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Abstract

Recently, prompt learning has garnered
considerable attention for its success in
various Vision-Language (VL) tasks. However,
existing prompt-based models are primarily
focused on studying prompt generation and
prompt strategies with complete modality
settings, which does not accurately reflect
real-world scenarios where partial modality
information may be missing. In this paper, we
present the first comprehensive investigation
into prompt learning behavior when modalities
are incomplete, revealing the high sensitivity
of prompt-based models to missing modalities.
To this end, we propose a novel Multi-step
Adaptive Prompt Learning (MuAP) frame-
work, aiming to generate multimodal prompts
and perform multi-step prompt tuning, which
adaptively learns knowledge by iteratively
aligning modalities. Specifically, we generate
multimodal prompts for each modality and
devise prompt strategies to integrate them
into the Transformer model. Subsequently,
we sequentially perform prompt tuning from
single-stage and alignment-stage, allowing
each modality-prompt to be autonomously
and adaptively learned, thereby mitigating
the imbalance issue caused by only textual
prompts that are learnable in previous
works. Extensive experiments demonstrate
the effectiveness of our MuAP and this
model achieves significant improvements
compared to the state-of-the-art on all bench-
mark datasets. Our codes are available at
https://anonymous.4open.science/r/multiview_a
daptative_prompt_learning/.

1 Introduction

Vision-Language (VL) pre-training (Su et al.,
2019; Lu et al., 2019; Yu et al., 2019; Kim et al.,
2021) has demonstrated remarkable success in var-
ious Vision-Language tasks like image recogni-
tion (Zhang et al., 2021; Liu et al., 2019), object
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Figure 1: Various architectures in the prompt tuning
field. (a) The CLIP-family method (Khattak et al.,
2023) focus on prompt generation with complete modal-
ity information. (b) Missing-aware prompts method in
MPVR (Lee et al., 2023) has 2¢ — 1 prompts to rep-
resent all missing scenarios, where C is the number of
modalities. (c) Our method aims to enhance parameter
efficiency by utilizing only C prompts and to improve
robustness through multi-step prompting tuning in miss-
ing scenarios.

detection (Jinetal., 2021; Sunetal., 2021), and im-
age segmentation (Cao etal., 2021; Hu et al., 2019)
by learning the semantic correlations between dif-
ferent modalities through large-scale image-text
training. However, most previous research has as-
sumed that all modalities are accessible during both
training and testing phases, a condition that is of-
ten challenging to meet in real-world scenarios.
This challenge arises from various factors, such
as privacy and security concerns leading to the in-
accessibility of textual data (Lian et al., 2023),
or limitations in device observations resulting in
missing visual data (Zeng et al., 2022; Ma et al.,
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2022). Hence, the widespread occurrence of miss-
ing modalities distinctly hinders the performance
of vision-language models.

Recently, as shown in Figure 1(a), there has
been a notable advancement in the field of visual
language (VL) by adopting prompt learning from
Natural Language Processing (NLP). However, re-
searchers do not consider scenarios where modal-
ities are missing. For instance, CLIP (Radford
et al., 2021) aligns image and language modali-
ties through joint training on large-scale datasets.
It leverages handcrafted prompts and a parame-
terized text encoder to generate precise classifi-
cation weights, thereby enabling zero-shot learn-
ing. Nonetheless, it faces two formidable chal-
lenges: the need for expertise and multiple iter-
ations in designing handcrafted prompts, as well
as the impracticality of fully fine-tuning the entire
model due to its tremendous scale. Consequently,
CoOp (Zhou et al., 2022b) and CoCoOp (Zhou
et al., 2022a) propose automated prompt engineer-
ing that converts contextual words in prompts into
learnable vectors and achieves substantial improve-
ments by exclusively fine-tuning dense prompts
using a small number of labeled images. Further-
more, MaPLe (Khattak et al., 2023) delves into
the limitations of solely using language prompts
in previous works and presents multimodal prompt
learning, which introduces a coupling function to
connect text prompts with image prompts, facilitat-
ing mutual gradient propagation between the two
modalities for more precise alignment.

Recent research, such as MPVR (Lee et al.,
2023), has proposed using prompt learning for sce-
narios with missing modalities, aiming to mitigate
the performance degradation caused by disparities
in modality absence in training or testing data sam-
ples. However, designing distinct prompts for each
missing modality scenario inevitably leads to an
exponential increase in the number of prompts as
the number of modalities increases (as shown in
Figure 1(b), a scenario with C' modalities necessi-
tates 2¢ — 1 prompts), seriously compromising the
scalability of the model. Moreover, unlike the dual-
prompt strategy used by MaPLe (Khattak et al.,
2023), MPVR (Lee et al., 2023) adopts a coarse
prompt strategy at the input or attention level by
directly inserting prompts into multimodal trans-
formers, without distinguishing textual and visual
features.

