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Abstract

Recently, prompt learning has garnered001
considerable attention for its success in002
various Vision-Language (VL) tasks. However,003
existing prompt-based models are primarily004
focused on studying prompt generation and005
prompt strategies with complete modality006
settings, which does not accurately reflect007
real-world scenarios where partial modality008
information may be missing. In this paper, we009
present the first comprehensive investigation010
into prompt learning behavior when modalities011
are incomplete, revealing the high sensitivity012
of prompt-based models to missing modalities.013
To this end, we propose a novel Multi-step014
Adaptive Prompt Learning (MuAP) frame-015
work, aiming to generate multimodal prompts016
and perform multi-step prompt tuning, which017
adaptively learns knowledge by iteratively018
aligning modalities. Specifically, we generate019
multimodal prompts for each modality and020
devise prompt strategies to integrate them021
into the Transformer model. Subsequently,022
we sequentially perform prompt tuning from023
single-stage and alignment-stage, allowing024
each modality-prompt to be autonomously025
and adaptively learned, thereby mitigating026
the imbalance issue caused by only textual027
prompts that are learnable in previous028
works. Extensive experiments demonstrate029
the effectiveness of our MuAP and this030
model achieves significant improvements031
compared to the state-of-the-art on all bench-032
mark datasets. Our codes are available at033
https://anonymous.4open.science/r/multiview_a034
daptative_prompt_learning/.035

1 Introduction036

Vision-Language (VL) pre-training (Su et al.,037

2019; Lu et al., 2019; Yu et al., 2019; Kim et al.,038

2021) has demonstrated remarkable success in var-039

ious Vision-Language tasks like image recogni-040

tion (Zhang et al., 2021; Liu et al., 2019), object041
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Figure 1: Various architectures in the prompt tuning
field. (a) The CLIP-family method (Khattak et al.,
2023) focus on prompt generation with complete modal-
ity information. (b) Missing-aware prompts method in
MPVR (Lee et al., 2023) has 2C − 1 prompts to rep-
resent all missing scenarios, where C is the number of
modalities. (c) Our method aims to enhance parameter
efficiency by utilizing only C prompts and to improve
robustness through multi-step prompting tuning in miss-
ing scenarios.

detection (Jin et al., 2021; Sun et al., 2021), and im- 042

age segmentation (Cao et al., 2021; Hu et al., 2019) 043

by learning the semantic correlations between dif- 044

ferent modalities through large-scale image-text 045

training. However, most previous research has as- 046

sumed that all modalities are accessible during both 047

training and testing phases, a condition that is of- 048

ten challenging to meet in real-world scenarios. 049

This challenge arises from various factors, such 050

as privacy and security concerns leading to the in- 051

accessibility of textual data (Lian et al., 2023), 052

or limitations in device observations resulting in 053

missing visual data (Zeng et al., 2022; Ma et al., 054
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2022). Hence, the widespread occurrence of miss-055

