haramati et al., 2024), implemented as a compact two-layer transformer. This enables the model to adaptively pool the per-particle latent actions before regressing the global action.

Training procedure: Given a dataset of paired trajectories $(I_{0:T}, a_{0:T-1})$, we encode the image sequence with a frozen, pre-trained unconditional LPWM to obtain latent actions $\{z_c^{m,t}\}_{m=0}^M$ using the latent inverse dynamics head $p_\psi^{\text{inv}}(z_c^t \mid z^{\leq T})$. These are projected to the transformer's inner dimension D . At each timestep, we concatenate a learned action token [ACT] to the particle dimension, forming an input of shape $[B, T, M + 2, D]$, where B is the batch size. Here, the M particles correspond to the M foreground particles, the additional one represents the background particle, and the extra token is the learned action token.

The mapping network regresses the global action from the output corresponding to the action token:

$$\hat{a}_t = m_\omega([\{z_c^{m,t}\}_{m=0}^M, [\text{ACT}]_t])_{M+1,t}$$

using the L_1 loss:

$$l = \|a_t - \hat{a}_t\|_1.$$

Inference and planning: For deployment, given an execution horizon of k actions and a goal g , we unroll LPWM $k + 1$ steps autoregressively, generating a trajectory of particles and their corresponding k latent actions. These latent actions are mapped to global actions using the trained mapping network, which are then executed sequentially in the target environment.

An important detail is that for each step, the next-state particles are generated by first sampling a latent action from the CONTEXT module's latent policy head $p_\psi^{\text{policy}}(z_c^t \mid z^{\leq t}, c_t = z_g)$, and then applying the DYNAMICS module. Notably, we empirically found that directly using the latent policy outputs for mapping degrades downstream performance; the mapping network performs best when evaluated on the outputs of the latent inverse module, as this matches the distribution seen during training. The difference may be due to distribution mismatch or higher noise from the latent policy predictor—a question we leave for future investigation.

A high-level PyTorch-style code is provided in Figure 15.

```

1  # Training loop
2  for (I_seq, a_seq) in dataset:
3      with torch.no_grad():
4          # Encode sequence to latent actions with frozen LPWM inverse dynamics
5          z_c_seq = LPWM(I_seq) # shape: [B, T, M+1, D_latent]
6
7      # Project latent actions and concatenate learned [ACT] token
8      inputs = concat(z_c_seq, repeat_learned_act_token(T)) # shape: [B, T, M+2, D]
9
10     # Predict global action from [ACT] token output
11     a_pred = mapping_network(inputs)[:, :, -1, :]
12
13     # Compute L1 loss against ground truth actions
14     loss = L1(a_pred, a_seq)
15     loss.backward()
16     optimizer.step()
17     # -----
18
19     # Inference Loop
20     obs = env.reset()
21     goal = get_goal() # image or language
22     z_particles = encoder(obs) # Initial particle states
23     z_goal = encode_goal(goal)
24
25     # Storage for predicted particle states during unroll
26     particle_trajectory = [z_particles]
27
28     # Unroll LPWM for (plan_horizon + 1) steps
29     for _ in range(plan_horizon):
30         # Sample latent action from latent policy prior given current particles
31         z_c = ctx.latent_policy(z_particles, z_goal)
32
33         # Predict next particle state given current state and latent action
34         z_particles = dyn(z_particles, z_c)
35
36         # Append predicted particles to trajectory
37         particle_trajectory.append(z_particles)
38
39     # Convert full particle sequence (batch) to latent actions in one call
40     latent_actions = ctx.inverse_dynamics_batch(particle_trajectory) # outputs plan_horizon
41     # → latent actions
42
43     # Concatenate learned [ACT] token for mapping network input
44     mapping_inputs = concat(latent_actions, repeat_learned_act_token(plan_horizon))
45
46     # Predict global action sequence from mapping network
47     action_sequence = mapping_network(mapping_inputs)
48
49     # Execute the full predicted action sequence in environment
50     env.step(action_sequence)

```

Figure 15: PyTorch-style code for policy learning with Latent Particle World Models.

A.6 EXTENDED RELATED WORK

In this section, we provide a broad overview of related literature to situate Latent Particle World Models (LPWM) within the landscape of object-centric representation learning. LPWM is, to the best of our knowledge, the first self-supervised object-centric model capable of being trained only from videos, optionally supporting multi-view training, and enabling various forms of conditioning—including action, language, and goal-image inputs. Since there are currently no other models with the same combination of capabilities, we review several adjacent and complementary lines of work to establish our contributions.

General video prediction and latent world models: Traditional video prediction models operate by encoding visual observations into a compact latent space, predicting future latents with a recurrent (or, more recently, autoregressive) dynamics module, and decoding these latents back into pixel space. The notion of a “world model” commonly refers to extensions of this pipeline that support action conditioning and, in some cases, reward modeling. Early methods (Finn et al., 2016a; Ebert et al., 2017b; Villegas et al., 2017; Lee et al., 2018; Denton & Fergus, 2018; Ha & Schmidhuber, 2018; Hafner et al., 2020a) learned such representations using convolutional encoders and RNN-based dynamics to capture scene dynamics in the latent space. More recent work improves

1998 long-horizon prediction robustness using discrete latent variables (Walker et al., 2021; Hafner et al.,
 1999 2020b; 2023) or focuses on scaling up through hierarchical modeling and larger architectures (Vil-
 2000 legas et al., 2019; Wu et al., 2021a; Wang et al., 2022). A core limitation of all these approaches is
 2001 that they model scene-level dynamics holistically, extracting representations that describe the entire
 2002 frame at once without explicitly decomposing the scene into objects. This often results in blurry pre-
 2003 dictions or object disappearance during longer rollouts (Wu et al., 2022b; Daniel & Tamar, 2024).
 2004 To address these issues and improve sample quality, a number of recent works have incorporated
 2005 self-attention mechanisms for video dynamics (Nash et al., 2022; Yu et al., 2022; Yan et al., 2021;
 2006 Zhang et al., 2023; Micheli et al., 2023; 2024; Dedieu et al., 2025), sometimes extending to richer
 2007 forms of conditioning such as language instructions (Cen et al., 2025; Nematollahi et al., 2025).
 2008 Despite their advances in visual fidelity, these methods still lack explicit object-centric modeling,
 2009 and are consistently outperformed by models with object-level inductive biases on tasks involving
 2010 complex interactions (Wu et al., 2022b; Zhang et al., 2025; Qi et al., 2025). A further trend involves
 2011 world models based on video diffusion (Alonso et al., 2024; Yang et al., 2023; 2024a; Zhu et al.,
 2012 2024; Yu et al., 2025), which achieve state-of-the-art generative fidelity but remain computationally
 2013 intensive and, in their current form, forgo object-centric structure entirely in favor of scaling with
 2014 model and dataset size.

