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Abstract

Monte-Carlo Tree Search (MCTS) is a class of methods for solving complex
decision-making problems through the synergy of Monte-Carlo planning and Re-
inforcement Learning (RL). The highly combinatorial nature of the problems
commonly addressed by MCTS requires the use of efficient exploration strategies
for navigating the planning tree and quickly convergent value backup methods.
These crucial problems are particularly evident in recent advances that combine
MCTS with deep neural networks for function approximation. In this work, we
introduce a mathematical framework based on using the α-divergence for backup
and exploration in MCTS. We show that this theoretical formulation unifies dif-
ferent approaches, including our newly introduced ones (Power-UCT and E3W),
under the same mathematical framework, allowing us to obtain different methods
by simply changing the value of α. In practice, our unified perspective offers a
flexible way to balance exploration and exploitation by tuning the single α parame-
ter according to the problem at hand. We validate our methods through a rigorous
empirical study of a basic toy task Synthetic Tree problem as well as across several
Atari games.

1 Introduction

Monte-Carlo Tree Search (MCTS) is an effective method that combines a random sampling strategy
with tree search to determine the optimal decision for on-the-fly planning tasks. MCTS has yielded
impressive results in Go [Silver et al., 2016] (AlphaGo), Chess [Silver et al., 2017a] (AlphaZero),
or video games [Osband et al., 2016], and it has been further exploited successfully in motion
planning [Nguyen et al., 2017; Sukkar et al., 2019], autonomous car driving [Volpi et al., 2017;
Chen et al., 2020], and autonomous robotic assembly tasks [Funk et al., 2021]. Many of the MCTS
successes [Silver et al., 2016, 2017a,b] rely on coupling MCTS with neural networks trained using
Reinforcement Learning (RL) [Sutton and Barto, 1998] methods such as Deep Q-Learning [Mnih et
al., 2015], to speed up learning of large scale problems.

Despite AlphaGo and AlphaZero achieving state-of-the-art performance in games with high branching
factors like Go [Silver et al., 2016] and Chess [Silver et al., 2017a], both methods suffer from poor
sample efficiency, mostly due to the inefficiency of the average mean backup operator, which is
well-known for the issue of underestimating the optimum and leading to the polynomial convergence
rate of PUCT [Xiao et al., 2019]. This problem, combined with the need for effective exploration
techniques, particularly in highly stochastic environments, poses an open research problem for the
MCTS community: effective exploration methods and sufficient backup operators for the planning
tree.

In this work, we provide a theory of the use of α-divergence in MCTS, respectively showing how the
different range of α parameter solves the exploration-exploitation trade-off schema and prove that a
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class of our novel backup operators ensure the exponential convergence rate, showing the advantages
over the polynomial convergence rate of UCT [Kocsis et al., 2006]. We further draw the connection
between the two recent advanced MCTS methods, Power-UCT [Dam et al., 2019] and E3W [Dam
et al., 2021], which have been proven to provide effective solutions for the exploration and backup
operator problems in the tree, by providing a rigorous theoretical study of α-divergence in MCTS
and analyze how α-divergence can help to derive power mean and entropic regularization in MCTS.

α-divergence has been first extensively studied in RL context by Belousov and Peters [2019], and later
on, has been proposed to use in Lee et al. [2019a] as a generalized Tsallis Entropy regularizer in MDP.
However, the study of α-divergence in MCTS is still an open question. In this work, we first show that
power mean (the new backup operator used in Power-UCT) can be derived as a closed-form solution
of a mean of distribution by considering α-divergence as the probability distance, generalizing the
eclipse distance that is used to derive average mean of a distribution. We further exploit the convex
regularization framework in MCTS by analyzing the α-divergence function as the regularizer to
introduce novel regularized backup operators for MCTS, relatively derive the maximum entropy, the
relative entropy of the policy update, and, more importantly, derive the Tsallis entropy of the policy
those has been proposed in E3W [Dam et al., 2021]. Finally, we measure α-divergence in Synthetic
Tree and show how α-divergence help to achieve competitive results in challenging problems.

2 Related Work

We want to improve the efficiency and performance of MCTS by addressing the two crucial problems
of value backup and exploration. Our contribution follows on from a plethora of previous works that
we briefly summarize in the following.

