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ABSTRACT

Text-to-Image (T2I) Diffusion models have become the state-of-the-art for image
generation, yet they often fail to align with specific reward criteria such as aesthet-
ics or human preference. We propose Indirect Prompt Gradient Optimization
(IPGO), a novel and parameter-efficient framework that enhances prompt embed-
dings by injecting a few learnable text embeddings as prefix and suffix around
the original prompt embeddings. IPGO leverages low-rank approximation and
rotation, while enforcing range, orthonormality, and conformity to ensure stability.
We evaluate IPGO against six baseline methods under prompt-wise training with
three reward models targeting image aesthetics, image-text alignment, and human
preferences across three datasets of varying prompt complexity. The results show
that, despite using only a single NVIDIA L4 GPU and over 250 times fewer param-
eters, IPGO consistently outperforms all baselines over strong competitors such as
DRaFT-1 and TextCraftor. Ablation studies further highlight the contributions of
each IPGO component and optimization constraint, while additional experiments
demonstrate [IPGO’s adaptability across various T2I diffusion models.

1 INTRODUCTION

Text-to-Image (T2I) Diffusion models have emerged as state-of-the-art pipelines for image generation
(Liu et al., |2024} Zhang et al.,2023). However, images generated from user prompts often fail to meet
specific downstream objectives, such as aesthetic quality or alignment with human preferences (Liu
et al.} 2024). Further aligning generated images with human evaluations is therefore highly desirable.
A number of approaches have been proposed to address this challenge |Liu & Chilton|(2022); Black
et al.| (2023)); Prabhudesai et al.|(2023)); ILiu et al.| (2024);|[Hao et al.|(2024)); L1 et al.| (2024b)); |[Fan et al.
(2024); L1 et al.| (2024Db)), but they typically rely on data- or computing-intensive training paradigms
such as Supervised Fine-Tuning (SFT) and Reinforcement Learning (RL), or require significant
modifications to the generative model for each downstream task. As a result, there is continued
interest in developing more efficient frameworks for alignment-driven image optimization.

In this paper, we introduce a novel approach, called Indirect Prompt Gradient Optimization (IPGO),
which improves image quality during inference by optimizing the prompt itself. Our method is
inspired by the linguistic notion of semantic heads or tails — short phrases placed at the beginning
or end of a clause to disambiguate, provide context, and add emphasis, intensity, or meaning to it.
Analogously, IPGO injects a few embeddings at the beginning (prefix) and end (suffix) of the original
text prompt embeddings. We then employ constrained gradient-based optimization of a rotated
low-rank approximation to these embeddings to enhance the alignment of the visual representation of
the prompt with human judgments through reward guidance. This prefix-suffix tuning strategy offers
a modular, parameter-efficient approach to prompt optimization, requiring no modifications to the
diffusion model or text encoder and enabling fast training.

We evaluate IPGO on the Stable Diffusion model (Rombach et al.| [2022) using a single L4 GPU with
22.5GB of VRAM. Experiments target three reward models in single-objective optimization settings:
(i) image aesthetics (Schuhmann, [2024), (ii) image-text alignment (Radford et al.| 2021)), and (iii)
human preference scores (Wu et al.,|2023). The main contributions of this study are summarized as
follows:
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1. We propose IPGO, a novel parameter-efficient, gradient-based approach to prompt opti-
mization in the text embedding space for reward guidance of T2I diffusion models at infer-
ence. This approach optimizes rotated low-rank prefix and suffix embeddings inserted
at both the beginning and end of the original prompt embeddings, under orthonormality,
conformity, and range constraints.

2. Our experiments on three different datasets, using SDv1.5 and three reward functions, show
that for prompt-wise training at inference, IPGO consistently outperforms six state-of-
the-art methods, achieving an average improvement of 1-3% — comparable to gains
reported in previous work (Black et al., 2023} |Clark et al.| 2023; [Hao et al., 2024 |L1
et al.,|2024b). These improvements hold over the strongest benchmarks (TextCraftor and
DRaFT-1), while requiring over 250 times fewer parameters.

3. Ablation studies highlight the individual contributions of the constraints imposed on the
optimization, as well as the other IPGO components, including low-rank approximations
and the rotation. Futhermore, an additional experiment demonstrates that IPGO can be
applied across a wide range of diffusion models, including more advanced architectures
like SDXL and SD3.

2 RELATED WORK

Text-to-Image Diffusion Probabilistic Models Foundational work in T2I generation using dif-
fusion models includes diffusion-probabilistic models (Sohl-Dickstein et al., [2015]), score-based
generative models (Song & Ermonl [2019) and the landmark denoising diffusion probabilistic model
(DDPM; Ho et al.| [2020). Subsequent models, such as GLIDE (Nichol et al., |2021) and Imagen
(Saharia et al., [2022)) also operate the diffusion process directly in the pixel space. In contrast,
methods like Stable Diffusion (Rombach et al.,|2022) and DALL-E (Ramesh et al.| [2022) apply the
diffusion process in a low-dimensional embedding space. Notably, Stable Diffusion has demonstrated
superior image quality and efficiency (Zhang et al., 2023)), and several extensions to it have been
proposed (e.g., Esser et al.| 2024} |Peebles & Xiel 2023} [Podell et al.| 2023). A key challenge with
diffusion models, however, is their potential misalignment with human preferences. A stream of
recent work addresses this by controlling models towards preferred properties, either during training
or via training-free methods (Liu et al.| 2024).

Parameter Efficient Finetuning (PEFT) (Han et al.,[2024) enables task-specific adaptations of
LLMs and T2I Diffusion Models by optimizing a small subset of parameters while keeping most
parameters frozen (Han et al., 2024), leading to lower computational demands. Some key PEFT
approaches include LoRA, which injects trainable low-rank matrix approximations in the otherwise
fixed LLM architecture (Hu et al.| 2021)), and Prefix Tuning, which inserts trainable parameters in
various layers of the LLM (Li & Liang}, 2021)).