2015 **Keypoint-based unsupervised video prediction:** A distinct line of research aims to represent video
 2016 dynamics through keypoint-based latent representations. Early works, such as Kim et al. (2019),
 2017 combine unsupervised KeyNet (Jakab et al., 2018) keypoint detection with class-guided video pre-
 2018 diction using a recurrent adversarial conditional VAE. Similarly, Minderer et al. (2019) and Gao et al.
 2019 (2021) employ KeyNet for learning keypoints and use a variational RNN prior to model stochastic
 2020 dynamics, with the latter mapping predicted keypoints onto a discrete grid for more robust long-term
 2021 prediction. Although these methods successfully leverage keypoints for video structure, they do not
 2022 explicitly capture object properties or interactions; visual features are extracted directly from feature
 2023 maps rather than being represented as random latent variables. As a result, prediction quality often
 2024 suffers from blurriness and object disappearance in long rollouts (Daniel & Tamar, 2022a; 2024).
 2025 More recent approaches take steps toward modeling interactions: V-CDN (Li et al., 2020) detects un-
 2026 supervised keypoints using Transporter (Kulkarni et al., 2019), constructs a causal interaction graph,
 2027 and predicts video outcomes using an Interaction Network (Battaglia et al., 2016). The original Deep
 2028 Latent Particles (DLP) framework (Daniel & Tamar, 2022a) introduced particle-based video predic-
 2029 tion on real data but was limited by its simple graph neural network, which struggled with complex
 2030 interactions. The subsequent DDLP (Daniel & Tamar, 2024) advanced the framework to object-
 2031 centric latent particles with richer attributes, enabling more nuanced video predictions. Compared
 2032 to earlier keypoint-based approaches, DDLP (Daniel & Tamar, 2024) more closely resembles our
 2033 model, as it captures both rich object attributes and intricate object interactions in video prediction.
 2034 However, DDLP’s reliance on particle tracking and its limitations in handling stochasticity motivate
 2035 our advances; the present work addresses these challenges while extending the framework toward
 2036 fully self-supervised world modeling and broader conditioning capabilities, as discussed next.

2037 **Unsupervised object-centric latent video prediction and world models:** Unsupervised methods
 2038 for object-centric video prediction build latent dynamics over decomposed scene elements, using
 2039 one of three main paradigms: patch-based, slot-based, or particle-based representations.

2040 Patch-based approaches (e.g., RSQAIR (Stanić & Schmidhuber, 2019), SPAIR (Crawford & Pineau,
 2041 2019), SPACE (Lin et al., 2020b), SCALOR (Jiang et al., 2019), G-SWM (Lin et al., 2020a),
 2042 STOVE (Kossen et al., 2019)) represent objects with local “what”, “where”, “depth,” and “pres-
 2043 ence” latent attributes, and typically model the joint latent dynamics by RNN-based modules. Later
 2044 works such as SCALOR and G-SWM incorporated explicit interaction modules to capture object-
 2045 object physics in prediction. Importantly, GATSBI (Min et al., 2021), an extension of the above with
 2046 a separate keypoints module, stands out as a patch-based model that can be considered a rudimen-
 2047 tary action-conditioned world model, since it predicts scene evolution in response to agent actions.
 2048 However, unlike particle-based models, keypoints in GATSBI serve only to localize the “agent” in
 2049 the scene and are not directly part of the object latent representation—most objects and background
 2050 are discovered through separate modules, and the keypoint module merely distinguishes agent from
 2051 non-agent entities. As a result, the full object representation remains patch-based rather than explicit
 2052 keypoint- or particle-based. The patch-based typically require post-hoc or rule-based matching of
 2053 object proposals across frames for temporal consistency. This reliance on frame-to-frame matching

2052 and the unordered nature of their object pose a scalability challenge to complex or real-world video
 2053 datasets.

2054 Slot-based approaches (Burgess et al., 2019; Locatello et al., 2020; Greff et al., 2019; Engelcke et al.,
 2055 2019; 2021; Kipf et al., 2021; Singh et al., 2022b; Kabra et al., 2021; Singh et al., 2021; 2022a;
 2056 2023; Sajjadi et al., 2022; Weis et al., 2021; Veerapaneni et al., 2020) typically represent scenes
 2057 as a set of slots: permutation-invariant latent vectors encoding spatial and appearance information
 2058 for objects. These approaches generally adopt a two-stage training strategy: a slot decomposition
 2059 is first learned independently in a self-supervised manner, followed by a separate dynamics model
 2060 trained on the inferred slots using recurrent models (Zoran et al., 2021; Nakano et al., 2023) or
 2061 Transformers (Wu et al., 2022b; Villar-Corrales et al., 2023; Song et al., 2024). While recent exten-
 2062 sions incorporate conditioning on language (Villar-Corrales et al., 2025; Wang et al., 2025a; Jeong
 2063 et al., 2025) or latent actions (Villar-Corrales & Behnke, 2025), these models remain fundamentally
 2064 limited by the quality and stability of the underlying slot decomposition. In practice, slot-based
 2065 methods suffer from inconsistent decompositions, blurry predictions, and convergence issues, and
 2066 recent research (Seitzer et al., 2023; Didolkar et al., 2024; Gong et al., 2025; Kakogeorgiou et al.,
 2067 2024; Jukić et al., 2025) focuses on stabilizing and scaling them, leaving open questions for robust
 2068 long-term dynamics and world modeling.

2069 Particle-based approaches, initiated by DLP (Daniel & Tamar, 2022a) and advanced by
 2070 DDLP (Daniel & Tamar, 2024), provide compact, interpretable object representations using
 2071 keypoint-based latent particles with extended attributes. DDLP jointly trains a Transformer dynamics
 2072 model and the particle representation, allowing stable object-centric decomposition and improved
 2073 modeling of complex scenes. However, DDLP relies on particle tracking and sequential encoding,
 2074 which restricts parallelization and stochasticity. Our proposed LPWM model is a direct extension
 2075 to this lineage. LPWM eliminates the need for explicit tracking, enabling parallel encoding of all
 2076 frames, trains end-to-end, and integrates a latent action distribution for stochastic world modeling.
 2077 This allows the model to capture transitions such as object occlusion, appearance, or random move-
 2078 ments (e.g., agents or grippers), and supports comprehensive conditioning via actions, language, or
 2079 goal images—advancing particle-based modeling to the world model regime and addressing unsolved
 2080 limitations of previous work.

2081 **Video prediction and world models with latent actions:** To enable learning controllable or
 2082 playable environments purely from videos, several works propose the use of *latent actions*—global
 2083 latent variables that model the dynamic transition between consecutive frames. Models such as
 2084 CADDY (Menapace et al., 2021; 2022) and Genie (Bruce et al., 2024; Savov et al., 2025) learn
 2085 *discrete* latent actions by quantizing the output of an inverse dynamics module. These latent ac-
 2086 tions condition a dynamics model to generate subsequent frames. Crucially, these approaches use
 2087 a two-stage training process: first, the latent action module is trained, then the conditioned dy-
 2088 namics module. During inference, users select latent actions from a learned codebook to generate
 2089 video sequences. AdaWorld (Gao et al., 2025) proposes a continuous analog without quantization,
 2090 substituting quantization with strong KL regularization on the latent action distribution. This en-
 2091 ables more flexible and smooth latent action representations. PlaySlot (Villar-Corrales & Behnke,
 2092 2025), the method most similar to ours in this category, augments slot-based object-centric pre-
 2093 diction (OCVP (Villar-Corrales et al., 2023)) with a discrete global latent action module akin to
 2094 CADDY, showcasing the benefits of object-centric decomposition for controllable video modeling.
 2095 In contrast, our particle-based LPWM learns *continuous, per-particle* latent actions trained end-to-
 2096 end jointly with the dynamics module. This design captures stochastic dynamics across multiple
 2097 entities simultaneously. Furthermore, LPWM regularizes latent actions using a learned latent pol-
 2098 icy, enabling stochastic sampling of latent actions at inference without external intervention, thereby
 2099 supporting stochastic video generation. Additionally, unlike PlaySlot, LPWM’s latent action module
 2100 supports multiple conditioning modalities—including goal-conditioning—making it readily appli-
 2101 cable for post-hoc policy learning and control, as demonstrated in our experiments.

