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ABSTRACT

Graph Neural Networks (GNNs) have enabled the power of deep learning to be
applied to inputs beyond the Euclidean domain, with applications ranging from
social networks and product recommendation engines to the life sciences. GNNs,
like other classes of machine learning models, benefit from ensemble learning,
wherein multiple models are combined to provide higher accuracy and robustness
than single models. However, ensembles suffer from significantly higher inference
processing and storage requirements, limiting their use in practical applications.
In this work, we leverage the unique characteristics of GNNs to overcome these
overheads, creating efficient ensemble GNNs that are faster than even single mod-
els at inference time. We observe that during message passing, nodes that are
incorrectly classified (error nodes) also end up adversely affecting the represen-
tations of other nodes in their neighborhood. This error propagation also makes
GNNs more difficult to approximate (e.g., through pruning) for efficient inference.
We propose a technique to create ensembles of diverse models, and further pro-
pose Error Node Isolation (ENI), which prevents error nodes from sending mes-
sages to (and thereby influencing) other nodes. In addition to improving accuracy,
ENI also leads to a significant reduction in the memory footprint and the num-
ber of arithmetic operations required to evaluate the computational graphs of all
neighbors of error nodes. Remarkably, these savings outweigh even the overheads
of using multiple models in the ensemble. A second key benefit of ENI is that it
enhances the resilience of GNNs to approximations. Consequently, we propose
Edge Pruning and Network Pruning techniques that target both the input graph
and the neural networks used to process the graph. Our experiments on GNNs for
transductive and inductive node classification demonstrate that ensembles with
ENI are simultaneously more accurate (by up to 4.6% and 3.8%) and faster (by
up to 2.8× and 5.7×) when compared to the best-performing single models and
ensembles without ENI, respectively. In addition, GNN ensembles with ENI are
consistently more accurate than single models and ensembles without ENI when
subject to pruning, leading to additional speedups of up to 5× with no loss in
accuracy.

1 INTRODUCTION

Graph Neural Networks (GNNs) such as GCN (Kipf & Welling, 2017), GraphSage (Hamilton et al.,
2017) and JKNet (Xu et al., 2018) have revolutionized the field of graph-based learning with their
ability to process and understand a diverse range of graphs (social media networks, molecular struc-
tures, road maps, etc.) using both topological and feature information. Each node in the graph
builds its representation based on its own features as well as the features of its neighbors through
message passing between neighboring nodes. Nodes receive messages from all other nodes in their
L-hop neighborhood (where L is the number of layers in the GNN), and update their representations
using an aggregation of these messages. Therefore, the time (and memory) complexity of message
passing is exponential in the number of GNN layers, making real-world large-scale GNNs highly
compute-intensive. Ensemble learning is a popular technique to boost the generalization perfor-
mance, training stability and robustness of machine learning applications, and GNNs have also been
shown to benefit greatly from the use of ensembles (Kosasih et al., 2021). However, ensembles
suffer from significantly greater inference latency and storage requirements (both of which increase
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linearly with the number of models in the ensemble) than single models, and this becomes especially
problematic for the already compute-intensive GNNs. In this work, we use the unique characteris-
tics of GNNs to overcome the challenges of ensemble learning, enabling GNNs to reap its benefits
without any drawbacks at inference time.

Figure 1: Error nodes have a detrimental effect
on the representations of nodes in their neigh-
borhood. Compared to correctly classified nodes,
error nodes receive messages from a significantly
larger proportion of other error nodes, which ad-
versely affects their classification.

We focus on GNNs used for node classification,
a popular problem with high practical signifi-
cance. Due to the use of message passing in
GNNs, the individual samples are not indepen-
dent of each other, and perturbations in the rep-
resentation of one node affect the representa-
tions of all other nodes in its neighborhood. We
observe that messages from nodes that are in-
correctly classified (which we call error nodes
for brevity) have an adverse effect on the rep-
resentations of all neighboring nodes (as seen
in Fig. 1). Indeed, the Single Node Attack
(Finkelshtein et al., 2020) leverages this phe-
nomenon, creating adversarial perturbations in
a single node that cause a large drop in node
classification accuracy across the entire graph.
Error nodes interfere with the functionality of
the message passing pipeline, leading to prop-
agation of misclassifications (unlike traditional
DNNs, where the misclassification of one sam-
ple does not affect the classification of other
samples). Therefore, Error Node Isolation (ENI) is vital for preventing error nodes from send-
ing messages to the other nodes. Some error nodes are labeled (part of training/validation set), and
they can be identified and isolated during training. However, many error nodes are also unlabeled,
especially since most real-world graphs are sparsely labeled. Fortunately, ensembles of diverse mod-
els can also be used to detect unlabeled error nodes, based on divergence among the predictions of
constituent models in the ensemble. The use of ENI provides two major benefits: (1) ENI improves
information flow in the model by eliminating harmful and/or noisy messages from error nodes, lead-
ing to better node representations and hence, better generalization performance. (2) ENI improves
inference efficiency, since messages from error nodes do not need to be computed and aggregated.
Due to the exponential complexity of message passing, the large decrease in inference operations,
dynamic memory usage and runtime as a result of ENI actually outweighs the increase due to the
use of multiple models in the ensemble.

