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Beast in the Cage: A Fine-grained and Object-oriented Permission
System to Confine JavaScript Operations on the Web

Anonymous Author(s)

ABSTRACT
JavaScript plays a crucial role on web. However, the inclusion of un-
known, vulnerable, or malicious scripts on websites and in browser
extensions and the use of browsers’ developer tools often leads to
undesired web content manipulations and data acquisitions. To re-
strict JavaScript operations on web content and data, we introduce a
fine-grained, mandatory access control-based, and object-oriented
permission system for browsers. With our system, web developers
can define policies for sensitive web elements on their web pages to
allow or deny scripts’ operations on web content and data within
browsers. The system substantially thwarts many web threats and
attacks, and offers benefits to personal data governance. We devel-
oped a tool for automatic policy generation and demonstrated the
usability and compatibility of the system in a three-month study.
Our system is a reasonable and practical solution, bolstering the
security and trustworthiness on the internet.

CCS CONCEPTS
• Security and privacy→Web application security.
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HTML, JavaScript, permission
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1 INTRODUCTION
JavaScript plays a crucial role on web, offering dynamic functions
and interacting with HTML documents. However, the inclusion of
unknown, compromised, or malicious scripts on websites [9, 19, 34]
and in browser extensions [15, 20, 23, 28, 33, 36] often leads to
undesired web content manipulations and data acquisitions. In
2018, Feedify’s JavaScript library was repeatedly compromised to
siphon off victims’ payment card details on e-commerce websites
globally. Recent studies have unveiled awide range of abuses among
browser extensions, from ad injection [20] to the insertion of rogue
web elements for malware installation [28, 33].

Browsers’ developer tools, particularly its DOM inspector and
JavaScript console, have become another vector to compromise the
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for profit or commercial advantage and that copies bear this notice and the full citation
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integrity of web applications. In the emerging online refund scams 1,
the scammer remotely controls a victim’s computer, manipulates
transaction records displayed on the victim’s online banking page
using the DOM inspector in the victim’s browser, shows the victim
has been overpaid on a refund, and urges the victim to return the
faux overpayment.

To restrict JavaScript operations on web applications and data,
we introduce a fine-grained, mandatory access control-based, and
object-oriented permission system to browsers. With the HTML
tag and attributes offered by the system, web developers can define
policies for sensitive web elements on their web pages to allow or
deny scripts’ operations on web content and data within browsers.
Operations on web content include updating and removing nodes
on DOM trees, reading and writing HTML properties and attributes,
updating HTML event listeners, interacting with HTML elements,
and dispatching HTML events. Operations on data include writing
data to the HTML document stream, accessing data in cookies and
local storage, and sending data to the network. The system can also
restrict manual updates to web content via the DOM inspector.

We implemented the system in the Chromium browser’s Blink en-
gine and ensured permission policies are immutable in the browser.
We enforced permissions in a list of JavaScript APIs that can be used
to operate HTML documents and web data. We carefully addressed
challenges brought by the dynamic content, JavaScript eval, web
workers, and potential attacks.

We conducted micro-benchmarks to demonstrate the minimal
performance overhead introduced by the system’s key components.
A macro-benchmark was performed to assess the system’s overall
performance overhead on Tranco’s top 300 websites under the ex-
treme condition, showing that our system incurs limited overhead.

Case studies then demonstrates that the system can be used as
both whitelist and blacklist-based solutions to counter many web
threats and attacks with no impact to the functions of the browser
and browser extensions. The system also offers benefits to personal
data governance, complying with data privacy laws and legislation.

To enhance usability and reduce maintenance cost when using
the system, we developed a tool which monitors scripts’ operations
on web elements and data and automatically generates policies
for web pages. We successfully generated policies for the index
pages and sign-in pages of 30 popular websites, and validated their
correctness through manual inspections, illustrating the system’s
usability and compatibility. A three-month study showed that the
generated policies are usable within a certain period of time even
on frequently updated news and shopping websites.

Researchers have proposed various solutions to restrict JavaScript
features and protect user data on the client side. Unlike function-
centric approaches that isolate HTML elements and scripts [10, 16–
18, 21, 22, 31], enforce information flows [4, 7, 8, 27], and replace

1https://www.youtube.com/watch?v=X4PllvUowaQ
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resources [25], our approach is object-oriented and can avoid signif-
icant runtime overhead. It does not require the knowledge of data
legitimacy used for traffic-based approaches [6, 24, 26] or the knowl-
edge of data types used for the type checking-based approach [14].
It can fulfill diverse security requirements at a finer granularity
than [11, 12]. Most recently, a permission system was proposed to
confine JavaScript operations on HTML documents [32] but our
work differs from it in several aspects, as discussed in Section 8.1.
Meanwhile, existing HTML features cannot meet our needs.

In summary, we have made the following contributions: (1) We
introduced a permission system to restrict JavaScript operations
on web applications and data. (2) We implemented the system as
a ready-to-use solution with limited performance overhead. (3)
We demonstrated its effectiveness in preventing many web-based
threats and attacks. (4) We developed a tool for automatic genera-
tion of policies when using the system and showed the system’s
usability and compatibility in a three-month study.

2 DESIGN
This section starts with the threat model, followed by the policy
syntax and rules required by the permission system to ensure the
confidentiality and integrity of web applications and data.

2.1 Threat Model
We consider first-party and third-party scripts on web pages and
in browser extensions as well as scripts submitted to the JavaScript
console of browsers’ developer tools as attacking sources. They
could be compromised, over-privileged, or accidentally included to
manipulate web applications and obtain sensitive data in browsers
without authorization, compromising the confidentiality and in-
tegrity of the targeted web applications. We also consider web page
manipulations manually through the DOM inspector of browsers’
developer tools as attacks to web applications.

We do not focus on code injection attacks, that can be mitigated
by mechanisms like Content Security Policy (CSP). However, CSP
is not sufficient to defend against the attacks we are targeting. We
do not focus on web content mutations in HTML hijacking either,
where malicious entities can control and manipulate HTML docu-
ments; it is essential to explore other security measures to address
this threat. Non-JavaScript operations on HTML documents (e.g.,
transitions and animations in CSS) and unknown attack vectors to
compromise web applications and data are also out of our scope.

2.2 Policy
We introduce the following syntax for web developers to define
two types of permission policies for HTML elements and data in
HTML documents.

2.2.1 For Operations on Elements. The first type of policies en-
forces permissions for read and write operations on HTML ele-
ments, as shown below. We use "-", "r", "w", and "*" in <permission>

to allow none, read, write, and all operations, respectively. Opera-
tions include updating and removing nodes on DOM trees, reading
and writing HTML properties and attributes (e.g., identifier, name,
type, style, event, text, and value), updating HTML event listeners,
interacting with HTML elements, and dispatching HTML events.