ing modalities distinctly hinders the performance056

of vision-language models.057

Recently, as shown in Figure 1(a), there has058

been a notable advancement in the field of visual059

language (VL) by adopting prompt learning from060

Natural Language Processing (NLP). However, re-061

searchers do not consider scenarios where modal-062

ities are missing. For instance, CLIP (Radford063

et al., 2021) aligns image and language modali-064

ties through joint training on large-scale datasets.065

It leverages handcrafted prompts and a parame-066

terized text encoder to generate precise classifi-067

cation weights, thereby enabling zero-shot learn-068

ing. Nonetheless, it faces two formidable chal-069

lenges: the need for expertise and multiple iter-070

ations in designing handcrafted prompts, as well071

as the impracticality of fully fine-tuning the entire072

model due to its tremendous scale. Consequently,073

CoOp (Zhou et al., 2022b) and CoCoOp (Zhou074

et al., 2022a) propose automated prompt engineer-075

ing that converts contextual words in prompts into076

learnable vectors and achieves substantial improve-077

ments by exclusively fine-tuning dense prompts078

using a small number of labeled images. Further-079

more, MaPLe (Khattak et al., 2023) delves into080

the limitations of solely using language prompts081

in previous works and presents multimodal prompt082

learning, which introduces a coupling function to083

connect text prompts with image prompts, facilitat-084

ing mutual gradient propagation between the two085

modalities for more precise alignment.086

Recent research, such as MPVR (Lee et al.,087

2023), has proposed using prompt learning for sce-088

narios with missing modalities, aiming to mitigate089

the performance degradation caused by disparities090

in modality absence in training or testing data sam-091

ples. However, designing distinct prompts for each092

missing modality scenario inevitably leads to an093

exponential increase in the number of prompts as094

the number of modalities increases (as shown in095

Figure 1(b), a scenario with C modalities necessi-096

tates 2C − 1 prompts), seriously compromising the097

scalability of the model. Moreover, unlike the dual-098

prompt strategy used by MaPLe (Khattak et al.,099

2023), MPVR (Lee et al., 2023) adopts a coarse100

prompt strategy at the input or attention level by101

directly inserting prompts into multimodal trans-102

formers, without distinguishing textual and visual103

features.104

Despite MaPLe ’s (Khattak et al., 2023) dual-105

prompt strategy effectively harnessing the capabil-106

ities of both modalities, its coupling mechanism 107

exhibits a propensity for relying predominantly on 108

the textual modality, which may result in unbal- 109

anced learning of multimodal information. Fur- 110

thermore, an excessive degree of coupling has the 111

potential to impede the independent learning capac- 112

ity of each modality. To address this, in Figure 1(c), 113

we propose a novel Multi-step Adaptative Prompt 114

Learning (MuAP) framework for multimodal learn- 115

ing in the presence of missing modalities. MuAP 116

introduces a multi-step prompting mechanism that 117

adaptively learns multimodal prompts by itera- 118

tively aligning modalities. Specifically, we perform 119

prompt tuning sequentially from two perspectives: 120

single-stage and alignment-stage. This allows each 121

modality prompt to learn autonomously without 122

interference from the other, facilitating an in-depth 123

exploration of each modality in scenarios where 124

certain modalities are missing. Finally, we obtain 125

the downstream classifier results through multi- 126

modal prompt learning, where adaptive prompts 127

effectively mitigate imbalanced learning caused by 128

one-way coupling and only textual prompts are 129

learnable in (Khattak et al., 2023). 130

To summarize, this paper makes the following 131

key contributions: 132

• To the best of our knowledge, this paper is 133

the first study to analyze the robustness of 134

prompt learning on missing modality data. We 135

propose a novel missing-modality in the VL 136

Model model with multi-step adaptive prompt 137

learning, addressing the limitations of previ- 138

ous works and enhancing prompts through 139

autonomous and collaborative learning simul- 140

taneously. 141

• We devise a multi-step tuning strategy that en- 142

compasses single-stage and alignment-stage 143

tunings, where we generate visual and lan- 144

guage prompts adaptively through multi-step 145

modality alignments for multimodal reason- 146

ing. This facilitates comprehensive knowl- 147

edge learning from both modalities in an un- 148

biased manner. 149

• We conduct extensive experiments and abla- 150

tion studies on three benchmark datasets. Ex- 151

tensive experiments demonstrate the effective- 152

ness of our MuAP and this model achieves sig- 153

nificant improvements compared to the state- 154

of-the-art on all benchmark datasets. 155
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2 Related work156