Training-based alignment (Liu et al.| 2024)) uses supervised fine-tuning (SFT) of the diffusion
model combined with reinforcement learning from human feedback (RLHF) to align the model with
human preferences, approximated via a reward model. Models in this category, such as ReFL (Xu
et al.,[2024)), DDPO (Black et al., 2023), AlignProp (Prabhudesai et al., 2023), DRaFT (Clark et al.,
2023), DPOK (Fan et al., 2024), and DPO-Diffusion (Wang et al., 2024), rely on gradient-based
fine-tuning of the diffusion model. Alternatively, models can be directly optimized on preference data
using methods like Diffusion-DPO (Wallace et al.| 2024)), D3PO (Yang et al.,2024), and SPO (Liang
et al.| [2024). Training-based alignment methods often require considerable computational resources.

Training-free alignment (Liu et al.| 2024) aligns diffusion models with human preferences without
the need for fine-tuning the diffusion model. The first stream of research uses both manual and
systematic approaches to prompt optimization (Oppenlaender, 2023} [Wang et al.,|2023). Automatic
prompt optimization methods, such as Promptist (Hao et al., 2024)) and OPT2I (Mafas et al.,[2024)),
leverage LLMs to refine prompts. The second stream focuses on modifying negative prompts using
LLMs (e.g., DPO-Diffusion, Wang et al.,2024)) or directly learning negative embeddings (e.g., ReNeg,
Li et al.,|2024a)). The third stream involves editing the initial latent state, as seen in ReNO (Eyring
et al.|[2024) for one-step diffusion models. The fourth stream optimizes prompt text embeddings, to
which our IPGO belongs, as detailed below.
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Alignment through prompt embedding optimization includes methods such as PEZ (Wen et al.,
2024), which aligns an image with text embeddings of prompts that reflect both the image content
and style. Textual Inversion (Gal et al.| 2022) aligns new word tokens with novel objects or styles.
TextCraftor (Li et al.| [2024b)) and TexForce (Chen et al.|[2024) align generated images with rewards
by fine-tuning the CLIP text encoder within the diffusion pipeline.

Our proposed method IPGO also optimizes prompt text embeddings. However, unlike prompt
embedding methods such as PEZ (Wen et al.,|2024) and Textual Inversion (Gal et al., |[2022), IPGO
operates without accessing ground-truth images, but leverages abstract reward models to guide prompt
optimization within the existing text embedding space. In contrast to TextCraftor (Li et al.| | 2024b))
and TexForce ((Chen et al.}|2024), which change the text embedding space by fine-tuning the entire text
encoder, IPGO explores the embedding space without altering the encoder’s parameters, and keeps
the original prompt intact, which allows better user control over the prompt’s visual representation,
and uses much less than one percent of the parameters of these models, thus allowing for faster
training. In addition, counter to Adapter-based PEFT approaches such as LoRA (Hu et al.| [2021)
which insert trainable parameters in multiple layers of a pre-trained and frozen model, for example in
the attention blocks in Transformer layers, IPGO inserts the trainable prefix and suffix directly into
the prompt embeddings, and is thus much more parameter efficient.

In the benchmarking experiments we will demonstrate that IPGO outperforms six benchmark ap-
proaches, including PEFT and fully finetuned models, across three datasets and three reward models.
IPGO outperforms its closest competitors TextCraftor and DRaFT-1 in most of the scenarios, but
with less than 0.5% of the full parameters, by a significant margin of 1-3%.

3 PRELIMINARIES

Diffusion Models Diffusion models generate images conditioned on a text prompt by sequentially
denoising an image from pure Gaussian noise using an error model €4 (Rombach et al., 2022),
parameterized by ¢. The model ¢, predicts the noise in each image x;, which is obtained by
progressively adding Gaussian noise € to the original image x( at each step ¢ = 0,..,7 (Ho &
Salimans), [2022)).

Reward Models Typically, a generated image is evaluated using a pre-trained reward model, S,
which assesses how well the image aligns with human evaluations. For each image = generated by the
diffusion model in response to a prompt p, the reward model assigns a reward S(z, p). This reward
S(x, p) is then used to guide the diffusion model towards generating images with a higher reward.
Widely used reward models are the LAION aesthetic predictor V2 (Schuhmann| [2024), the CLIP loss
derived from the multi-modal CLIP model(Radford et al.|2021)), and the human preference score
HPSv2 (Wu et al., [2023). These models have played a critical role in aligning the outputs of diffusion
models with human preferences in research and practice.

4 METHODS

Suppose we have a prompt p; a trained reward model S(x, p) on image x and the prompt p; a text
encoder 7 (+) which converts p to its text embeddings 7 (p) € R where d is the embedding
dimension and K is the length of the tokenized prompt; and finally a diffusion model characterized
bY Gimage (20|E, 27), the probability distribution of the image x¢, given prompt-text embeddings £
and a fixed latent state zp at timestep 7.

4.1 T1PGO

IPGO adds to the original embeddings 7 (p), of a text prompt p, a prefix Vi and a suffix Vi,
consisting of V. and Ny trainable embeddings, each of dimension d, and parameterized by (ipgo
(see the following paragraphs). IPGO inserts the prefix at the beginning and the suffix at the end of
T (p), the embeddings of the prompt p, thereby producing an augmented set of text embeddings:

g(‘/preypa ‘/suf; QIPGO) = ‘/pre ¥ T(P) ¥ ‘/sufy (1)

where £(Vie, p, Vaur; Qupgo) € REX Nt K+Nat) and @ stands for the concatenation in the second
dimension. IPGO optimizes Qpgo such that the expected rewards of the images sampled from



Under review as a conference paper at ICLR 2026

Prompt p

“An ant playing chess.”

Original Text Embeddings

vz <
2

Text
Embedding
Space

Prefix & Suffix Construct

AN
Rotation Orthonormal,

4

Bounded
I G I b X || coeficients

& : Trainable

% : Frozen t T Back Propagation

Wz

Figure 1: IPGO inserts trainable prefix and suffix embeddings, leveraging low-rank approximation and
rotation, to the text embeddings of the prompt in the CLIP text encoder space/text embedding space,
and then sends back reward signals through backpropagation under three constraints: Orthonormality,
Range and Conformity.

(image conditioned on a fixed z7 and €(Vjre, p, Vaur; Qipco) are maximized, which is equivalent to
minimizing the following single-reward loss function:

‘C(QIPGO) = _EIONQimugc(l’o\5(‘/1;rc,P,Kur; QIPGO)sz)S (l’o7p) . (2)

In the following sections, we present the motivation behind our approach and outline the overall
framework. Figure[I] presents a schematic overview of the IPGO methodology.