These operations can be performed by JavaScript on web pages
and in browser extensions, denoted as <scripts> and <extensions>, as
well as via the DOM inspector. We correspondingly use script and
extension identifiers <script_id> and <extension_id> to uniquely label
scripts. We can also leverage the URL <url> or domain name <domain>

to refer to a particular script or a set of scripts from a domain. We
use "-" and "*" to represent no operator and every operator. The
syntax currently cannot match a set of browser extensions; we leave
it for future work. We will extend the syntax later in Section 3.3.

Policy identifiers <policy_id> can be concatenated by "," in the
pid attribute of an HTML element. The <script_id>, <extension_id>,
and <policy_id> facilitate the reuse of scripts among policies and the
reuse of policies among HTML elements. When an element is not
assigned any policy, every operation will be allowed on it.
// policy for elements

<policy_id > : {

<policy_item >, ...

}

<policy_item > ::= <permission > : {

"sids" : "-"|<scripts >|"*",

"eids" : "-"|<extensions >|"*"

}

<permission > ::= "-"|"r"|"w"|"*"

<scripts > ::= [<script_id >|<url >|<domain >]

<extensions > ::= [<extension_id >]

To create a policy for an HTML element operated by scripts on a
web page, a web developer needs to: (1) create the unique identifier
<script_id> in scripts’ sid attribute, especially for inline scripts, (2)
create a policy in the policy file with a unique identifier <policy_id>,
(3) use the <script_id>, <url>, or <domain> in the policy to match a
particular script or a group of scripts and set their permissions, (4)
include the policy file on the page using the HTML <policy> tag, and
(5) place the <policy_id> in the policy attribute pid of the operated
HTML element. An example policy "pwd" for operating password
fields is shown below. The fields can be read by the script with sid

"s" and scripts from www.google.com. They can also be updated by
the browser extension with eid "hdokiejnpimakedhajhdlcegeplioahd".
"pwd": {

"r": { "sids": ["s"], "eids": "-" },

"r": { "sids": ["www.google.com"], "eids": "-"},

"w": { "sids": "-", "eids": ["

hdokiejnpimakedhajhdlcegeplioahd"] } }

2.2.2 For Operations on Data. The other type of policies enforces
permissions for JavaScript’s read and write operations on cookies
and local storage, and for JavaScript’s write operations on theHTML
document stream and web domains, as shown below. We consider
IP addresses as alternatives to web domains. When a script element
is not assigned any policy regarding data operations, its code is free
to access and dispatch data.
// policy for script elements

<location > : {

<policy_item >, ...

}

<location > ::= "cookie"|"storage"|"stream"|<domains >

<domains > ::= [<domain >]

To set a policy for an HTML script element operating data, a
web developer needs to create a unique identifier <script_id> for
the script element and update the policy file. Example policies are

2
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shown below. Only the script with sid "s" can read andwrite cookies
but no script can send data to www.google.com.
"cookie": {

"*": { "sids": ["s"], "eids": "-" } },

"www.google.com": {

"w": { "sids": "-", "eids": "-" } }

2.3 Policy Rules
The enforcement of policies is following the rules defined below.
Examples for these rules are provided in Appendix A.

Rule 1. The policies, the HTML <policy> tag, and the sid, pid
attributes cannot be added, altered, or removed by JavaScript or in
the developer tools, otherwise the permission system is invalidated.

Rule 2. When an HTML element is not assigned any policy, it
will inherit the policy from its closest ancestor that has one.

Rule 3. An HTML element’s own policy overrides that of its
ancestors. In the rest of this paper, we refer to an HTML element’s
policy as either its own or the one inherited from its ancestors.

Rule 4. An HTML element can be read or written by a script
when itself and all the involved descendants are readable or writable
to the script, otherwise inoperable descendants would be acciden-
tally operated. Similarly, an HTML element can be updated in the
DOM inspector when itself and all the involved descendants are
writable to every operator.

Alternatively, when an element is being operated, the permission
system can force the operator to ignore the inoperable descendants.
However, this approach requires more complicated instrumentation,
brings extra operations on the descendants, and it can be expensive
to maintain the atomicity. We leave it for future work.

Rule 5. User actions on an HTML element (e.g., click a button
and send a form) can be simulated in a script when the element is
writable to the script.

Rule 6. A data location can be read or written by a script when
it is readable or writable to the script.

Rule 7. There is no restriction on JavaScript operations on an
HTML element when no policy is assigned to the element, and no
restriction on a script’s operations on any data location when no
policy is assigned to the script.

3 IMPLEMENTATION
We implemented the system in the Blink engine of the Chromium
browser of version 107.0.5299.0. In this section, we will provide
implementation details about policies, HTML attributes and prop-
erties, and the permission enforcement in our interested JavaScript
APIs. We will also discuss our solutions to the challenges brought
by the dynamic content, JavaScript eval, web workers, and potential
attacks.

3.1 Policy File
We created the HTML <policy> element and use its src attribute
to include the policy file in the HTML document. We correspond-
ingly added the HTMLPolicyElement class to the Blink engine. In its
constructor, we parse the policy file and cache policies using the
three tuple <policy_id|location, permission, [script_id|extension_id|

url|domain]>. We added the getPolicy API to the Document class to ob-
tain the HTMLPolicyElement object globally. In our interested JavaScript

𝑛0
""

𝑛1
"*"

𝑛2
"-"

𝑛3
"r"

𝑛4
"w"

𝑛5
""

(a) A DOM tree with permissions.

𝑃⊥ 𝑃⊤

𝑛0 * -
𝑛1 * -
𝑛2 - -
𝑛3 r r
𝑛4 w w
𝑛5 - -

(b) 𝑃⊥ and 𝑃⊤ in Figure 1a.

Figure 1: 𝑃⊥ and 𝑃⊤’s computation example.

APIs operating HTML elements and data, we use the getPermission

API of the HTMLPolicyElement object to obtain the permission (i.e., "-",
"r", "w", or "*"). Such an API takes in the associated policies of the
operated element or the data location, and the operating scripts.

3.2 Immutable Policies and Attributes
To ensure policies are immutable, we (1) define policies as a JSON ob-
ject in the policy file, (2) abort the addition and removal of theHTML
<policy> element, (3) reject the update to the HTML <policy> element,
especially its src attribute, in the setAttribute and removeAttribute

APIs, and (4) do not export the members of the HTMLPolicyElement

class as JavaScript APIs.
To ensure the attributes sid and pid are immutable, we (1) reject

the operation on them in the setAttribute and removeAttribute APIs,
(2) examine whether they will be modified when setting the prop-
erties of prop1 in Table 2, and abort the process if true, and (3) do
not export them in the Interface Definition (IDL) files.

3.3 Policy Enforcement
To enforce the first type of policies in a JavaScript API operating an
HTML element, we call the getPermissionAPI to obtain the element’s
permission 𝑃⊥ given the element’s associated policies and the op-
erating scripts. The associated policies can be identified according
to Rules 2 and 3. The operating scripts can be extracted on the call
stack in the V8 engine using v8::StackTrace::CurrentStackTrace(); we
will provide more details later in this section.