We also find that single-model GNNs are difficult to approximate (through techniques such as prun-
ing) for efficient inference, due to the propagation of misclassifications in the graph. Nodes that
become error nodes (as a result of approximations) adversely affect all nodes in their neighbor-
hoods, resulting in new error nodes. These new error nodes transitively cause further error nodes
in their neighborhoods (and so on), leading to a large drop in accuracy when approximations are
applied aggressively for highly efficient inference. The use of ENI drastically reduces this effect,
and hence, enhances the resilience of GNNs to approximations. In this work, we propose Graph
neural network Ensembles with ENI (GEENI), and introduce an ensemble creation technique that
produces ensembles of diverse models that are capable of identifying and isolating error nodes. We
also propose two pruning techniques that take advantage of the increased resilience of GEENI to
approximations: (1) Edge pruning finds the largest set of unimportant edges in the input graph that
can be pruned for a given accuracy constraint. Complementary to ENI, edge pruning removes unim-
portant edges between correctly classified nodes. Since predictions from multiple models in the
ensemble are used to produce the final result, the graph can be pruned significantly more than in sin-
gle models, with little to no effect on final accuracy. Due to the increased sparsity of the graph and
the exponential complexity of message passing, inference using models produced by GEENI is sig-
nificantly faster than a single model processing a larger, denser graph. (2) Network pruning performs
structured pruning of neural networks processing the graph, enabling further gains in efficiency. We
summarize our main contributions as follows:
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• We introduce a framework for creating Graph neural network ensembles with ENI (GEENI)
that are both faster and more accurate than traditional single models.

• We propose an Ensemble Creation technique to create ensembles of diverse models that
can effectively perform ENI.

• We propose pruning techniques for both the input graph and the underlying neural net-
works that take advantage of the increased resilience of GEENIs for efficient and accurate
inference.

• Across four graph datasets composed of transductive (no new nodes are added to the graph
at testing time; the task is to predict unlabeled nodes in the original graph) and inductive
(new, unseen nodes are added to the graph at testing time) node classification tasks, GEENI
produces models that are consistently more accurate and consistently faster than the best-
performing single models and ensembles without ENI. In addition, we demonstrate that
GEENI models are consistently more accurate than the best-performing single models with
the same inference speed when aggressively pruned.

2 RELATED WORK

Ensemble Learning. Ensembles have been widely adopted to improve the accuracy, stability and
robustness of machine learning systems (Hansen & Salamon, 1990; Dietterich, 2000; Strauss et al.,
2017). However, these ensembles add significant computational and memory overheads, and tech-
niques have been proposed (Wen et al., 2020; Sen et al., 2020; Ruiz & Verbeek, 2021) to address
this challenge. Complementary to these, we use the unique properties of GNNs to further reduce the
overheads, enabling ensemble GNNs to be faster than even single models at inference time. Another
line of research focuses on improving ensemble diversity so that different models in the ensemble do
not make the same mistakes (Zhang et al., 2020; Kariyappa et al., 2021; Pang et al., 2019). However,
we find that compared to other machine learning applications, creating diverse GNNs is significantly
more challenging, since it has been shown that GNN predictions resemble label propagation (Yang
et al., 2020; Wang & Leskovec, 2020), where models trained on the same input graph and training
dataset are likely to make the same predictions.

Improving the efficiency of GNNs. The vast majority of prior work on improving the efficiency
of GNNs is focused on fast and scalable training of large graphs. The most prominent technique
is graph sampling (Chen et al., 2018; Huang et al., 2018; Hamilton et al., 2017), where only a
small subset of neighbors is considered for each node during training, thereby reducing the size
of the computation graph for each node and enabling efficient mini-batch training. Relatively less
attention has been paid to improving the inference efficiency of GNNs. Jia et al. (2020) identify and
eliminate redundant computations during message passing and aggregation. Xu et al. (2020) restrict
message passing to input-dependent subgraphs. Yan et al. (2020) learn smaller GNNs that can match
the performance of large GNNs through knowledge distillation. Tailor et al. (2021) enable the use
of 8-bit integer arithmetic for inference through quantization. Li et al. (2021) use neural architecture
search to find efficient networks. Chen et al. (2021) use Lottery Ticket Hypothesis to find sparse
graphs and models for efficient inference. Our work is complementary to these efforts, and GEENI
enhances the resilience of GNNs to approximations, thereby making them more effective. We also
demonstrate that GEENI can produce more efficient models for a given accuracy constraint than
Chen et al. (2021), with minimal post-training overheads.

