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Abstract—Large-scale pre-trained models’ demand for high-
quality instances forces people to consider how to select instances
for annotation with limited resources. Nonetheless, little attention
has been paid to the scenario where the number of instances
that ultimately need to be annotated is agnostic. Meanwhile, the
anisotropy of the sentence vector output by pre-trained models
makes it hard to represent the instance itself well. Faced with
the two challenges, we propose an incrementally few-shot instance
selection approach (TIMS) based on model similarity and outlier
detection, which suits the starting step of active learning well and
serves as a better benchmark for few-shot learning. Specifically,
TIMS determines the representative candidate set by calculating
the similarity between changes in model parameters caused
by each instance and by the full dataset. Meanwhile, Isolation
Forest is adopted to select instances from the candidate set for
annotation, which prevents selected instances from being too
similar. Comprehensive experiments on WikiLingua & SQuAD
show that TIMS outperforms other algorithms across almost
every circumstance. It inspires us that the proper implementation
of model similarity detection and outlier detection is of great help
to select representative instances incrementally.

Index Terms—Incrementally Few-Shot Instance Selection, Ac-
tive Learning, Outlier Detection, Text Generation

I. INTRODUCTION

Recently, transformer-based pretrained language models (T-
PTLMs) have achieved great success in almost every Natural
Language Processing (NLP) task [1]. Meanwhile, more atten-
tion is being paid to few-shot natural language processing [2],
[3] to solve the over-reliance on annotated data for downstream
tasks of T-PTLMs. However, these previous works only focus
on training task itself, ignoring the selection strategies
of training instances [4], which leads to a large amount of
manpower being wasted on unimportant instance annotating,
especially on training tasks that are difficult to annotate, such
as summarization and question answering

Although several works attempt to focus on few-shot text
instance selection [4], there still remains many problems with
these works. Firstly, these approaches tend to use contextual
embeddings as representations of training instances, while
studies have shown that the output layer of T-PTLMs tend

*Corresponding author.

to degenerate and occupy an anisotropic cone in the vector
space [5], [6]. Secondly, these approaches cannot select
instances incrementally, i.e. the selected instance size is
predetermined and cannot be changed at will, otherwise it
may cause severe performance degradation. Finally, these ap-
proaches rely heavily on a well-trained downstream model.
Selection strategies in active learning utilize information from
downstream models, such as loss, gradient, etc. [7], [8], which
ignores the situation where a well-trained downstream model
is absent.

In this paper, we focus on how to incrementally select few-
shot text instances for training. Different from active learning
(AL) [9], [10] and anomaly detection (AD) [11], [12], we
introduce a new scenario as Incrementally Few-Shot Instance
Selection (IFIS) (as shown in Fig. 1), in which instance size
that ultimately needs to be annotated is agnostic to us. Few
instances (≤ 10) are continuously selected each time and
referred to domain experts for annotation.

Following this scenario, an IFIS approach based on model
similarity is proposed to fully exploit the value of pre-
trained models (as shown in Fig. 2). With existing pre-trained
models (such as BERT [13] and BART [14]), we compare
the similarity between parameter changes generated by pre-
training with a single instance and by pre-training with domain
datasets [15], and use the similarity as the basis for selecting
instances. In addition, to prevent the selected instances from
being too similar, Isolation Forest [16] is adopted during each
incremental selection process, which significantly increases the
performance of IFIS in the initial stage.

Comprehensive experiments are conducted on document
summarization [17] and reading comprehension [18]. Our
proposed approach incrementally picks out more valuable
instances on both tasks and achieves higher performance with
lower variance.

Our contributions are as follows:
• We propose a novel approach for incrementally few-shot

instance selection. It is especially helpful when instance
size that ultimately needs to be annotated is agnostic to
people.



• We leverage parameter information of powerful pre-
trained models to select typical instances which best re-
flect domain datasets instead of directly using anisotropic
contextual embeddings.

• We provide a better benchmark for few-shot learning and
a starting step before applying active learning [19] to
select instances since it performs better and does not have
large variance issue as found in random sampling.