When descendants 𝑐1, . . . , 𝑐𝑛 are involved in the operation on
the element 𝑝 , we further compute 𝑃⊤ with Formula 1, to inspect
the permissions of the element and its descendants and determine
whether they can be operated at the same time according to Rule 4.

Figure 1a shows a DOM tree with six nodes and their permissions.
𝑛0 is granted the default permission "*", 𝑛1 and 𝑛2’s permissions
override 𝑛0’s, 𝑛3 and 𝑛4’s permissions override 𝑛1’s, and 𝑛5 inherits
the permission from𝑛2, as shown in the second column of Figure 1b.
The 𝑃⊤ of those nodes is computed using Formula 1 and shown in
the last column of Figure 1b.

To enforce the second type of policies, we compute 𝑃⊥ with the
data location and the operating scripts according to Rule 6.

𝑃⊤ (𝑝 ) =𝑃⊥ (𝑝 ) ∩ 𝑃⊥ (𝑐1 ) ∩ . . . ∩ 𝑃⊥ (𝑐𝑛 ), 𝑤ℎ𝑒𝑟𝑒
𝑐1, . . . , 𝑐𝑛 𝑎𝑟𝑒 𝑝′𝑠 𝑑𝑒𝑠𝑐𝑒𝑛𝑑𝑎𝑛𝑡𝑠, 𝑎𝑛𝑑 𝑃 ∩ ∗ = 𝑃,

𝑃 ∩ − = −, 𝑃 ∩ 𝑃 = 𝑃 𝑤ℎ𝑒𝑛 𝑃 ∈ {∗, 𝑤, 𝑟, −},
𝑃 ∩ 𝑃 ′ = − 𝑤ℎ𝑒𝑛 𝑃 ∈ {𝑤, 𝑟 }, 𝑃 ′ ∈ {𝑤, 𝑟 }, 𝑃 ≠ 𝑃 ′ .

(1)

Instrumented JavaScript APIs. We instrumented a list of our
interested JavaScript APIs, HTML properties and attributes in the

3
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JavaScript API Operation Condition to Execute
1 parent.[insertBefore, appendChild, append, insertAdjacentElement] (...)

write

𝑃⊥ (𝑝𝑎𝑟𝑒𝑛𝑡 ) == ‘* | w’
2 parent.replaceChild (new, old)

𝑃⊤ (𝑜𝑙𝑑 ) == ‘* | w’3 old.replaceWith (new, ...)
4 parent.replaceChildren (new, ...) 𝑃⊤ (𝑝𝑎𝑟𝑒𝑛𝑡 .𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛) == ‘* | w’
5 parent.removeChild (child) 𝑃⊤ (𝑐ℎ𝑖𝑙𝑑 ) == ‘* | w’
6 node.remove () 𝑃⊤ (𝑛𝑜𝑑𝑒 ) == ‘* | w’
7 element.prop1

write

𝑃⊤ (𝑒𝑙𝑒𝑚𝑒𝑛𝑡 ) == ‘* | w’8 element.setAttribute (attrstyle , ...)
9 element.removeAttribute (attrstyle)
10 element.prop2

𝑃⊥ (𝑒𝑙𝑒𝑚𝑒𝑛𝑡 ) == ‘* | w’11 element.setAttribute ([attrvalue , attrurl], ...)
12 element.removeAttribute ([attrvalue , attrurl])
13 element.prop1

read
𝑃⊤ (𝑒𝑙𝑒𝑚𝑒𝑛𝑡 ) == ‘* | r’

14 element.prop2 𝑃⊥ (𝑒𝑙𝑒𝑚𝑒𝑛𝑡 ) == ‘* | r’15 element.getAttribute (attrvalue)
16 element.setAttribute (<on+attrevent>, ...)

write 𝑃⊥ (𝑒𝑙𝑒𝑚𝑒𝑛𝑡 ) == ‘* | w’
17 element.removeAttribute (<on+attrevent>)
18 element.addEventListener (attrevent , ...)
19 element.[submit, click] ()
20 element.dispatchEvent (...)
21 document.[write, writeln] (...)

write 𝑃⊥ (𝑠𝑐𝑟𝑖𝑝𝑡 ) == ‘* | w’

22 document.cookie
23 localStorage.setItem (...)
24 XMLHttpRequest.open (url, ...)
25 navigator.sendBeacon (url, ...)
26 window.fetch (url, ...)
27 window.postMessage (..., url)
28 element.setAttribute(attrurl , url)
29 document.cookie read 𝑃⊥ (𝑠𝑐𝑟𝑖𝑝𝑡 ) == ‘* | r’30 localStorage.getItem (...)

Table 1: The instrumented JavaScript APIs, HTML properties and attributes, and their permission enforcement.

Blink engine with the help of IDL files, as shown in Table 1. The
list may be incomplete and we will continue improving it.

We instrumented JavaScript APIs for adding, replacing, and re-
moving nodes on DOM trees. When an API updates a node without
affecting its children, the enforcement is based on the node’s per-
mission, as shown in the item 1. When an API updates a node and
perhaps its descendants, the enforcement is based on the node and
its descendants’ permissions, as shown in items 2-6.

We arranged HTML properties and attributes into six groups -
those affect the operated element and its descendants (i.e., prop1
and attrstyle) and those affect the operated element only (i.e., prop2,
attrvalue, attrurl, and attrevent), as shown in Table 2.

The permission enforcement on setting and getting HTML prop-
erties and attributes is shown in items 7-12 and 13-15. We did not
instrument the writing to the src attribute in element.src = <url>, as
the setAttribute API is eventually invoked in the callback function
SrcAttributeSetCallback. We ensured there is no conflict between our
system and the HTML contenteditable attribute, which is for editing
the content of HTML <div> and <p> elements in the browser.

Event listeners are commonly used for sniffing user inputs in
input, textarea, and summary elements. The permission enforce-
ment on updating an HTML element’s event listeners relies on the
element’s permission, as shown in items 16-18.

The enforcement on submitting or clicking an HTML element
and dispatching events to an element is in the same way, as shown
in items 19 and 20. Please refer to Section 8.2 for how to differentiate
script-triggered actions from user actions in the item 20.

The permission enforcement on writing data to the HTML docu-
ment stream, cookies, local storage, and network is illustrated in
items 21-28. It relies on the permission granted to the executed

script. The enforcement in the item 28 is for data leakage through
URL parameters, not contradicting the item 11. Items 29 and 30
illustrate the enforcement on reading cookies and local storage.

Permissions are also enforced on JavaScript operations on the
shadow DOM and those performed through the Netscape Plugin
Application Programming Interface and Web Assembly.

Dynamic Content. To enforce permissions on an operation
on dynamic content constructed by a first-party script, we suggest
developers to assign policies to the content during its construction.
However, to enforce permissions on an operation on dynamic con-
tent constructed by a third party, we suggest developers to assign
policies to the HTML element where the constructed content is
attached to, so that the policy can be inherited.