2102 **Decision-making with video inverse dynamics and latent actions:** Recent works have increas-
 2103 ingly focused on learning policies from videos by leveraging inverse dynamics modeling (IDM)
 2104 or latent action representations. ILPO (Edwards et al., 2019) learns discrete latent actions via
 2105 forward dynamics under the assumption of a known action set, then maps these latent actions to
 ground-truth (GT) actions for behavioral cloning (BC). Seer (Tian et al., 2024) jointly trains im-
 age prediction and GT action prediction via inverse modeling, without a latent action bottleneck,
 and effectively supports language-conditioned BC. LAPO (Schmidt & Jiang, 2023) combines dis-

crete latent actions learned via vector quantization (VQ) with policy learning; an action decoder is jointly trained alongside an online reinforcement learning agent to map latent actions to GT actions. LAPA (Ye et al., 2025) performs large-scale VQ-based latent action pretraining, which serves as the objective for vision-language model policy training, and fine-tunes for GT action mapping, with AMPLIFY (Collins et al., 2025) extending this by replacing latent actions with quantized key-point tracks. DreamGen (Jang et al., 2025) further extends LAPA with diffusion-based objectives. AdaWorld (Gao et al., 2025) pre-trains large-scale autoregressive world models with continuous latent actions for downstream planning, while VideoWorld (Ren et al., 2025) trains an autoregressive discrete latent action model producing latent plans and frame-level IDM over decoded plans. Latent Diffusion Planning (Xie et al., 2025) and VILP (Xu et al., 2025) learn diffusion-based planners coupled with inverse dynamics modules. Similarly, Video Prediction Policy (Hu et al., 2025) fine-tunes a text-based large video diffusion model for plan generation, then learns a diffusion-based policy via inverse dynamics. DynaMo (Cui et al., 2024) pre-trains image representations with paired inverse and forward dynamics self-supervised objectives for policy learning over these representations. In contrast to these approaches, LPWM is an object-centric world model that integrates latent action learning directly with dynamics, producing per-entity latent actions that naturally accommodate multiple interacting objects. Its latent policy further enables effective post-hoc mapping to GT actions and direct application to behavioral cloning and control tasks, distinguishing it from predominantly global or multi-stage latent action frameworks.

Decision-making with object-centric representations: As object-centric representations have matured, they have been increasingly incorporated into decision-making pipelines, demonstrating strong performance on multi-object tasks that require complex reasoning and interaction. SMORL (Zadaianchuk et al., 2022) leverages patch-based object-centric representations in online RL, showing that structured perception improves sample efficiency and enables control in environments with multiple entities. ECRL (Haramati et al., 2024) and EC-Diffuser (Qi et al., 2025) employ DLP-based (particle-centric) representations, integrating them into online RL (ECRL) or imitation learning with diffuser-based policies (EC-Diffuser). These results provide clear evidence that object-centric models facilitate efficient policy learning and handle multi-object interaction challenges. Complementary lines of work adapt slot-based world models for decision-making. FOCUS (Ferraro et al., 2025; 2024), SOLD (Mosbach et al., 2024), and Dyn-O (Wang et al., 2025b) augment online RL frameworks like Dreamer (Hafner et al., 2020b) with slot-based object decomposition, yielding improvements in simulated environments featuring a limited number of objects. OC-STORM (Zhang et al., 2025) extends STORM (Zhang et al., 2023) by combining a transformer-based dynamics module with object masks derived from supervised segmentation, thus relying on labeled inputs for decomposition. SegDAC (Brown & Berseth, 2025) and OCAAM (Rubinstein et al., 2025) similarly use deep RL over masked inputs, leveraging externally supervised segmentation models. Some recent efforts bridge object-centric decomposition with latent action learning: Klepac et al. (2025) trains latent actions on top of pre-trained slot-based representations, mapping these actions to ground-truth policies via imitation learning. In contrast, LPWM is a fully self-supervised, object-centric world model: it builds directly on DLP, is trained end-to-end from pixels, and learns per-object latent actions as part of its joint dynamics training—without requiring supervised segmentation or decoupled vision/policy phases, with object masks emerging as a natural result of its reconstruction objective rather than any external supervision. Finally, LPWM supports post-hoc multi-object imitation learning and behavioral cloning in complex scenes.

Table 4 summarizes the various video prediction world modeling approaches across key dimensions.

A.7 DATASETS AND ENVIRONMENTS DETAILS

We provide detailed descriptions of all datasets used in this paper. Datasets are characterized by their properties: real-world or simulated origin, nature of dynamics—deterministic (dominated by physics, no external actions) or stochastic (external signals such as agent actions or camera motion)—and interaction density. Some datasets feature dense interactions, where object interactions are frequent and most sequences include them, while others are sparse, with less frequent or delayed interactions, and some sequences may contain no interactions (Daniel & Tamar, 2024).

OBJ3D: A simulated 3D dataset featuring dense interactions and deterministic dynamics, introduced by Lin et al. (2020a). It consists of CLEVR-like objects (Johnson et al., 2017) in 100-frame videos of 128×128 resolution, where a randomly colored ball rolls towards multiple objects in the scene

2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213

Model	Obj.-Centric	Latent Actions	Action Cond.	Text Cond.	Image-Goal Cond.	End-to-End	Multi-View	Stochastic	Dyn. Module
CDNA/SNA/SVG (Finn et al., 2016a) Dreamer/D2D3 (Hafner et al., 2020a)	-	-	✓ ✓	-	-	✓ ✓	-	-	RNN RNN
CADDY (Menapace et al., 2021)	-	Discrete	✓ ✓	-	-	-	-	✓	RNN
Genie (Bruce et al., 2024)	-	Discrete	✓ ✓	-	Varies	-	-	✓	Transformer
UniSim (Yang et al., 2023)	-	-	✓ ✓	-	Varies	✓ ✓	✓	✓	Diffusion
Diamond/GameFactory (Alonso et al., 2024)	-	-	✓ ✓	-	Varies	✓ ✓	✓	✓	Diffusion
VideoGPT (Yan et al., 2021)	-	-	-	-	-	-	-	-	Transformer
SCALOR (Jiang et al., 2019)	Patch	-	-	-	-	✓	-	-	RNN
G-SWM (Lin et al., 2020a)	Patch	-	-	-	-	✓	-	-	RNN
STOVE (Kossa et al., 2019)	Patch	-	-	-	-	✓	-	-	Transformer
OCVT (Wu et al., 2021b)	Patch	-	-	-	-	✓	-	-	RNN
GATSB1 (Mfin et al., 2021)	Patch+Keypt	-	-	-	-	-	-	-	GNN
V-CDN (Li et al., 2020)	Keypt+Graph	-	-	-	-	-	-	-	
PARTS (Zoran et al., 2021)	Slots	-	-	-	-	✓	-	-	RNN
STEDIE (Nakano et al., 2023)	Slots	-	-	-	-	✓	-	-	RNN
SlotFormer (Wu et al., 2022b)	Slots	-	-	-	-	✓	-	-	Transformer
OCVP (Villar-Corrales et al., 2023)	Slots	-	-	-	-	✓	-	-	Transformer
TextOCVP (Villar-Corrales et al., 2023)	Slots	-	-	-	-	✓	-	-	Transformer
SOLD (Mosbach et al., 2024)	Slots	-	✓	-	-	✓	-	-	Transformer
PlaySlot (Villar-Corrales & Bahnik, 2025)	Slots	-	Discrete	-	-	✓	-	-	Transformer
DLP (Daniel & Tamar, 2022a)	Particles	-	-	-	-	✓	-	-	GNN
DDLP (Daniel & Tamar, 2024)	Particles	-	✓	-	-	✓	-	-	Transformer
LPWM (Ours)	Particles	Cont. (per)	✓	✓	✓	✓	✓	✓	Transformer