Backup operators. To improve upon the UCT algorithm in MCTS, Khandelwal et al. [2016]
formalize and analyze different on-policy and off-policy complex backup approaches for MCTS
planning based on techniques in the RL literature. Khandelwal et al. [2016] propose four complex
backup strategies: MCTS(λ), MaxMCTS(λ), MCTSγ , MaxMCTSγ , and report that MaxMCTS(λ)
and MaxMCTSγ perform better than UCT for certain parameter setups. Vodopivec et al. [2017]
propose an approach called SARSA-UCT, which performs the dynamic programming backups using
SARSA [Rummery, 1995]. Both Khandelwal et al. [2016] and Vodopivec et al. [2017] directly
borrow value backup ideas from RL in order to estimate the value at each tree node. However, they
do not provide any proof of convergence. The recently introduced MENTS algorithm [Xiao et al.,
2019], uses softmax backup operator at each node in combination with an entropy-based exploration
policy, and shows a better convergence rate w.r.t. UCT.

Exploration. Entropy regularization is a common tool for controlling exploration in RL and has
led to several successful methods [Schulman et al., 2015; Haarnoja et al., 2018; Schulman et al.,
2017; Mnih et al., 2016]. Typically specific forms of entropy are utilized such as maximum entropy
[Haarnoja et al., 2018] or relative entropy [Schulman et al., 2015]. This approach is an instance of
the more generic duality framework, commonly used in convex optimization theory. Duality has been
extensively studied in game theory [Shalev-Shwartz and Singer, 2006; Pavel, 2007] and more recently
in RL, for instance considering mirror descent optimization [Montgomery and Levine, 2016; Mei et
al., 2019], drawing the connection between MCTS and regularized policy optimization [Grill et al.,
2020], or formalizing the RL objective via Legendre-Rockafellar duality [Nachum and Dai, 2020a].
Recently [Geist et al., 2019] introduced regularized Markov Decision Processes, formalizing the RL
objective with a generalized form of convex regularization, based on the Legendre-Fenchel transform.
Several works focus on modifying classical MCTS to improve exploration. For instance, Tesauro et
al. [2012] propose a Bayesian version of UCT to improve estimation of node values and uncertainties
given limited experience.

α-divergence. The use of α-divergence in RL has been widely explored, particularly by Belousov
and Peters [2019], who proposed using it to measure the divergence in policy search. Their work
generalizes relative entropy policy search to constrain policy updates. Belousov and Peters [2019]
studied a particular class of f -divergence, known as α-divergence, which resulted in compatible
policy update and value function improvement in actor-critic methods. Another study by Lee et
al. [2019a] analyzed α-divergence as a generalized Tsallis Entropy regularizer in MDP. By scaling
the α parameter as an entropic index, Lee et al. [2019a] controlled the generalized Tsallis Entropy
regularizer and derived Shannon-Gibbs entropy and Tsallis Entropy as special cases.
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3 Preliminaries

3.1 Markov Decision Process

In the context of Reinforcement Learning (RL), an agent’s goal is to determine how to interact with
the environment modeled as a Markov Decision Process (MDP), which is a well-known mathematical
framework for sequential decision-making. Our focus is on an infinite-horizon discounted MDP
that can be represented as a 5-tupleM = (S,A,R,P, γ), where S is the state space, A is the finite
discrete action space with |A| representing the number of actions,R : S ×A×S → R is the reward
function, P : S ×A → S is the probability distribution over the next state s′ given the current state
s and action a, and γ ∈ [0, 1) is the discount factor. A policy π ∈ Π : S → A is a probability
distribution over possible actions a given the current state s.

A policy π induces aQ value function: Qπ(s, a) ≜ E
[∑∞

k=0 γ
kr(sk, ak)|s0 = s, a0 = a, π

]
, where

r(si+1, ai+1) is the reward obtained after the i-th transition induces by the policy π, respectively
defining the value function under the policy π as V π(s) ≜ maxa∈A Qπ(s, a). The Bellman operator
under the policy π is defined as

TπQ(s, a) ≜
∫
S
P(s′|s, a)

[
R(s, a, s′) + γ

∫
A
π(a′|s′)Q(s′, a′)da′

]
ds′. (1)

The goal is to find the optimal policy that satisfies the optimal Bellman equation [Bellman, 1954]

Q∗(s, a) ≜
∫
S
P(s′|s, a)

[
R(s, a, s′) + γmax

a′
Q∗(s′, a′)

]
ds′, (2)

which is the fixed point of the optimal Bellman operator

T ∗Q(s, a) ≜
∫
S
P(s′|s, a)

[
R(s, a, s′) + γmax

a′
Q(s′, a′)

]
ds′. (3)

The optimal value function is defined V ∗(s) ≜ maxa∈A Q∗(s, a).