• We provide a novel idea for outlier detection via model
similarity detection to find instances with low correlation
to the domain dataset.

II. RELATED WORKS

Active Learning: AL attempts to maximize a model’s per-
formance gain while annotating the fewest instances possible
[10]. The main propose of AL is to design a query strategy to
judge the value of each instance. According to different query
strategies, existing AL approaches can be roughly divided
into uncertainty sampling, Expected Model Change (EMC),
Query-By-Committee (QBC) [8] and diversity sampling [20].
Besides diversity sampling, other sampling strategies require
a well-trained downstream model in order to perform well [7].
Similarly, diversity sampling can be roughly divided into the
following three approaches:
• Representative sampling: select some of the most rep-

resentative instances, such as clustering methods [4] in
different domains.

• Outlier-based sampling: select instances based on the
degree of outliers between instances (such as Isolation
Tree [16], [21])

• Real scene diversity sampling: fairly sample according to
the diversity and distribution of the real scene.

Training Instance Selection: Several works also focus on
the importance of training instance selection itself. In [22],
The authors found that different sampling leads to a large
variance of model performance, which makes it difficult to
compare across different Deep Learning models. In [4], the
authors proposed a training instance selection strategy for
few-shot neural text generation based on K-means++ [23].
However, contextualized embeddings at the output layer of
T-PTLMs (such as BERT [13]) tend to degenerate and occupy
an anisotropic cone in the vector space [5]. In addition, K-
means++ is not suitable for our training scenario as the final
instance size is agnostic. Assuming that only one training
instance can be selected for annotating at a time, it tends to
select the most central instance (as shown in Fig. 3(e)), which
makes selected instances difficult to represent the full datasets
well.

In this paper, since we mainly consider the scenario where
the final size is agnostic and the well-trained downstream
model is absence when selecting instances. Previous works
that do not satisfy these two conditions will not be considered.

III. PROBLEM FORMULATION

As the training scenario shown in Fig. 1, we assume that the
training set Dtrain and the test set Dtest follow the same dis-

tribution pfull(x). Given the full set of instances X ∼ pfull(x)
in Dtrain, we want to incrementally select k(k ≤ 10) instances
each time for annotating and finally get a representative subset
Dfinal ⊂ Dtrain which leads to the optimal performance after
training. Depending on the downstream task, these instances
X generally refer to unannotated structured data such as
document summarization and question generation in NLP.

More specifically, to better select a representative instance
xi, we make full use of (i) the information of the parameters H
(concatenated by parameters of multiple Transformer Layers
[26]) in the pre-trained model M and (ii) the outlier between
xi and the annotated dataset Dannotated to select an instance
which is representative and contains more information that
instances in Dannotated do not have.

IV. OUR APPROACH

In this section, we first introduce an instance selection
approach based on parameter changes before and after pre-
training, which is the main framework of our proposed TIMS.
Then we introduce the outlier detection technology based on
Isolation Forest, so that the selected instances can cover a
larger sample space. The overall algorithm is introduced to
the end.

A. Model Similarity Detection

We first study the change in model parameters [25] caused
by training an instance x from downstream datasets without
annotation. Formally, the change is as follow:

∆Ĥx
def
= Ĥx −H, (1)

where Ĥx is the parameter that minimizes the loss function
of the instance x pre-trained on the pre-trained model M .
Specifically, we construct a dataset Dx which contains s
multiple copies (80 in this paper) of instance x. Each data
in Dx is obtained by random masking of x. We use Masked
LM [13] with a large learning rate (lr = 0.001) as our pre-
training task and finally get the new parameters Ĥx:

Ĥx
def
= argminH∈Θ

1

s

s∑
i=1

L(xi
copy, H), (2)

where L is the loss function for the pre-training task, xi
copy is

is the i-th copy of the instance x. Using the same pre-training
task, we pre-train on the full domain dataset D and obtain the
change in model parameters:

∆Ĥdataset
def
= Ĥdataset −H, (3)

Ĥdataset
def
= argminH∈Θ

1

N

N∑
i=1

L(xi, H), (4)

where Ĥdataset is denoted as model parameters pre-trained
in Dtrain, N is denoted as the total number of instances in
Dtrain.