Comparison of video prediction and world modeling approaches across key dimensions. Models are grouped by representation category: holistic, patch/object-centric, slot/object-centric, and particle/object-centric. AR: autoregressive; GNN: graph neural network. “Image-Goal Cond.” is image-goal conditioning support.

2214 center, causing collisions. The dataset includes 2,920 training episodes, 200 validation, and 200 test
 2215 episodes.
 2216

2217 **PHYRE**: A simulated 2D dataset featuring sparse interactions and deterministic dynamics, designed
 2218 for physical reasoning (Bakhtin et al., 2019). We use the BALL-tier tasks in the ball-within-template
 2219 setting, where tasks are solved if a user-placed ball satisfies specific conditions (e.g., touching a wall,
 2220 floor, or object). Data consists of 128×128 frames generated from rollouts of all tasks except for
 2221 tasks [12, 13, 16, 20, 21], which contain substantial distractions. The dataset contains 2,574 training
 2222 episodes, 312 validation, and 400 test episodes.
 2223

2224 **Mario**: A simulated 2D dataset with stochastic dynamics and dense interactions, introduced by
 2225 Smirnov et al. (2021). It consists of expert gameplay videos of Super Mario Bros downloaded from
 2226 YouTube, featuring Mario traversing multiple levels. The videos include moving camera views with
 2227 new objects and enemies appearing dynamically. The dataset contains 217 training trajectories and
 2228 25 test trajectories, each consisting of 100 frames with resolution 128×128 . For FVD evaluation,
 2229 we sample 100 trajectories for each video in the test set.
 2230

2231 **Sketchy**: A real-world robotic dataset introduced by Cabi et al. (2019), featuring a robotic gripper
 2232 interacting with diverse objects. It has stochastic dynamics with sparse interactions. We focus on the
 2233 `stack_green_on_red` task, which includes 198 expert and 3,241 rollout trajectories. The dataset
 2234 is split into 80% training, 10% validation, and 10% test. Each trajectory is truncated to the first 70
 2235 frames, resized to 128×128 , and contains labeled actions enabling action-conditioned training.
 2236

2237 **BAIR**: A real-world robotic dataset introduced by Ebert et al. (2017a), featuring a robotic gripper
 2238 manipulating diverse objects under a random play policy. The dataset exhibits stochastic dynamics
 2239 and dense interactions, containing 43,264 training and 256 test trajectories at 64×64 resolution.
 2240 For evaluation of FVD we follow the standard procedure of sampling 100 trajectories for each video
 2241 in the test set (a total of 25,600 of generated videos). For 128×128 resolution training we use the
 2242 high-resolution version of the dataset introduced in Menapace et al. (2021), which contains 42,880
 2243 train trajectories, 1,152 for validation and 128 for test.
 2244

2245 **Bridge**: A real-world robotic dataset introduced by Walke et al. (2023), featuring expert demon-
 2246 strations of a WidowX robotic arm performing tasks guided by natural language instructions. It
 2247 exhibits stochastic dynamics and dense interactions. The dataset contains 25,460 training and 3,475
 2248 test trajectories, with episodes of varied lengths, all resized to 128×128 resolution.
 2249

2250 **LanguageTable**: A real-world tabletop robotic dataset introduced by Lynch et al. (2023), fea-
 2251 turing language-guided, action-annotated demonstrations of complex relational object arrangements
 2252 based on shape, color, and relative position. The dataset exhibits stochastic dynamics with dense
 2253 interactions and contains 179,976 episodes of variable length, resized to 128×128 resolution. We
 2254 use an 80% training, 10% validation, and 10% test split.
 2255

2256 **PandaPush**: A simulated 3D robotic environment introduced in ECRL (Haramati et al., 2024) and
 2257 used by EC-Diffuser (Qi et al., 2025) for goal-conditioned imitation learning. The task involves
 2258 Isaac Gym-based (Makovychuk et al., 2021) tabletop manipulation using a Franka Panda arm to
 2259 push colored cubes to a goal configuration specified by an image. We utilize the same offline two-
 2260 view image dataset collected in EC-Diffuser, comprising approximately 9,000 episodes with 1–3
 2261 cubes each, and around 30–40 128×128 frames per episode from each view.
 2262

2263 **OGBench-Scene**: A simulated 3D environment and dataset from the offline goal-conditioned
 2264 reinforcement learning benchmark OGBench (Park et al., 2025). Specifically, we use the *Visual
 2265 Scene* environment and the associated “play” dataset, which features non-goal-directed interactions
 2266 of a 6-DoF UR5e robot arm with various objects in a tabletop setting. The dataset includes 1,000
 2267 training and 100 validation trajectories, each containing 1,000 transitions, recorded at a resolution
 2268 of 64×64 .
 2269

2270 A.8 BASELINE DETAILS

2271 **OCVP and PlaySlot**: We use the official implementations (Villar-Corrales, 2025) of OCVP and
 2272 PlaySlot and adapt the dynamic modules sizes to match LPWM, alongside modifying the CNN
 2273 components for compatibility with 128×128 input resolution. Both models are trained in multiple
 2274 stages, beginning with slot-based decomposition using SAVi (Elsayed et al., 2022). Downstream
 2275

2268 video prediction performance is highly dependent on the quality of this initial decomposition. As
 2269 noted in previous works (Daniel & Tamar, 2024; Didolkar et al., 2024), SAVi can fail to assign
 2270 distinct objects to separate slots and may require repeated runs with identical hyperparameters to
 2271 achieve satisfactory results. While we primarily adhere to recommended hyperparameters, slot
 2272 assignments are sometimes ambiguous, with multiple objects per slot and occasional blurry recon-
 2273 structions.