Despite MaPLe ’s (Khattak et al., 2023) dual-
prompt strategy effectively harnessing the capabil-

ities of both modalities, its coupling mechanism
exhibits a propensity for relying predominantly on
the textual modality, which may result in unbal-
anced learning of multimodal information. Fur-
thermore, an excessive degree of coupling has the
potential to impede the independent learning capac-
ity of each modality. To address this, in Figure 1(c),
we propose a novel Multi-step Adaptative Prompt
Learning (MuAP) framework for multimodal learn-
ing in the presence of missing modalities. MuAP
introduces a multi-step prompting mechanism that
adaptively learns multimodal prompts by itera-
tively aligning modalities. Specifically, we perform
prompt tuning sequentially from two perspectives:
single-stage and alignment-stage. This allows each
modality prompt to learn autonomously without
interference from the other, facilitating an in-depth
exploration of each modality in scenarios where
certain modalities are missing. Finally, we obtain
the downstream classifier results through multi-
modal prompt learning, where adaptive prompts
effectively mitigate imbalanced learning caused by
one-way coupling and only textual prompts are
learnable in (Khattak et al., 2023).

To summarize, this paper makes the following
key contributions:

* To the best of our knowledge, this paper is
the first study to analyze the robustness of
prompt learning on missing modality data. We
propose a novel missing-modality in the VL
Model model with multi-step adaptive prompt
learning, addressing the limitations of previ-
ous works and enhancing prompts through
autonomous and collaborative learning simul-
taneously.

* We devise a multi-step tuning strategy that en-
compasses single-stage and alignment-stage
tunings, where we generate visual and lan-
guage prompts adaptively through multi-step
modality alignments for multimodal reason-
ing. This facilitates comprehensive knowl-
edge learning from both modalities in an un-
biased manner.

* We conduct extensive experiments and abla-
tion studies on three benchmark datasets. Ex-
tensive experiments demonstrate the effective-
ness of our MuAP and this model achieves sig-
nificant improvements compared to the state-
of-the-art on all benchmark datasets.



2 Related work

2.1 Vision-Language Pre-trained Model

Recent researches on Vision-Language Pre-training
(VLP) aim to learn semantic alignment between dif-
ferent modalities by leveraging large-scale image-
text pairs. There are two architectures of the exist-
ing VLP methods: single-stream and dual-stream
architectures. In single-stream architectures, im-
age and text representations are concatenated at
the feature level and serve as input to a single-
stream Transformer. For example, VisualBERT
(Li et al., 2019) concatenates text embedding se-
quences and image embedding sequences, which
are then passed through a Transformer network.
Building upon this work. VL-BERT (Su et al.,
2019) utilizes OD-based Region Features on the
image side and incorporates a Visual Feature Em-
bedding module. Similarly, ImageBERT (Qi et al.,
2020) follows a single-stream model with OD for
image feature extraction while introducing more
weakly supervised data to enhance learning perfor-
mance. Alternatively, the dual-stream architectures
align image-text representations in a high-level
semantic space using two separate cross-modal
Transformers. For instance, CLIP (Radford et al.,
2021) and its variants (such as CoOp (Zhou et al.,
2022b) and MaPLe (Khattak et al., 2023)) em-
ploy ResNet (He et al., 2016) and ViT models
as image encoders, while employing Transform-
ers (Vaswani et al., 2017) as text encoders. Subse-
quently, they utilize contrastive learning to predict
matching scores between each template entity and
the current image, with the highest score indicating
the image’s classification result.

2.2 Prompt Learning for Vision-Language
Tasks

As the diversity of Vision-Language (VL) tasks
poses a challenge for individually fine-tuning large
pre-trained models for each task, Prompt Learn-
ing emerges as an effective approach to tackle this
challenge. It involves freezing the backbone neural
network and introducing prompts, which comprise
a small number of trainable parameters, to fine-
tune the entire model. This allows for the zero-shot
or few-shot application of pre-trained models to
new VL tasks in a more parameter-efficient man-
ner than training large models from scratch for
each task. For example, CoOp (Zhou et al., 2022b)
incorporates learnable prompts into the language
encoder to fine-tune CLIP, while CoCoOp employs

conditional prompts to further enhance the model’s
generalization ability. MaPLe (Khattak et al., 2023)
argues that learning prompts for the text encoder
alone in CLIP are insufficient to model the neces-
sary adaptations required for the image encoder. To
address this, MaPLe leverages multimodal prompt
learning to fully fine-tune the text and image en-
coder representations, ensuring optimal alignment
in downstream tasks. It employs a coupling func-
tion to connect the prompts learned in the text and
image encoders, with only the text prompts being
trainable.

3 Method

In this section, we detail our methodology by pre-
senting a clear problem definition and introducing
our proposed MuAP.

3.1 Problem Definition

In this work, we study the missing-modality mul-
timodal learning where the presence of missing
modalities can occur in both the training and testing
phases. For simplicity while retaining generality,
following (Huang et al., 2019), we consider a mul-
timodal dataset that contains two modalities: M =
{my, m, }, where m; and m,, denote textual, visual
modalities respectively. The complete modality
data can be represented as R = {", 2™ yi },
where ;" and x;" denote the textual and visual
features respectively, y; denotes the correspond-
ing class label. While the missing modality data
are R™* = {z"",y;} or R™> = {z}", y). } repre-
senting text-only data and image-only data respec-
tively. To keep the format of multimodal inputs,
we adopt a straightforward strategy of assigning
placeholder inputs, represented as 't and "™,
to the instances with missing modalities. These
placeholder inputs are null strings or blank pix-
els and serve to fill the absence of textual or vi-
sual data, respectively. Consequently, we obtain
ﬁmt = {x;ﬁtvj;nvvyj}’ Rmv = {jzualev)yk},
and the multimodal data with missing modality can
be represented as R = {R* R™ R™}. Our
goal is to address classification issues and improve
the robustness of VL model with Prompt Learning

with missing modalities k.