2.1 Vision-Language Pre-trained Model157

Recent researches on Vision-Language Pre-training158

(VLP) aim to learn semantic alignment between dif-159

ferent modalities by leveraging large-scale image-160

text pairs. There are two architectures of the exist-161

ing VLP methods: single-stream and dual-stream162

architectures. In single-stream architectures, im-163

age and text representations are concatenated at164

the feature level and serve as input to a single-165

stream Transformer. For example, VisualBERT166

(Li et al., 2019) concatenates text embedding se-167

quences and image embedding sequences, which168

are then passed through a Transformer network.169

Building upon this work. VL-BERT (Su et al.,170

2019) utilizes OD-based Region Features on the171

image side and incorporates a Visual Feature Em-172

bedding module. Similarly, ImageBERT (Qi et al.,173

2020) follows a single-stream model with OD for174

image feature extraction while introducing more175

weakly supervised data to enhance learning perfor-176

mance. Alternatively, the dual-stream architectures177

align image-text representations in a high-level178

semantic space using two separate cross-modal179

Transformers. For instance, CLIP (Radford et al.,180

2021) and its variants (such as CoOp (Zhou et al.,181

2022b) and MaPLe (Khattak et al., 2023)) em-182

ploy ResNet (He et al., 2016) and ViT models183

as image encoders, while employing Transform-184

ers (Vaswani et al., 2017) as text encoders. Subse-185

quently, they utilize contrastive learning to predict186

matching scores between each template entity and187

the current image, with the highest score indicating188

the image’s classification result.189

2.2 Prompt Learning for Vision-Language190

Tasks191

As the diversity of Vision-Language (VL) tasks192

poses a challenge for individually fine-tuning large193

pre-trained models for each task, Prompt Learn-194

ing emerges as an effective approach to tackle this195

challenge. It involves freezing the backbone neural196

network and introducing prompts, which comprise197

a small number of trainable parameters, to fine-198

tune the entire model. This allows for the zero-shot199

or few-shot application of pre-trained models to200

new VL tasks in a more parameter-efficient man-201

ner than training large models from scratch for202

each task. For example, CoOp (Zhou et al., 2022b)203

incorporates learnable prompts into the language204

encoder to fine-tune CLIP, while CoCoOp employs205

conditional prompts to further enhance the model’s 206

generalization ability. MaPLe (Khattak et al., 2023) 207

argues that learning prompts for the text encoder 208

alone in CLIP are insufficient to model the neces- 209

sary adaptations required for the image encoder. To 210

address this, MaPLe leverages multimodal prompt 211

learning to fully fine-tune the text and image en- 212

coder representations, ensuring optimal alignment 213

in downstream tasks. It employs a coupling func- 214

tion to connect the prompts learned in the text and 215

image encoders, with only the text prompts being 216

trainable. 217

3 Method 218

In this section, we detail our methodology by pre- 219

senting a clear problem definition and introducing 220

our proposed MuAP. 221

3.1 Problem Definition 222

In this work, we study the missing-modality mul- 223

timodal learning where the presence of missing 224

modalities can occur in both the training and testing 225

phases. For simplicity while retaining generality, 226

following (Huang et al., 2019), we consider a mul- 227

timodal dataset that contains two modalities: M = 228

{mt,mv}, where mt and mv denote textual, visual 229

modalities respectively. The complete modality 230

data can be represented as Rall = {xmt
i , xmv

i , yi}, 231

where xmt
i and xmv

i denote the textual and visual 232

features respectively, yi denotes the correspond- 233

ing class label. While the missing modality data 234

are Rmt = {xmt
j , yj} or Rmv = {xmv

k , yk} repre- 235

senting text-only data and image-only data respec- 236

tively. To keep the format of multimodal inputs, 237

we adopt a straightforward strategy of assigning 238

placeholder inputs, represented as xmt and xmv , 239

to the instances with missing modalities. These 240

placeholder inputs are null strings or blank pix- 241

els and serve to fill the absence of textual or vi- 242

sual data, respectively. Consequently, we obtain 243

Rmt
= {xmt

j , xmv
j , yj}, Rmv

= {xmt
k , xmv

k , yk}, 244

and the multimodal data with missing modality can 245

be represented as R = {Rall,Rmt
,Rmv}. Our 246

goal is to address classification issues and improve 247

the robustness of VL model with Prompt Learning 248

with missing modalities R. 249

3.2 Overall Framework 250

Considering the resource constraints, we focus on 251

the VL model with Prompt Learning and adopt 252

Vision-and-Language Transformer (ViLT) (Kim 253

et al., 2021) as the backbone, which is pre-trained 254
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Figure 2: The overview of our MuAP framework. The Multimodal Prompt Generator initially generates complete-
type prompts, Pmt and Pmv , tailored to the specific modality case (e.g., textual or visual modalities in Vision-
Language tasks). Next, it employs fmissing to create missing-type prompts P̃mt

and P̃mv
. The Prompt Strategy

Design module integrates prompts into multiple MSA layers using various strategies (i.e., head fusion or cross
fusion). During the training phase, we leverage Multi-step Prompt Tuning to synchronize distinct characteristics of
different modality prompts effectively.
on large-scale VL datasets and remains untrain-255

able in downstream tasks. To mitigate the signif-256

icant performance degradation of Prompt Learn-257

ing models due to missing modality data, we pro-258

pose a novel Multi-step Adaptative Prompt Learn-259

ing (MuAP) model to enhance the model’s ro-260

bustness in various missing scenarios. As illus-261

trated in Figure 2, MuAP mainly comprises three262

modules: Multimodal Prompt Generator, Prompt263

Strategy Design, and multi-step Prompt Tuning.264

Specifically, we first generate learnable specific265

prompts for each modality to achieve complete-266

ness tuning in prompting, deviating from previous267

methods (Zhou et al., 2022b,a) where only textual268

prompts were learnable. Subsequently, we intro-269

duce two prompt fusion strategies: head-fusion and270

cross-fusion, attaching prompts to blocks of the271

multimodal transformer. Additionally, we propose272

a multi-step tuning strategy for dynamic language273

and vision prompt tuning through modality align-274

ments, allowing MuAP to gain knowledge from275

both modalities.276

3.3 Revisiting ViLT277

ViLT is a widely used Transformer-based multi-278

modal pretraining model. It partitions images into279

patches of varying sizes, which are projected and280

embedded to generate latent representations. This281

allows the unified processing of images and text282

with minimal parameters. Its overall workflow com- 283

mences by concatenating the text representation 284

(denoted as t = [tcls; t1; . . . ; tM ]) with the image 285

patches (denoted as v = [vcls; v1; . . . ; vN ]). These 286

concatenated representations are then fed into mul- 287

tiple Transformer layers for processing. Specifi- 288

cally: 289

h0 = [t+ tmodal; v + vmodal] ∈ RLV ×d (1) 290
291

ĥi = MSA(LN(hi−1)) + hi−1, i = 1 . . . L (2) 292
293

hi = MLP(LN( ˆhi−1)) + ĥi, i = 1 . . . L (3) 294

where, t and v represent the embeddings of text and 295

images, respectively. They are combined with their 296

respective modality type embeddings tmodal and 297

vmodal to form the initial input h0. LV represents 298

the length of the input sequence, while d denotes 299

the dimension of the hidden states. The context 300

vectors h undergo continuous updates through L 301

layers of Transformer encoders, and the final output 302

context sequence hL is utilized for downstream 303

tasks. 304

3.4 Multimodal Prompt Generator 305

One main challenge in addressing missing modal- 306

ity learning with prompt learning lies in the design 307

of prompt, and all modality absence situations are 308

exponential. Drawing on the effectiveness of com- 309

plete prompts in multimodal learning, we gener- 310

ate specific prompts for each modality, with the 311
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key distinction being that all the textual and visual312