3.2 Monte-Carlo Tree Search

Monte-Carlo Tree Search (MCTS) is a tree search method for MDPs that combines Monte-Carlo
sampling, tree search, and multi-armed bandits to make optimal decisions efficiently. The MCTS
tree is composed of nodes and edges that represent visited states and actions taken in each state,
respectively. The algorithm consists of four main steps: Selection: where a tree-policy is used to
traverse the tree from the root node to a leaf node. Expansion: where the new node is added to the
tree according to the tree policy; Simulation: where a Monte-Carlo rollout or a neural network is
used to estimate the value of the new node. Backup: where the collected reward is used to update
the action-values along the path from the leaf node to the root node. The tree-policy used to select
the action to execute in each node needs to balance the use of already known good actions, and the
visitation of unknown states.

3.3 Upper Confidence bound for Trees

In this section, we present the MCTS algorithm UCT (Upper Confidence bounds for Trees) [Kocsis
et al., 2006], an extension of the well-known UCB1 [Auer et al., 2002] multi-armed bandit algorithm.
UCB1 chooses the arm (action a) using

a = argmax
i∈{1...K}

Xi,Ti(n−1) + C

√
log n

Ti(n− 1)
, (4)

where Ti(n) =
∑n

t=1 1{t = i} is the number of times arm i is played up to time n. Xi,Ti(n−1)

denotes the average reward of arm i up to time n − 1 and C =
√
2 is an exploration constant. In

UCT, each node is a separate bandit, where the arms correspond to the actions, and the payoff is the
reward of the episodes starting from them. In the backup phase, value is backed up recursively from
the leaf node to the root as

Xn =

K∑
i=1

(Ti(n)

n

)
Xi,Ti(n). (5)

Kocsis et al. [2006] proved that UCT asymptotically converges in the limit to the optimal policy.
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3.4 α-divergence

The f -divergence[Csiszár, 1964] generalizes the definition of the distance between two probabilistic
distributions P and Q on a finite set A as

Df (P∥Q) =
∑
a∈A

Q(a)f

(
P (a)

Q(a)

)
, (6)

where f is a convex function on (0,∞) such as f(1) = 0. For example, the KL-divergence
corresponds to fKL = x log x− (x− 1). The α−divergence is a subclass of f -divergence generated
by α−function with α ∈ R. α−function is defined as

fα(x) =
(xα − 1)− α(x− 1)

α(α− 1)
. (7)

The α−divergence between two probabilistic distributions P and Q on a finite set A is defined as

Dα (P∥Q) =
∑
a∈A

Q(a)fα

(
P (a)

Q(a)

)
, (8)

where
∑

a∈A Q(a) =
∑

a∈A P (a) = 1.
Furthermore, given the α−function, we can derive the generalization of Tsallis entropy of a policy π
as

Hα(s) =
1

α(1− α)

(
1−

∑
a∈A

π(s, a)α
)
. (9)

In addition, we have

lim
α→1

Hα(s) = −
∑
a∈A

π(s, a) log π(s, a) , (10)

H2(s) =
1

2

(
1−

∑
a∈A

π(s, a)2
)
, (11)

respectively, the Shannon entropy (10) and the Tsallis entropy (11) functions.

3.5 Legendre-Fenchel Transform

Consider an MDPM = ⟨S,A,R,P, γ⟩, as previously defined. Let Ω : Π→ R be a strongly convex
function. For a policy πs = π(·|s) and Qs = Q(s, ·) ∈ RA, we observe that the Bellman operator
Tπs

Qs = ⟨π(·|s), Q(s, ·)⟩ = ⟨πs, Qs⟩. The Legendre-Fenchel transform (or convex conjugate) of Ω
is Ω∗ : RA → R, defined as:

Ω∗(Qs) ≜ max
πs∈Πs

{⟨πs, Qs⟩ − τΩ(πs)} , (12)

where the temperature τ specifies the strength of regularization. Among the several properties of the
Legendre-Fenchel transform, we use the following [Mensch and Blondel, 2018; Geist et al., 2019;
Lee et al., 2019b].
Proposition 1. Let Ω be strongly convex.