3.2 Overall Framework

Considering the resource constraints, we focus on
the VL model with Prompt Learning and adopt
Vision-and-Language Transformer (ViLT) (Kim
et al., 2021) as the backbone, which is pre-trained
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Figure 2: The overview of our MuAP framework. The Multimodal Prompt Generator initially generates complete-
type prompts, P,,, and P, , tailored to the specific modality case (e.g., textual or visual modalities in Vision-
Language tasks). Next, it employs fmissing tO Create missing-type prompts Pmt and ﬁmv . The Prompt Strategy
Design module integrates prompts into multiple MSA layers using various strategies (i.e., head fusion or cross
fusion). During the training phase, we leverage Multi-step Prompt Tuning to synchronize distinct characteristics of

different modality prompts effectively.

on large-scale VL datasets and remains untrain-
able in downstream tasks. To mitigate the signif-
icant performance degradation of Prompt Learn-
ing models due to missing modality data, we pro-
pose a novel Multi-step Adaptative Prompt Learn-
ing (MuAP) model to enhance the model’s ro-
bustness in various missing scenarios. As illus-
trated in Figure 2, MuAP mainly comprises three
modules: Multimodal Prompt Generator, Prompt
Strategy Design, and multi-step Prompt Tuning.
Specifically, we first generate learnable specific
prompts for each modality to achieve complete-
ness tuning in prompting, deviating from previous
methods (Zhou et al., 2022b,a) where only textual
prompts were learnable. Subsequently, we intro-
duce two prompt fusion strategies: head-fusion and
cross-fusion, attaching prompts to blocks of the
multimodal transformer. Additionally, we propose
a multi-step tuning strategy for dynamic language
and vision prompt tuning through modality align-
ments, allowing MuAP to gain knowledge from
both modalities.

3.3 Revisiting VILT

ViLT is a widely used Transformer-based multi-
modal pretraining model. It partitions images into
patches of varying sizes, which are projected and
embedded to generate latent representations. This
allows the unified processing of images and text

with minimal parameters. Its overall workflow com-
mences by concatenating the text representation
(denoted as t = [tys;t1; .. . ; tar]) with the image
patches (denoted as v = [vgs; v1; - . . ; uN]). These
concatenated representations are then fed into mul-
tiple Transformer layers for processing. Specifi-
cally:
hO — [t + tmodal;v + Umodal] c RLVXd (1)
hi = MSA(LN(h™ M) + 1Y, i=1...L (2)
hi =MLP(LN(Ri-1)) + ki,  i=1...L 3)
where, ¢ and v represent the embeddings of text and
images, respectively. They are combined with their
respective modality type embeddings ™% and
v™edal to form the initial input h°. Ly, represents
the length of the input sequence, while d denotes
the dimension of the hidden states. The context
vectors h undergo continuous updates through L
layers of Transformer encoders, and the final output

context sequence h” is utilized for downstream
tasks.

3.4 Multimodal Prompt Generator

One main challenge in addressing missing modal-
ity learning with prompt learning lies in the design
of prompt, and all modality absence situations are
exponential. Drawing on the effectiveness of com-
plete prompts in multimodal learning, we gener-
ate specific prompts for each modality, with the



key distinction being that all the textual and visual
prompts are both learnable. Unlike (Lee et al.,
2023), where missing-aware prompts are generated
for each possible situation resulting in an exponen-
tial increase as the number of modalities grows, our
method adopts a linear growth pattern for prompts
that significantly reduces the number of parameters
and model complexity. To improve understanding
and compensation for missing modalities, we cre-
ate a simple network to generate specific prompts
for each modality, aiding exploration and use of
implicit data.

Specifically, when the input comprises C' modal-
ities, there exist C' complete-type prompts. In our
VL tasks, given C' = 2 modalities of images and
texts, we initialize P,,, and P,,, € R'»*? as tex-
tual and image prompts respectively, representing
the complete modality, where L, is the prompt
length. Subsequently, the initial prompts are fed
into a lightweight network f;ssing, in a crosswise
manner. This means that opposing prompts are
used to generate prompts (e.g., using a complete-
type prompt from the visual modality to generate a
missing-type prompt for the textual modality). The
goal of this process is to enhance perception and
compensate for missing modalities. The formula
for the generating process is as follows:

s issing(PY) = GELU(W'LN(PY)) + P"  (4)

missing
By, = froissing(Prny) (5)

print = frz;wissing(Pézu) 6)

where W' represents the weight matrix specific to
the i-th frissing module in the i-th layer of MSA,
LN refers to the layer normalization operation,
GELU is the activation function, and adding the
original prompts P’ represents the residual opera-
tion. The residual connection is present to retain
the opposing modality information while the MLP
is utilized to collect additional missing-specific fea-
tures to provide more valuable supplementary for
the missing input and facilitate multimodal fusion.
In a more generalized form, let P, (m € M)
represent the complete-type prompt for modality
m, and P, represent the missing-type prompt for
the same modality. When modality m is miss-
ing, the missing-type prompt P, is utilized in the
subsequent module. Otherwise, the complete-type
prompt P, is used.