3 ENSEMBLE CREATION AND INFERENCE

Our framework is illustrated in Fig. 2. Ensembles of diverse models have been shown to be signif-
icantly more accurate, stable and robust than single models. However, creating sufficiently diverse
GNNs is challenging, since it has been previously observed that GNN predictions resemble label
propagation (Wang & Leskovec, 2020). Consequently, the predictions of GNNs mainly depend on
the topology of the input graph and the labeled nodes, and hence, models trained on the same input
graph using the same training set are highly likely to make the same predictions (and mistakes). We
use a combination of multiple regularizers during training to overcome this challenge. DropNode
(Feng et al., 2020) randomly drops nodes from the input graph and the training set, and DropEdge
(Rong et al., 2020) randomly drops edges from the training graph during each training iteration.
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Figure 2: Illustrations of the different techniques proposed in this work. (1) In Ensemble Cre-
ation, the highest accuracy model is chosen as the base model from a universe of possible models.
The remaining models are chosen to balance accuracy vs. diversity with the models already in the
ensemble (2) Each model in the ensemble is asked to predict all the labeled (black) nodes (3) Nodes
whose predictions do not match the labels (red) are isolated (not allowed to send messages to other
nodes; can still receive messages) (4) Edge Pruning prunes the least important edges between cor-
rectly classified nodes (5) Network Pruning prunes the least important parameters in each model (6)
At inference time, each model predicts the unlabeled (gray) nodes. If a model’s prediction does not
match the majority prediction of the ensemble (red), the node is isolated in the model.

Sampling restricts message passing to a small subset of neighbors for each node. The combination
of DropNode, DropEdge and sampling significantly alters the graph topology and the training set in
each training iteration, leading to models that are more diverse. To further increase model diversity,
we also use regularizers on the neural network that processes the input graph. Dropout randomly
drops weights from the neural network, and Structured Dropout (Fan et al., 2020) randomly drops
large, structured groups of weights (such as neurons or even entire GNN Layers).

The Ensemble Creation procedure is described in Alg. 1. First, the base model in the ensemble
is created using the best known hyperparameter values and network architecture for the given task.
For instance, on Citeseer (full-supervised), the current state-of-the-art model (4-layer IncepGCN
with the appropriate hyperparameters) is selected as the base model. In order to add more models
to the ensemble, multiple models of a given network architecture type are trained using different
regularizer rates and hyperparameter values. Then, each model is scored based the extent to which
adding the model to the ensemble improves the ensemble quality (accuracy + diversity) using the
compute ensemble quality score function, and the model with the highest score is added to the
ensemble. The compute ensemble quality score function improves diversity of the ensemble (by
promoting models that make dissimilar predicitons for nodes misclassified nodes by the ensemble),
while also ensuing that the models in the ensemble are highly accurate (by promoting models that
make correct predicitons for nodes correctly classified nodes by the ensemble). This, in turn, leads
to high quality ensembles composed of accurate and diverse models, and equipped with the ability
to effectively perform ENI.

At inference time, we fuse the different models in GEENI into a single multi-branch model for
efficient parallel execution on the underlying hardware. This implementation is enabled by two
unique characteristics of GNNs: (1) The models used in GNNs tend to be very small (around 5MB)
compared to the input graphs (few GBs) in most cases (with some exceptions, such as GNNs used
in molecular prediction, where the input graphs are also small). The node features (most memory-
consuming part of a graph) are a function of the dataset, and hence, only one copy of the node
features needs to be stored. Each model in the ensemble maintains its own individual copy of the
adjacency matrix with the appropriate nodes isolated, which is stored in sparse format to minimize
memory usage. Hence, the static memory overhead of using additional models in the ensemble is
small (Appendix A). (2) The large decrease in inference operations and dynamic memory usage as a
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Algorithm 1: Ensemble Creation
Function compute ensemble quality score(model to evaluate M , validation set V ,
ensemble state E):

ensemble quality score = 0
for each node N in V do

model prediction = classify node(M ,N )
ensemble prediction = classify node(E,N )
if (ensemble prediction is wrong and ensemble prediction 6=model prediction) or