The change in model parameters indicates the response of
a well-pretrained model M to a new dataset. By comparing
the response generated by Dx with the response generated by
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Fig. 1. Illustrative example of the training scenario (IFIS). Few Instances (green) are selected from training datasets (black) each step, and annotated by
domain experts (red) for deep learning.

Dtrain, we can get the similarity of the instance x to the full
dataset as sim(∆Ĥx,∆Ĥdataset). It’s like a domain expert
learning something new. A domain expert (M ) learns new
knowledge from two datasets (Dx and Dtrain) and produces
variations (∆Ĥx and ∆Ĥdataset) to the existing knowledge
system respectively. Assuming that ∆Ĥx and ∆Ĥdataset are
similar, the knowledge gained by the domain expert from Dx

will be very close to that obtained from Dtrain, indicating
that instance x is a good representation of the full dataset.
Therefore, we tend to select instances with higher similarity
for annotation especially when there are few instances that can
be annotated.

Furthermore, the response ∆Ĥ can in turn be regarded as
a vector in the parameter space Θ. During comparing, the
response ∆Ĥdataset is fixed. As for the response ∆Ĥx, it is
not difficult for a large pre-trained model M to fit a single
instance. Thus, the magnitude |∆Ĥx| of the vector is very
small. The only significant difference is the direction in which
∆Ĥx changes. This means that cosine function is a optional
approach to measure how similar a single instance is to the
dataset:

sim(∆Ĥx,∆Ĥdataset)
def
= cos(∆Ĥx,∆Ĥdataset). (5)

Finally, we assign a score to each instance according to
the formulation in (5). In the process of each incremental
selection, only the first k instances with the highest scores
are selected for annotation. Since only angles of ∆Ĥx and
∆Ĥdataset are concerned, we do not need to spend much
time (about 1-2 seconds per instance) to ensure that the pre-
trained model M can accurately fit a single instance x during
training. These scores make full use of the internal parameter
information of a large pre-trained model and the distribution of
downstream datasets, which make the selected instances more
representative.

B. Outlier Detection

Our proposed TIMS based on model similarity detection
have been able to select representative instances incrementally.
However, it does not take into account the relationships
between annotated instances, which may cause TIMS to select
many extremely similar instances. Therefore, we incorporate
an outlier detection approach based on Isolation Forest, so that
the selected new instances are as different as possible from the
annotated instances and cover a larger sample space.

Isolation Forest is based on the idea that anomalous in-
stances in a dataset tend to be more easily separated from other
instances. Formally, it consists of a set of t iTrees denoted by
T = {T1, T2, · · · , Tt} in a randomized manner [21]. Each
iTree is constructed by recursively partitioning a sub-sample
x′ until all instances are isolated [16] using training data.

Considering the structure of iTrees is equivalent to that of
Binary Search Tree (BST), the anomaly score outlier of an
instance x can be defined as [16], [28]:

outlier(x,D) = 2
−E(h(x))

c(|D|) , (6)

where D is the dataset, E(h(x)) is the average of path length
of x, c(|D|) is the average path length of unsuccessful searches
in BST.

The instance with the largest outlier can be selected using
Isolation Forest. However, it is always computationally inten-
sive and is likely to select severely anomalous instances from
unannotated datasets. Therefore, for each step, we first use
model similarity detection (as described in the previous sec-
tion) to select m instances with high similarity as a candidate
set Dcandidate. Next, we compute the outlier(x,Dannotated)
of the instances in Dcandidate relative to Dannotated, re-
spectively. Finally, the instance with the highest outlier in
Dcandidate is selected as a new selected instance.
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Fig. 2. The overall architecture of TIMS. For each step, we first compare the cosine similarity between parameter changes caused by pre-training with a
single instance and by pre-training with domain datasets to obtain the candidate set. Then we compute the outlier of each instance in the candidate set relative
to the annotated dataset, and select the instance with the largest outlier for annotation.