• Unique maximizing argument: ∇Ω∗ is Lipschitz and satisfies

∇Ω∗(Qs) = argmax
πs∈Πs

{⟨πs, Qs⟩ − τΩ(πs)} . (13)

• Boundedness: if there are constants LΩ and UΩ such that for all πs ∈ Πs, we have
LΩ ≤ Ω(πs) ≤ UΩ, then

max
a∈A

Qs(a)− τUΩ ≤ Ω∗(Qs) ≤ max
a∈A

Qs(a)− τLΩ. (14)

• Contraction: for any Q1, Q2 ∈ RA

∥ Ω∗(Q1)− Ω∗(Q2) ∥∞≤ γ ∥ Q1 −Q2 ∥∞ . (15)
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Note that if Ω(·) is strongly convex, τΩ(·) is also strongly convex; thus all the properties shown in
Proposition 1 still hold1. Solving equation (12) leads to the solution of the optimal primal policy
function ∇Ω∗(·). Since Ω(·) is strongly convex, the dual function Ω∗(·) is also convex. One can
solve the optimization problem (12) in the dual space [Nachum and Dai, 2020b] as

Ω(πs) = max
Qs∈RA

{⟨πs, Qs⟩ − τΩ∗(Qs)} (16)

and find the solution of the optimal dual value function as Ω∗(·). We investigate the α-divergence
function as a particular form of the convex regularizer with a specific value of a constant α to derive
the entropy-based regularization methods in MCTS.

4 α-divergence in Monte-Carlo Tree Search

In this section, we show how to use α-divergence as a convex regularizer to generalize the entropy
regularization in MCTS and respectively derive Maximum Entropy for Tree Search (MENTS), Rela-
tive Entropy for Tree Search (RENTS) and Tsallis Entropy for Tree Search (TENTS). Additionally,
we show how to derive power mean (which is used as the backup operator in Power-UCT) using α-
divergence as the distance function to replace the Euclidean distance in the definition of the empirical
average mean value.

4.1 α-divergence Regularization

We introduce α-divergence regularization to MCTS. Denote the Legendre-Fenchel transform (or
convex conjugate) of α-divergence regularization with Ω∗ : RA → R, defined as:

Ω∗(Qs) ≜ max
πs∈Πs

⟨πs, Qs⟩ − τHα(πs), (17)

where the temperature τ specifies the strength of regularization, and Hα(πs) is the generalized Tsallis
entropy derived from α function defined in (9). Note that α-divergence of the current policy πs and
the uniform policy has the same form as Hα(πs). It is known that:

• The limit as α −→ 1 recovers the regularizer H1(πs) = −
∑

a∈A π(s, a) log π(s, a), which
is the Shannon entropy (MENTS [Dam et al., 2021]). Note that if we apply the α-divergence
with the limit as α −→ 1, we get Relative Entropy (RENTS [Dam et al., 2021]);

• when α = 2, we have the regularizer H2(πs) =
1
2

(
1−
∑

a∈A π(s, a)2
)

, and derive Tsallis

entropy (TENTS [Dam et al., 2021]).

For α > 1, α ̸= 2 we can derive [Chen et al., 2018]

∇Ω∗(Qt) =

(
max

{
Qπ∗

τ (s,a)

τ
− c(s)

τ
, 0

}
(α− 1)

) 1
α−1

, (18)

where

c(s) = τ

∑
a∈K(s)

Qπ∗
τ (s,a)

τ − 1

∥K(s)∥
+ τ

(
1− 1

α− 1

)
, (19)

with K(s) representing the set of actions with non-zero chance of exploration in state s, as determined
below

K(s) =
{
ai

∣∣∣∣1 + i
Qπ∗

τ (s,ai)

τ
>

i∑
j=1

Qπ∗
τ (s,aj)

τ
+ i(1− 1

α− 1
)

}
, (20)

where ai denotes the action with the i−th highest Q-value in state s. and the regularized value
function

Ω∗(Qt) =
〈
∇Ω∗(Qt), Q

π∗
τ (s,a)

〉
. (21)

Using α-divergence, we can relatively derive MENTS, RENTS (α = 1) and TENTS (α = 2),
which have been studied as entropy regularization in MCTS [Dam et al., 2021]. Next, we will show
how to connect to the power mean backup operator used in Power-UCT [Dam et al., 2019] using
α-divergence.