To enforce permissions on operations by dynamically constructed
inline scripts, we further instrumented several JavaScript APIs. In
APIs of items 1-4 (Table 1), we use the querySelector to search the
inserted inline script elements. In APIs of items 7 and 21, we use
regular expressions to locate inline <script> tags in the inserted text
content. For every inserted inline script, we create the sid attribute
with its constructor script’s identifier or URL. We do not need to
handle dynamic external scripts, as their URLs can be directly used
in policies. Our approach remains robust to obfuscated scripts. We
will discuss our strategy about handling JavaScript eval in dynamic
content construction.

The permission system overwrites the sid attribute of dynamic
inline scripts and removes the sid attribute of dynamic external
scripts during their construction. This strategy prevents the dynam-
ically loaded scripts from masquerading as other scripts such as a
legitimate sign-in script which can access the login form.
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Group HTML Properties and Attributes
prop1 innerText, outerText, innerHTML, outerHTML, textContent
prop2 text, nodeValue
attrvalue value
attrurl src, href
attrstyle class, style, type, width, height, hidden
attrevent change, input, keydown, keypress, keyup

Table 2: Groups of HTML properties and attributes based on
their effects.

Scripts in the Call Chain. For 𝑃⊥ and 𝑃⊤’s computation, we
can extract only the initiator script of the operation from the stack
frame at the bottom of the V8 engine’s call stack. However, this
approach could introduce vulnerabilities illustrated as below. The
policy "pwd" aims to allow the access to the password field by the
script "s" but deny the access by the library "lib". Unfortunately,
there is no restriction to the library’s access to the password field
when its foo function is manipulated and invoked by the script "s",
because the stack frame of "s" is at the bottom of the call stack.
/** in policy file **/

"pwd": {

"*": { "sids": ["s"], "eids": "-" },

"-": { "sids": ["lib"], "eids": "*" } }

/** HTML code snippet **/

<input type='password ' id='pwd' pid ='pwd'/>

<script sid ='lib'>

function foo() {

document.getElementById("pwd").value; // injected

}

</script >

<script sid ='s'> document.getElementById("pwd").value;

foo();</script >

Therefore, we extend <script_id>, <url>, and <extension_id> with
the name and location of the invoked functions in the form of
<script_id|url|extension_id>:[<func_name>@<func_location>] to enforce
permissions at the function level. The location consists of line and
column numbers (e.g., "12:20" for line 12 and column 20) to locate
anonymous functions and mitigate the ambiguity among functions
in the same name. We then permit operations on HTML elements
and data when all scripts and functions on the call stack exactly
match those specified in policies and have the permissions. When
scripts and functions on the call stack conflict over permissions, we
conservatively deny the operation.

In such an approach, the policy in the previous code would allow
the access by only the root function of the script "s"while block the
access directly by the library "lib". In Section 5.2, we will provide
another example to show the use of functions in policies. We plan
to explore the feasibility of enforcing permissions at the statement
level to provide the possibly highest level of security.

To facilitate the identification of scripts and functions involved
in HTML and data operations and to avoid conflicting permissions
when using our system, we introduce a tool for automatic policy
generation and demonstrate our system’s usability and compatibil-
ity in Section 6.

JavaScript Eval.To enforce permissions on operations by eval’ed
code, we skip the stack frames of the eval’ed code when iterating
through the call stack. The executor script of eval will participate
the permission enforcement. This approach is equivalent to having
the eval’ed code inherit its executor’s permission.

When eval is used in the construction of inline scripts, we skip
the stack frames of the eval’ed code, identify the executor script of
eval, and set the identifier of the constructed inline scripts with the
executor’s sid value. The inline script constructed through document.

write in the code below will inherit the sid "s".

<script sid ='s'> window.eval("document.write(\"<script >

document.getElementsByName('pwd ')[0]. value;</script

>\")"); </script >

Web Workers. They are for running scripts in the background
without interfering with the user interface. They can make network
requests using fetch() or XMLHttpRequest APIs. When an external
script is running in a web worker, its URL can be directly used for
the permission enforcement. When a web worker is created from
a data blob, the script in the data blob will inherit the sid value of
the creator script identified on the call stack.

Developer Tools. To enforce permissions on web page manipu-
lations through the DOM inspector of the Chromium browser’s de-
veloper tools, we instrumented selected APIs of the InspectorDOMAgent

class in the same way as those in Table 1, according to Rule 4.
To recognize the code submitted to the JavaScript console, we

examine the name and source URL of the operating scripts using
StackFrame::GetScriptNameOrSourceURL when iterating through the call
stack. A returned empty string for an operating script indicates
that the script was launched in the JavaScript console. The system
then makes a decision based on the policies.

4 PERFORMANCE OVERHEAD
We evaluate the computational overhead of 𝑃⊥ and 𝑃⊤, measure the
time for iterating the call stack, and investigate the system’s over-
all overhead under the extreme condition. The experiments were
conducted on an Ubuntu machine with 2.40 GHz CPU cores and
50 GB of memory. The results showed that the system introduces
very limited overhead to the browser.

4.1 Micro-benchmark
𝑃⊥ and 𝑃⊤ Computation. To generate testing web pages, we
learned the depth and the width of HTML documents from 346,736
web pages of Tranco’s top 10K websites [3]. We define the depth of
an HTML document as the maximum number of parent traversals
needed to reach the document root from any node in the docu-
ment. We define the width of an HTML document as the maximum
number of children under any node in the document. The average,
median, and mode of the HTML document’s depth are 6, 3, and 3,
respectively, and over 95% of the HTML documents have no more
than 21 layers. The average, median, and mode of the HTML docu-
ment’s width are 18, 3, and 2, respectively, and the width of over
95% of the HTML documents is less than 80.

To measure 𝑃⊥’s computation time on an HTML document at
the depth of 𝑑 , we created a web page with 𝑑 recursively nested
<div> elements. We then set a policy on the outermost <div> element.
When reading the inner HTML of the innermost <div> element, all
the 𝑑 <div> elements were recursively traversed in the 𝑃⊥’s compu-
tation. We had the instrumented Chromium browser visit such a
page 30 times and recorded 𝑃⊥’s computation time. Table 3 shows
that the time for 𝑃⊥’s computation is trivial regardless of the HTML
document’s depth.
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Depth Width
𝑃⊥ 𝑃⊤

Traversed Nodes Time(ms) Traversed Nodes Time(ms)
25 25 25 ≈ 0 625 1.47
50 50 50 ≈ 0 2,500 2.63
75 75 75 ≈ 0 5,625 6.44
100 100 100 ≈ 0 10,000 10.47
21 79 21 ≈ 0 1,659 2.75

Table 3: Time for 𝑃⊥ and 𝑃⊤’s computation on HTML docu-
ments in different depth and width.