(ensemble prediction is correct and ensemble prediction = model prediction)
then

ensemble quality score = ensemble quality score + 1

return ensemble quality score

N : Number of models in the ensemble
K: Number of models of each network type considered for addition to the ensemble
Ensemble = {}
Base Model = Best Known Model (Dataset)
Ensemble = Ensemble ∪ Base Model
for i = 1 to N-1 do

models = Train K different models of network architecture i with varying amounts of
regularization and different hyperparameters

max ensemble quality score = 0
for j = 1 to K do

model score = compute ensemble quality score(models[j], V, Ensemble)
if model score > max ensemble quality score then

max ensemble quality score = model score
best model = models[j]

Ensemble = Ensemble ∪ best model
return Ensemble

result of ENI outweighs the increase due to the use of multiple models in the ensemble. Therefore,
dynamic memory overheads of the ensemble are negligible (and in most cases, less than single
models).

4 ERROR NODE ISOLATION (ENI)

In order to prevent propagation of misclassifications in the graph, we propose ENI to identify and
isolate the error nodes, preventing them from sending messages to other nodes. Some notable rea-
sons for the existence of error nodes after training include the presence of outliers in the input graph,
the use of sampling during training, the use of approximations to improve training and inference
efficiency, adversarial attacks, and the inherently approximate nature of neural networks. We define
isolating a node as pruning all outgoing edges (and hence, suppressing all outgoing messages) from
it. Isolated nodes retain their incoming edges, so that they can be predicted. When new, unseen
neighbors are added to the error nodes, they are inspected again, and reintroduced into the graph
if found to be correctly classified. We note that in order to equip the ensemble with the ability to
effectively perform ENI, we need to ensure that the models in the ensemble have sufficient diversity,
so that they do not make the same mistakes. We perform ENI in two stages:
Post-training (pre-inference) ENI of labeled nodes. Some error nodes are part of the train-
ing/validation set, and these can be easily identified and isolated. All the labeled nodes are predicted
(classified) after training, and nodes whose predictions do not match the labels are identified as error
nodes and isolated. This process is repeated after any approximation is applied to the input graph or
the neural networks processing the graph, since approximations can create additional error nodes.
Online ENI of unlabeled nodes during inference. The vast majority of error nodes in the graph are
unlabeled, especially since real-world graphs are sparsely labeled. We use an ensemble of diverse
models to predict the unlabeled error nodes. All models in the ensemble predict a certain node. If
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the prediction of a model in the ensemble does not match the majority prediction, then the node
is flagged as an error node, and isolated in the graph stored by the model. If all models provide
different predictions (no consensus in predictions), then the node is isolated in the graphs stored by
all the models. In the case of batched inference, ENI is performed after an entire batch of nodes has
been processed by the ensemble.

5 PRUNING TECHNIQUES

Edge Pruning. The most time-consuming operation in all GNN architectures is the message passing
process. For a L-layer GNN, each node receives messages from its L-hop neighborhood, and hence,
efficiency is largely dependent on the number of edges in the graph. However, we observe that not
all neighbors of a node need to be considered for accurate prediction. In fact, the messages received
from many neighbors are redundant, and do not provide any additional useful information for clas-
sification. Previous works (Yang et al., 2020; Li et al., 2020; Zheng et al., 2020) have proposed
the identification of redundant (and harmful) edges based on network topology and the task at hand,
such as task-irrelevant edges and inter-class edges. Complementary to these, Edge Pruning identifies
and prunes harmful/redundant/unimportant edges based on the current (trained) state of the GNN.
Therefore, the previously proposed techniques are applied pre-training, while Edge Pruning is a
post-training optimization that further prunes unimportant edges for highly efficient and accurate in-
ference. Due to the exponential increase in runtime with each edge in the graph, it is vital to find the
largest set of edges that can be pruned for a given accuracy loss constraint. In order to identify an op-
timal set of edges to prune, we need to ensure that when an edge is pruned, the representations of the
nodes connected by it remain sufficiently good to maintain correct functionality of the message pass-
ing pipeline. We propose a greedy approach to identify the optimal set of edges to prune in Alg. 2,
demonstrated on an undirected input graph for clarity. We inspect edges one-by-one, and verify their
effect on the two nodes (A and B) connected by them. If an edge is found to have ”minimal” effect
on the nodes connected by it, the edge is pruned from the graph, where an approximation knob Tedge

defines ”minimal” based on the given accuracy constraint. However, since real-world graphs have
a large number of edges, this process is computationally expensive. Therefore, in order to avoid in-
specting every edge in the graph, we sort the edges in order of a proxy importance score, and inspect
only the edges that are likely to be redundant. We establish an importance metric for edges based on
three observations: (1) Nodes with high in-degree are likely to have more redundant incoming edges,
since messages from several neighbors often contain similar (redundant) information. (2) Nodes that
are correctly classified with high confidence are likely to have more redundant incoming edges than
low-confidence nodes (which require more information from neighbors for correct classification).
(3) Edges with low edge weights are likely to have less effect on the output, and hence, are more
likely to be redundant. For an edge connecting two nodes A and B, we compute its importance score
as Importance[edge] = (ConfidenceA+ConfidenceB)