Constrained Prefix-Suffix Tuning. Inspired by Prefix-Tuning (Li & Liang}[2021)), IPGO adds extra
continuously differentiable embeddings before and after the original text embeddings, as described
by equation[I] However, [Li & Liang|(2021) show that directly updating prefix embeddings may lead
to unstable optimization. Thus, rather than directly optimizing V. and Vs, we reparameterize them
as rotated linear combinations of a set of low-dimensional learnable embeddings. We parameterize
V. (x stands for "pre" or "suf" from here on) by the following:

Vi = Rg,e; 1:31,9; E.Z,, 3)

where E, € R¥™~ is a trainable set of base text embeddings and m, is the length of the basis.
Z, € RN=Xm« are linear coefficients for the basis. The intuition behind equationis that the product
E.Z, can be seen as an m,—dimensional low-rank approximation to the original (unconstrained)
d—dimensional embedding, using an orthonormal basis E,, akin to LoRA (Hu et al.}[2021), with
parameters constrained to Z, € [—1,1]. The d dimensions of E,Z, are rotated pairwise via
orthogonal rotation matrices R; ¢, and R g,. Rotation parameterizations of embeddings have been
previously used by a.o. |Su et al.|(2024). Here, the basis F, helps explore a subspace of the text
embedding space that is rotated to fit with the reward guidance. Exploring the orthogonal subspace
along with the rotation parameters is more efficient than exploring the original embeddings (see
Appendix [A). This intuition motivates the constraints below.

Rotation. We apply two rotation matrices Rl,gi‘ and Rgﬂs. The rotation matrices are composed of

the 2 x 2 elementary matrix controlled by angle 6 € (=7, 7]:
cosf) —sinf
Rep = {sin@ cos 6 } ’ “)
Given 67 and 65, we define ]:31,9; € R¥*4 and f%g,g; € R4¥4 by:
_ i Reo;.(2)
Ry pr = 1gjo @ Rep:, Ropy = Iy/2-1 ® Re s ; Q)

Re 05,1
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where ® is the tensor product, I, is the identity matrix of size a, R, p; (;) is the ith row of the
elementary rotation matrix Re’gé«. To interpret, RI,OI rotates pairs (25 — 1,25) and Rgﬁg; rotates
pairs (27, 2j + 1) of the coordinates of the embedding E, Z,, where j = 1,...,d/2 and the (d +1)*"
coordinate is the 1%¢ coordinate. Rotations are advantageous in two ways. First, they introduce
non-linearity. Second, the rotation parameterization accelerates the search process via their gradient
directions (see Appendix [A)). The pairwise rotation parameterization in equations [5] is much more
parsimonious than a full d x d rotation matrix.

Constraints. To optimize the subspace and preserve the structural integrity of the text embeddings
generated by the text encoder 7, three constraints are imposed. First, we impose an Orthonormality
constraint on the text embedding basis E.,, i.e., E,E! = I,,,. Second, we impose a Range constraint
on the affine transformation coefficients Z, € [—1, 1], which normalizes the lengths of the prefix and
suffix embeddings so that they do not perturb the semantics of the original prompt. Third, we add a
Conformity constraint to ensure that the average of the IPGO embeddings (equation |1 are the same
as the average of the original prompt, mean (T (p)), promoting coherence of the generated prefix and
suffix embeddings with the original prompt (see Appendix [C]for details).

Thus, IPGO has parameters Qipo = { Epre; Esut, 07, 05, O35, 05'%, Zie, Zeut}» optimized by the

objective in equation and subject to Z (;;) € [—1,1], and (67, 65) € (—%, %] ? and the orthonor-
mality and conformity constraints.

5 EXPERIMENTS AND RESULTS

We conduct a set of experiments to evaluate the performance of IPGO across six benchmark models
on three datasets. In Section[5.1] we describe the experiment settings, while Section [5.2]introduces
the benchmarks, and Section [5.3|presents the results.

5.1 EXPERIMENT SETTINGS

Datasets. Three datasets are considered: the COCO image captions (Lin et al.,[2014])), DiffusionDB
(Wang et al., 2022), and Pick-a-Pic (Kirstain et al.,[2023)). These datasets represent a wide range
of prompts and images with varying levels of complexity. To assess the performance of IPGO
across different categories of image captions, we conduct separate evaluations for COCO images in
the following five categories: Persons, Rooms, Vehicles, Natural Scenes, and Buildings. For each
category, we randomly select 60 captions. Additionally, we randomly select 300 prompts from both
the DiffusionDB and Pick-a-Pic datasets, resulting in a total of 900 prompts for evaluation. The
number of prompts in our experiments substantially exceeds those used in recent experiments, such
as (Black et al.,[2023) and (Wang et al., 2024), both of which relied on approximately 600 prompts.

Training. All experiments with IPGO, which has a total of 0.47M parameters, are conducted on
a single NVIDIA L4 GPU with 22.5GB of memory. IPGO takes at most 12GB of memory for all
tasks. The backbone diffusion model used is Stable-Diffusion (SD)v-1.5, chosen for its balance
between generation quality and computational efficiency (Li et al.,|2024b; [Podell et al.| |2023). Note
that IPGO is directly applicable to other diffusion models as well (as shown in Section [6.2)). For
comparability, all models and experiments are run in identical computational environments. In
contrast, the benchmark TextCraftor (introduced below) requires a single A100 GPU.

Reward Models. To ensure the flexibility and broad applicability of IPGO, we consider publicly
available reward models S. Specifically, we use the LAION aesthetic predictor V2 (Schuhmann),
2024), the CLIP loss from the multimodal CLIP model (Radford et al., |2021), and the human
preference score v2 (Wu et al.l[2023)). These widely used reward models capture a broad spectrum of
criteria, effectively representing the diverse rewards relevant to text-image alignment tasks.

