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ABSTRACT

We consider the problem setting of imitation learning where the agent is provided
a fixed dataset of demonstrations. While the agent can interact with the environ-
ment for exploration, it is oblivious to the reward function used by the demon-
strator. This setting is representative of many applications in robotics where task
demonstrations may be straightforward while reward shaping or conveying stylis-
tic aspects of human motion may be difficult. For this setting, we develop a varia-
tional model-based imitation learning algorithm (VMIL) that is capable of learn-
ing policies from visual observations. Through experiments, we find that VMIL is
more sample efficient compared to prior algorithms in several challenging vision-
based locomotion and manipulation tasks, including a high-dimensional in-hand
dexterous manipulation task. All results including videos can be found online at
https://sites.google.com/view/vim.

1 INTRODUCTION

The ability of reinforcement learning (RL) agents to autonomously learn by interacting with environ-
ment presents a promising approach for learning diverse skills. However, reward specification has
remained a major challenge in deployment of RL in practical settings (Amodei et al., 2016; Everitt
& Hutter, 2019; Rajeswaran* et al., 2018). The ability to imitate humans or other expert trajecto-
ries enables us to avoid the reward specification problem while also circumventing hard exploration
challenges in RL. It also presents a more natural way to teach robots various tasks and skills. In
this work, we aim to develop a new algorithm that can learn from limited expert demonstration data
and scale to high-dimensional observation and action spaces. Behaviour cloning (BC) is a classic
algorithm to imitate expert demonstrations (Pomerleau, 1988). It uses supervised learning to greed-
ily match the expert behaviour at demonstrated expert states, without regard for the marginal state
distribution. However, due to environment stochasticity or compounding actor errors over time, the
agent will drift from the expert state distribution towards out-of-distribution states and ultimately
fail to mimic the demonstrations (Ross et al., 2011). This problem is especially prevalent in high-
dimensional domains or domains with limited data. While a wide policy coverage by the expert
(Spencer et al., 2021) or the ability to repeatedly and interactively query the expert policy (Ross
et al., 2011) can circumvent difficulties to an extent, such conditions are seldom met in practical
applications. An alternate line of work based on inverse RL (IRL) (Finn et al., 2016b; Fu et al.,
2018a) and adversarial imitation learning (Ho & Ermon, 2016) aim to not only match actions at
demonstrated states, but also the long term visitation distribution (Ghasemipour et al., 2019). These
approaches explicitly train a GAN-based classifier (Goodfellow et al., 2014; Finn et al., 2016a) to es-
timate the expert state-action distribution, which serves as a reward for training an RL agent. While
these methods have achieved substantial improvement over behaviour cloning without additional
expert supervision, they are difficult to deploy in realistic scenarios. This is mainly due to three rea-
sons: (1) the need to optimize an RL objective that requires on-policy data collection and contributes
towards sample complexity; (2) non-stationarity of the reward function that changes as the RL agent
learns; and (3) high-dimensionality of the observation space that requires representation learning.

To overcome the aforementioned difficulties, we develop a new model-based adversarial imitation
learning algorithm that trains a variational dynamics model. Our approach has several advantages:
(1) model learning serves as a rich auxiliary task for learning visual representations that support
efficient learning of control policies in a stable fashion, (2) we optimize the correct (on-policy)

1

https://sites.google.com/view/vim


Published at the SSL-RL Workshop at ICLR 2021

imitation learning objective, (3) model-based policy optimization allows us to train an agent on-
policy without the sample complexity required by these algorithms. On four simulated environments
with image observations and continuous actions, including a vision-based dexterous manipulation
task, we find that our algorithm is significantly more performant than a prior state-of-the-art model-
free method.

2 RELATED WORK

We begin by reviewing the literature on imitation learning and recent advances in image-based RL.