2 + (In degreeA+In degreeB)
2×max in degree − edge weight

max edge weight ,
where max in degree and max edge weight are computed over the entire input graph. We sort
edges in descending order of their importance score (Edgelist), and inspect them in this order.
When M (a small number, typically 3) consecutive edges are identified as not prunable, we stop the
Edge Pruning process, since the un-inspected edges are likely to be more important than the edges
already inspected, and hence, highly unlikely to be pruned. Hence, the search space and the over-
heads of Edge Pruning are drastically reduced with minimal impact on efficiency of the final model
using importance-ordered inspection of edges with early stopping. In addition, edges in graphs
stored by different models in the ensemble, and edges between distinct source-destination pairs in
the same graph can be inspected in parallel, further reducing the overheads. We note that for a fair
calculation of inference speedup, we only consider edges connecting two labeled nodes or a labeled
node with an unlabeled node (considered only in transductive learning tasks; in this case, we check
the impact of pruning the edge on the labeled node only. If the edge is identified as unimportant, it
is converted to a directed edge from the labeled node to the unlabeled node.).

Network Pruning. The neural networks that process the input graph in GNNs are typically small,
and have relatively less impact on the run time compared to the topology of the input graph. How-
ever, we find that pruning redundant parameters from the network can still provide tangible improve-
ment in inference efficiency. In this work, we focus on structured pruning that provides speedups
irrespective of the underlying hardware. Since ENI reduces the impact of misclassifying one sample
on the classification of other samples (bridging the gap between GNNs and other classes of DNNs),
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Algorithm 2: Edge Pruning
M : number of consecutive non-prunable edges required for early stopping
Tedge: approximation threshold based on acceptable accuracy loss
graph: Undirected input graph; model: GNN trained on graph
Edgelist = sort by importance(edges[graph])
for each Edge in Edgelist do

A,B: Nodes connected by Edge
init conf A = classify node(model, A)
init conf B = classify node(model, B)
graph = graph - Edge
new conf A = classify node(model, A)
new conf B = classify node(model, B)
if (new conf A < Tedge × init conf A) and (new conf B < Tedge × init conf B)

then
graph = graph + Edge
if M consecutive edges are not prunable then

return graph

else if (new conf A < Tedge × init conf A) then
graph = graph + directedEdge from B to A

else if (new conf B < Tedge × init conf B) then
graph = graph + directedEdge from A to B

return graph

and the neural networks used in GNNs are similar to other classes of DNNs, we can make use of
the vast literature of works aimed at pruning DNNs. In particular, we use importance estimation us-
ing first-order Taylor expansion to rank parameters in order of importance, and then prune the least
important ones, following the procedure described in (Molchanov et al., 2017). An approximation
knob Tnetwork sets the importance threshold (parameters with importance scores below this thresh-
old are pruned) to control the amount of pruning, and Tnetwork can be tuned to operate at different
points in the accuracy-efficiency curve based on the user’s constraints. Due to the relatively limited
impact of Network Pruning on inference efficiency, we find that the optimal solution for a given
accuracy constraint involves aggressive tuning of Tedge and conservative tuning of Tnetwork (such
that only highly unimportant parameters are pruned).

6 EXPERIMENTS AND RESULTS

We implement our techniques using DropEdge (Rong et al., 2020) and DGL (Zheng et al., 2021) in
PyTorch. The experiments were performed on a GeForce RTX 2080 Ti GPU with 11GB memory.
The validation sets are used for Ensemble Creation, Edge Pruning and Network Pruning, and all
results in this section are reported on the test sets. Results in this section are reported with inference
batch size of 1, and we demonstrate that our techniques are highly effective for batched inference
also (Appendix A). For simplicity, we consider only three different network architectures – GCN
(Kipf & Welling, 2017), IncepGCN (Rong et al., 2020) and JKNet (Xu et al., 2018). The best
single model is trained using the currently known best hyperparameter values and the best network
architecture (from the three listed above) for each task, and it is also used as the base model in the
ensemble. The rest of the ensemble is created from the two network architectures not used in the
best single model using our Ensemble Creation technique. Additional experiments and results are
presented in Appendix A.