3.5 Prompt Strategy Design

Designing prompt template and strategy is crucial
for prompt-based learning. We focus on prompt
strategy involving prompt configuration and place-
ment. Two prompt strategies introduced in Figure 2:
head-fusion prompting and cross-fusion prompting.
Consistency in subsequent symbols assumed with
complete input data for textual and visual modali-
ties.

Head-fusion Prompting. One simple way to in-
corporate prompts is to add them at the start of in-
put sequences for each layer. We use element-wise
summation for combining multimodal prompts.
Phreaq is expressed as:

Phead = P, © P, P € RI2X4 (1)

where @ denotes the summation over prompts from
each modality. Next, we concatenate Pj.,q With
the input sequence of texts and images at each layer.
Similar to ViLT (Kim et al., 2021), the formula can
be expressed as follows:

B =[P} aaithv'], i=0---N, (8)
where P,i caq denotes the head-fusion prompt of i-th
layer, N, represents the number of MSA layers in
ViLT. With the concatenating P,iead to the input
sequences of the previous layer, the final output
length increases to (NpLp + Ly ) in total. This
allows the prompts for the current layer to interact
with the prompt tokens inherited from previous
layers, enabling the model to learn more effective
instructions for prediction.

Cross-fusion Prompting. Motivated by (Khat-
tak et al., 2023), another prompting approach is to
insert modality-specific prompts into their corre-
sponding modality inputs in a single-stream model.
By doing this, we facilitate the interaction between
modality-specific prompts and features. The cross-
fusion prompting can be formalized as follows:

ht = [P! ' Pl v,

me) My

i=0---N, (9

where me, anv represent the modality-specific
prompts for the textual and visual modalities, re-
spectively, at the i-th layer. It is noteworthy that,
unlike (Khattak et al., 2023) which only replaces
few parameters from the input sequence from each
layer, cross-fusion prompt strategy follows head-
fusion to attach the prompts at each MSA layer.
This results in an expanded final output length of



(2NpLp + Ly ). This improves the model’s repre-
sentation scale and training stability, but it encoun-
ters a significant increase in model length when
both Np and Lp are large. It also faces the poten-
tial risk of overlooking the information in the orig-
inal input sequence. We discuss how the prompt
length leads to overfitting in Section 4.5.

3.6 Multi-step Prompt Tuning

In this section, we introduce our proposed multi-
step prompt tuning technique designed to adap-
tively learn multimodal prompts through multi-
step sequential modality alignments. Specifically,
we employ prompt tuning (Lester et al., 2021)
of the pre-trained Transformer encoder to per-
form efficient parameter learning from multiple
stages, including single-stage of each modality and
a alignment-stage. This not only facilitates the
acquisition of modality-specific information from
individual visual and textual modalities but also
captures the correlations between different modali-
ties.

Single-stage prompt tuning. To fully account
for the inherent differences between distinct modal-
ities, we sequentially and separately freeze the two
modality prompts to explore learnable prompts
trained with contrastive learning. As illustrated in
Figure 2, we iteratively train the learnable prompts
in a step-wise manner. Initially, we optimize the
textual prompts while keeping the visual prompts
frozen, called text-step. Subsequently, we switch
to optimizing the visual prompts while fixing the
textual prompts, called image-step. This exclusive
updating process enables the prompt tuning to cap-
ture modality-specific attributes respectively.

Specifically, in the two steps, we utilize the
Kullback-Leibler (KL) divergence as L; to mea-
sure the distribution difference between text and
visual prompts. Additionally, we incorporate L ;s
as a classification loss to facilitate the fusion.

To mitigate overfitting issues caused by prompt
engineering, we employ diverse combinations of
parameters \; and )\, in the two steps of prompt
updating, which effectively preserves modality-
specific information. The formulas are as follows:

Text-step : L}, = Leis + \eLri(Prys Py
(10)
Image-step : L}, = Leas + M Lyi(Prm,, Pm,)
an
During this separate training of modality
prompts, the hyper-parameter A is used to com-

bine with the KL loss. Specifically, A\; and A,
are set to 0.4 for the text prompt training step
and 0.3 for the image prompt training step, respec-
tively. In the process of single-stage prompt tun-
ing, the two prompts undergo simultaneous updates
through several alignment steps, with the experi-
mental setup setting the number of steps to 3.

Alignment-stage prompt tuning. To further
adapt multimodal prompts and enhance the gener-
alization capability of downstream tasks, we train
the model again from a alignment stage. In this
step, the visual and textual prompts are all train-
able during the training. The overall training objec-
tive solely emphasizes the classification loss L,
which is formulated as follows:

Alignment-stage : L;p1q1 = L5 (12)

4 Experiments

4.1 Datasets and Metrics

Datasets We follow the approach outlined
in (Lee et al., 2023) to evaluate our methods across
three multimodal downstream tasks:

* MM-IMDb (Arevalo et al., 2017) focuses on
classifying movie genres using both images
and text, handling cases where a movie fits
into more than one genre.