2274 **DVAE:** We implement a non-object-centric, patch-based dynamics VAE (DVAE) world model
 2275 adapted from LPWM. In DVAE, “particles” correspond to fixed-grid patch embeddings, where the
 2276 number of patches matches LPWM’s particle count, M . The baseline architecture preserves the
 2277 same transformer backbone and parameter budget as LPWM, and supports identical conditioning
 2278 modes (e.g., actions, language, image goals). However, DVAE does not model explicit object at-
 2279 tributes, relying instead on spatially organized patch features. This approach is analogous to patch-
 2280 based tokenization schemes commonly used in large-scale video generation (Yan et al., 2021; Yang
 2281 et al., 2024b), but the patch embeddings are learned end-to-end without pretraining or quantization,
 2282 similar to LPWM’s particle learning. To compensate for the lack of object-centric structure, we
 2283 increase the latent dimension of each patch embedding. Patch extraction follows the standard proce-
 2284 dure (Esser et al., 2021), whereby a CNN encoder downsamples input frames by a factor of f until
 2285 the spatial dimensions are $M = \frac{H}{f} \times \frac{W}{f}$, with H and W being the input height and width. The
 2286 resulting grid of patch features is used as the input “particle” set for downstream dynamics modeling
 2287 and video prediction.

2288 A.9 HYPERPARAMETERS AND TRAINING DETAILS

2290 **Hyperparameters.** We use the Adam (Kingma & Ba, 2014) optimizer ($\beta_1 = 0.9, \beta_2 = 0.999, \epsilon =$
 2291 $1e - 6$) with a constant learning rate of $8e - 5$. For all models we use an inner transformer projection
 2292 dimension of 512, and the latent actions dimension is set to $d_{\text{ctx}} = 7$. The constant prior distribution
 2293 parameters, reported in Table 6, depend on the patch size used to extract the particles attributes and
 2294 features. The complete set of the rest of the hyperparameters can be found in Table 5.

2295 **Warmup.** In our training procedure, given a sequence of T frames, we typically apply the static
 2296 ELBO loss to the first frame and the dynamic ELBO loss to the remaining $T - 1$ frames. To facilitate
 2297 robust learning of the initial particle decomposition, we introduce a warmup stage during the first
 2298 few iterations, usually corresponding to the first training epoch. In this stage, the static ELBO is
 2299 applied to the first $T - 1$ frames, and only the final frame receives the dynamic ELBO. This warmup
 2300 provides a strong initialization for the dynamics module and improves overall training stability and
 2301 downstream performance.

2302 **Burn-in frames.** Previous work (Wu et al., 2022b; Villar-Corralles et al., 2023; Daniel & Tamar,
 2303 2024) introduces the concept of *burn-in frames*, where the first n frames in a sequence (typically
 2304 $4 \leq n \leq 6$) are provided as conditioning inputs to drive dynamics prediction under the assumption
 2305 of deterministic dynamics. In DDLP, these initial frames are optimized using the static ELBO. In
 2306 contrast, LPWM does *not* employ burn-in frames, as we assume stochastic dynamics and instead
 2307 rely on latent actions to drive predictions.

2308 **Stopping criteria.** During training, we track several metrics calculated on the validation sets.
 2309 Mainly, we save checkpoints for the best validation ELBO value and best validation LPIPS value,
 2310 where the latent-action-conditioned generated video is compared to the GT video.

2312 **Resources.** All experiments were conducted on various cloud-based computing platforms. For most
 2313 datasets, training utilized a single NVIDIA A100 or GH200 GPU. For larger-scale datasets such as
 2314 LanguageTable, Bridge, and Panda, training was performed on 8 GPUs, either A100s or
 2315 H100s. The training duration varies by dataset size: small to medium datasets typically require a
 2316 few days to train, while large-scale datasets may take up to two weeks.

2318 A.10 ADDITIONAL EXPERIMENTS AND RESULTS

2319 This section presents additional experimental results and further insights complementing the main
 2320 findings of this paper. In Section 7, we compare our modified DLPv3 model to its predecessors.
 2321 Section A.10.2 provides further video prediction results, followed by an ablative analysis in Sec-

2322
 2323
 2324
 2325
 2326
 2327
 2328
 2329
 2330
 2331
 2332
 2333
 2334
 2335
 2336
 2337
 2338
 2339
 2340
 2341
 2342
 2343
 2344
 2345
 2346
 2347
 2348
 2349
 2350
 2351
 2352
 2353
 2354
 2355
 2356
 2357
 2358
 2359
 2360
 2361
 2362
 2363
 2364
 2365
 2366
 2367
 2368
 2369
 2370
 2371
 2372
 2373
 2374
 2375

Hyperparameter	OBJ3D	PHYRE	Sketchy	Mario	BAIR	Bridge	LangTable	PandaPush	OGBench
Resolution	128 × 128	128 × 128	128 × 128	128 × 128	128 × 128	128 × 128	128 × 128	128 × 128 (2 Views)	64 × 64
L (# Particles)	12	64	30	90	50	24	25	24	24
M (# KP Proposals)	64	256	64	256	64	256	64	64	64
T (Training Horizon)	20	15	20	20	16	24	20	10	30
Reconstruction Loss	LPIPS	MSE	LPIPS	MSE	LPIPS	LPIPS	MSE	MSE	MSE
β_{KL}	0.08	0.02	0.08	0.02	0.08	0.08	0.08	0.04	0.02
β_{dyn}	0.2	0.05	0.2	0.05	0.2	0.2	0.2	0.1	0.05
β_{reg}	0.08	0.02	0.08	0.02	0.08	0.08	0.08	0.04	0.02
KP Proposal Patch Size	16	8	16	8	8	8	8	16	8
Glimpse Ratio	0.25	0.125	0.25	0.125	0.125	0.25	—	0.25	0.25
d_{obj}	4	4	4	5	5	6	5	4	4
d_{bg}	4	4	4	5	5	6	5	2	2
FG CNN Ch. Mult.	[1, 4, 8]	[2, 4, 8]	[1, 4, 8]	[1, 4, 8]	[2, 4, 8]	[1, 4, 8]	[2, 4, 8]	[1, 4, 8]	[1, 2, 2]
BG CNN Ch. Mult.	[1, 1, 1, 2, 4]	[1, 1, 1, 2, 4]	[1, 1, 1, 2, 4]	[1, 1, 1, 2, 8]	[1, 1, 1, 2, 4]	[1, 1, 1, 2, 4]	[1, 1, 1, 2, 4]	[1, 1, 1, 4, 8]	[1, 1, 2, 2]
# \mathcal{K}_ψ Layers	4	4	4	4	4	6	6	4	4
# \mathcal{K}_ψ Heads	8	8	8	8	8	8	8	8	8
# \mathcal{F}_ξ Layers	6	6	6	6	6	8	8	6	6
# \mathcal{F}_ξ Heads	8	8	8	8	8	8	8	8	8
# Epochs	16	15	18	200	20	42	50	84	80
Model Size	110M	110M	110M	110M	110M	147M	146M	112M	103M
FLOPs (Inference)	3153G	8272G	3135G	8272G	6623G	4667G	32715G	6641G	4142G
FLOPs (Generation)	16036G	121642G	16036G	121642G	60731G	33699G	185967G	46660G	34569G

Table 5: Hyperparameters across datasets. Base CNN channels count is 32. \mathcal{K}_ψ refers to the Transformer-based DYNAMICS. FLOPs - floating-point operations per second (higher means more computational operations per second). FLOPs (Inference) corresponds to one forward rollout of 15 frames conditioned on 1 frame. FLOPs (Generation) corresponds to one forward rollout of 16 frames, and FLOPs (Generation) corresponds to one forward rollout of 15 frames conditioned on 1 frame.