To measure 𝑃⊤’s computation time on an HTML document at
the depth of 𝑑 and the width of 𝑤 , we recursively nested 𝑑 <div>

elements under a root element, spread out𝑤 <div> elements at each
layer, and set a policy on every <div> element. When reading the
inner HTML of the root element, all the <div> elements were tra-
versed in 𝑃⊤’s computation. As shown in Table 3, 𝑃⊤’s computation
took longer time when the number of traversed nodes increased;
however, its overhead is negligible, especially when the HTML doc-
ument was at the maximum depth of 21 and the maximum width
of 79, learned from over 95% of real-world web pages.

Call Stack Iteration. We ran the code below to pile up stack
frames until the call stack overflows in the instrumented Chromium
browser. We repeated it 30 times and recorded the size of the call
stack and the time for iteration through the call stack. The size of
the call stack in our experiment was 8,260 and the iteration took
1,418 milliseconds on average, indicating our approach is less likely
to introduce significant performance overhead.
/** in policy file **/

"pwd": {

"*": { "sids": ["s"], "eids": "-" } }

/** HTML code snippet **/

<input type='password ' name='pwd' pid ='pwd'/>

<script sid ='s'>

function callStackSize () {

try {

return 1 + callStackSize ();

} catch (e) {

document.getElementsByName('pwd')[0]. value;

return 1; // overflow

}

}, callStackSize ();

</script >

4.2 Macro-benchmark
To assess the system’s overall performance overhead under the
extreme condition, we revised its implementation. When loading a
web page, the system aggressively computes 𝑃⊥ and 𝑃⊤ in every
call interception of JavaScript APIs in Table 1, regardless of the sid

and pid attributes, while the rest of the system remains the same.We
instrumented ClassicScript::RunScriptOnScriptStateAndReturnValue to
record the executed scripts and their execution time.

We visited the index page of Tranco’s top 300 websites [3] in
this revised browser for six rounds. We cleared the browser cache
before each visit and waited 90 seconds for each visit. We did not
observe any exception. Statistics of the numbers of the executed
scripts, reads, writes, the iterated stack frames, and dynamic scripts
is shown in Table 4.

To learn the baseline and compute the performance overhead,
we disabled the permission system and visited the same set of pages

Max Average Median Mode
Scripts 249 32 13 8

Reads 𝑃⊥ 21,805 605 67 12
𝑃⊤ 5,379 237 10 10

Writes 𝑃⊥ 11,929 1,033 111 18
𝑃⊤ 11,429 514 45 10

Stack Frames 1,752,070 110,061 4,432 137
Dynamic Scripts 163 15 2 0
Overhead ×1.85 ×0.18 ×0.10 ×0.00

Table 4: Statistics of the numbers of the executed scripts,
reads, writes, the iterated stack frames, and dynamic scripts,
and the overhead on the index pages of top 300 websites.

in the same browser. Our system did not introduce any overhead
on 28% websites, while brought the maximal ×0.25, ×0.50, ×0.75,
and ×1.00 overhead on 73.67%, 89.67%, 95.67% and 98.33% of all the
websites, respectively, under the extreme condition. Appendix D
provides the detailed data for top 50 websites.

We analyzed the cause of the overhead and found that the num-
ber of the executed scripts, the amount of 𝑃⊥ and 𝑃⊤ computation
in read operations, and the number of dynamic scripts impact our
system’s performance with the Pearson correlation coefficients of
0.13, 0.18, 0.20, and 0.12 to the overhead. Therefore, we suggest
developers to perform the finest permission control on essential
web elements and scripts to minimize the performance impact. Such
a suggested setting is very different from our experiment setting
under the extreme condition.

5 SECURITY ENHANCEMENT
We then conduct case studies to illustrate the security enhance-
ments brought by our system. Note again that the system aims to
prevent unauthorized operations on web content and data in many
web attacks.

5.1 Web Data Access
To demonstrate the system’s capability to prevent data from being
stealthily collected and exfiltrated in browsers, we set up a web
page with a password field and embedded an inline script reading
that password field. We assigned the sid "s" to the inline script and
defined a policy to allow that script to read the password field.

We also developed two browser extensions. One reads the pass-
word field in its content script while the other one’s content script
injects an inline script for reading the field, as illustrated below.

// the inline script and the 1st extension

var pwd = document.getElementById("pwd").value;

// the 2nd extension

var injScript = document.createElement("script").text = "

var pwd = document.getElementById('pwd ').value;";

document.body.appendChild(injScript);

We installed the two extensions in our instrumented Chromium
browser and visited that page. The embedded inline script func-
tioned correctly. However, the content script of the first extension
and the injected inline script by the second extension failed to
obtain the password. We then updated the content script of the sec-
ond extension to document.write("<script sid='s'>var leak = document.

getElementById('pwd').value;</script>");, which assigns the sid "s" to
the injected inline script. Thanks to our design for dynamic content
in Section 3.3, the injected script failed either.
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Auto-save and Auto-fill. To learn the system’s impact on these
features, we created a website with the sign-in feature and set the
password field to read-only or write-only to third-party password
managers that are available as browser extensions. We then auto-
matically saved and filled in our login information with the built-in
password manager of the instrumented Chromium browser and
four popular third-party password managers, i.e., LastPass, Robo-
Form, KeeVault, and 1Password.

Our system had no impact on both the features of the Chromium
browser since they are implemented in native code. The two fea-
tures of all the third-party password managers were not affected
either when policies were correctly defined, although they are im-
plemented in JavaScript.

5.2 Web Content Manipulation
The code below illustrates the defense against unauthorized web
content manipulations that could introduce potentially harmful
content. We created a policy "in" to allow the function "myFunc" of
the script "s" to update the input element only through the jQuery’s
val function. The policy contained a chain of invoked functions and
their locations in the script "s" and the jQuery library. "@8381:15"
refers to the location of an anonymous function in the jQuery, while
"each@204:16" and "each@382:18" are two functions in the same name.
Thanks to our design for the call stack in Section 3.3, any update to
the input element directly by the script "s" or through other APIs
of the jQuery library will be rejected due to the mismatched chain
of scripts and functions. Appendix B shows the chain of scripts and
functions involved in such a write to <input>.
/** in policy file **/

"in": {

"w": { "sids": ["s":["myFunc@19 :20"], "jquery -3.7.1. js"

:["val@8351 :14","each@204 :16","each@382 :18","@8381

:15"]], "eids": "-"}}

/** HTML code snippet **/

<script sid ='s'> function myFunc () { $('#input').val("

Geek"); } </script >

<button onclick="myFunc ()">Click Me </button >

<input id="input" type="text" value="" pid ='in'/>

Content Injection. Our system supports both whitelist-based
and blacklist-based solutions to block unexpected content injection
on websites. For the highest level of protection, developers can
set the topmost <html> element to inoperable and define policies
to whitelist HTML and data operations by legitimate scripts only.
Alternatively, developers can blacklist operations by scripts outside
of the legitimate domains for the entire web page. According to our
observations in Section 4, these approaches are unlikely to incur
noticeable performance overhead.