5.2 BENCHMARKS

We evaluate IPGO using the following six benchmarks, which represent the current state of the
art (SOTA) in the categories discussed in Section [2| The first baseline is Stable diffusion with
a raw prompt (Rombach et al., [2022), against which we expect IPGO to enhance performance
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across all datasets and reward models. The second baseline is TextCraftor (Li et al., [2024Db),
using a fine-tunable text encoder with 123M parameters, representing the current SOTA among
text-embedding-based methods. We also use two training-based methods: DRaFT (Clark et al.|
2023)) and DDPO (Black et al., [2023). For DRaFT, we select the DRaFT-1 variant with LoRA of
rank 3 as the baseline (#parameters: 0.60M), due to its low computational cost and competitive
performance (Clark et al., [2023). For DDPO (#parameters: 0.79M), we apply the default LoRA
configuration. Furthermore, we include two training-free methods: DPO-Diff (Wang et al.| [2024]),
and Promptist (Hao et al., 2024). Promptist is a multi-objective optimization method, but is applied
to single-objective optimization here. Detailed qualitative comparisons between several benchmarks
and IPGO can be found in Appendix [B] The hyperparameter settings are provided in Table [§]in

Appendix [C]

5.3 PROMPT-WISE IMAGE OPTIMIZATION AT INFERENCE

We train all methods listed in Table[7] using a single prompt at a time. Single image optimization
during inference is more flexible and addresses concerns regarding generalization to unseen prompts
(Eyring et al.,|2024]). For all six benchmarks we use default configurations for learning and sampling.
The best loss value achieved during training is used to represent the final performance of each method.
In addition to comparing the absolute loss, we compute the percentage improvements IPGO gains
(in parentheses) over the best baseline. We also report the ¢ statistics and its p value of the overall
average improvement of [PGO over the best baseline on all three rewards.

Alignment. Table[T] presents the results of IPGO and benchmark methods for semantic alignment
across three datasets. With CLIP reward, IPGO outperforms all six benchmarks in all scenarios except
for COCO-Buildings. Note strong alignment for COCO-Person prompts in particular, and for the
more complex prompts from the DiffusionDB. IPGO achieves the highest average alignment scores
across all prompts, surpassing the top benchmark DRaFT-1 by 1.8% (¢-value= 3.9, p = 4e—05). It
improves alignment by 17.2% over the original SDv1.5 diffusion model (¢-value = 23.8, p < 1e—10).

Dataset IPGO (1) SDvl.5 TextCraftor DRaFT-1 DDPO DPO-Diff Promptist
coCco
Person 0.3160 2.4)  0.2637 0.3085 0.3067  0.2865 0.2911 0.2598
Room 0.2883 (3.5)  0.2482 0.2786 0.2782  0.2648 0.2755 0.2398
Vehicle 0.2986 (1.8)  0.2514 0.2928 0.2934  0.2755 0.2881 0.2474
Natural Scenes  0.2922 (1.6)  0.2539 0.2876 0.2802  0.2614 0.2815 0.2307
Buildings 0.2846 (-1.8)  0.2439 0.2859 0.2898 0.2718 0.2794 0.2377
DiffusionDB 0.3247 (2.5)  0.2759 0.3146 0.3167  0.3024 0.2929 0.2753
Pick-a-Pic 0.3125(0.2)  0.2681 0.3077 0.3103  0.2946 0.2980 0.2612
Avg. Reward 0.3110 (1.8)  0.2654 0.3041 0.3056  0.2897 0.2913 0.2599

Table 1: Comparison of IPGO’s alignment scores with six benchmarks across 900 prompts from
three datasets. Bold/underline denote highest/second-highest scores. In parentheses are percentage
improvements over the second-best performing model, DRaFT-1, which are similar in magnitude to
those reported in prior literature (see the text).

Aesthetics. Table [2] presents the results for LAION aesthetics scores. IPGO outperforms all
benchmarks across every dataset. Aesthetics scores are particularly high for the COCO-Person,
Pick-a-Pick and DiffusionDB prompts. IPGO’s average reward score is the highest across all datasets,
with an improvement of 3.2% (¢-value= 6.5, p = 5e—10) over the best benchmark, TextCraftor, and
an improvement of 16.5% (t-value= 34.0, p < 1e—10) over the original SDv1.5 model.

Preferences. Table [3] presents the results for HPSv2 human preference scores. Again, IPGO
outperforms all benchmarks on all datasets; its highest preference scores are achieved for COCO-
Person and COCO-Vehicle prompts. IPGO’s average reward score across all datasets is the highest,
achieving an average improvement of 1.0% (¢-value= 1.7, p = 0.046) over the strongest benchmark
TextCraftor, where smaller effect size and statistical significance is caused by heterogeneity in HPSv2
scores across images, and 6.0% (t-value=17.4, p < 1le—10) over the original SDv1.5 model.
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Dataset IPGO (1) SDvi.5 TextCraftor DRaFT DDPO  DPO-Diff Promptist
COCO
Person 6.2174 4.7)  5.2447 5.8365 57761  5.5777 4.2865 5.9401
Room 5.7549 2.8) 5.0931 5.5994 5.4426  5.3700 4.1589 5.5993
Vehicle 5.8567 3.3) 4.9608 5.6699 5.5063  5.4219 4.0197 5.5643
Natural Scenes  5.9301 (3.3)  5.0558 5.7436 5.6156  5.5099 4.2952 5.6483
Buildings 5.7987 (1.9)  5.0326 5.6909 54294  5.3484 4.2777 5.6431
DiffusionDB 6.3469 (0.2) 5.5012 6.3318 6.1100  5.9644 4.4350 5.6291
Pick-a-Pic 6.2684 (4.5)  5.3289 5.9978 5.9048  5.7547 4.3565 5.6954
Avg. Reward 6.1735(2.7)  5.3025 6.0117 5.8563  5.72156 4.3330 5.6678

Table 2: Comparison of IPGO’s aesthetics scores with six benchmarks across 900 prompts from
three datasets. Bold/underline denote highest/second-highest scores. In parentheses percentage
improvements over the second-best performing model, TextCraftor, which are similar in magnitude
to those reported in prior literature (see the text).