Imitation Learning. Ho & Ermon (2016) develop GAIL - a practical imitation learning algorithm
with a fixed amount of demonstration data, without the ability to further query the expert. The key
component is to train a binary classifier Dψ : S ×A → [0, 1] that discriminates between expert and
policy rollouts similar to a GAN. The agent’s policy π is then trained using reinforcement learning to
maximize Eτ∼π[

∑
t logDψ(s, a)]−λH(π), whereH(π) is an entropy regularizer. Fu et al. (2018a)

develop a similar algorithm, but like GAIL it still requires on-policy data. Several off-policy algo-
rithms have been developed (Reddy et al., 2020; Blondé & Kalousis, 2019; Kostrikov et al., 2019)
to tackle sample inefficiency, largely by replacing an on-policy RL algorithm (TRPO, PPO) with
an off-policy one. However, this introduces a distribution mismatch as it replaces the expectation
under the policy state-action marginal distribution with the expectation under the distribution of the
replay buffer. While this tends to work in practice, Kostrikov et al. (2020a) show that the distribution
mismatch can significantly degrade performance if the buffer distribution is significantly off from
the policy distribution. Alternatively Finn et al. (2016b) use a similar approach to reward learning in
combination with a learned locally linear dynamics model, which makes policy optimization easier.
In this work we extend this approach to high-dimensional POMDPs with arbitrary dynamics.

Learning From Images. Reinforcement learning from images is an inherently difficult task, since
the agent needs to learn meaningful visual representations from reward signal alone. A recent line of
research (Gelada et al.; Hafner et al., 2019; Lee et al., 2020; Hafner et al., 2020) train a variational
model of the image-based environment as an auxiliary task. Lee et al. (2020) use the model for
representation learning purposes only and train an off-policy SAC-based algorithm on top of the
latent representation. On the other hand, Hafner et al. (2020) use rollouts from the learned model to
train an agent in an on-policy fashion within the latent space of the model. We base our algorithm
on this approach, as it allows us to train an agent on-policy and target the correct objective of
imitation learning, while still maintaining the sample efficiency of off-policy approaches. Separately
Kostrikov et al. (2020b) introduce DrQ, a sample efficient approach for off-policy Q-learning from
images in a completely model-free way by introducing image-augmentation for both the target and
actor Q-networks. The authors report state of the art performance on both asymptotic returns and
sample efficiency. We later empirically compare our method to SQIL (Reddy et al. (2020)), an
established off-policy imitation learning algorithm combined with DrQ image augmentation.

3 MODEL-BASED IMITATION LEARNING IN POMDPS

In this section, we consider learning in image-based domains as a POMDP.

3.1 MODELING VIA CONTROL AS INFERENCE IN POMDPS

Following the control as inference approach (Levine, 2018; Lee et al., 2020), we jointly model
the POMDP dynamics and policy learning. We choose choose a joint variational distribution that
factors into state inference, latent dynamics, and a policy term. However, unlike prior works (Lee
et al., 2020), we base the policy distribution entirely on the inferred latent state. This later allows us
to optimize the policy in a model-based fashion under the learned latent model. Our joint variational
distribution is as follows:

q(z1:T ,aτ+1:T |x1:τ+1,a1:τ ) =

τ∏
t=0

q(zt+1|xt+1, zt,at)

T−1∏
t=τ+1

p(zt+1|zt,at)
T−1∏
t=τ+1

π(at|zt)
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Figure 1: Left: Training procedure for our variational model. Dashed lines represent inference and
solid lines represent the generative model. Right: Policy training procedure for our model.

Using this variational distribution, the evidence lower bound becomes:

log p(x1:τ+1,Oτ+1:T |a1:τ ) ≥ E
(z1:T ,aτ+1:T )∼q

[ T∑
t=τ+1

(
log p(Ot = 1|zt,at) + log p(at)− log π(at|zt)

)
︸ ︷︷ ︸

policy objective

+

τ∑
t=0

(
p(xt+1|zt+1)− DKL(q(zt+1|xt+1, zt,at)||p(zt+1|zt,at))

)
︸ ︷︷ ︸

model objective

]

(1)

All the distributions are represented as diagonal Gaussians with the mean and variance parameter-
ized by the output of neural networks.