* UPMC Food-101 (Wang et al., 2015) is a
multimodal classification dataset and com-
prises 5% noisy image-text paired data gath-
ered from Google Image Search.

* Hateful Memes (Kiela et al., 2020) is a chal-
lenging dataset for identifying hate speech in
memes through images and text. It has 10k
tough samples to challenge unimodal models
and favor multimodal models.

Metrics Given the distinct classification tasks
addressed by these datasets, we employ appropriate
metrics tailored to each dataset. Specifically, for
MM-IMDb, we utilize F1-Macro as a measure of
multi-label classification performance. For UPMC
Food-101, the metric is classification accuracy. For
Hateful Memes, we assess performance using the
AUROC.

4.2 Baselines

Baselines To assess the effectiveness and robust-
ness of our proposed method, we primarily com-
pare it with the state-of-the-art models. These mod-
els include



S Missing Training Testing . MPVR MPVR Visual . S MuAP MuAP
Datasets rate € Image Text Image Text VILT (Input-level)  (Attention-level) BERT (Li et al., 2019) Ma Model (Ma et al., 2022) (Head Fusion) (Cross Fusion)
MM-IMDb 30% 100% 30% 100% | 37.61 46.30 44.74 38.63 46.63 47.21 46.73
(F1-Macro) 70% 65%  65%  65%  65% | 36.30 4241 41.56 37.23 41.28 42.57 43.92
100%  30% 100% 30% | 34.71 39.19 38.13 36.41 38.65 41.37 39.88
Food101 30% 100% 30%  100% | 76.93 86.09 85.89 7741 86.38 86.90 86.59
(Accuracy) 70% 65%  65%  65%  65% | 69.03 77.49 71.55 71.06 78.58 71.87 78.95
100% 30% 100% 30% | 66.29 73.85 7247 67.78 73.41 74.61 74.60
Hateful Memes 30% 100% 30% 100% | 61.74 62.34 63.30 61.98 63.56 65.09 66.83
(AUROC) 70% 65%  65%  65%  65% | 62.83 63.53 62.56 63.05 64.41 64.76 62.68
100% 30% 100% 30% | 60.83 61.01 61.77 60.89 60.96 62.08 61.26

Table 1: Quantitative results on the MM-IMDB (Arevalo et al., 2017), UPMC Food-101 (Wang et al., 2015), and

Hateful Memes (Kiela et al., 2020) with missing rate {% = 70% .

The outcomes were analyzed under diverse

missing-modality cases, with the best results highlighted in bold for clarity.
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Figure 3: Comparison of baselines on the Hateful Memes dataset with different missing rates across various
missing-modality scenarios. Each point in the picture represents training and testing with the same €% missing rate.

* Finetuned VILT: the original one without
any additional prompt parameters in ViLT (i.e.
only training the pooler layer and task-specific
classifier).

e MPVR (Lee et al., 2023): derived from the
pre-trained VILT backbone, this model inte-
grates missing-aware prompts into its multi-
modal transformer design.

e Visual BERT (Li et al., 2019): a modified
Visual BERT focusing on pooler and classifier
training.

* Ma Model (Ma et al., 2022): using pre-trained
VILT, multi-task optimization, and automated
search algorithm to find most efficient fusion
technique.

4.3 Main Results

Basic Performance. Table 1 shows our new
prompt learning method outperforms baselines,
demonstrating the effectiveness of our design and
training strategy. The Hateful Memes dataset is
tough, making unimodal models struggle, espe-
cially with missing modalities. Our head-fusion
approach surpasses missing-aware prompts on this
dataset, showing a 1.94% average improvement.
This highlights our prompt learning design’s pro-
ficiency in handling missing data. Additionally,

different fusion strategies lead to distinct modal-
ities integration, with the cross-fusion approach
often boosting performance in specific situations,
such as when dealing with missing-image cases in
the Hateful Memes dataset which surpasses MPVR
by about 3.53%. However, it exhibits greater sensi-
tivity to various missing cases, particularly when
text is absent. In scenarios with limited textual
data, cross-fusion can inadvertently emphasize the
fusion of prompts combined with modality inputs,
potentially impacting multimodal representation.

4.4 Robustness Comparison.

Robustness to Different Missing Rates The per-
formance differences in baseline models vary sig-
nificantly in robustness to different missing rates.
Results for various missing rates on Hateful Memes
are displayed in Figure 3. Assessing robustness in-
volves calculating the average drop rate between
successive data points.

MPVR exhibits inferior performance compared
to ViLT in certain cases, demonstrating the highest
vulnerability with a maximum drop rate of 4.18%
in the missing-text scenario and an average drop of
3.53%. Our proposed method, compared to head
fusion, achieves a significant performance enhance-
ment, with a low drop rate of only 3.05%, and
average improvements of 9.76% for MPVR and
10.95% for ViLT. Our cross-fusion strategy demon-



Methods Missineg Rate Ha(thII}IRI\C/)[eCI;leS
MuAP-w-tuning 65.09
MuAP-w/o-single-stage 63.47
MuAP-w/o-text-step 70% 63.65
MuAP-w/o-image-step 64.64
MuAP-w/o-KL 64.57

Table 2: Ablation study to explore how multi-step
prompt tuning improves model’s performance. All mod-
els using the head-fusion strategy are trained and evalu-
ated on missing-image scenarios.