1Other works use the same formula, e.g. Equation (12) in Niculae and Blondel [2017].
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4.2 Connecting Power Mean with α-divergence

In order to connect the Power-UCT [Dam et al., 2019] approach with α-divergence, we study here
the entropic mean [Ben-Tal et al., 1989] which uses f -divergence, of which α-divergence is a special
case, as the distance measure. Since power mean is a special case of the entropic mean, the entropic
mean allows us to connect the geometric properties of the power mean used in Power-UCT with
α-divergence.

In more detail, let a = (a1, a2, ...an) be given strictly positive numbers and let w = (w1, w2, ..., wn)
be given weights and

∑n
i=1 wi = 1, wi > 0, i = 1...n. Let’s define dist(α, β) as the distance

measure between α, β > 0 that satisfies

dist(α, β) =

{
0 if α = β

> 0 if α ̸= β
(22)

When we consider the distance as f -divergence between the two distributions, we get the entropic
mean of a = (a1, a2, ...an) with weights w = (w1, w2, ..., wn) as

meanw(a) = argmin
x>0

{
n∑

i=1

wiaif

(
x

ai

)}
. (23)

When applying fα(x) =
x1−p−p
p(p−1) + x

p , with p = 1− α, we get

meanw(a) =

(
n∑

i=1

wia
p
i

) 1
p

, (24)

which is equal to the power mean. In the next section, we will present our α-divergence MCTS
method using the regularized value backup and tree policy sampling.

5 Regularized Backup and Tree Policy

s: state
a: action
N(s): number of simulations of V_Node of state s
n(s, a): number of simulations of Q_Node of state s

and action a
V (s): Value of V_Node at state s. Default is 0
Q(s, a): Value of Q_Node at state s, action a. Default

is 0
τ(s, a): transition function
γ: discount factor
ϵ > 0:

R = Rollout(s, depth)
if γdepth < ϵ then

return 0
a ∼ πRollout(.)
(s′, r) ∼ τ(s, a)
return r + γRollout (s′, depth+ 1)

a = SelectAction(s)
a ∼ π(a|s) = (1−λs)∇Ω∗(Q(s, ·)/τ)(a)+ λs

|A| ,
where λs = ϵ|A|/log(∑a N(s,a)+1) with ϵ > 0 as

an exploration parameter,
∇Ω∗ defined at 18
return a

a = Search(s)
while Time remaining do

SimulateV (s, 0)
return SelectAction(s)

SimulateV(s, depth)
a =SelectAction (s)
SimulateQ (s, a, depth)
N(s)← N(s) + 1
V (s)← ⟨∇Ω∗(Q(s, ·)), Q(s, ·)⟩,
where∇Ω∗(Q(s, ·)) defined at 18

SimulateQ(s, a, depth)
(s′, r) ∼ τ(s, a)
if Node s′ not expanded then

Rollout(s′, depth)
else

SimulateV (s′, depth + 1)
n(s, a)← n(s, a) + 1

Q(s, a)←
(
∑
a
rs,a)+γ.

∑
s′

N(s′).V (s′)

n(s,a)

MainLoop
while resource budget remains do

a = Search(s)

Algorithm 1: Pseudocode of α-divergence MCTS.

The pseudocode of α−divergence MCTS has been shown in Algorithm 1, which is identical to the
four basic steps of an MCTS algorithm. MCTS has two types of nodes: V_Nodes corresponding to
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state-values, and Q_Nodes corresponding to state-action values. An action is taken from the V_Node
of the current state leading to the respective Q_Node, then it leads to the V_Node of the reached state.
For each state s, the backup value of corresponding V_node is

V (s)← ⟨∇Ω∗(Q(s, ·)), Q(s, ·)⟩ . (25)

On the other hand, the backup value of Q_nodes is

Q(s, a)←
(
∑

a rs,a) + γ
∑

s′ N(s′)V (s′)

n(s, a)
, (26)

where γ is the discount factor, s′ is the next state after taking action a from state s, and rs,a is the
reward obtained executing action a in state s, N(s′) is the number of visits to state s′, n(s, a) is the
number of visits of action a in state s.