Attribute	Distribution	Parameters (glimpse_ratio = 0.25)	Parameters (glimpse_ratio = 0.125)
Position Offset z_o	Normal, $\mathcal{N}(\mu, \sigma^2)$	$\mu = 0, \sigma = 0.2$	$\mu = 0, \sigma = 0.1$
Scale z_s	Normal, $\mathcal{N}(\mu, \sigma^2)$	$\mu = \text{Sigmoid}^{-1}(0.25), \sigma = 0.3$	$\mu = \text{Sigmoid}^{-1}(0.125), \sigma = 0.15$
Depth z_d	Normal, $\mathcal{N}(\mu, \sigma^2)$	$\mu = 0, \sigma = 1$	$\mu = 0, \sigma = 1$
Transparency z_t	Beta, Beta(a, b)	$a = 0.01, b = 0.01$	$a = 0.01, b = 0.01$
Appearance Features z_f, z_{bg}	Normal, $\mathcal{N}(\mu, \sigma^2)$	$\mu = 0, \sigma = 1$	$\mu = 0, \sigma = 1$

Table 6: Prior distribution parameters for different glimpse (patch) ratios. Glimpses are patches taken around keypoints, where $\text{glimpse_ratio} = \frac{\text{glimpse size}}{\text{image size}}$.

tion A.10.3. Finally, Section A.10.4 discusses and analyzes our imitation learning-based decision-making application.

A.10.1 COMPARISON OF DLPv3, DLPv2, AND DLPv1

We quantitatively evaluate our enhanced DLP variant, DLPv3 (see Section A.4), against the original DLP (Daniel & Tamar, 2022a) and DLPv2 (Daniel & Tamar, 2024) using publicly available implementations (Daniel & Tamar, 2022b; Daniel, 2024). All models are trained in the single-image setting on the OBJ3D dataset, with identical particle counts and recommended hyperparameters. Training for each model is terminated when the validation LPIPS score ceases to improve. As presented in Table 7, DLPv3 achieves substantially superior image reconstruction compared to prior versions. Notably, DLPv1 lacks explicit modeling of object attributes and is therefore unable to generate bounding boxes and other attributes that contribute to the performance.

	OBJ3D		
	PSNR \uparrow	SSIM \uparrow	LPIPS \downarrow
DLP	39.23 ± 3.33	0.982 ± 0.009	0.085 ± 0.018
DLPv2	41.97 ± 3.74	0.985 ± 0.006	0.019 ± 0.01
DLPv3	43.87 ± 4.45	0.990 ± 0.006	0.011 ± 0.005

Table 7: DLPv3, DLPv2, and DLP image reconstruction performance comparison in the single-image setting, evaluated on the test set.

A.10.2 SELF-SUPERVISED OBJECT-CENTRIC VIDEO PREDICTION AND GENERATION

Table 2 demonstrates that LPWM surpasses all baselines on LPIPS and FVD metrics across datasets with stochastic dynamics under all conditioning settings. Notably, Figure 1 illustrates that LPWM effectively preserves *object permanence* over the entire generation horizon, whereas competing methods often suffer from object blurring and deformation. Furthermore, LPWM accurately models complex object interactions which are better aligned with the language instructions, as evidenced by rollouts on various robotic datasets.

We also highlight LPWM’s multi-modality sampling capability: by drawing multiple samples from the latent policy starting from the same initial frames and language prompts, LPWM produces diverse and plausible rollouts. Several examples are presented in Figures 16 and in videos available on our project website. Results for datasets with deterministic dynamics are detailed in Table 8.

Regarding our main object-centric slot-based baseline, PlaySlot, objects tend to drift rather than remain static. This likely stems from its use of a global latent action vector that models transitions for all entities collectively, unlike our approach that leverages per-particle latent actions. Slot-based models also suffer from limitations inherent to their slot-decomposition modules, which produce blurry reconstructions and imperfect object decompositions, consistent with prior observations. Moreover, slot models struggle on datasets containing many objects (e.g., Mario) due to memory-limited number of slots, whereas LPWM’s low-dimensional latent particles effectively scale.

DVAE, our primary non-object-centric baseline, performs competitively on synthetic datasets but falls short on real-world datasets, underscoring the advantages of object-centric representations. In certain cases, DVAE even outperforms PlaySlot, likely because both DVAE and LPWM utilize per-patch latent actions. We note that some datasets involve sparse object interactions, and visual metrics tend to emphasize large entities, which can favor DVAE’s performance.

2430 Video rollout examples demonstrating these behaviors are available on our project website: <https://sites.google.com/view/lpwm>.
 2431
 2432

2433 **Representation Inductive Bias versus Model Scale:** To further highlight the advantages of object-
 2434 centric representations over simply scaling up model size using standard patch-based representa-
 2435 tions, we train an LPWM model with 100M parameters on the standard video prediction bench-
 2436 mark BAIR-64 and report its FVD in Table 9. Despite its relatively small size, LPWM achieves
 2437 performance comparable to many larger video generation models. We attribute this to LPWM’s
 2438 inherent strength in modeling object interactions, which provides a significant advantage over large
 2439 patch-based models that may generate crisp pixel-level details but struggle with physically plausible
 2440 interactions (e.g., gripper movements intersecting objects). This demonstrates that the inductive bi-
 2441 ases encoded through object-centric representations can yield benefits that scale alone cannot easily
 2442 achieve.

Dataset	OBJ3D			PHYRE		
	$t : 20, c : 6, p : 44$	$t : 15, c : 10, p : 40$	$t : 15, c : 10, p : 40$	$PSNR \uparrow$	$SSIM \uparrow$	$LPIPS \downarrow$
DVAE	31.44 \pm 5.69	0.923 \pm 0.05	0.085 \pm 0.07	26.61 \pm 6.01	0.94 \pm 0.04	0.047\pm0.04
G-SWM	31.7 \pm 6.2	0.924 \pm 0.05	0.118 \pm 0.07	24.64 \pm 6.25	0.93 \pm 0.05	0.078 \pm 0.06
SlotFormer/OCVP	31.2 \pm 4.91	0.925 \pm 0.04	0.135 \pm 0.05	21.26 \pm 3.54	0.89 \pm 0.05	0.108 \pm 0.05
DDLP	31.29 \pm 5.22	0.923 \pm 0.04	0.088 \pm 0.06	26.98 \pm 5.3	0.95 \pm 0.04	0.055 \pm 0.04
LPWM (Ours)	31.45 \pm 5.47	0.926 \pm 0.04	0.081\pm0.06	26.94 \pm 5.88	0.95 \pm 0.04	0.048\pm0.04

2450 Table 8: Quantitative results on video prediction for datasets with deterministic dynamics. t is the
 2451 training horizon, c is the conditional frames at inference and p is the predicted frames at inference.
 2452

	BAIR-64 (64 \times 64)	FVD \downarrow
LVT (Rakhimov et al., 2020)	125.8	
DVD-GAN-FP (Clark et al., 2019)	109.8	
TrIVD-GAN-FP (Luc et al., 2020)	103.3	
VideoGPT (Yan et al., 2021)	103.3	
CCVS (Le Moing et al., 2021)	99.0	
FitVid (Babaeizadeh et al., 2021)	93.6	
MCVD (Voleti et al., 2022)	89.5	
NÜWA (Wu et al., 2022a)	86.9	
RaMViD (Höppe et al., 2022)	84.2	
MAGVIT-B (Yu et al., 2022)	76	
RIVER (Davtyan et al., 2023)	73.5	
CVP (Shrivastava & Shrivastava, 2024)	70.1	
VDM (Ho et al., 2022)	66.9	
MAGVIT-L (Yu et al., 2022)	62	
LPWM (Ours)	89.4	

2469 Table 9: Video prediction results on BAIR-64 (64 \times 64) conditioning on one past frame and pre-
 2470 dicting 15 frames in the future. Table adapted from Shrivastava & Shrivastava (2024).
 2471

2472 **Language-conditioned video prediction:** Table 10 provides additional visual metrics for language-
 2473 conditioned settings. Specifically, we report the PSNR, SSIM and LPIPS when using the language-
 2474 conditioned posterior latent-actions to reproduce the original trajectory, as opposed to the standard
 2475 practice of sampling language-conditioned latent-actions from the latent prior where only FVD is
 2476 applicable.