Prompt Length
4 8 12 16 20 24

Missing-image | 64.58 61.75 64.59 65.09 65.01 63.95 Superior

Missing-text ~ 61.36 62.62 62.72 62.08 61.42

61.44 Metrics

Missing-both FUERPFAS 63,00 BREIMNCERGN 60.81  61.47

Figure 4: Ablation study on prompt length for head-
fusion strategy. All models are trained and evaluated on
various scenarios (e.g., missing-image) with e=70%.

Inferior

strates enhanced performance in most settings of
the missing-image scenario, with the lowest drop
rate of 2.4%. It surpasses MPVR and ViLT by an
average of 8.66% and 9.85%, respectively, under-
scoring the effectiveness of our method in bolster-
ing the model’s resilience and performance across
varying missing rate conditions.

Prompt learning enhances multimodal fusion,
improving model performance. MPVR’s prompt-
ing method lacks robustness, leading to overfit-
ting and sensitivity to missing modality cases.
Missing-aware ability alone is insufficient, neces-
sitating more robust methods. Our prompt ex-
hibits modality-specificity and achieves missing-
awareness through diverse fusion techniques.
Multi-step prompt tuning aligns distinct modalities
via adjustments, highlighting a trade-off between
model performance and robustness.

4.5 Ablation Study

Effectiveness of Multi-step Prompt Tuning
One of the most innovative aspects of our ap-
proach is the multi-step prompt tuning, consist-
ing of single-stage and alignment-stage steps. We
conducted experiments to assess the impact of it.
As shown in Table 2, the variation with multi-step
prompt tuning achieves the best performance, while
the model without any tuning performs the worst.
The experiment demonstrates that without itera-
tive tuning steps, the model fails to capture crucial

modality-specific information, which is essential
for effective multimodal fusion. Other variations
(e.g., removing text-step, KL divergence) also show
different degrees of performance decrease, indicat-
ing that this module we set up to align modalities
has a significant positive effect.

Effectiveness of Prompt Length In our pro-
posed approach, the prompt length Lp is a critical
factor. For example, in the head-fusion prompting
strategy, the final output length scales linearly with
(NpLp + Ly). Therefore, a judicious choice of
L p is necessary to ensure computational efficiency
and prevent information disruption during the train-
ing process. We analyze the effect of prompt length
in Figure 4. Consistent with intuition, model per-
formance improves as prompt length L p increases,
peaking at values between 12 and 16. This im-
provement can be attributed to the additional modal
information provided at shorter lengths, prevent-
ing overfitting. However, a decline in performance
is observed when the length exceeds 16. This ob-
servation indicates that excessively long prompts
lead to a concatenation situation where the com-
bined length nears the original embedding length,
hindering effective learning.

5 Conclusion

In this paper, we have undertaken the pioneering
effort to comprehensively investigate the robust-
ness of prompt learning models when modalities
are incomplete. Our experimental findings have
revealed the high sensitivity of existing prompt
learning models to the absence of modalities, result-
ing in substantial performance degradation. Build-
ing upon these insights, we propose a Multi-step
Adaptive Prompt Learning (MuAP) framework for
missing-modality in the Vision-Language Model.
We generate learnable modality-specific prompts
and explore two prompt strategies to facilitate
prompt learning in missing-modality Transformer
models. To enable adaptive learning of multimodal
prompts, we employ a multi-step tuning mecha-
nism encompassing single-stage and alignment-
stage tunings to perform multi-step modality align-
ments. This enables MuAP to acquire compre-
hensive knowledge from both modalities in a bal-
anced manner. Extensive experiments conducted
on benchmark datasets validate the effectiveness of
MuAP.



6 Limitation

First, due to time and computational constraints,
we haven’t tested our techniques on LLMs and
larger datasets. Second, in our choice of modali-
ties, we’ve focused solely on text and visuals using
VIiLT. It’s crucial to incorporate additional modali-
ties such as sound. It’s essential for our proposed
approach to demonstrate generalizability across di-
verse modalities, a focus for our upcoming work.
Third, we have not explored more alignment meth-
ods due to the computational limitations. Finally,
despite using few parameters, the overall improve-
ment is not substantial, but the robustness verifica-
tion has significantly enhanced. Moving forward,
more interpretable analysis will be carried out to
comprehend the principles of the parameters’ ef-
fects.
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A Implementation Details

Regarding text modality, we use the bert-base-
uncased tokenizer to tokenize our input sequence.
Depending on the dataset, the maximum length of
text sentences is set differently. It is set to 128
for Hateful Meme, 512 for Food-101, and 1024
for MM-IMDB. For the image modality, following
(Kolesnikov et al.), we extract 32 x 32 patches
from the input image. Therefore, the input images
are resized to 384 x 384 during the preprocessing
stage.

For the missing situation, we follow (Lee et al.,
2023) to keep the overall missing rate at 70%.
Considering various missing scenarios, we mainly
set three cases, including only the text modality
(missing-text) or image modality (missing-imgae)
missing €% while the other modality remains intact,
and another type is both modalities (missing-both)
are missing $% separately. The specific missing
scenarios in training and inference experiments are
shown in Table 1.