3.2 PRACTICAL ALGORITHM AND TRAINING

We optimize the two different components of Equation 1 in an alternating fashion as shown in
Figure 1. We utilize the latent dynamics model by Hafner et al. (2019), with the exception that we
do not include a reward predictor. Following Fu et al. (2018b) we can consider log p(Ot = 1|zt,at)
as the probability that the state-action pair belongs to an expert ”event” distribution. We train a
discriminator on top of the latent representation using the following objective:

min
Dψ

Eqθ,πψ
[ T−1∑
t=1

logDψ(z
π
t ,a

π
t , z

π
t+1) + log(1−Dψ(z

E
t ,a

E
t , z

E
t+1))

]
(2)

as we find that including the next state helps with alleviating model exploitation. We also add
Gaussian input noise (Müller et al., 2019) as it helps improve convergence speed and stability.
At this point, we optimize the policy objective as a reinforcement learning problem with a re-
ward function r(zt,at, zt+1) = Dψ(zt,at, zt+1). We can use several algorithms to optimize
this component, but we would like to (1) avoid reinforcement learning with a non-stationary re-
ward and (2) use an on-policy training algorithm in order to target the correct objective. Because
of these goals we opt for a model-based value expansion approach based on Hafner et al. (2020).

Figure 2: Environments.

4 EXPERIMENTS

In our experiments we want to answer several questions: (1) can
VMIL successfully scale to environments with image observations,
(2) how does VMIL compare to state of the art model-free approaches,
(3) how does VMIL perform in different data regimes, (4) can VMIL
solve realistic manipulation tasks, (5) can VMIL solve environments
with complex interaction and physics?
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Figure 3: Learning curves for VMIL versus the model-free baseline of SQIL+DrQ.

Tasks. Our test environments are shown in Figure 3.2. We first evaluate our method on the Chee-
tah and Walker tasks from the DeepMind Control Suite (Tassa et al., 2018). We also consider a
Sawyer peg-insertion task, where the arm and peg positions are randomized, which creates a dif-
ficult configuration for imitation learning when the configuration is out of the expert distribution.
Our final environment is the Baoding balls task from Nagabandi et al. (2019). This is a challenging
task for policy learning, even in the state-based case. All observations are from images, while the
Baoding balls task additionally includes robot proprioception. The DeepMind Control Suite tasks
have between 1 and 10 demonstration rollouts, generated using SAC training from state. The Sawyer
task uses 50 demos generated using an analytic controller. Finally the Baoding balls uses 25 demos
generated using the method from Nagabandi et al. (2019).

Results. Experiment results are shown in Figure 3. To answer questions (1) and (2) above we
compare VMIL to SQIL with DrQ image augmentations, as introduced in Section 2, on the Cheetah
and Walker tasks. While the model-free baseline initially outperforms our method, it’s performance
has high variance between random seeds and exhibits significant instability. We hypothesize that
this is due to (1) sparse rewards associated with imitation learning, which prevent the development
of reliable image features and (2) the static nature of the reward in the SQIL method, as only ex-
pert demonstrations receive positive reward. The addition of a discriminator-based training, similar
Kostrikov et al. (2019); Blondé & Kalousis (2019), might help alleviate these issues, however that
would introduce the problem of representation learning using non-stationary reward signal. To an-
swer question (3), we vary the number of expert trajectories available to our method, results shown
in the first two plots of Figure 4. We find that performance is comparable and we still get stable
convergence with only a single expert rollout. To answer question (4), we evaluate our method on a
Sawyer peg-insertion tasks, where it reaches over 50% success rate, while the model-free baseline
fails to complete the task. Towards the end of training we see meaningful degradation in perfor-
mance. We hypothesize that this is due to the evolution of the latent space representation in the
course of training. A potential solution would be annealing the amount of input noise to the discrim-
inator or exploring alternative stabilization techniques, (Blondé et al. (2020)). To answer question
(5) we deploy our method on the Baoding Balls task from Nagabandi et al. (2019). This is a com-
plex task, which is difficult to solve with policy training, even in the state-based domain. We manage
to reach up to 14% success rate, while the model-free baseline fails to solve the task, however we
encounter similar degradation in performance, as in the peg-insertion task.

5 CONCLUSION

In this work we presented VMIL, a model-based imitation learning algorithm that works from high-
dimensional observations, such as images. Our method achieves better asymptotic returns and is
more stable and sample efficient than state-of-the art off-policy model-free approaches in the same
domain. The improved sample efficiency and safety of the learning procedure make real-world im-
itation learning feasible and we plan to evaluate our algorithm on a real robot setting. Although
we observe some degradation in performance on environments with out-of-distribution states and
more complex dynamics, we believe that by utilizing additional stabilization and reward shaping
techniques we can fully solve those cases as well. Finally the use of task-agnostic dynamics mod-
els opens many doors to future research, such as offline, multi-task, continual and meta-imitation
learning.
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