Dataset IPGO (1) SDvl1.5 TextCraftor DRaFT-1 DDPO DPO-Diff Promptist
Ccoco
Person 0.2950 (1.4)  0.2796 0.2905 0.2786  0.2819 0.2481 0.2680
Room 0.2817 (0.4)  0.2673 0.2806 02646  0.2711 0.2430 0.2596
Vehicle 0.2917 (0.4)  0.2761 0.2905 0.2755  0.2814 0.2491 0.2679
Natural Scenes  0.2866 (0.6)  0.2721 0.2848 0.2667  0.2741 0.2487 0.2600
Buildings 0.2867 (-0.5)  0.2719 0.2882 0.2723  0.2782 0.2580 0.2634
DiffusionDB 0.2729 (0.4)  0.2594 0.2719 0.2602  0.2634 0.2381 0.2585
Pick-a-Pic 0.2753 (0.6)  0.2621 0.2741 02647  0.2672 0.2509 0.2591
Avg. Reward 0.2788 (0.5)  0.2650 0.2776 0.2655  0.2693 0.2461 0.2605

Table 3: Comparison of IPGO’s human preference scores with six benchmarks across 900 prompts
from three datasets. Bold/underline denote highest/second-highest scores. In parentheses percentage
improvements over the second-best performing model, TextCraftor, which are similar in magnitude
to those reported in prior literature (see the text).

Qualitative interpretation. Figure 2] qualitatively compares a non-cherry-picked sample of im-
ages generated with IPGO using the HPSv?2 reward to those generated with the raw prompt and
with TextCraftor and DRaFT-1, the best performing benchmarks (note that IPGO achieves smaller
improvements over these benchmarks for HPSv2 than for the other two reward models, and that the
computational environment affects the quality of each image in Figure 2 equally). Unlike DRaFT-
1 and TextCraftor, which often drastically alter the image layout from that produced by the raw
prompt, IPGO tends to modify or add details, while preserving the layout produced with the original
prompt, thus providing enhanced control over image generation. Additional examples can be found

in Appendix

Summary. Across all 126 (6 baselines x 7 scenarios x 3 rewards) comparisons, IPGO yields
the best performance in all but 2 of the cases, yielding a significant 6-17% improvement over the
raw prompt, and a significant 1-3% improvement over the best-performing benchmarks, across three
rewards, which is similar in magnitude to improvements reported for prior models (e.g., Black et al.}
2023} |Clark et al.|, [2023; Hao et al.| [2024; [Li et al., [ 2024b)), while retaining the global image layout
obtained from the original prompt.

6 FURTHER EXPERIMENTS

6.1 ABLATION STUDIES

We provide in-depth ablation studies on the components of our IPGO framework, including the three
constraints, rotation, and the lengths of the prefix and suffix. All experiments are conducted on the
full COCO dataset using 300 prompts across three rewards. The Stable Diffusion pipeline SDv1.3 is
configured with 30 inference steps, and all models are trained for up to 30 epochs.
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Figure 2: Example images generated with Stable Diffusion v1.5 using the raw prompt (row 1), IPGO
(row 2), DRaFT-1 (row 3) and TextCraftor (row 4), towards the HPSv2 reward.

Effects of the Constraints and Rotation. We evaluate the effects of our three constraints, Orthonor-
mality (O), Conformity (C), and Range (R), as well as the rotation component on the performance of
IPGO. Specifically, we compare six scenarios, the full IPGO model that incorporates all constraints,
three versions of IPGO where each of the O, C, or R constraints is omitted, IPGO without the rotation
component, and finally, the IPGO without any constraints, the low-rank design or rotations (in other
words, directly fine-tuning the prefix and suffix text embeddings). Table [ presents the results.

Scenarios Aesthetics  Alignment  Human Preference
Full IPGO 6.0626 0.2771 0.2766

w/o O 5.9892 0.2709 0.2733

w/o C 5.9422 0.2767 0.2763

wlo R 5.9151 0.2770 0.2703

w/o Rotation 5.9247 0.2779 0.2762

wlo O, C, R, Rotation, Low-Rank Design 5.1462 0.2442 0.2630

Table 4: Ablation experiments to test the effects of each constraint (O, C, R) and the rotation
parametrization, relative to the Full IPGO model.

First, the Full IPGO consistently performs best when none of the constraints is omitted. Each reward
benefits most from a specific optimization constraint. For aesthetics and human preference rewards,
the range (R) constraint yields the most performance gains. However, for the CLIP alignment score,
orthonormality (O) is the most important. Therefore, although each constraint’s contribution towards
the final solutions depends on the reward model, IPGO with all three constraints combined adapts to
different reward tasks to each deliver consistent image alignment.

Second, the effects of the rotation parametrization also depend on the reward model: it helps aesthetics
scores to improve the most (2.3%), then the human preference scores (0.1%), but it not necessarily
improves alignment scores. Rotation is further explained in the Appendix [A]
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Third, the Full IPGO outperforms the naive IPGO without any constraints and parameterization
designs with a large margin (17.8%, 13.5%, and 5.2% on aesthetics, alignment and human preference
scores), showing the effectiveness of IPGO’s parameterization and constraints in optimization over
naive, unconstrained text embedding learning.

Prefix and suffix lengths. Next, we test all combinations of prefix and suffix lengths of 0, 5, 10,
or 15 embeddings, excluding the (0,0) combination. Note that these scenarios include cases with
only a prefix (N, = 0), or only a suffix (V.. = 0). We conduct experiments with the full COCO
dataset of 300 prompts and use the alignment CLIP score as the reward. We sample the images with
30 inference steps and optimize with 30 epochs.

Table [5] contains the results. First, by comparing the average rewards from the scenarios with the
same total number of embeddings (e.g. (5,15), (10,10) and (15, 5)), we find that equal prefix and
suffix lengths tend to give a better performance, with (10, 10) yielding the best performance. Second,
a longer prefix and suffix do not necessarily bring more performance gains, as illustrated by the
difference between the performance of (10, 10) and (15, 15). Extremely long prefix and suffix can
lead to over-parameterization which damages the image semantics, as illustrated in the Appendix [E]

N,

pre

Nous 0 5 10 15
0 0.281 0.286 0.287
5 0.284 0.284 0.286 0.284
10 0.286 0.284 0.289 0.283
15 0.285 0.284 0.288 0.288

Table 5: Average CLIP scores for various combinations of prefix length, Ny and suffix length, N

6.2 ADAPTIVITY OF IPGO TO OTHER DIFFUSION MODELS

We next illustrate that IPGO can be used with different diffusion models. In the experiments reported
heretofore we choose to implement IPGO with SD-v1.5, and here we illustrate IPGO, along with
TextCraftor as a benchmark, for two newer versions of Stable Diffusion, SDXL and SD3, for HPSv2
human preference rewards on 100 randomly selected prompts from the DiffusionDB data. Images are
sampled with 30 steps of inference. Optimizations take 30 epochs. For Textcraftor, we only fine-tune
the main text encoder due to computation limits.