prompts are both learnable. Unlike (Lee et al.,313

2023), where missing-aware prompts are generated314

for each possible situation resulting in an exponen-315

tial increase as the number of modalities grows, our316

method adopts a linear growth pattern for prompts317

that significantly reduces the number of parameters318

and model complexity. To improve understanding319

and compensation for missing modalities, we cre-320

ate a simple network to generate specific prompts321

for each modality, aiding exploration and use of322

implicit data.323

Specifically, when the input comprises C modal-324

ities, there exist C complete-type prompts. In our325

VL tasks, given C = 2 modalities of images and326

texts, we initialize Pmt and Pmv ∈ RLp×d as tex-327

tual and image prompts respectively, representing328

the complete modality, where Lp is the prompt329

length. Subsequently, the initial prompts are fed330

into a lightweight network fmissing, in a crosswise331

manner. This means that opposing prompts are332

used to generate prompts (e.g., using a complete-333

type prompt from the visual modality to generate a334

missing-type prompt for the textual modality). The335

goal of this process is to enhance perception and336

compensate for missing modalities. The formula337

for the generating process is as follows:338

f i
missing(P

i) = GELU(WiLN(P i)) + P i (4)339

340

P̃ i
mv

= f i
missing(P

i
mt

) (5)341

342

P̃ i
mt

= f i
missing(P

i
mv

) (6)343

where Wi represents the weight matrix specific to344

the i-th fmissing module in the i-th layer of MSA,345

LN refers to the layer normalization operation,346

GELU is the activation function, and adding the347

original prompts P i represents the residual opera-348

tion. The residual connection is present to retain349

the opposing modality information while the MLP350

is utilized to collect additional missing-specific fea-351

tures to provide more valuable supplementary for352

the missing input and facilitate multimodal fusion.353

In a more generalized form, let Pm (m ∈ M)354

represent the complete-type prompt for modality355

m, and P̃m represent the missing-type prompt for356

the same modality. When modality m is miss-357

ing, the missing-type prompt P̃m is utilized in the358

subsequent module. Otherwise, the complete-type359

prompt Pm is used.360

3.5 Prompt Strategy Design 361

Designing prompt template and strategy is crucial 362

for prompt-based learning. We focus on prompt 363

strategy involving prompt configuration and place- 364

ment. Two prompt strategies introduced in Figure 2: 365

head-fusion prompting and cross-fusion prompting. 366

Consistency in subsequent symbols assumed with 367

complete input data for textual and visual modali- 368

ties. 369

Head-fusion Prompting. One simple way to in- 370

corporate prompts is to add them at the start of in- 371

put sequences for each layer. We use element-wise 372

summation for combining multimodal prompts. 373

Phead is expressed as: 374

Phead = Pmt ⊕ Pmv , P ∈ RLp×d (7) 375

where ⊕ denotes the summation over prompts from 376

each modality. Next, we concatenate Phead with 377

the input sequence of texts and images at each layer. 378

Similar to ViLT (Kim et al., 2021), the formula can 379

be expressed as follows: 380

hi = [P i
head; t

i; vi], i = 0 · · ·Np (8) 381

where P i
head denotes the head-fusion prompt of i-th 382

layer, Np represents the number of MSA layers in 383

ViLT. With the concatenating P i
head to the input 384

sequences of the previous layer, the final output 385

length increases to (NPLP + LV ) in total. This 386

allows the prompts for the current layer to interact 387

with the prompt tokens inherited from previous 388

layers, enabling the model to learn more effective 389

instructions for prediction. 390

Cross-fusion Prompting. Motivated by (Khat- 391

tak et al., 2023), another prompting approach is to 392

insert modality-specific prompts into their corre- 393

sponding modality inputs in a single-stream model. 394

By doing this, we facilitate the interaction between 395

modality-specific prompts and features. The cross- 396

fusion prompting can be formalized as follows: 397

hi = [P i
mt

; ti;P i
mv

; vi], i = 0 · · ·Np (9) 398

where P i
mt

, P i
mv

represent the modality-specific 399

prompts for the textual and visual modalities, re- 400

spectively, at the i-th layer. It is noteworthy that, 401

unlike (Khattak et al., 2023) which only replaces 402

few parameters from the input sequence from each 403

layer, cross-fusion prompt strategy follows head- 404

fusion to attach the prompts at each MSA layer. 405

This results in an expanded final output length of 406
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(2NPLP + LV ). This improves the model’s repre-407

sentation scale and training stability, but it encoun-408

ters a significant increase in model length when409

both NP and LP are large. It also faces the poten-410

tial risk of overlooking the information in the orig-411

inal input sequence. We discuss how the prompt412

length leads to overfitting in Section 4.5.413

3.6 Multi-step Prompt Tuning414

In this section, we introduce our proposed multi-415

step prompt tuning technique designed to adap-416

tively learn multimodal prompts through multi-417

step sequential modality alignments. Specifically,418

we employ prompt tuning (Lester et al., 2021)419

of the pre-trained Transformer encoder to per-420

form efficient parameter learning from multiple421

stages, including single-stage of each modality and422

a alignment-stage. This not only facilitates the423

acquisition of modality-specific information from424

individual visual and textual modalities but also425

captures the correlations between different modali-426

ties.427

Single-stage prompt tuning. To fully account428

for the inherent differences between distinct modal-429

ities, we sequentially and separately freeze the two430

modality prompts to explore learnable prompts431

trained with contrastive learning. As illustrated in432

Figure 2, we iteratively train the learnable prompts433

in a step-wise manner. Initially, we optimize the434

textual prompts while keeping the visual prompts435

frozen, called text-step. Subsequently, we switch436

to optimizing the visual prompts while fixing the437

textual prompts, called image-step. This exclusive438

updating process enables the prompt tuning to cap-439

ture modality-specific attributes respectively.440

Specifically, in the two steps, we utilize the441

Kullback-Leibler (KL) divergence as Lkl to mea-442

sure the distribution difference between text and443

visual prompts. Additionally, we incorporate Lcls444

as a classification loss to facilitate the fusion.445

To mitigate overfitting issues caused by prompt446

engineering, we employ diverse combinations of447

parameters λt and λv in the two steps of prompt448

updating, which effectively preserves modality-449

specific information. The formulas are as follows:450

Text-step : Lt
total = Lcls + λtLkl(Pmt , Pmv)

(10)451452

Image-step : Lv
total = Lcls + λvLkl(Pmt , Pmv)