This is based on a natural assumption: when Dtrain is large
(N ≥ 10000) and Dcandidate is small (m ≤ 100), all instances
in the candidate set have high model similarity, so that they
are strongly representative. In this case, we can turn our focus
to capturing information not contained in the selected dataset,
i.e. causing the new instance to deviate from the distribution of
other selected instances. This approach provides a great help
for incrementally instance selection.

Algorithm 1 presents our process of incrementally few-shot
text instance selection based on TIMS. After adding the step of
outlier detection, TIMS can avoid selecting extremely similar
instances in few-shot scenarios.

V. EXPERIMENTS

A. Datasets

We experimented our proposed approach on the following
two well-studied open datasets: WikiLingua [29], a large-
scale, multilingual dataset for the evaluation of crosslingual
abstractive summarization systems; SQuAD [30], a read-
ing comprehension dataset, consisting of questions posed by
crowdworkers on a set of Wikipedia articles. For the WikiLin-
gua corpus, we mainly test on the English text summarization
data.

B. Experimental Setup

For both datasets, 30,000 instances are randomly sampled
as the training set and 10,000 instances are randomly sampled
as the test set. In each experiment, we incrementally select
k(k ≤ 10) instances from the training set for annotation using

Algorithm 1 Incrementally Few-Shot Text Instance Selection
based on TIMS
Input:

Pre-trained model M with parameters H , full dataset
Dtrain, final size K, candidate size m;

Output:
Subset Dfinal ⊂ Dtrain for annotation

1: Ĥdataset ←M.pretrain(Dtrain)
2: for each x ∈ Dtrain do
3: Ĥx ←M.pretrain(x.copy())
4: x.score← cos(Ĥx −H, Ĥdataset −H)
5: end for
6: Dfinal ← ∅, Dunannotated ← Dtrain

7: while Dfinal.length() < K do
8: Dcandidate ← Dunannotated.select top score(m)
9: for each x ∈ Dcandidate do

10: x.outlier ← outlier(x,Dfinal)
11: end for
12: xchosen ← Dcandidate.select top outlier()
13: Dunannotated ← Dunannotated − xchosen

14: Dfinal ← Dfinal ∪ xchosen

15: end while

different algorithms until the total number reaches K(K ≤
150).

Although several works in active learning provide ideas for
instance selection as mentioned in section 2, most of them
are not suitable for our training scenario, or rely heveaily
on a well-trained downstream model. In this paper, we only
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Fig. 3. PCA-based visualization results of incrementally selected instances of different algorithms. We randomly sample 500 instances (black dots) from the
WikiLingua dataset and use each algorithm to incrementally select 20 instances (red dots) for annotation.

focus on instance selection itself, and do not apply downstream
models in the selection process. Therefore, the following
approaches are chosen as baselines:
• Random Sampling. Random sampling is the most com-

monly used algorithm. It samples from the training set
one by one without any bias, and can reflect the charac-
teristics of the dataset to a certain extent.

• K-means++ (k). Since the K-means++ based approach
can only select a fixed number of instances at once, it
is not suitable for our scenario where the final size is
agnostic. We adjust it and denote it as K-means++ (k).
The general idea is to first split the whole unannotated
dataset into k(k ≤ 10) clusters, then select the instance
which is nearest to the center from each cluster. We repeat
the following steps until the number of selected instances
reaches K.

• Isolation Forest. Isolation Forest is a commonly used
algorithm in anomaly detection as described in section
3. We use this algorithm as a lower bound to examine
the effect of simply selecting outliers for annotation.

In order to fairly show the results of different instance
selection algorithms, identical training models and evaluation
metrics are adopted on downstream tasks. Due to the small
amount of data, only distilled pretrained models are adopted
for downstream tasks. Specifically, for the WikiLingua dataset,
we finetune on the open-sourced DistilBart-xsum [32], [33]
with selected instances and use Rouge-L [34] as the evaluation
metrics. For the SQuAD dataset, we finetune on the open-
sourced DistilBert-base-uncased [13], [35] and use Exact
Match (EM) as the evaluation metrics.