GEENIs are faster and more accurate than traditional single models. We present results on
Cora, Citeseer and Pubmed datasets (transductive node classification) in semi- and full-supervised
settings, and on the large Reddit dataset (inductive node classification) in Table 1. We find that GEE-
NIs outperform the best single model and ensembles without ENI in all tasks, while also being faster.
For Cora (full-supervised), Citeseer (full-supervised) and Pubmed (full-supervised), our best single
models match (or are very close to) the current state-of-the-art, and hence, GEENIs advance the
state-of-the-art in these tasks, while also being significantly faster than the current state-of-the-art
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Table 1: Results of semi-supervised and full-supervised node classification

Dataset Best Single
Model

Ensemble
without ENI GEENI Speedup from

ENI
Cora

(full-supervised) 88.2 88.7 89.6 2.1×
Cora (semi-
supervised) 83.3 83.7 85.3 2.4×

Citeseer
(full-supervised) 80.5 81.4 83.5 2.3×
Citeseer (semi-

supervised) 72.7 73.1 75.5 2.6×
Pubmed

(full-supervised) 91.6 92.0 92.8 2.3×
Pubmed (semi-

supervised) 79.5 80.3 84.1 2.8×
Reddit 95.42 95.97 96.72 2.1×

models. The variation in speedup across different tasks is caused two factors: the number of nodes
isolated by ENI (the less accurate semi-supervised models have greater speedup than full-supervised
models since more nodes are isolated), and the connectivity of the isolated nodes (isolation of well-
connected nodes provides greater speedup).

Figure 3: Results of pruning. Edge Pruning and Network
Pruning are used, unless specified.

GEENIs prune better than tradi-
tional single models, being signif-
icantly faster at iso-accuracy. We
prune the models using Edge Pruning
and Network Pruning. The amount
of pruning is controlled by tuning
the approximation knobs Tedge and
Tnetwork to operate at different points
on the accuracy-efficiency curve. We
find that models pruned with Edge
Pruning + Network Pruning are more
accurate than those pruned with Uni-
versal Graph Sparsification (UGS)
(Chen et al., 2021) at the same infer-
ence speed for two reasons: (1) By
ensuring that node representations of
the nodes connected by a pruned edge
remain sufficiently good, Edge Pruning finds a larger set of edges to remove for a given accuracy
constraint. (2) Tuning Tedge more aggressively than Tnetwork leads to faster models for a given
accuracy constraint compared to jointly pruning both the input graph and the neural networks with
equal priority. However, we note that Edge Pruning + Network Pruning adds approximately 10%
more post-training overheads than UGS. GEENIs are consistently more accurate than the best single
models (Fig. 3), especially under drastic approximations for highly efficient inference. Traditional
single models suffer from the propagation of misclassifications, where error nodes have an adverse
effect on the classification of all neighboring nodes due to improper message passing. This causes
a large drop in accuracy at <10% inference time. In addition, the graph stored by each model in
the ensemble can be pruned much more aggressively than the graph stored by the best single model
for a given accuracy constraint, since predictions from multiple models are considered for the final
prediction. An ensemble of multiple models, with each model processing a smaller, sparser graph
is significantly faster than a single model processing a larger, denser graph due to the exponential
complexity of message passing. We note that when Tedge and Tnetwork are set such that only the
redundant edges and parameters are pruned, we achieve further speedups of up to 5× (on top of the
speedups from ENI) with no loss in accuracy.

Model diversity is vital for effective ENI. If ENI is performed based on the confidence of the best
single model (we modify the confidence threshold Tc, where nodes with confidence less than Tc
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are isolated, and report numbers for the maximum test accuracy seen in this process), only 32.7%
of error nodes are detected, while 10.4% of correctly classified nodes are falsely identified as error
nodes, for a final accuracy of only 79.9%, thereby motivating the use of ensembles for effective
ENI. The use of ensembles for ENI is based on the premise that diverse models are unlikely to
make the same mistakes. However, creating sufficiently diverse GNNs is challenging, since it has
been previously observed that GNN predictions resemble label propagation. This is evidenced by
the fact that models created by changing hyperparameters (such as number of GNN layers, hidden
size, number of hidden layers etc.) and varying amounts of regularization (DropEdge, Dropout
and Sampling) make similar predictions and mistakes (Table 2). This problem persists even when
different types of networks are used. However, the use of DropNode (a significantly more drastic
approximation), where nodes are randomly dropped from the graph (and the training set), greatly
improves diversity, since label propagation is highly dependent on network topology and the training
dataset. In addition, the use of Structured Dropout further improves model diversity (Table 2).

Table 2: ENI capability of different ensemble constructs on Citeseer (full-supervised).