Online Refund Scams. They rely on the ability to edit trans-
action records on banking web pages in the developer tools. Our
system can thwart such scams when only legitimate scripts and
their operations on those records are whitelisted in policies.

5.3 Personal Data Governance
Our system benefits both websites and individuals in terms of
the personal data governance. By highlighting operating scripts,
operations, and the operated data fields defined in policies, we
enhance the transparency of the collection and use of personal data

on websites, complying with data privacy laws and legislation such
as the General Data Protection Regulation [2] and the California
Consumer Privacy Act [1]. Individuals are then empowered to make
informed decisions about disclosing their data.

6 USABILITY AND COMPATIBILITY
We also develop a tool to automatically generate permission poli-
cies for websites and demonstrate the system’s compatibility and
usability with the policies generated for 30 popular websites in a
three-month study.

6.1 Policy Generator
When loading a web page or operating on a page in our tool, it
intercepts the use of JavaScript APIs in Table 1 for selected HTML
and data operations. During the interception, it iterates through the
V8 engine’s call stack, identifies the invoked JavaScript functions,
and extracts the URL or source code of the executed scripts. It also
records the constructor script of every dynamic inline script.

For an operated HTML element, the tool creates a policy with
a unique pid and includes the involved scripts (and functions) in
the policy, according to the syntax in Sections 2.2 and 3.3. It uses
script URL, if possible, in the policy. It assigns a unique sid to every
involved hard-coded inline script and uses that sid in the policy.
For each involved dynamic inline script, it assigns a unique sid to
the constructor script and uses that sid. The policy generation for
data operations is in the same manner. Our tool reuses policies to
reduce the maintenance cost. For signing into amazon.com, the tool
generated a policy with a chain of three involved scripts, as shown
below, for reading the password field at the script level.
/** in policy file **/

"JG8MG": {

"r": { "sids": ["https ://images -na.ssl -images -amazon.

com/images/I/8135 BpGZX3L ...", "https ://images -na.

ssl -images -amazon.com/images/I/21 ZMwVh4T0L ...", "

https ://images -na.ssl -images -amazon.com/images/I

/61 yXDIPmT -L..."], "eids": "-" } }

6.2 Policy Generation and Validation
Index Pages. We generated policies for every HTML and data
operation by JavaScript on the index page of 30 popular websites,
as shown in Appendix C. We then deployed the generated policies
on the retrieved index pages with mitmproxy 2. When those pages
were fully loaded in our system, we visually compared them with
the genuine ones rendered in the Google Chrome browser. We also
inspected and compared the cookies, local storage, and outgoing
network traffic.

Our system nor the generated policies incurred any exception,
demonstrating the system’s compatibility and usability. As it is un-
realistic to maintain the huge number of policies on some websites
(e.g., yahoo.com, cnn.com, and aol.com), we suggest developers to
focus on operations on essential web elements and data to reduce
the potential performance overhead and maintenance cost.

Sign-in Pages. To generate policies for password access on the
sign-in page of those 30 websites, we first identified the password
fields, where the type attribute is set to ‘password’ or the autocomplete

2https://mitmproxy.org/
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attribute is set to ‘new-password’ or ‘current-password’. We then
generated policies on 27 websites, as shown in Appendix C. No
policy was generated on github.com, salesforce.com, and source-
forge.net since no script was involved in their signing-in process.
We manually signed into those 27 websites with the deployed poli-
cies and no exception occurred.

Longitudinal Study. We re-validated the generated policies on
those web pages three months later to assess the maintenance cost
of the deployed policies over time.We did not observe any exception
nor any newHTML or data operation. We also re-generated policies
for those web pages and found that none of the previous policies
needs to be updated. The experiments show that polices can be
automatically generated and are usable within a certain period of
time even on frequently updated news and shopping websites.

7 DISCUSSION
The permission system has not been implemented outside the Blink
engine of the Chromium browser. We have not yet enforced per-
missions for cascading style sheet transitions and animations, that
can be used to alter the appearance and behavior of web elements.
We leave them for future work.

We will continue improving the JavaScript API list of Table 1. We
will validate the feasibility of reading and writing HTML elements
with inoperable descendants, as discussed in Section 2.3, and the
possibility of permission enforcement on JavaScript statements, as
discussed in Section 3.3. We will also optimize the implementation
for a better performance.

To use the policy generator introduced in Section 6.1, we re-
quire developers to label sensitive HTML and data operations. The
automatic and comprehensive identification of those operations
remains an open question.

Lastly, we plan to conduct a study involving both developers and
users, and seek valuable feedback for continuous improvements.

8 RELATEDWORK
In this section, we introduce related work and other HTML features
and compare our system with them.

8.1 JavaScript Confinement
Solutions have been proposed to prevent undesired data access and
flow on web pages by isolating JavaScript execution [10, 16–18, 21,
22], isolating web elements [31], and enforcing data flows [4, 7, 8,
27]. Meanwhile, [13] aims to restrict JavaScript execution instead
of the individual access to web resources. Researchers have also
studied the automatic generation of mock web APIs to replace web
resources [25]. Unlike these function-centric solutions to protect
data, our approach is object-oriented to protect both HTML and
data. It does not suffer from the increased system complexity and
the significant performance overhead.

Researchers have proposed to sanitize network traffic [6, 24, 26]
to prevent data leakage. Unlike them, our approach does not rely
on the knowledge of legitimate or suspicious data.

Researchers have also worked on a policy-based approach to pre-
vent DOM tampering via Cross-Site Scripting [11] and conducted
type-checking to stop undesired DOM mutations [14]. Unlike [11],
our system works at the script and even function level instead of

the domain level. It protects a broader range of web resources and
does not require the knowledge of data types on web, compared
to [14]. [12] used protection rings to coarsely restrict scripts’ access
to web resources but failed to further differentiate principals and
resources in the same ring. [30] aims to confine JavaScript behavior
in Node.js but not browsers.

A permission system has been proposed to restrict JavaScript
operations on HTML documents [32]. Different from it, we do not
trust first-party scripts as they can be altered by third parties [29,
35]. We do not trust browser extensions either; a typical example
is the content injection discussed in Section 5.2. To mitigate the
vulnerability associated with the call chain discussed in Section 3.3,
our system requires all scripts (and functions) on the call stack
to have permissions to perform operations, inevitably increasing
the complexity and performance overhead. Last but not least, we
enforced permissions on a boarder range of JavaScript interfaces
including but not limited to the network, storage, cookie-related
ones and those in the developer tools. A similar work, [37], aims
to generate security policies for JavaScript but it was difficult to
deploy due to the significant runtime overhead.

8.2 Other HTML Features
The HTML readonly attribute renders input and textarea elements
non-editable to users but it does not prevent the inputs from the
access by JavaScript or in the developer tools. The isTrusted property
distinguishes between user-driven and scripted events, returning
true for user-initiated actions or false for script-triggered events.
We work on a different research problem.