Table [0 shows that IPGO improves human preference scores over the original prompt for the SD3
(3.2%) and SDXL (4.9%) diffusion models as well. Its performance improvement over TextCraftor
also holds up for these two diffusion models.

Diffusion model SDXL SD3

Original 0.2523  0.2625
TextCraftor 0.2626 0.2686
IPGO 0.2646 0.2710

Table 6: HPSv2 reward for IPGO and TextCraftor on different Stable Diffusion Models for 100
randomly selected prompts from the DiffusionDB dataset.

7 CONCLUSION

IPGO is a parameter-efficient, gradient-based prompt-level optimization framework for alignment
of generated images with prompt semantics, aesthetics, and human preferences. IPGO explores,
but does not alter, the prompt embedding space via learnable rotated low-rank prefix and suffix
embeddings, guided by reward gradients and constrained by range, orthonormality, and conformity.
Extensive experiments over six benchmarks across three tasks, three datasets, and various diffusion
model backbones demonstrate IPGO’s performance gains on prompt-wise training at inference. We
leave generalization to different alignment tasks, batch training, multi-criterion optimization, and
interpreting the optimized pre- and suffix embeddings as topics for future research.
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ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. All datasets used are publicly available and have been
cited appropriately. No personally identifiable or sensitive information is included. We have taken
care to ensure that our methods and results do not introduce or propagate harmful biases beyond
those already present in standard benchmark datasets. The potential societal impacts of this research,
both positive and negative, are discussed in Appendix [F]of the paper.

REPRODUCIBILITY STATEMENT

We have taken several measures to ensure the reproducibility of our results. A complete description
of our model architecture and training procedure is provided in Section [ of the main paper, with
further implementation details in Appendix |C| The datasets used in our experiments are described
in Section[5] An anonymous Git repository containing the source code and scripts will be made
available during the discussion phase to facilitate reproducibility.
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A OPTIMIZATION OF ROTATION PARAMETERIZATIONS

We show the intuition how the rotations help accelerate the optimization process. First, let us consider
the optimization in the two-dimensional space. Suppose we have a minimization problem

argmin,, f(z), =z € R% (6)

We assume this problem only has one global minimum z*, which therefore lies in the subspace
spanned by itself. Now we parameterize © = R, gy, with y € R? and R, 4 the elementary rotation
matrix in equation ] We update parameters step by step. We initialize ¢ by 6y = 0 and yo = 0 at
the origin. A gradient update step moves x( along the gradient of x(, with a suitable step size, to x1,
with 6y unchanged. Assume we are currently at x; = R, g,:. We update 6, by solving 6,; from:

dR
Vof(@)" == =0 )
do |,
t+1
Note % brir = Re’%Re’gt 1> the elementary rotation matrix with angle f;; rotated 90 degrees

counterclockwise. Therefore, graphically, the optimal ;1 is the one that rotates y;, with the origin
as the rotation axis, to a point such that the vector pointing to it is parallel to the gradient at that
point. In other words, this is the point where the circle with radius ||«;|| is tangent to the contour of f.
Then for any suitable step sizes along the corrected gradient towards the new point x4 1, the total
path length between the origin 2 and the optimal point .. is equal to the distance ||z ||2, which is
the shortest path between the initial point and the optimal point, and therefore optimal among all
possible paths between the initial point to the optimum point. Figure 3] visualizes the argument. The
left panel shows an optimization path with rotation, which makes the total path length be exactly
equal to the shortest path (the purple line) since the updated points are selected at the tangent point
between the circles (red and dashed) and the contour. However, there is no guarantee that a regular
gradient descent takes that shortest path, as illustrated on the right panel.

Figure 3: The figure compares the optimizations with rotation parametrization (left) and without
(right). The yellow star represents the optimum point. The red dashed lines on the left are the circles
with radius of the length of the current ;. The purple line is the shortest distance between the initial
point, the origin, and the optimum point. With rotation parametrization, the updates must be along
the shortest total path.

In a high-dimensional space, since IPGO rotates each neighboring pair of coordinates, the high-
dimensional rotation can be disassembled into separate 2-dimensional rotations. Therefore, our
argument above in the 2D space can be extended to the high-dimensional space. In other words, the
high-dimensional rotation should guide a relatively shorter optimization path towards the optimal
solution. Nonetheless, one difference should be noted. In our IPGO algorithm, because the rotation
angles to be optimized are shared across all neighboring pairs of coordinates, overall the rotation
component of the IPGO will select the angle that on average benefits the optimization path the most.
The optimization along the average path could lead to less efficient optimization updates in some of
the 2D subspaces, which may therefore require more optimization updating steps for convergence.
This effect can be observed in our ablation studies on rotation for CLIP alignment, shown in Table
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B QUALITATIVE COMPARISONS BETWEEN IPGO AND BASELINES

Table 7] qualitatively compares our IPGO algorithm with the benchmarking algorithms outlined in
Section As can be seen from the table, IPGO is the only method that leverages reward gradient
computation, supports prompt modification, and maintains low computational search costs.

Algorithms Reward Gradient  Prompt Modification  Search Space Cost

Promptist X v High (SFT required)

DPO-Diff v v High (External LLM required)
TextCraftor 4 v High (Text Encoder Fine-Tuning)
DRaFT v X Low

DDPO X X High (Many samples required)
IPGO (ours) v v Low

Table 7: A qualitative comparison between IPGO and all baselines, focusing on three key aspects:
the ability to compute reward gradients, support for prompt modification, and the computational cost
of searching the prompt space.

C IMPLEMENTATION DETAILS
This section provides details on IPGO’s implementation and training.

Image Generation A DDIM Scheduler with a guidance weight of 7.5 is employed and the gen-
erated images have a resolution of 512 x 512 pixels. During optimization, IPGO truncates the
backpropagation at the 2nd-to-last sampling step. we set the number of inference step for image
generation as 50. We found similar performances with other sampling strategies, such as PNDM and
LMSD.