Techniques to
improve diversity

Percentage of error
nodes detected

Percentage of nodes
falsely identified as

error nodes
Accuracy of GEENI

DropEdge + Dropout
+ Sampling 9.7 0.4 80.7

+ Network Diversity 16.9 0.5 81
+ DropNode 75.1 0.8 83.2

+ Structured Dropout 78.8 0.8 83.5

Discussion of overheads: In order to create a N network ensemble, our Ensemble Creation method
creates one model of the base network (with best known hyperparameters) and K models of every
other network, and then constructs the ensemble using models that maximize the Ensemble Quality
Score. The use of multiple regularizers, primarily DropNode, greatly speeds up the Ensemble Cre-
ation process. For instance, on Citeseer (full-supervised) with IncepGCN, a DropNode rate of 20%
makes training a model 9.5x faster on average. We also note that in order to obtain good-performing
single-models for any given task, an extensive hyperparameter search needs to be performed. For
instance, DropEdge observes that on Citeseer (full-supervised), the difference in accuracy between
the best performing 8-layer IncepGCN and the best performing 32-layer GraphSage is 26.9 points.
Among the different 8-layer IncepGCN models, we observe accuracy differences of >8 points. By
storing the models obtained during this search, the only additional overhead in creating the ensemble
involves computing the Ensemble Quality Score with the different models, which is negligible. Our
pruning techniques also add small post-training overheads. For each edge inspected during Edge
Pruning, we need to classify one or both nodes connected by it in order to ensure their representa-
tions remain sufficiently good. The use of importance-based ordering of edges with early stopping
reduces the Edge Pruning time by 2 − 3× over a random exhaustive search of all edges, with neg-
ligible impact on inference efficiency. Network Pruning requires a single forward pass through the
validation set to characterize importance, and a single iteration of fine-tuning to recover accuracy
loss (only under drastic approximations). The wall-clock time for Edge Pruning + Network Pruning
is only a few minutes for the smaller graphs (Cora, Citeseer), and approximately 10% of the training
time for the larger graphs (Pubmed, Reddit) on a single GPU.

7 CONCLUSION

We proposed a framework to create Graph neural network Ensembles with ENI (GEENIs) that en-
ables GNNs to enjoy the benefits of ensemble learning while being faster than single models. We
introduced an Ensemble Creation method that creates an ensemble of diverse GNNs with the ability
to effectively perform Error Node Isolation. We also demonstrated the increased resilience of the
GEENI to approximations, and proposed pruning techniques, Edge Pruning (applied to the input
graph) and Network Pruning (applied to the neural networks processing the graph), that take ad-
vantage of this enhanced resilience. Using this framework, we produced ensemble GNNs that were
consistently more accurate and consistently faster than the best-performing single models.
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A ADDITIONAL RESULTS

ENI is highly effective for batched inference. ENI is most effective when a batch size of 1 is used,
since error nodes can be immediately identified and isolated. During batched inference, ENI can be
performed only after an entire batch of nodes is classified, and hence, error nodes have a detrimental
effect on neighbors within the same batch. However, we find that ENI is highly beneficial, even
during batched inference (Table 3). We also note that on memory constrained devices such as GPUs,
GNNs used for large graphs (such as Reddit) can only use very small batch sizes (typically 4/8) for
efficient inference.

Table 3: Effectiveness of ENI for different batch sizes on Citeseer (full-supervised).

Batch Size Accuracy of GEENI Speedup from ENI over the
best single model

1 83.5 2.3×
2 83.5 2.3×
4 83.2 2.2×
8 82.9 2×
16 82.5 1.8×
32 81.8 1.7×

3-model ensembles provide best tradeoff between accuracy and efficiency. We experiment with
different number of models in the ensemble, and find that 3 models (sufficient to get a majority
prediction in most cases) are sufficient for effective ENI. In our experiments, 5-model ensembles
(with additional GAT (Velickovic et al., 2018) + GraphSAGE (Hamilton et al., 2017) models) do not
improve accuracy over 3-model ensembles. We hypothesize that this is because 3-model ensembles
created using our Ensemble Creation method have sufficient diversity to detect most errors made
due to the use of approximations for improving training and inference efficiency (such as sampling,
pruning etc.), due to randomness (such as parameter initialization, order in which training data is
presented etc.) and due to the inherently approximate nature of neural networks. The error nodes
not detected by the 3-model ensemble are likely to be ”true outliers”, and GNNs trained using
conventional methods are unlikely to predict them correctly. In addition, we find that individual
graphs stored by each model in 5-model ensembles cannot be pruned to become sufficiently small
and sparse to overcome the overheads of using additional models. Therefore, 3-model ensembles
also prune better than the 5-model ensembles.