MutationObserver allows developers to attach observers toHTML
elements and to monitor mutations on the elements. It can be used
to restore web content to its original state as a detection & recovery
approach. It requires more development efforts, may lead to perfor-
mance issues, and can capture mutations only when it was set. In
contrast, we work on the prevention instead of the detection.

Subresource Integrity (SRI) validates the authenticity of the re-
trieved subresources such as scripts and stylesheets with checksums.
Differently, we work on the behavior rather than checksums of the
scripts. SRI suffers from several limitations, while our system does
not. (1) It cannot cope well with dynamic scripts. (2) Scripts that
failed SRI check will not be executed, disrupting web functions. (3)
Any change to subresources require checksum updates, which are
often manually done and prone to errors [5].

Content Security Policy aims to prevent cross-site scripting and
injection attacks. It blocks the entire scripts from untrusted sources
but our system aims to restrict scripts’ access to objects on the web.

9 CONCLUSION
We introduced a in-browser, fine-grained, mandatory access control-
based, and object-oriented permission system. It enables web de-
velopers to confine JavaScript operations on web content and data.
It was implemented in the Blink engine of the Chromium browser
as a ready-to-use solution. With comprehensive experiments and
analyses, we demonstrated its limited performance overhead, the
security enhancements it offers, its usability, and its compatibil-
ity to websites. Our system is a reasonable and practical solution,
bolstering the security and trustworthiness on the internet.
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A POLICY RULE EXAMPLES
Rule 2. In the code below, the <td> element inherits the policy "

read_table" from its ancestor <table> and the identifier "s" is created
for an inline script. Consequently, the <td> element can be read by
that inline script only.
/** in policy file **/

"read_table": {

"r": { "sids": ["s"], "eids": "-" } }

/** HTML code snippet **/

<table pid ='read_table '> <tr>

<td id='td' >...</td>

</tr> </table >

<script sid ='s'>

document.getElementById('td').innerText;

</script >

Rule 3. In the code below, the first <td> element’s own policy
"read_td" overrides its ancestor <table>’s policy "read_table"; con-
sequently, it can be read by the script "s2" only. The second <td>

element is assigned its ancestor’s policy in addition to its own, thus
can additionally be read by the script "s1".
/** in policy file **/

"read_table": {

"r": { "sids": ["s1"], "eids": "-" } },

"read_td": {

"r": { "sids": ["s2"], "eids": "-" } }

/** HTML code snippet **/

<table pid ='read_table '> <tr>

<td pid ='read_td '> </td>

<td pid ='read_table ,read_td '> </td>

</tr> </table >

Rule 4. The first code snippet below shows that the <table>

element’s outer HTML cannot be read by the script "s" because
no operation by the script "s" on the descendant <td> element is
allowed. In the next code snippet, the <table> element’s outer HTML
can be read by the script "s" only, since its descendant <td> element
is read-only to the script "s".
/** in policy file **/

"read_table": {

"r": { "sids": ["s"], "eids": "-" } },

"no_read_td": {

"-": { "sids": ["s"], "eids": "-" } }

/** 1st HTML code snippet **/

<table pid ='read_table '> <tr>

<td pid ='no_read_td '> </td>

</tr> </table >

/** in policy file **/

"all_table": {

"*": { "sids": ["*"], "eids": "-" } },

"read_td": {

"r": { "sids": ["s"], "eids": "-" } }

/** 2nd HTML code snippet **/

<table pid ='all_table '> <tr>

<td pid ='read_td '> </td>

</tr> </table >

Rule 5. In the first code snippet below, the form can be filled out,
except for the password field, and submitted programmatically by
the script "s" only. Notably, the policy "no_fill_pwd" on the password
field does not disable the form submission. In the next code snippet,

the form and its fields are inoperable to scripts thus it can only be
submitted manually.
/** in policy file **/

"fill_form": {

"w": { "sids": ["s"], "eids": "-" } },

"no_fill_pwd": {

"-": { "sids": "*", "eids": "*" } }

/** 1st HTML code snippet **/

<form pid ='fill_form '>

Username:<input type='text' name='usr'/>

Password:<input type='password ' name='pwd' pid ='

no_fill_pwd '/>

</form >

/** in policy file **/

"no_fill": {

"-": { "sids": "*", "eids": "*" } }

/** 2nd HTML code snippet **/

<form pid ='no_fill '>

Username:<input type='text' name='usr'/>

Password:<input type='password ' name='pwd'/>

</form >

Rule 6. The policies, as shown below, permit data dispatches
to www.google.com and cookies by the script "s". However, they
block the last two lines of code due to the domain mismatch and
no data flush to the HTML document stream.
/** in policy file **/

"www.google.com": {

"w": { "sids": ["s"], "eids": "-" } },

"cookie": {

"w": { "sids": ["s"], "eids": "-" } },

"stream": {

"-": { "sids": ["s"], "eids": "-" } }

/** HTML code snippet **/

<script sid ='s'>

// allowed

window.postMessage(data , 'www.google.com');

document.cookie = 'id=' + data;

// denied

img.src = 'www.tracking.com/img?id=' + data;

document.write(data);

</script >

B THE CHAIN OF SCRIPTS AND FUNCTIONS
FOR CODE EXAMPLE IN SECTION 5.2

[3294:1:0207/102315.678761: INFO:element.cc (6576)] Element

:: canThisWrite - -1707322995678 - -"INPUT"--"null"--"

text"

[3294:1:0207/102315.706451: INFO:element.cc (6607)]

1707322995678 - -"http ://10.66.131.145:8080/ jquery

-3.7.1. js" --973 c35bf97e8f87d23608e46d2530cc7 --"<

anonymous >" --8381:15

[3294:1:0207/102315.717424: INFO:element.cc (6607)]

1707322995678 - -"http ://10.66.131.145:8080/ jquery

-3.7.1. js" --973 c35bf97e8f87d23608e46d2530cc7 --"each"

--382:18

[3294:1:0207/102315.726612: INFO:element.cc (6607)]

1707322995678 - -"http ://10.66.131.145:8080/ jquery

-3.7.1. js" --973 c35bf97e8f87d23608e46d2530cc7 --"each"

--204:16

[3294:1:0207/102315.735682: INFO:element.cc (6607)]

1707322995678 - -"http ://10.66.131.145:8080/ jquery

-3.7.1. js" --973 c35bf97e8f87d23608e46d2530cc7 --"val"

--8351:14
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[3294:1:0207/102315.735846: INFO:element.cc (6607)]

1707322995678 - -"http ://10.66.131.145:8080/ index2.

html"--db6b170ad3c3d5feb7c24b8b4444d7b4 --"myFunc"