All architectures are implemented using PyTorch [36] and
HuggingFace [37]. When pre-training on the full dataset, the
learning rate and batch size are set to 0.0001 and 64 respec-
tively. When pre-training on a single instance, the learning rate
and batch size are set to 0.001 and 16 respectively. Meanwhile,
we generate multiple replicas of the single instance using mask
strategy in BERT.

C. Evaluation Results

Visualization of Selection Approaches To intuitively
demonstrate the preference of various approaches for selecting
instances, we randomly sample serveral instances from the
WikiLingua dataset for testing and use Principal Component
Analysis (PCA) [38] to reduce the dimension of instances (as
shown in Fig. 3).

For random sampling (Fig. 3(d)), its selection result com-
pletely depends on the probability density of the instance
pfull(x). Therefore, when few instances are selected, it has
large uncertainty: some selected instances are too close while
some deviate severely from the full dataset. For K-means++
(Fig. 3(e)(f)), it relies heavily on the number of instances (k)
selected each time. All instances it selects will be near the
center of the k clusters. For Isolation Forest (Fig. 3(c)), it
tends to select anomalous instances, which does not reflect the
dataset itself well. For TIMS (Fig. 3(a)), it takes into account
annotated instances while selecting representative instances to
avoid instances being too similar. However, without outlier
detection (Fig. 3(b)), TIMS may also face the situation where
selected instances are similar between each other and cover
smaller sample space.
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Fig. 4. Candidate set selected by TIMS. We randomly sample 500 instances
(black dots) from the WikiLingua dataset and determine candidate set (m =
50) via model similarity. The shade of color indicates the score obtained in
the model similarity detection stage.

Visualization of Candidate Set We show the candidate set
computed by TIMS in Fig. 4. The shade of color represents
the order of the instance in the candidate set. The candidate
set ensures that instances selected by the second stage of
TIMS (outlier detection) are strongly representative. However,
Without the candidate set, TIMS will select many very close
instances at the beginning (several dark instances are seem to
be quite close).

Comparison of Selection Approaches In Table I, we com-
pare the model performance based on different approaches.
All results are averaged on 10 trials. As can be seen, TIMS
outperforms the others in most cases. The performance of
random sampling is consistently poor, and its large variance
also implies that instance selection has a large impact on model
performance.

Moreover, we conduct detailed experiments on the SQuAD
dataset with 10 trials for each final size (K). In Fig. 5,
we show the trends of different approaches as K increases.
When K is small (K < 50), K-means++ (k = 1) performs
slightly better. This is probably because it always selects the
most central instances (as shown in Fig. 3(e)). In most cases,
TIMS performs better among all approaches. Meanwhile, it
is intuitive to see that the variance of TIMS is smaller than
that of random sampling, which indicates that it can provide
a more stable benchmark as instance selection for few-shot
learning.

Outlier Detection What if we reverse the order of the
instances according to the scores obtained by model similarity
detection? In Table II, We select the five lowest-scoring
instances from the WikiLingua dataset. As can be seen, four of
these instances are too short to be annotated. Another instance,
although longer in content, contains numerous repetitive and
useless information, which is not suitable for summarization
tasks as well. Therefore, this finding provides a novel approach
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Fig. 5. The effect of different incrementally instance selection approaches on
the SQuAD dataset. The figure shows only the variance of TIMS (red area)
and Random Sampling (blue area).
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Fig. 6. Ablation studies of TIMS on the SQuAD dataset.

for outlier detection: since model similarity represents how far
an instance’s response deviates from the dataset’s response,
instances with lower scores are more likely to be outliers.