Moreover, the backbone parameters are initial-
ized by pre-trained weights of ViLT. The length L,
of learnable prompts is set to 16 by default in both
head fusion and cross fusion. We set the maximum
prompt layer number to 6 (i.e. the indices of lay-
ers to pre-pend prompts start from 0 and end at 5).
The base learning rate is set at 1 x 1072 using the
AdamW optimizer (Loshchilov and Hutter, 2018)
and weight decay at 2 x 1072 to remain unchanged
from (Lee et al., 2023).

B Details of Various Datasets

As previously mentioned, we have three dis-
tinct datasets: MM-IMDDb (Arevalo et al., 2017),
UPMC Food-101 (Wang et al., 2015), and Hate-
ful Memes (Kiela et al., 2020), each with its own
objectives and evaluation metrics.

To provide a clear overview of these datasets,
Figure 5 illustrates a comparison of their task ob-
jectives. MM-IMDb focuses on classifying movie
genres, UMPC Food-101 is designed for food
type classification, and Hateful Memes presents
a formidable challenge in detecting hate speech
across multiple modalities. As depicted in Fig-
ure 5, the Hateful Memes dataset poses the great-
est challenge due to its extensive composition of
over 10, 000 newly generated multimodal instances.
The intentional selection of these instances aims
to pose difficulties for single-modal classifiers in
accurately labeling them. For instance, a classifier



relying solely on the text “Elon Musk presents infi-
nite energy source”” may not classify it as hateful.
However, when accompanied by the corresponding
image of Elon Musk placing his hand on his fore-
head, crucial contextual information is provided
to identify its hateful connotation. The tasks in
MM-IMDb and UMPC Food-101 are notably less
challenging due to explicit answers within the text.
This is evident in the UMPC Food-101 example,
where the classification result “apple pie” is directly
mentioned in the text. Therefore, in our experimen-
tal setup, we primarily utilize the Hateful Memes
dataset to effectively showcase the superiority of
our approach compared to various baseline models.

MM-IMDb (Drama, Biography)

Young FBI agent Clarice
Starling is assigned to help
find a missing woman to

Metric: F1-Macro
Prediction

'Drama’, 'Comedy', 'Romance', "Thriller',
'Crime', 'Action’, 'Adventure', 'Horror'...

UMPC Food-101 (Food Type)
Metric: Accurac;
Prediction Y
Crock-Pot Ladies Crock- . e L
Pot Apple Pie Moonshine frozen_yogurt', 'tacos', 'apple_pie',
‘omelette’, 'french_fries'...

]

Hateful Memes (Hateful)

s Metric:AUROC
Prediction

=

“elon musk presents
infinite energy source”

"Hateful', Not Hateful

Figure 5: Detailed examples for three benchmark
datasets.

C More Ablation Results

Missing-text VILT MPVR MuAP MuAP
Missing rate e (Input-level) (Head Fusion) (Cross Fusion)
70% 55.56 60.02 57.95 58.39
50% 59.63 61.98 68.18 62.39
30% 65.47 67.80 68.17 64.85
10% 66.37 67.36 69.79 69.65

Table 3: Ablation study of generalization ability on
Hateful Memes. All models are evaluated on missing-
text cases with different missing rates e.

Generalization Ability Initially, we assume that
real-world scenarios may involve missing modal-
ity instances due to device malfunctions or pri-
vacy concerns. However, the majority of existing
datasets comprise modality-complete and metic-
ulously annotated data. To address this inconsis-
tency, we conducted experiments to investigate the
impacts of a prompt learning model trained on com-
plete modality datasets. In detail, all models are
trained on complete modality cases and tested on
scenarios with missing text at different rates. In Ta-
ble 3, our findings reveal that head-fusion and cross-
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fusion prompting exhibit robustness to this practi-
cal situation across numerous configurations. They
consistently rank among the top performers, except
for € values of 70%. Our head-fusion prompting
strategy exhibits remarkable performance, substan-
tially enhancing both performance and robustness
in the majority of scenarios, with an average AU-
ROC of 66.02%, which is a 1.73% improvement
compared to the average performance of MPVR
(64.29%). Meanwhile, the cross-fusion prompt-
ing strategy ranks second in most cases, showing
a more pronounced sensitivity to specific settings
compared to the head-fusion prompting strategy.
According to the findings elucidated in the paper,
the cross-fusion prompting strategy proves to be
effective in handling incomplete multimodal data,
while the head-fusion prompting strategy exhibits
exceptional robustness when dealing with complete
multimodal data.

Methods Missineg Rate Ha(tzflllel\(/)[eCr;les
MuAP-w-tuning 66.86
MuAP-w/o-single-stage 66.46
MuAP-w/o-text-step 70% 64.88
MuAP-w/o-image-step 64.56
MuAP-w/o-KL 65.28

Table 4: Ablation study to explore how multi-view
prompt tuning improves model’s performance. All mod-
els using the cross-fusion strategy are trained and eval-
uated on missing-image scenarios with missing rate
€=70%. Best results in bold.