--19:20

C STATISTICS OF THE GENERATED POLICIES

Website
Index Page Sign-in Page

Policy Involved Scripts Policy Involved Scripts
All / Dynamic All / Dynamic

1 google.com 8 8 / 2 4 5 / 0
2 amazonaws.com 21 18 / 2 3 4 / 0
3 facebook.com 13 14 / 0 2 2 / 0
11 twitter.com 16 14 / 1 9 6 / 0
14 instagram.com 7 7 / 0 2 2 / 0
17 linkedin.com 14 13 / 0 1 1 / 0
21 netflix.com 11 9 / 1 2 2 / 1
27 amazon.com 98 65 / 3 6 6 / 2
41 yahoo.com 187 105 / 20 1 1 / 0
48 github.com 30 22 / 0 0 0 / 0
57 spotify.com 10 8 / 1 3 2 / 1
64 zoom.us 78 61 / 11 4 4 / 1
90 reddit.com 8 8 / 0 2 2 / 0
104 comcast.net 8 8 / 0 3 2 / 0
105 dropbox.com 36 31 / 22 6 5 / 5
110 baidu.com 53 32 / 7 5 5 / 1
117 flickr.com 34 25 / 3 2 2 / 0
119 nytimes.com 33 28 / 13 2 2 / 0
150 paypal.com 19 14 / 1 6 5 / 0
156 cnn.com 130 86 / 30 2 2 / 0
176 salesforce.com 6 6 / 1 0 0 / 0
179 ebay.com 77 62 / 23 4 4 / 0
184 wellsfargo.com 48 23 / 3 7 5 / 1
202 kaspersky.com 31 20 / 2 3 4 / 1
205 sourceforge.net 29 27 / 3 0 0 / 0
212 discord.com 11 9 / 1 2 2 / 0
215 slack.com 64 55 / 9 2 2 / 0
216 shopify.com 28 24 / 5 3 3 / 0
244 researchgate.net 50 34 / 17 4 7 / 2
282 aol.com 243 110 / 27 1 1 / 0

Table 5: The numbers of generated policies, all involved
scripts, and involved dynamic scripts for the index pages
and sign-in pages of 30 popular websites.
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D PERFORMANCE DETAIL UNDER THE EXTREME CONDITION ON TOP 50 WEBSITES
These columns are the website, number of executed scripts, numbers of intercepted JavaScript read and write operations, number of iterated
stack frames, and number of dynamic script constructions when visiting the index pages. The last three columns are the execution time of all
the scripts with and without our permission system, and the system’s performance overhead. Numbers less than 0.00 in the last column
indicate the possible browser performance fluctuation.

Website Scripts Reads Writes Stack Dynamic Script Time Timebaseline Incurred
𝑃⊥ 𝑃⊤ 𝑃⊥ 𝑃⊤ Frames Construction (ms) (ms) Overhead (x)

1 google.com 12 34 6 109 30 1,899 5 2,018 1,456 0.39
2 amazonaws.com 21 423 142 748 272 53,016 12 4,802 3,053 0.57
3 facebook.com 33 46 5 66 9 9,496 0 585 470 0.24
4 microsoft.com 86 432 199 2,550 1,367 51,511 27 2,993 2,866 0.04
5 googleapis.com 0 12 4 0 0 0 0 0 0 0.00
6 apple.com 12 277 242 2,101 1,177 165,496 0 1,781 789 1.26
7 youtube.com 44 111 85 6,759 3,655 635,527 1 4,384 5,511 -0.20
8 a-msedge.net 8 12 10 18 10 137 0 108 72 0.50
9 akamai.net 8 12 10 18 10 137 0 86 80 0.07
10 akamaiedge.net 8 12 10 18 10 149 0 94 125 -0.25
11 twitter.com 58 38 5 517 194 29,181 44 5,242 5,850 -0.10
12 azure.com 92 8,955 116 1,476 867 72,677 47 14,815 9,558 0.55
13 googlevideo.com 15 26 6 58 11 1,205 8 714 687 0.04
14 instagram.com 24 445 270 536 251 156,940 0 257 261 -0.02
15 gstatic.com 0 12 4 0 0 0 0 0 0 0.00
16 cloudflare.com 93 366 174 4,294 1,782 261,908 78 11,219 6,694 0.68
17 linkedin.com 16 63 6 536 272 7,116 7 1,787 1,790 0.00
18 tiktokcdn.com 8 12 10 18 10 149 0 89 81 0.10
19 live.com 78 1,199 65 2,371 1,092 36,321 35 1,546 1,513 0.02
20 doubleclick.net 13 1,570 2 513 279 102,105 4 3,992 2,148 0.86
21 netflix.com 24 280 131 672 293 21,528 3 3,859 3,497 0.10
22 office.com 21 62 31 156 63 9,283 2 2,424 2,031 0.19
23 windowsupdate.com 8 12 10 18 10 137 0 173 143 0.21
24 akadns.net 8 12 10 18 10 137 0 89 82 0.09
25 googletagmanager.com 0 12 4 0 0 0 0 0 0 0.00
26 apple-dns.net 8 12 10 18 10 149 0 113 102 0.11
27 amazon.com 199 1,993 404 1,708 1,207 167,207 53 3,520 2,359 0.49
28 trafficmanager.net 8 12 10 18 10 137 0 98 96 0.02
29 fbcdn.net 33 33 5 64 9 9,496 0 656 380 0.73
30 gtld-servers.net 8 12 10 18 10 137 0 137 130 0.05
31 wikipedia.org 4 373 5 29 13 2,346 0 182 167 0.09
32 domaincontrol.com 0 12 4 0 0 0 0 0 0 0.00
33 icloud.com 12 65 13 282 151 13,022 3 978 954 0.03
34 fastly.net 111 594 238 1,927 543 453,221 117 5,616 4,551 0.23
35 bing.com 0 0 0 0 0 0 0 0 0 0.00
36 microsoftonline.com 8 12 10 18 10 137 0 158 158 0.00
37 googleusercontent.com 0 12 4 0 0 0 0 0 0 0.00
38 wordpress.org 17 459 37 82 41 5,896 3 2,100 1,114 0.89
39 root-servers.net 8 12 10 18 10 137 0 91 78 0.17
40 mail.ru 64 313 62 6,577 3,127 775,543 36 11,741 10,228 0.15
41 yahoo.com 86 1,119 948 540 299 33,257 8 6,665 6,396 0.04
42 youtu.be 44 117 91 6,760 3,668 645,662 1 5,054 6,355 -0.20
43 aaplimg.com 8 12 10 18 10 137 0 90 90 0.00
44 digicert.com 68 1,485 1,205 746 406 64,499 46 9,632 9,158 0.05
45 pinterest.com 0 0 0 0 0 0 0 0 0 0.00
46 ui.com 29 780 462 1,103 561 109,802 20 6,697 6,813 -0.02
47 l-msedge.net 8 13 11 20 11 149 0 116 94 0.23
48 github.com 57 82 38 329 284 711 17 1,976 2,441 -0.19
49 windows.net 24 1,726 89 563 319 26,963 6 1,184 1,115 0.06
50 tiktokv.com 0 8 4 0 0 0 0 0 0 1.00

Table 6: Performance detail under the extreme condition on top 50 websites.
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