(11)453

During this separate training of modality454

prompts, the hyper-parameter λ is used to com-455

bine with the KL loss. Specifically, λt and λv 456

are set to 0.4 for the text prompt training step 457

and 0.3 for the image prompt training step, respec- 458

tively. In the process of single-stage prompt tun- 459

ing, the two prompts undergo simultaneous updates 460

through several alignment steps, with the experi- 461

mental setup setting the number of steps to 3. 462

Alignment-stage prompt tuning. To further 463

adapt multimodal prompts and enhance the gener- 464

alization capability of downstream tasks, we train 465

the model again from a alignment stage. In this 466

step, the visual and textual prompts are all train- 467

able during the training. The overall training objec- 468

tive solely emphasizes the classification loss Lcls, 469

which is formulated as follows: 470

Alignment-stage : Ltotal = Lcls (12) 471

4 Experiments 472

4.1 Datasets and Metrics 473

Datasets We follow the approach outlined 474

in (Lee et al., 2023) to evaluate our methods across 475

three multimodal downstream tasks: 476

• MM-IMDb (Arevalo et al., 2017) focuses on 477

classifying movie genres using both images 478

and text, handling cases where a movie fits 479

into more than one genre. 480

• UPMC Food-101 (Wang et al., 2015) is a 481

multimodal classification dataset and com- 482

prises 5% noisy image-text paired data gath- 483

ered from Google Image Search. 484

• Hateful Memes (Kiela et al., 2020) is a chal- 485

lenging dataset for identifying hate speech in 486

memes through images and text. It has 10k 487

tough samples to challenge unimodal models 488

and favor multimodal models. 489

Metrics Given the distinct classification tasks 490

addressed by these datasets, we employ appropriate 491

metrics tailored to each dataset. Specifically, for 492

MM-IMDb, we utilize F1-Macro as a measure of 493

multi-label classification performance. For UPMC 494

Food-101, the metric is classification accuracy. For 495

Hateful Memes, we assess performance using the 496

AUROC. 497

4.2 Baselines 498

Baselines To assess the effectiveness and robust- 499

ness of our proposed method, we primarily com- 500

pare it with the state-of-the-art models. These mod- 501

els include 502
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Datasets
Missing

rate ϵ
Training Testing

ViLT MPVR
(Input-level)

MPVR
(Attention-level)

Visual
BERT (Li et al., 2019) Ma Model (Ma et al., 2022) MuAP

(Head Fusion)
MuAP

(Cross Fusion)Image Text Image Text

MM-IMDb
(F1-Macro) 70%

30% 100% 30% 100% 37.61 46.30 44.74 38.63 46.63 47.21 46.73
65% 65% 65% 65% 36.30 42.41 41.56 37.23 41.28 42.57 43.92
100% 30% 100% 30% 34.71 39.19 38.13 36.41 38.65 41.37 39.88

Food101
(Accuracy) 70%

30% 100% 30% 100% 76.93 86.09 85.89 77.41 86.38 86.90 86.59
65% 65% 65% 65% 69.03 77.49 77.55 71.06 78.58 77.87 78.95
100% 30% 100% 30% 66.29 73.85 72.47 67.78 73.41 74.61 74.60

Hateful Memes
(AUROC) 70%

30% 100% 30% 100% 61.74 62.34 63.30 61.98 63.56 65.09 66.83
65% 65% 65% 65% 62.83 63.53 62.56 63.05 64.41 64.76 62.68
100% 30% 100% 30% 60.83 61.01 61.77 60.89 60.96 62.08 61.26

Table 1: Quantitative results on the MM-IMDB (Arevalo et al., 2017), UPMC Food-101 (Wang et al., 2015), and
Hateful Memes (Kiela et al., 2020) with missing rate ξ% = 70% . The outcomes were analyzed under diverse
missing-modality cases, with the best results highlighted in bold for clarity.

55

60

65

70

75

0 10 20 30 40 50 60 70 80 90

A
U

R
O

C

Missing Rate  (%)

Missing-image Scenario

65

70

75

A
U

R
O

C

Baseline(ViLT) Baseline(MPVR) Head Fusion(Ours) Cross Fusion(ours)

55

60

65

70

75

0 10 20 30 40 50 60 70 80 90

Missing Rate(%)

Missing-text Scenario

55

60

65

70

75

0 10 20 30 40 50 60 70 80 90

Missing Rate(%)

Missing-both Scenario

Figure 3: Comparison of baselines on the Hateful Memes dataset with different missing rates across various
missing-modality scenarios. Each point in the picture represents training and testing with the same ϵ% missing rate.

• Finetuned VILT: the original one without503

any additional prompt parameters in ViLT (i.e.504

only training the pooler layer and task-specific505

classifier).506

• MPVR (Lee et al., 2023): derived from the507

pre-trained VILT backbone, this model inte-508

grates missing-aware prompts into its multi-509

modal transformer design.510

• Visual BERT (Li et al., 2019): a modified511

Visual BERT focusing on pooler and classifier512

training.513

• Ma Model (Ma et al., 2022): using pre-trained514

VILT, multi-task optimization, and automated515

search algorithm to find most efficient fusion516

technique.517

4.3 Main Results518

Basic Performance. Table 1 shows our new519

prompt learning method outperforms baselines,520

demonstrating the effectiveness of our design and521

training strategy. The Hateful Memes dataset is522

tough, making unimodal models struggle, espe-523

cially with missing modalities. Our head-fusion524

approach surpasses missing-aware prompts on this525

dataset, showing a 1.94% average improvement.526

This highlights our prompt learning design’s pro-527

ficiency in handling missing data. Additionally,528

different fusion strategies lead to distinct modal- 529

ities integration, with the cross-fusion approach 530

often boosting performance in specific situations, 531

such as when dealing with missing-image cases in 532

the Hateful Memes dataset which surpasses MPVR 533

by about 3.53%. However, it exhibits greater sensi- 534

tivity to various missing cases, particularly when 535

text is absent. In scenarios with limited textual 536

data, cross-fusion can inadvertently emphasize the 537

fusion of prompts combined with modality inputs, 538

potentially impacting multimodal representation. 539

4.4 Robustness Comparison. 540

Robustness to Different Missing Rates The per- 541

formance differences in baseline models vary sig- 542

nificantly in robustness to different missing rates. 543

Results for various missing rates on Hateful Memes 544

are displayed in Figure 3. Assessing robustness in- 545

volves calculating the average drop rate between 546

successive data points. 547

MPVR exhibits inferior performance compared 548

to ViLT in certain cases, demonstrating the highest 549

vulnerability with a maximum drop rate of 4.18% 550

in the missing-text scenario and an average drop of 551

3.53%. Our proposed method, compared to head 552

fusion, achieves a significant performance enhance- 553

ment, with a low drop rate of only 3.05%, and 554

average improvements of 9.76% for MPVR and 555

10.95% for ViLT. Our cross-fusion strategy demon- 556
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Methods Missing Rate
ϵ

Hateful Memes
(AUROC)

MuAP-w-tuning

70%

65.09
MuAP-w/o-single-stage 63.47

MuAP-w/o-text-step 63.65
MuAP-w/o-image-step 64.64

MuAP-w/o-KL 64.57

Table 2: Ablation study to explore how multi-step
prompt tuning improves model’s performance. All mod-
els using the head-fusion strategy are trained and evalu-
ated on missing-image scenarios.