Action is selected by sampling from a policy that is

π(a|s) = (1− λs)∇Ω∗(QΩ(s)/τ)(a) +
λs

|A|
, (27)

where λs = ϵ|A|/log(
∑

a n(s,a)+1) with ϵ > 0 as an exploration parameter, and∇Ω∗ defined at 18. We
call this sampling strategy α Extended Empirical Exponential Weight(α-E3W) to highlight the use of
α−divergence as a convex regularizer in MCTS.

6 Regret and Error Analysis of α-divergence in Monte-Carlo Tree Search

The exponential convergence of choosing the optimal regularized action at the root node has been
guaranteed as the direct results from Dam et al. [2021] as α−divergence is a special case of convex
regularization in MCTS. Next, we will provide further results on the regret analysis and error analysis
of value estimation in the tree.

6.1 Regret Analysis

At the root node, let each children node i be assigned with a random variable Xi, with mean value
Vi, while the quantities related to the optimal branch are denoted by ∗, e.g. mean value V ∗. At each
timestep n, the mean value of variable Xi is Vin . The pseudo-regret [Coquelin and Munos, 2007] at
the root node, at timestep n, is defined as RUCT

n = nV ∗ −
∑n

t=1 Vit . Similarly, we define the regret
of α-E3W at the root node of the tree as

Rn = nV ∗ −
n∑

t=1

Vit = nV ∗ −
∑
i

n∑
t=1

I(it = i)Vit = nV ∗ −
∑
i

Vi

n∑
t=1

π̂t(ai|s), (28)

where π̂t(·) is the policy at time step t, and I(·) is the indicator function.
The expected regret is defined as

E[Rn] = nV ∗ −
n∑

t=1

⟨π̂t(·), V (·)⟩ . (29)

We measure how different values of α in the α-divergence function affect the regret in MCTS.

In the next theorems, we show the regret bound of α-E3W [Dam et al., 2021] in MCTS with different
ranges of α parameters.
Theorem 1. When α ∈ (0, 1), the regret of α-E3W is

E[Rn] ≤
τ

α(1− α)
(|A|1−α − 1) + n(2τ)−1|A|α +O( n

log n
).

For α ∈ (1,∞), we derive the following results
Theorem 2. When α ∈ (1,∞), the regret of α-E3W is

E[Rn] ≤
τ

α(1− α)
(|A|1−α − 1) +

n|K|
2

+O( n

log n
).

where |K|(defined at 20) is the number of actions that are assigned non-zero probability in the policy
at the root node. Note that when α = 1, 2, please refer to Corollary 1, 2, 3 [Dam et al., 2021].
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Figure 1: We show the convergence of the value estimate at the root node to the respective optimal
value (top), to the UCT optimal value (middle), and the regret (bottom) with different α parameter
of α-divergence in Synthetic tree environment with α = 1.0 (MENTS), 1.5, 2.0 (TENTS), 4.0, 8.0,
16.0.

6.2 Error Analysis

We analyze the error of the regularized value estimate at the root node n(s) w.r.t. the optimal value:
εΩ = VΩ(s)− V ∗(s). where Ω is the α-divergence regularizer Hα( defined at 9).

Theorem 3. For any δ > 0 and α-divergence regularizer Hα (α ̸= 1, 2), with some constant C, Ĉ,
with probability at least 1− δ, εΩ satisfies

−

√
Ĉσ2 log C

δ

2N(s)
− τ

α(1− α)
(|A|1−α − 1) ≤ εΩ ≤

√
Ĉσ2 log C

δ

2N(s)
. (30)

For α = 1, 2, please refer to Corollary 4, 5, 6 [Dam et al., 2021]. We observe that when α increases,
the error bound decreases.

7 Empirical Evaluation

In this section, we plan to measure the effectiveness of the difference range value of α parameter in
MCTS and show how α-divergence help to trade off between exploration-exploitation.