Optimization We train IPGO using Adam (Kingmal |[2014) optimizer without a weight decay. We
start with a learning rate of 1e—3 and reduce it by a factor of 0.9 every 10 epochs, continuing this
schedule for a total of 50 epochs. We truncate gradients at the 2nd-to-last step with checkpointing.
We apply gradient clipping across all our experiments, selecting a gradient clipping norm of ¢ = 1.0.

Hyperparameters We set the hyperparameters of IPGO, DDPO, and DRaFT-1 to ensure that the
total number of trainable parameters is comparable. IPGO includes the hyperparameters: mpre (Msu),
the number of the base text embeddings for prefix (suffix); and Ny (Ngur), the length of the prefix
(suffix). DRaFT-1 uses the LORA parameters in the UNet. For DDPO and TextCraftor we use the
default configurations. Detailed hyperparameter settings for IPGO, TextCraftor, DRaFT-1 and DDPO
are provided in Table|[§]

Methods | Hyperparameter Value
IPGO Mopre, Msuf 300

N pres N, suf 10
Total #parameters 0.47M
TextCraftor Default Configuration
Total #parameters 123M
DRaFT-1 LoRA rank 3
Total #parameters 0.60M
DDPO Default DDPO Trainer Configuration
Total #parameters 0.79M

Table 8: Hyperparameter settings for IPGO, TextCraftor, DRaFT-1 and DDPO
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IPGO’s Constraints IPGO has three constraints: Orthonormality, Value and Conformity con-
straints. We enforce the orthonormality constraint with orthogonal () module in Pytorch. For the
value constraint, we clamp the parameters to satisfy the constraint after each update. Finally, we use
a soft conformity constraint in the optimization by adding a conformity penalty to the objective, the
negative image reward. Define the conformity penalty by

Pconf = ||m€an(g(‘/prevpa ‘/Suf; QIPGO)) - mean(T(p>) H% (8)
The mean(-) is defined by,

1 L
mean({vi}iL,) = T ;v ©)

where {v;}£ |, v; € R4, is the input set of text embeddings.
Then the optimization loss to be minimized, conditioned on z, becomes:

L(Supco) = =S (z0,p) + ¥ Feont, (10)
where S(xg, p) is one of the Aesthetic, CLIP and HPSv2 reward scores as a function of the image x

and prompt p, and + is the conformity coefficient. In our experiments we set v = le—3.

The Outline of Our IPGO Algorithm Here we delineate the algorithm of the full IPGO with all
constraints and parameterization designs included.

Algorithm 1 IPGO

Input: Raw prompt p, prefix/suffix generator Gpr (Qipco)/Gsut(SirGo) controlled by Qipgo, text
encoder T (p), diffusion model = ~ qimage(-), zr the initial latent noise, image reward model
S(z,p), conformity penalty coefficient v, learning rate 7, number of epochs Epochs.
Output: Optimal prefix/suffix generators Gp,o/Gg -
for i = 0 to Epochs do
Original prompt embedding: Vp = T (p).
Prefix: V;Jre = Gpre(QIPGO)
Suffix: Viur = Gour(Qpco)
Insert prefix and suffix: £(Vire, p, Viur; Chpco) = Vore @ Vo ® Vi
Sample image: zo ~ Qimage(x0|g(‘/prevpv Vuts QIPGO)v ZT)-
Compute reward: r = S(xq,p).
Compute objective: L = —r + 7y Peons-
Compute gradient: g = Vg, L-
Update prefix and suffix: Qpgo < Qpco — 19.
Enforce orthonormality and Value constraints.
end for
Return G° (lego) and Gsuf(Q[pgo).

pre

D ADDITIONAL ABLATION STUDIES

In addition to the ablation experiments in the main text, we design two more ablation scenarios
to investigate the effects of the size of the base text embeddings and the relationship between the
prefix/suffix lengths and the raw prompt length.

For both additional ablations, following the settings in the previous ablations, we use the Stable
Diffusion v1.5 as the base diffusion model, with number of inference steps 30. The Adam optimization
starts with a learning rate 1le—3 with a decay factor 0.9 at every 10 steps.

Varying m = mpyre = mgeur. We first investigate the effect of m., the size of the learnable base text
embeddings for the prefix and suffix. We randomly selected 30 prompts from the COCO dataset, and
we conduct ablation studies with m = 150, 300, 600, which are about 20%, 40% and 80% of the text
embedding space of dimension 768. As reward models, we choose the CLIP reward and the human
preference reward (HPS). The prefix and suffix lengths are both 10.
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Reward | m =150 m =300 m =600
CLIP 0.287 0.296 0.303
HPS 0.263 0.266 0.267

Table 9: Results of ablations on my. and myys, the sizes of the sets of the base text embeddings of
prefix and suffix.

Table 0] shows the results. Not surprisingly, more parameters lead to larger performance gains, shown
for both rewards. However, it is interesting to see a diminishing margin of performance gain when
we increase m. The performance improvement from increasing m from 300 to 600 is less substantial
than the improvement gained by increasing m from 150 to 300. Therefore, m = 300 achieves a good
balance between the number of total parameters and the final performance.

Npre and Ngy¢ based on Raw Prompt Length. Next, we test the relationship between the length of
the raw prompt and the lengths of prefix and suffix. We use the CLIP reward for optimizations. We
choose 30 prompts among which the first 10 prompts are simple prompts, such as "Man", "Woman"
and "Student", the second 10 prompts are medium-complexity prompts of the similar topics of the
10 simple prompts, selected from the COCO dataset. The last 10 prompts are even more complex
versions of the second 10 prompts by inquiring ChatGPT with "Could you make the following
10 prompts more complex:." For example, the complex version of "A person walking in the rain
while holding an umbrella." is "A middle-aged person in a long, tattered trench coat walks down
a cobblestone street, their brightly colored umbrella catching the dim glow of streetlights as rain
cascades around them." We make sure that the complex sentences do not exceed the limit of 77
tokens.