Prompt Length    
4 8 12 16 20 24

64.58 61.75 64.59 65.09 65.01 63.95

61.36 62.62 62.72 62.08 61.42 61.44

63.27 63.00 63.99 63.76 60.81 61.47

Missing-image

Metrics

Inferior

Superior

Missing-text

Missing-both

Figure 4: Ablation study on prompt length for head-
fusion strategy. All models are trained and evaluated on
various scenarios (e.g., missing-image) with ϵ=70%.

strates enhanced performance in most settings of557

the missing-image scenario, with the lowest drop558

rate of 2.4%. It surpasses MPVR and ViLT by an559

average of 8.66% and 9.85%, respectively, under-560

scoring the effectiveness of our method in bolster-561

ing the model’s resilience and performance across562

varying missing rate conditions.563

Prompt learning enhances multimodal fusion,564

improving model performance. MPVR’s prompt-565

ing method lacks robustness, leading to overfit-566

ting and sensitivity to missing modality cases.567

Missing-aware ability alone is insufficient, neces-568

sitating more robust methods. Our prompt ex-569

hibits modality-specificity and achieves missing-570

awareness through diverse fusion techniques.571

Multi-step prompt tuning aligns distinct modalities572

via adjustments, highlighting a trade-off between573

model performance and robustness.574

4.5 Ablation Study575

Effectiveness of Multi-step Prompt Tuning576

One of the most innovative aspects of our ap-577

proach is the multi-step prompt tuning, consist-578

ing of single-stage and alignment-stage steps. We579

conducted experiments to assess the impact of it.580

As shown in Table 2, the variation with multi-step581

prompt tuning achieves the best performance, while582

the model without any tuning performs the worst.583

The experiment demonstrates that without itera-584

tive tuning steps, the model fails to capture crucial585

modality-specific information, which is essential 586

for effective multimodal fusion. Other variations 587

(e.g., removing text-step, KL divergence) also show 588

different degrees of performance decrease, indicat- 589

ing that this module we set up to align modalities 590

has a significant positive effect. 591

Effectiveness of Prompt Length In our pro- 592

posed approach, the prompt length LP is a critical 593

factor. For example, in the head-fusion prompting 594

strategy, the final output length scales linearly with 595

(NPLP + LV ). Therefore, a judicious choice of 596

LP is necessary to ensure computational efficiency 597

and prevent information disruption during the train- 598

ing process. We analyze the effect of prompt length 599

in Figure 4. Consistent with intuition, model per- 600

formance improves as prompt length LP increases, 601

peaking at values between 12 and 16. This im- 602

provement can be attributed to the additional modal 603

information provided at shorter lengths, prevent- 604

ing overfitting. However, a decline in performance 605

is observed when the length exceeds 16. This ob- 606

servation indicates that excessively long prompts 607

lead to a concatenation situation where the com- 608

bined length nears the original embedding length, 609

hindering effective learning. 610

5 Conclusion 611

In this paper, we have undertaken the pioneering 612

effort to comprehensively investigate the robust- 613

ness of prompt learning models when modalities 614

are incomplete. Our experimental findings have 615

revealed the high sensitivity of existing prompt 616

learning models to the absence of modalities, result- 617

ing in substantial performance degradation. Build- 618

ing upon these insights, we propose a Multi-step 619

Adaptive Prompt Learning (MuAP) framework for 620

missing-modality in the Vision-Language Model. 621

We generate learnable modality-specific prompts 622

and explore two prompt strategies to facilitate 623

prompt learning in missing-modality Transformer 624

models. To enable adaptive learning of multimodal 625

prompts, we employ a multi-step tuning mecha- 626

nism encompassing single-stage and alignment- 627

stage tunings to perform multi-step modality align- 628

ments. This enables MuAP to acquire compre- 629

hensive knowledge from both modalities in a bal- 630

anced manner. Extensive experiments conducted 631

on benchmark datasets validate the effectiveness of 632

MuAP. 633
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6 Limitation634

First, due to time and computational constraints,635

we haven’t tested our techniques on LLMs and636

larger datasets. Second, in our choice of modali-637

ties, we’ve focused solely on text and visuals using638

ViLT. It’s crucial to incorporate additional modali-639

ties such as sound. It’s essential for our proposed640

approach to demonstrate generalizability across di-641

verse modalities, a focus for our upcoming work.642

Third, we have not explored more alignment meth-643

ods due to the computational limitations. Finally,644

despite using few parameters, the overall improve-645

ment is not substantial, but the robustness verifica-646

tion has significantly enhanced. Moving forward,647

more interpretable analysis will be carried out to648

comprehend the principles of the parameters’ ef-649

fects.650
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A Implementation Details 793