D. Ablation Study

Effects of Different Components Detailed ablation studies
are conducted in the SQuAD dataset to examine the impact
of each component on the results. In Fig. 6, we show the
performance of TIMS and its individual components on differ-
ent final sizes. It proves that both model similarity detection
and outlier detection are necessary during the incrementally
instance selection process. Comparing the purple and green
lines, we can also see that model similarity detection plays a
more important role, while outlier detection probably plays
auxiliary role to avoid selected instances from being too
similar.



TABLE I
COMPARISONS OF DIFFERENT APPROACHES FOR FEW-SHOT TEXT INSTANCE SELECTION (ROUGE-L REPORTED ON THE WIKILINGUA DATASET AND EM

REPORTED ON THE SQUAD DATASET).

WikiLingua SQuAD

K = 10 K = 50 K = 100 K = 150 K = 10 K = 50 K = 100 K = 150

Random Sampling 17.26± 0.31 19.50± 0.27 19.68± 0.32 19.86± 0.28 1.70± 3.26 4.86± 3.45 5.22± 2.45 5.22± 1.84
K-means++ (k = 1) [4] 17.18± 0.17 19.53± 0.13 19.73± 0.32 19.90± 0.13 2.97± 2.68 5.92 ± 1.94 5.17± 1.61 5.80± 1.00

K-means++ (k = 10) [4] 17.55 ± 0.20 19.47± 0.24 19.83± 0.22 19.93± 0.19 4.00± 5.37 3.35± 2.32 6.04± 0.34 6.01± 2.42
Isolation Forest [21] 17.12± 0.27 19.55± 0.25 19.79± 0.17 19.86± 0.19 2.72± 2.37 2.69± 1.74 5.23± 0.86 5.85± 1.16

TIMS 17.49± 0.23 19.92 ± 0.14 19.95 ± 0.19 20.05 ± 0.16 4.40 ± 1.66 5.27± 1.13 6.74 ± 0.90 6.36 ± 1.16

TABLE II
THE FIVE INSTANCES WITH THE LOWEST SCORES USING MODEL

SIMILARITY DETECTION. SINCE THE CONTENT OF THE THIRD INSTANCE
IS TOO LONG AND IS REPEATED, THE MIDDLE PART IS OMITTED.
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You can also use A4 paper. Admire your handiwork.

One: Unus Two: Duo Three: Tres Four: Quattuor Five: Quinque Six:
· · · Hundred and forty-seven: Centum quadraginta septem Three-

hundred and fifty-six: Trecenti quinquaginta sex Seven-hundred and
eighty-five: Septingenti octoginta quinque

Headset settings have the same menus as the Speaker Settings.
if this method fails to work, try the other methods stated on this site.
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Fig. 7. Ablation studies of TIMS on different candidate set sizes (The number
of selected instances is equal to 100).

Effects of candidate Set Sizes We investigate the effect
of different candidate set sizes (m) on TIMS in the SQuAD
dataset as well (as shown in Fig. 7). As can be seen from the
figure, the candidate set size does have a certain impact on
the results. When m is between 30-70, TIMS has a relatively
satisfactory performance. As m increases, the variance (red
area) of the results also increases gradually, which shows that
blindly increasing m is not a good choice. Therefore, in this
paper, we choose m = 50, which has a low variance and an
acceptable performance.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we proposed a novel approach (TIMS) for
incrementally few-shot text instance selection. It leverages
information from parameters of pre-trained models instead
of anisotropic sentence vectors and incrementally selects
instances for annotation without the need for well-trained
downstream models. Detailed Comparison with commonly
used sampling strategies shows that the instances selected by
TIMS perform better on downstream tasks. Moreover, TIMS
provides a novel starting step before applying active learning
and serves as a better benchmark for few-shot learning.

Important future directions for this work are: (i) testing on
more different NLP tasks (e.g. data-to-text, machine transla-
tion) to demonstrate the applicability of our approach; (ii)
Analyzing the impact of different outlier detection methods
on the results; (iii) analyzing the minimum overhead when
calculating the model similarity for each instance; (iv) and
making TIMS more interpretable, so that we can understand
why the algorithm select these instances instead of others.
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