We optimize each prompt with Ny = Nor = N € {2, 10, 15} with respect to the CLIP reward. For
each prompt, we record the value of IV that improves the output image the most. Then we count the
frequencies of each N € {2, 10, 15} and calculate their proportions. Finally, we use this distribution
of the proportions of prompts that respectively have N = 2,10, 15 as their best prefix and suffix
lengths in each prompt group as the evaluation metric. We denote this distribution as Dy (2, 10, 15):
Dn(2,10,15) = (a%, b%, c%) means that a% (or b% or ¢%) of the prompts in the target prompt
group have N = 2 (or N = 10 or N = 15) as their best prefix/suffix lengths.

From the ablation results, we do not observe a significant correlation between the prompt length and
the prefix and suffix lengths. The simple prompt group has Dy (2, 10,15) = (30%, 50%, 20%); the
medium-complex prompt group has Dy (2, 10,15) = (50%, 20%, 30%); and the complex prompt
group has Dy (2,10, 15) = (20%, 40%, 40%). We find no correlation between the raw prompt length
and the optimal prefix-suffix length. However, we recommend using fewer inserted embeddings for
very short prompts to avoid over-parameterization (an illustration follows).

E OVERPARAMETERIZATION

IPGO faces the risk of overparameterization when the lengths of the prefix and suffix significantly
exceed that of the raw prompt. For example, Figure @]illustrates this issue with an extreme example,
showcasing the evolution of images generated during the optimization of the simple prompt "cat",
which only has one single token, with very long prefix and suffix of Ny = Ngr = 30 for aesthetics
improvement. In the first several steps, IPGO produces images that display a cat, but at later steps,
the object in the image changes to a person, and at even later steps the specific person also changes.
Apparently, if the prefix and suffix are too long, then in spite of the conformity constraint, optimization
of the inserted embeddings overwhelms the semantic structure of the image and harms alignment of
the image with the original prompt. Therefore, we recommend using shorter prefix and suffix lengths
for shorter prompts. An alternative solution is to extend IPGO to multi-criterion optimization, using
both aesthetics and prompt-image alignment rewards.

F SOCIETAL IMPACT

This paper presents work that contributes to the field of Text-to-Image generation models and their
applications. In the Machine Learning community, the new method introduced by this paper can
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Step 0 Step 13

Figure 4: Images generated during IPGO’s optimization on the prompt “Cat" with Npre = Nyt = 30
for aesthetics. Because of overparameterization the images that are produced show poor alignment
with the original prompt.

broaden the current horizon on fine-tuning diffusion models. In practice, our method can be applied
to image related tasks such as automatic real-time image editing.

G LLM USAGE

Large Language Models (LLMs) were used in limited capacities to support this work. Specifically,
they were only employed for grammar correction and language polishing during manuscript prepa-
ration. Additionally, LLMs were used to assist in additional ablation studies in Appendix [D| by
generating diverse image prompts. No parts of the scientific analysis, experimental design, or core
findings relied on LLM outputs.
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H ADDITIONAL IMAGE EXAMPLES

All optimized images shown in this section were optimized with respect to the human preference
reward HPSv2.

H.1 ADDITIONAL IPGO COMPARISONS WITH DRAFT-1 AND TEXTCRAFTOR

A man in a wheelchair and A man is sitting on a Yoshu.a Bengio on the_Tamt a koala wearing a purple frodo baggins blocking
another sitting on a bench bench next to @ bike. Hermit card. Dlustration by chrome darth vader helmet michael jordan, nba
that is overlooking the water. Pamela Colman Smith on a koala

Raw Prompt

IPGO

e

i

a painting of tropical plants and  cute adorable hedgehog  Photograph of a man in a suit ~ connor mcgregor dressed as
a shih tzu on a pirate ship,  inverted cupcakes by lisa frank,  opening the door, waving,  4n 4 bowler hat standing on the hulk, 8 k, trending on
wearing pirate hat, canon behance, airbrush art, digital ~ smiling, cute, hedgehog, by surface of a giant brain. artstation, smooth, ..., annie
i painting cyril rolando Realistic. leibowitz

Raw Prompt

DRaFT-1 IPGO

TextCraftor
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H.2 OTHERS

colorful graffiti, shards, These 3D portraits are
- illustration, highly detailed, a highly detailed beautiful unbelievably realistic. unreal movie film still of Alexandra caricature angry old man in
movie still from the fifth . . h . . . . L . A
! simple, no jagged lines, smooth, portrait of hamster playing engine 5 RTX raytracing nvidia Daddario as a female Colossus chair inside a dark house,
element, body portrait of a young " - N . . o
‘woman jessica alba cybory artstation, centered artwork by poker, by gregory manchess, hairworks render of portrait of in a new X-Men movie, painting by by ralph grady
J YOOrE - shepard fairey of centered james gumey, james jean the most beautiful girl with blue cinematic james, jean christian biville
portrait of an elven eyes.

Raw Prompt

]

IPGO

IR

apov shot, color cinema film 70 mm portrait, furry rocket the ~ futuristic utopian paradise, a shinto shrine path atop a backlit levitati rtwildes
photo of a group of female still of saul goodman & katy  raccoon sitting in the cockpit of ~ canals, bridges, white marble mountain,spring,cherry ackli 1""]’: ll:?g gee Wl'd TS
doctors, working in a hospital perry in blade runner 204 9, the millennium falcon, ... temples, palm trees, ... trees,beautiful,nature,distant raising both his m;:'ns amica
cinematic lighting at night. pt ism!! i ic lighting,, pinterest shot,random angle crowd, aesthetic

a highly detailed symmetrical . . .
pai_,g;ﬁné ofa femaie sorcerer RAW photo of a cute cat o l::;t; o.‘f_la ibnlt‘l)’;]cietelfv)l;?te genere una imagen de un perro a §raw1ng °f§ girl W_“h portrait of a Young woman
with piercing eyes in a as a cowboy standing in a Y b Snk’ iator and pequefio feliz , jugando y bright blue hair wearing with short blonde hair
& lonn fabr desert, bokeh Cyberpunic respirator an cortiendo por el parque sunglasses, cyberpunk wearing glasses and
ungeon, ... glenn fabry armor art ..., pop art freckles around her nose

Raw Prompt

IPGO
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H.3 MORE VISUAL COMPARISONS

For each image pair, the top image is generated by SDv1.5, the bottom image is optimized by IPGO.

[ISLAND
[ISILAND:
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