Regarding text modality, we use the bert-base- 794

uncased tokenizer to tokenize our input sequence. 795

Depending on the dataset, the maximum length of 796

text sentences is set differently. It is set to 128 797

for Hateful Meme, 512 for Food-101, and 1024 798

for MM-IMDB. For the image modality, following 799

(Kolesnikov et al.), we extract 32 × 32 patches 800

from the input image. Therefore, the input images 801

are resized to 384 × 384 during the preprocessing 802

stage. 803

For the missing situation, we follow (Lee et al., 804

2023) to keep the overall missing rate at 70%. 805

Considering various missing scenarios, we mainly 806

set three cases, including only the text modality 807

(missing-text) or image modality (missing-imgae) 808

missing ϵ% while the other modality remains intact, 809

and another type is both modalities (missing-both) 810

are missing ϵ
2% separately. The specific missing 811

scenarios in training and inference experiments are 812

shown in Table 1. 813

Moreover, the backbone parameters are initial- 814

ized by pre-trained weights of ViLT. The length Lp 815

of learnable prompts is set to 16 by default in both 816

head fusion and cross fusion. We set the maximum 817

prompt layer number to 6 (i.e. the indices of lay- 818

ers to pre-pend prompts start from 0 and end at 5). 819

The base learning rate is set at 1× 10−2 using the 820

AdamW optimizer (Loshchilov and Hutter, 2018) 821

and weight decay at 2×10−2 to remain unchanged 822

from (Lee et al., 2023). 823

B Details of Various Datasets 824

As previously mentioned, we have three dis- 825

tinct datasets: MM-IMDb (Arevalo et al., 2017), 826

UPMC Food-101 (Wang et al., 2015), and Hate- 827

ful Memes (Kiela et al., 2020), each with its own 828

objectives and evaluation metrics. 829

To provide a clear overview of these datasets, 830

Figure 5 illustrates a comparison of their task ob- 831

jectives. MM-IMDb focuses on classifying movie 832

genres, UMPC Food-101 is designed for food 833

type classification, and Hateful Memes presents 834

a formidable challenge in detecting hate speech 835

across multiple modalities. As depicted in Fig- 836

ure 5, the Hateful Memes dataset poses the great- 837

est challenge due to its extensive composition of 838

over 10, 000 newly generated multimodal instances. 839

The intentional selection of these instances aims 840

to pose difficulties for single-modal classifiers in 841

accurately labeling them. For instance, a classifier 842
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relying solely on the text “Elon Musk presents infi-843

nite energy source” may not classify it as hateful.844

However, when accompanied by the corresponding845

image of Elon Musk placing his hand on his fore-846

head, crucial contextual information is provided847

to identify its hateful connotation. The tasks in848

MM-IMDb and UMPC Food-101 are notably less849

challenging due to explicit answers within the text.850

This is evident in the UMPC Food-101 example,851

where the classification result “apple pie” is directly852

mentioned in the text. Therefore, in our experimen-853

tal setup, we primarily utilize the Hateful Memes854

dataset to effectively showcase the superiority of855

our approach compared to various baseline models.856

Young FBI agent Clarice 
Starling is assigned to help 
find a missing woman to 

save her from a 
psychopathic serial killer 

who skins his victims. 
Clarice attempts to gain a 

better insight into...

Crock-Pot Ladies  Crock-
Pot Apple Pie Moonshine

“elon musk presents 
infinite energy source”

MM-IMDb (Drama, Biography)

UMPC Food-101 (Food Type)

Hateful Memes (Hateful)

'Drama', 'Comedy', 'Romance', 'Thriller', 
'Crime', 'Action', 'Adventure', 'Horror'...

Prediction

'frozen_yogurt', 'tacos', 'apple_pie',  
'omelette', 'french_fries'...

'Hateful', Not Hateful

Prediction

Prediction
Metric:AUROC

Metric: Accuracy

Metric: F1-Macro

Figure 5: Detailed examples for three benchmark
datasets.

C More Ablation Results857

Missing-text
Missing rate ϵ ViLT MPVR

(Input-level)
MuAP

(Head Fusion)
MuAP

(Cross Fusion)

70% 55.56 60.02 57.95 58.39
50% 59.63 61.98 68.18 62.39
30% 65.47 67.80 68.17 64.85
10% 66.37 67.36 69.79 69.65

Table 3: Ablation study of generalization ability on
Hateful Memes. All models are evaluated on missing-
text cases with different missing rates ϵ.

Generalization Ability Initially, we assume that858

real-world scenarios may involve missing modal-859

ity instances due to device malfunctions or pri-860

vacy concerns. However, the majority of existing861

datasets comprise modality-complete and metic-862

ulously annotated data. To address this inconsis-863

tency, we conducted experiments to investigate the864

impacts of a prompt learning model trained on com-865

plete modality datasets. In detail, all models are866

trained on complete modality cases and tested on867

scenarios with missing text at different rates. In Ta-868

ble 3, our findings reveal that head-fusion and cross-869

fusion prompting exhibit robustness to this practi- 870

cal situation across numerous configurations. They 871

consistently rank among the top performers, except 872

for ϵ values of 70%. Our head-fusion prompting 873

strategy exhibits remarkable performance, substan- 874

tially enhancing both performance and robustness 875

in the majority of scenarios, with an average AU- 876

ROC of 66.02%, which is a 1.73% improvement 877

compared to the average performance of MPVR 878

(64.29%). Meanwhile, the cross-fusion prompt- 879

ing strategy ranks second in most cases, showing 880

a more pronounced sensitivity to specific settings 881

compared to the head-fusion prompting strategy. 882

According to the findings elucidated in the paper, 883

the cross-fusion prompting strategy proves to be 884

effective in handling incomplete multimodal data, 885

while the head-fusion prompting strategy exhibits 886

exceptional robustness when dealing with complete 887

multimodal data. 888

Methods Missing Rate
ϵ

Hateful Memes
(AUROC)

MuAP-w-tuning

70%

66.86
MuAP-w/o-single-stage 66.46

MuAP-w/o-text-step 64.88
MuAP-w/o-image-step 64.56

MuAP-w/o-KL 65.28

Table 4: Ablation study to explore how multi-view
prompt tuning improves model’s performance. All mod-
els using the cross-fusion strategy are trained and eval-
uated on missing-image scenarios with missing rate
ϵ=70%. Best results in bold.