2477 A.10.3 ABLATION ANALYSIS

2479 We perform ablation studies to evaluate the impact of key design decisions in LPWM, including
 2480 latent action type (global vs. per-particle), latent action dimensionality, and positional embedding
 2481 methods. Using the Sketchy dataset and evaluating after 10 training epochs (Table 11), we ob-
 2482 serve that per-particle latent actions are critical for strong latent-action-conditioned video prediction
 2483 performance. However, for sampling diversity, global mean-pooling of latent actions yields im-
 proved FVD, suggesting benefits from global variables during generation. The model demonstrates

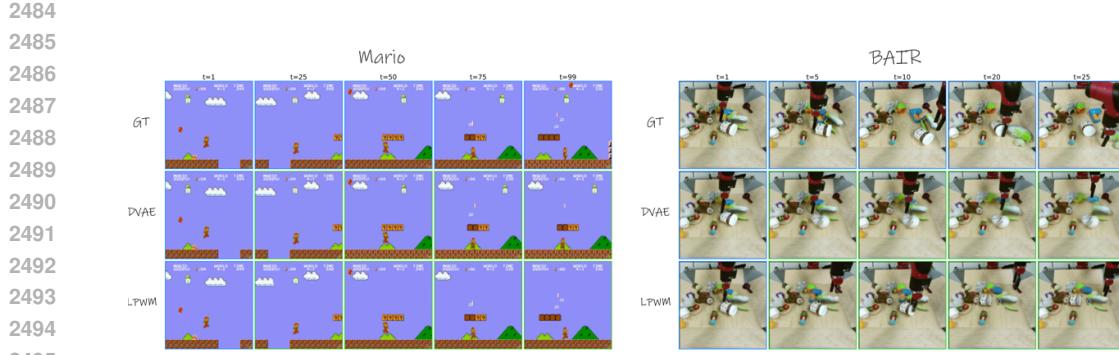


Figure 16: Multi-modal future sampling by LPWM. Starting from the same initial frame, LPWM produces diverse possible future trajectories, illustrated on the Mario (left) and BAIR (right) datasets.

Dataset	Bridge-L				LanguageTable-L			
	PSNR↑	SSIM↑	LPIPS↓	FVD↓	PSNR↑	SSIM↑	LPIPS↓	FVD↓
DVAE	19.37±3.8	0.75±0.09	0.177±0.078	146.85	36.0±4.14	0.97±0.01	0.019±0.01	26.78
LPWM (Ours)	26.38±4.1	0.87±0.08	0.077±0.05	47.78	36.57±3.01	0.97±0.007	0.016±0.006	15.96

Table 10: Quantitative results on language-conditioned (L) video generation. PSNR, SSIM and LPIPS are calculated on latent-action-conditioned video prediction. FVD is reported for stochastic generation by sampling from the latent policy.

robustness to latent action dimension as long as it approximates the effective particle dimension ($< 6 + d_{\text{obj}}$, i.e., 10 for Sketchy), balancing compression and information retention; our choice of $d_{\text{ctx}} = 7$ reflects this trade-off⁵. Finally, adaptive layer normalization (AdaLN) for embedding timestep and particle identity outperforms standard additive positional embeddings, as previously observed (Zhu et al., 2024), albeit with an increased parameter count.

Ablation Variant	Latent Actions d_{ctx}	Latent Actions Type	Positional Embeddings	PSNR↑	SSIM↑	LPIPS↓	FVD↓
Original	7	Per-Particle	Learned AdaLN	28.55±3.30	0.91±0.05	0.072±0.03	120.32
$d_{\text{ctx}} = 1$	1	Per-Particle	Learned AdaLN	27.71±3.50	0.89±0.06	0.081±0.03	177.64
$d_{\text{ctx}} = 3$	3	Per-Particle	Learned AdaLN	29.08±3.15	0.92±0.05	0.070±0.03	117.46
$d_{\text{ctx}} = 10$	10	Per-Particle	Learned AdaLN	28.97±3.28	0.91±0.05	0.068±0.03	117.54
$d_{\text{ctx}} = 14$	14	Per-Particle	Learned AdaLN	28.81±3.22	0.91±0.05	0.069±0.03	121.02
Global Latent Actions	7	Mean Pool	Learned AdaLN	27.24±3.7	0.89±0.07	0.087±0.04	100.75
Global Latent Actions	7	Token Attention Pool	Learned AdaLN	21.54±4.29	0.80±0.11	0.176±0.09	142.64
Positional Embeddings	7	Per-Particle	Learned Additive	21.54±4.29	0.80±0.11	0.176±0.09	142.64

Table 11: Ablation results: impact of latent action dimensions and type, and positional embeddings on LPWM performance. Results are reported on the Sketchy dataset after 10 epochs of training. Results do not reflect final performance.

A.10.4 POLICY LEARNING WITH LATENT PARTICLE WORLD MODELS

This section provides additional details on our decision-making application—learning imitation policies from a pre-trained LPWM, as described in Section 5.2.

OGBench-Scene: designed to challenge an agent’s long-horizon sequential reasoning through manipulation of diverse objects including cubes, windows, drawers, and buttons. Pressing a button toggles the lock status of associated objects, requiring complex, multi-step planning to arrange objects into target configurations. The baselines are taken directly from the benchmark which includes GCBC (Lynch et al., 2020), GCIQL (a goal-conditioned variant of IQL (Kostrikov et al., 2022)),

⁵Results after 10 epochs do not reflect final performance; best performance across datasets achieved with $d_{\text{ctx}} = 7$

2538	Task	VQ-BeT	Diffuser	EIT+BC	EC Diffusion Policy	EC Diffuser	LPWM (Ours)
2539	1 Cube	93 \pm 3	36.7 \pm 2.7	89 \pm 2	88.7 \pm 3	94.8 \pm 1.5	92.7 \pm 4.5
2540	2 Cubes	5.2 \pm 1	1.3 \pm 1	14.6 \pm 12.5	38.8 \pm 10.6	91.7 \pm 3	74 \pm 4
2541	3 Cubes	0.6 \pm 0.1	0.2 \pm 0.4	14 \pm 16.4	66.8 \pm 17	89.4 \pm 2.5	62.1 \pm 4.4

2542
 2543 Table 12: Performance results on PandaPush, a physics-based tabletop benchmark in IsaacGym where a
 2544 Franka arm must arrange multiple cubes to match target goal images. Reported values are success rates over
 2545 500 trajectories across 5 seeds; results within one standard deviation of the best are shown in bold.