Effectiveness Analysis in Cross-fusion Due to
space limitations in the main text, our analysis fo-
cused on assessing the effectiveness of the multi-
view prompt tuning module with a head-fusion
strategy. To attain a more profound comprehension
of our pioneering multimodal alignment method,
which encompasses multiple steps for enhancing
understanding, we now evaluate its effectiveness
using the cross-fusion prompting strategy. As de-
picted in Table 4, analogous to the preceding exper-
imental findings, the model refined with multi-view
prompting exhibits exceptional performance, sur-
passing all comparative models, while the untuned
model performs the poorest. This validation evi-
dence underscores the significance of iterative tun-
ing in capturing modality-specific information that
is pivotal for accomplishing successful multimodal
fusion.

Robustness to Different Missing Settings We
conduct experiments with different missing scenar-
ios to demonstrate our method’s robustness across



Missing-text Scenario

Bascline(ViLT)
™ Bascline(MPVR)
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.
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100%
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(a) Train: Missing-image 70%; Test: Missing-text (b) Train: Missing-image 70%; Test: Missing-image

Figure 6: Robustness studies conducted by varying the missing rates in different evaluation scenarios for the Hateful
Memes dataset. (a) Head-fusion models are trained using the missing-image scenario with € = 70%, and evaluations
were performed on the opposite missing-text case. (b) All models are trained on the missing-image scenario with a
70% missing rate, and tested on consistent cases with different missing rates, representing a transition from more

complete data to less complete data.

various scenarios during the training and testing
process. We aim to showcase the effectiveness of
our method in improving both performance and
robustness.

In previous work, (Khattak et al., 2023; Liu
etal., 2024) use textual modality as the main modal-
ity. So we evaluated models trained on a missing-
image scenario with a 70% missing rate and diverse
missing-text scenarios with varying e values. Fig-
ure 6(a) shows that head-fusion consistently outper-
forms MPVR across scenarios, with our proposed
strategies remaining robust even with increasing
missing rates, achieving average AUROC values
of 62.49% and 61.76% for head-fusion and cross-
fusion, respectively. Our approach maintains stable
performance even in highly challenging scenarios
with higher missing rates, unlike MPVR, which be-
comes ineffective when the missing rate surpasses
80%. We attribute this improvement to our Jmissing
function, implemented using residual connections,
familiarizing the model with complete and missing
data scenarios, effectively facilitating information
supplementation.

Figure 6(b) illustrates the robustness of our
proposed method, as it consistently outperforms
MPVR, particularly when tested with varying miss-
ing rates while maintaining consistent missing-
image settings during training. Our multimodal
prompts effectively tackle missing-awareness and
modality-specificity, significantly boosting the ro-
bustness of prompt learning.

Moreover, we have analyzed the model perfor-
mance in various prompt lengths with the head-
fusion strategy in the main text. However, in the
proposed cross-fusion prompting approach, the out-
put length exhibits a linear increase, directly propor-
tional to the sum of (2NpLp + Ly). This linear
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Prompt Length
12 16

8 20 24

63.80 65.51 66.83 64.65 64.16 Superior

4
Missing-image

60.10

Figure 7: Ablation study on prompt length for cross-
fusion strategy. All models are trained and evaluated
on various scenarios (e.g., missing-image, missing-text)
with e=70%.

Missing-text 59.05

60.46

61.26 59.03 58.93 Metrics

growth becomes notably more substantial as the
length of the prompt escalates compared to head-
fusion, which may lead to increased computational
demands and potential efficiency challenges. The
analysis presented in Figure 7 reveals a distinct
trend compared to head-fusion. It is noteworthy
that the top-3 performances in each scenario exhibit
variability. Notably, when L p ranges from 4 to 8,
the performance is consistently strong, achieving
the highest AUROC of 62.70% in the missing-both
case. This suggests that even smaller values of Lp
can yield excellent performance. However, akin to
head-fusion, the optimal performance is observed
when Lp approaches 16. These findings suggest
that our cross-fusion method is particularly sensi-
tive to the prompt length due to the rapid accumu-
lation of sequence length, potentially leading to
overfitting and inefficient computation.

D The Selection of Multi-view Prompt
Tuning Hyperparameters

To demonstrate our selection of the involved hy-
perparameters, we further analyze the impact
of the hyperparameters \; and A, with Hatefull
Memes (Kiela et al., 2020). From Table 5, it can be



Hateful Memes

Ay 0.4 0.5 0.6 0.7 | AVG
03 65.09 6444 6550 66.01 | 6526
0.4 6488 63.90 6431 64.06 | 64.29
05 6429 65.04 6440 6335 | 64.27
0.6 64.08 64.11 64.03 63.55 | 63.94

AVG 64.59 6437 64.56 6424 | 64.44

Table 5: Hyperparameters selection analysis on the
hyper-parameter A for both modalities with Hateful
Memes (Kiela et al., 2020). All head-fusion models
are trained and tested on missing-image scenario with
€e=70%

seen that when ) is 0.4, the overall performance
is the best, and the same situation occurs when A,
is 0.3. Therefore, in the remaining experiments,
we maintain )\; at 0.4 and A\, at 0.3 to gain the
maximum performance.
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