Effectiveness Analysis in Cross-fusion Due to 889

space limitations in the main text, our analysis fo- 890

cused on assessing the effectiveness of the multi- 891

view prompt tuning module with a head-fusion 892

strategy. To attain a more profound comprehension 893

of our pioneering multimodal alignment method, 894

which encompasses multiple steps for enhancing 895

understanding, we now evaluate its effectiveness 896

using the cross-fusion prompting strategy. As de- 897

picted in Table 4, analogous to the preceding exper- 898

imental findings, the model refined with multi-view 899

prompting exhibits exceptional performance, sur- 900

passing all comparative models, while the untuned 901

model performs the poorest. This validation evi- 902

dence underscores the significance of iterative tun- 903

ing in capturing modality-specific information that 904

is pivotal for accomplishing successful multimodal 905

fusion. 906

Robustness to Different Missing Settings We 907

conduct experiments with different missing scenar- 908

ios to demonstrate our method’s robustness across 909
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Figure 6: Robustness studies conducted by varying the missing rates in different evaluation scenarios for the Hateful
Memes dataset. (a) Head-fusion models are trained using the missing-image scenario with ϵ = 70%, and evaluations
were performed on the opposite missing-text case. (b) All models are trained on the missing-image scenario with a
70% missing rate, and tested on consistent cases with different missing rates, representing a transition from more
complete data to less complete data.

various scenarios during the training and testing910

process. We aim to showcase the effectiveness of911

our method in improving both performance and912

robustness.913

In previous work, (Khattak et al., 2023; Liu914

et al., 2024) use textual modality as the main modal-915

ity. So we evaluated models trained on a missing-916

image scenario with a 70% missing rate and diverse917

missing-text scenarios with varying ϵ values. Fig-918

ure 6(a) shows that head-fusion consistently outper-919

forms MPVR across scenarios, with our proposed920

strategies remaining robust even with increasing921

missing rates, achieving average AUROC values922

of 62.49% and 61.76% for head-fusion and cross-923

fusion, respectively. Our approach maintains stable924

performance even in highly challenging scenarios925

with higher missing rates, unlike MPVR, which be-926

comes ineffective when the missing rate surpasses927

80%. We attribute this improvement to our fmissing928

function, implemented using residual connections,929

familiarizing the model with complete and missing930

data scenarios, effectively facilitating information931

supplementation.932

Figure 6(b) illustrates the robustness of our933

proposed method, as it consistently outperforms934

MPVR, particularly when tested with varying miss-935

ing rates while maintaining consistent missing-936

image settings during training. Our multimodal937

prompts effectively tackle missing-awareness and938

modality-specificity, significantly boosting the ro-939

bustness of prompt learning.940

Moreover, we have analyzed the model perfor-941

mance in various prompt lengths with the head-942

fusion strategy in the main text. However, in the943

proposed cross-fusion prompting approach, the out-944

put length exhibits a linear increase, directly propor-945

tional to the sum of (2NPLP + LV ). This linear946

Prompt Length    
4 8 12 16 20 24

65.92 63.80 65.51 66.83 64.65 64.16

60.10 59.05 60.46 61.26 59.03 58.93

62.19 62.70 61.24 62.68 61.02 62.44

Missing-image

Metrics

Inferior

Superior

Missing-text

Missing-both

Figure 7: Ablation study on prompt length for cross-
fusion strategy. All models are trained and evaluated
on various scenarios (e.g., missing-image, missing-text)
with ϵ=70%.

growth becomes notably more substantial as the 947

length of the prompt escalates compared to head- 948

fusion, which may lead to increased computational 949

demands and potential efficiency challenges. The 950

analysis presented in Figure 7 reveals a distinct 951

trend compared to head-fusion. It is noteworthy 952

that the top-3 performances in each scenario exhibit 953

variability. Notably, when LP ranges from 4 to 8, 954

the performance is consistently strong, achieving 955

the highest AUROC of 62.70% in the missing-both 956

case. This suggests that even smaller values of LP 957

can yield excellent performance. However, akin to 958

head-fusion, the optimal performance is observed 959

when LP approaches 16. These findings suggest 960

that our cross-fusion method is particularly sensi- 961

tive to the prompt length due to the rapid accumu- 962

lation of sequence length, potentially leading to 963

overfitting and inefficient computation. 964

D The Selection of Multi-view Prompt 965

Tuning Hyperparameters 966

To demonstrate our selection of the involved hy- 967

perparameters, we further analyze the impact 968

of the hyperparameters λt and λv with Hatefull 969

Memes (Kiela et al., 2020). From Table 5, it can be 970
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Hateful Memes

λvλt 0.4 0.5 0.6 0.7 AVG
0.3 65.09 64.44 65.50 66.01 65.26
0.4 64.88 63.90 64.31 64.06 64.29
0.5 64.29 65.04 64.40 63.35 64.27
0.6 64.08 64.11 64.03 63.55 63.94

AVG 64.59 64.37 64.56 64.24 64.44

Table 5: Hyperparameters selection analysis on the
hyper-parameter λ for both modalities with Hateful
Memes (Kiela et al., 2020). All head-fusion models
are trained and tested on missing-image scenario with
ϵ=70%

seen that when λt is 0.4, the overall performance971

is the best, and the same situation occurs when λv972

is 0.3. Therefore, in the remaining experiments,973

we maintain λt at 0.4 and λv at 0.3 to gain the974

maximum performance.975
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