2546
 2547 GCIVL (Park et al., 2023), QRL (Wang et al., 2023), CRL (Eysenbach et al., 2022) and HIQL (Park
 2548 et al., 2023).

2549 Our image-goal-conditioned LPWM is trained on offline data with a 30-frame horizon, where goals
 2550 are sampled within a window spanning the last training frame to 70 steps into the future, typically
 2551 encompassing 2–3 atomic tasks. Because trajectories stem from unstructured play data rather than
 2552 task-specific demonstrations, the goal sampling window is limited to maintain informative transi-
 2553 tions for goal conditioning. During inference, we sample 20 actions per step, execute them in the
 2554 environment, and feed back new observations for subsequent action predictions. Table 13 sum-
 2555 marizes results across tasks, while Figure 4 visualizes an example imagined trajectory alongside
 2556 environment execution. Videos are available on our project webpage.

2557 *Results discussion:* OGBench datasets contain highly suboptimal, unstructured trajectories, posing
 2558 challenges for behavioral cloning (BC), particularly on tasks requiring many atomic subtasks (e.g.,
 2559 unlock drawer, open drawer, place cube). As reflected by GCBC’s performance, straightforward
 2560 BC struggles when the goal is distant from the initial state. Nonetheless, our BC method achieves
 2561 strong performance on tasks involving up to four atomic behaviors, including task1 and task3,
 2562 outperforming all baselines on these. We attribute this to LPWM’s expressiveness, which captures
 2563 multiple behavior modes and highlights its potential for integration with RL value functions to opti-
 2564 mize goal-reaching policies.

2565 PandaPush: designed to challenge complex, goal-conditioned multi-object manipulation. We use
 2566 the same 1–3 cube manipulation dataset as EC-Diffuser (Qi et al., 2025), but unlike EC-Diffuser,
 2567 we train a single multi-view image-goal-conditioned LPWM and policy across all tasks, rather than
 2568 separate policies for each task (e.g., one for 1 cube, another for 2 cubes), which gives the baselines
 2569 an advantage. Baselines, taken from Qi et al. (2025), include VQ-BeT (Lee et al., 2024), a non-
 2570 diffusion method using a Transformer with flattened VQ-VAE image inputs; Diffuser (Janner et al.,
 2571 2022), trained without guidance on flattened VQ-VAE inputs; EIT+BC, an adaptation of the EIT
 2572 policy (Haramati et al., 2024) to behavioral cloning using pre-trained DLP image representations;
 2573 and EC Diffusion Policy, inspired by Chi et al. (2023) and modified for goal-conditioning, learn-
 2574 ing from pre-trained DLP representations. Table 12 summarizes results, and Figure 17 shows an
 2575 example imagined trajectory alongside environment execution. Videos are available on our project
 2576 webpage.

2577 *Results discussion:* despite a relatively simple policy compared to complex diffusion-based methods,
 2578 LPWM outperforms all baselines except EC Diffuser and matches EC Diffuser’s performance on the
 2579 1-cube task. While this work focuses on demonstrating the potential of adapting pre-trained LPWM
 2580 for downstream decision-making, future work can explore combining LPWM with more advanced
 2581 policies for multi-object reasoning. Additionally, we leverage the multi-view variant of LPWM in
 2582 this experiment, modeling particle dynamics simultaneously from multiple views, demonstrating the
 2583 framework’s flexibility and enhancing its ability to robustly handle occlusions (Haramati et al.,
 2584 2024).

2585
 2586
 2587
 2588
 2589
 2590
 2591

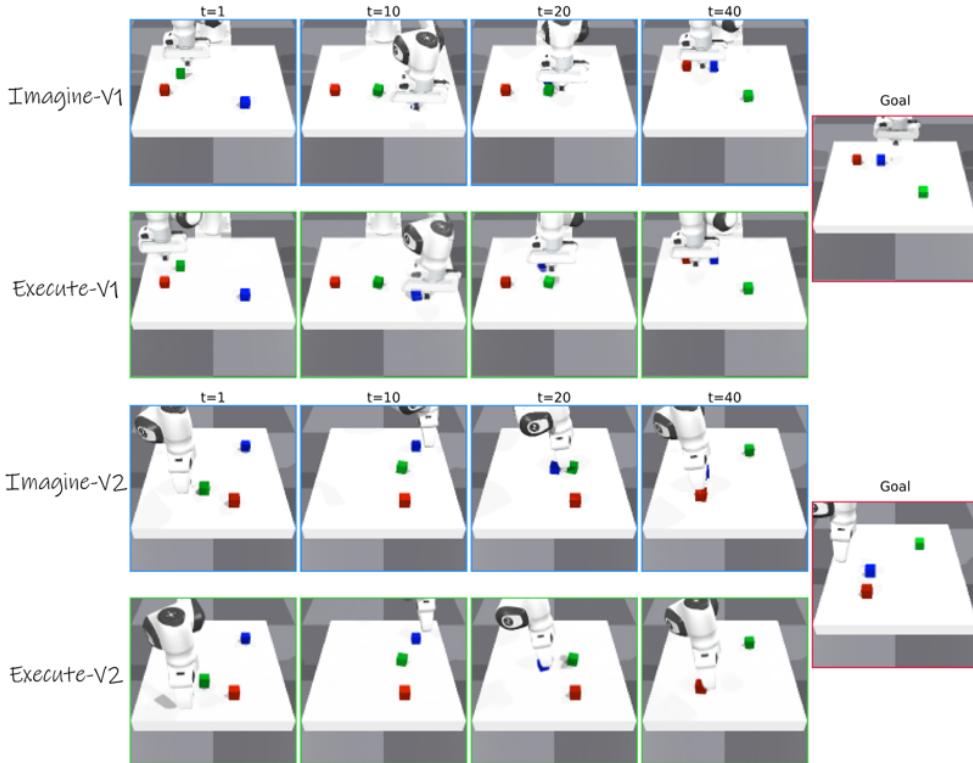


Figure 17: LPWM generated goal-conditioned imagined trajectories (top) and actual environment executions (bottom) through a learned mapping to actions on PandaPush from two views. LPWM generates dynamics in both views simultaneously, handling occlusions by the gripper.

Task	GCBC	GCIVL	GCIQL	QRL	CRL	HIQL	LPWM (Ours)
task1	59 ± 7	84 ± 4	56 ± 4	44 ± 6	52 ± 6	80 ± 6	100 ± 0
task2	0 ± 0	24 ± 8	1 ± 1	2 ± 2	1 ± 1	81 ± 7	6 ± 9
task3	0 ± 0	16 ± 8	0 ± 0	0 ± 0	0 ± 0	61 ± 11	89 ± 9
task4	2 ± 1	0 ± 0	3 ± 4	2 ± 1	1 ± 1	20 ± 8	3 ± 5
task5	0 ± 0	3 ± 2	0 ± 0				
overall	12 ± 2	25 ± 3	12 ± 2	10 ± 1	11 ± 2	49 ± 4	40 ± 1

Table 13: **Full results on Visual Scene** with the visual-scene-play-v0 dataset. Results for baselines were taken from the original OGBench benchmark (Park et al., 2025) and represent success rates across 4 seeds. Results within a standard deviation are highlighted in bold.