3-model ensembles add minimal memory overheads. The models used in GNNs tend to be very
small (around 5MB) compared to the input graphs (few GBs) in most cases (with some exceptions,
such as GNNs used in molecular prediction, where the input graphs are also small). The node
features (most memory-consuming part of a graph) are a function of the dataset, and hence, only
one copy of the node features needs to be stored. Each model in the ensemble maintains its own
individual copy of the adjacency matrix with the appropriate nodes isolated, which is stored in
sparse format to minimize memory usage. Hence, the static memory overhead of using additional
models in the ensemble is small. On Citeseer (full-supervised), our best single model requires
approximately 58MB of static storage for the input graph and the model. Our 3-model ensemble
requires approximately 65MB of storage, 12% more than the best single model after Ensemble
Creation. After Edge Pruning and Network Pruning with Tedge and Tnetwork set for no accuracy
loss, the ensemble requires only 8% more static memory than the best single model. In addition, the
average dynamic GPU memory usage is less for the ensemble than the best single model due to the
use of ENI.
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Figure 4: Pseudo-label generation and resulting benefits.
Speedups are reported on the nodes that remained unlabeled
(nodes that are not part of the training/ validation set, and
haven’t been added to the list of training nodes as a result
of pseudo-label generation), while accuracy is reported over
all unlabeled nodes in the original graph (nodes that are not
part of the training/ validation set).

GEENIs generate better pseudo-
labels than traditional single mod-
els. Real world graphs are often
sparsely labeled. As a result, some
nodes in sparsely labeled neighbor-
hoods are never trained on, resulting
in the presence of several error nodes
in these neighborhoods. The best
known solution to this problem in-
volves the use of pseudo-labels (Yang
et al., 2020). Typically, a GNN is
first trained on the sparsely labeled
graph. Then, this GNN is used to pre-
dict the labels of the unlabeled nodes.
If the GNN’s confidence in predicting
a node is above a certain threshold,
that node is then added to the train-
ing set along with its predicted label,
based on the assumption that highly confident predictions are likely to be correct. Then, the GNN is
finally trained on this enlarged training set for better generalization performance. Here, we use our
ensemble to generate pseudo-labels on Citeseer (semi-supervised), and find that it produces signifi-
cantly higher quality pseudo-labels than the best single model (Fig. 4). With the tightest constraint,
all models in the ensemble must produce the same classification with confidence above a threshold
for the node to be added to the training set. We observe that this constraint leads to approximately
50% of the unlabeled nodes being added with 100% accurate training labels. We then iteratively re-
lax the number of models that need to produce the same classification and the confidence threshold
to obtain the other points on the curve. Another optimization that takes advantage of pseudo-labels is
the deletion of inter-class edges and the addition of intra-class edges to minimize noise and improve
message passing in the GNN (Yang et al., 2020). We use the pseudo-labels generated by our en-
semble (along with the labels available in the training set) to perform this optimization, and present
results in Fig. 4. The peak accuracy on the unlabeled nodes of Citeseer (semi-supervised) is 80.3%,
which is 5.4% higher than the peak accuracy of the best single model. With Tedge and Tnetwork

set such that only redundant edges and parameters are pruned with zero accuracy loss, there are
two factors that contribute towards increased speedup as more nodes are added to the training set:
(1) More inter-class edges can be deleted (based on pseudo-labels), and the resulting benefits far
outweigh the overheads of adding a small number of new intra-class edges. (2) More edges can be
analyzed and pruned by our Edge Pruning method, since the number of unlabeled nodes decreases
(we do not analyze edges connecting two unlabeled nodes).
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B HYPERPARAMETERS USING IN ENSEMBLE CREATION, EDGE PRUNING
AND NETWORK PRUNING

We describe the different hyperparameters used in our techniques, and how they can be tuned to
operate at different points in the accuracy-efficiency tradeoff space (Table 4).

Table 4: Hyperparameters used in our techniques.
Hyperparameter Description Value

N Number of models in the
ensemble 3

K
Number of models of each

network type considered for
addition to the ensemble

50 for (Cora, Citeseer,
Pubmed), 25 for Reddit due to
the compute-intensive training

process

M

Number of consecutive
non-prunable edges required
for early stopping in Edge

Pruning

3

T1
Edge Pruning approximation
threshold based on accuracy

loss constraint

Tuned on the validation set;
set such that accuracy on the

validation set is as close to the
constraint as possible without
dropping below the constraint

T2

Network Pruning
approximation threshold
based on accuracy loss

constraint

Tuned on the validation set;
set such that accuracy on the

validation set is as close to the
constraint as possible without
dropping below the constraint.
T2 is tuned after T1 is set (and
the resulting edges pruned) to

allow for maximum Edge
Pruning
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