7.1 Synthetic Tree

We first use the toy problem Synthetic Tree [Xiao et al., 2019] to measure how the α-divergence
helps to balance exploration and exploitation in MCTS. Synthetic Tree involves a tree with depth d
and branching factor k. Each edge of the tree has a random value between 0 and 1, and at each leaf, a
Gaussian distribution is used as an evaluation function resembling the return of random rollouts. The
mean of the Gaussian distribution is the sum of the values assigned to the edges connecting the root
node to the leaf, while the standard deviation is σ = 0.052 The mean value of each distribution at
each node of the toy problem is normalized between 0 and 1 for stabilizing. We set the temperature
τ = 0.1 and the exploration ϵ = 0.1. Figure 2 illustrates the heatmap of the absolute error of the
value estimate at the root node after the last simulation of each algorithm w.r.t. the respective optimal
regularized value, the optimal value of UCT and regret at the root node with α = 1.0 (MENTS), 1.5,

2The value of the standard deviation is not provided in Xiao et al. [2019]. After trying different values, we
observed that our results match the one in Xiao et al. [2019] when using σ = 0.05.
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Figure 2: We show the effectiveness of α-divergence in Synthetic Tree environment with different
branching factor k (rows) and depth d (columns). The heatmaps show: the absolute error of the value
estimate at the root node after the last simulation of each algorithm w.r.t. the respective optimal value
(a), and w.r.t. the optimal value of UCT (b); regret at the root node (c).

2.0 (TENTS), 4.0, 8.0, 16.0. Figure 1 shows the convergence of the value estimate and regret at the
root node of α-divergence in the Synthetic Tree environment. It shows that the error of the value
estimate at the root node with respect to the optimal UCT value and the regularized value decrease
when α increase, which matches our theoretical results in Theorem 3. Regarding the regret, the
performance is different depending on different branching factors k and depth d, which illustrates that
the value of α helps trade-off between exploration and exploitation depending on each environment.
For example, with k = 16, d = 2, the regret is smaller when we increase the value of α, and the
regret is smallest with α = 8.0. When k = 14, d = 3, the regret is smaller when we increase the
value of α and the regret performance is the best with α = 16.0, and when k = 16, d = 4, the regret
enjoys the best performance with α = 2.0 (TENTS).

7.2 Entropy-regularized AlphaGo

Atari. We then evaluate the effectiveness of our α−divergence regularization using Atari 2600 [Belle-
mare et al., 2013] games. We examine entropy-based regularization MCTS algorithms, namely
MENTS, RENTS with α = 1, and TENTS with α = 2. While Atari 2600 [Bellemare et al.,
2013] serves as a popular benchmark for assessing Deep RL methods [Mnih et al., 2015; Van Has-
selt et al., 2016; Bellemare et al., 2017], it has not been extensively explored within MCTS. We
modify the standard AlphaGo algorithm, PUCT, in this experiment, using our regularized value-
backup operator and policy selection. We use a pre-trained deep Q-network, using the same exper-
imental setting of Mnih et al. [2015] as prior, to initialize the action value function of each node
after the expansion step in the tree. For MENTS and TENTS, the initialization takes the form
Qinit(s, a) = (Q(s, a)− V (s)) /τ , following Xiao et al. [2019]. In the case of RENTS, the initial-
ization is Qinit(s, a) = logPprior(a|s)) + (Q(s, a)− V (s)) /τ , where Pprior denotes the Boltzmann
distribution derived from the action values Q(s, .) computed from the network. Each experimental
run consists of 512 MCTS simulations. To find hyperparameters for each of our regularized MCTS
algorithms, we perform a grid search over the temperature parameter τ with a range from 0.01 to 1.
In addition, the discount factor is set to γ = 0.99, and for the PUCT algorithm, we use an exploration
constant of c = 0.1. The performance of our regularized MCTS algorithms and the standard PUCT
and MaxMCTS baselines is evaluated using 22-Atari games in terms of cumulative reward. The
results in Table 1 show that our regularized methods outperform the baselines, with TENTS scoring
the highest in all games. In particular, TENTS performs significantly better in games with high

9



Table 1: Average score in Atari over 100 seeds per game. Bold denotes no statistically significant
difference to the highest mean (t-test, p < 0.05). Bottom row shows # no difference to highest mean.

UCT MaxMCTS α = 1(MENTS) α = 1(RENTS) α = 2(TENTS)

Alien 1,486.80 1,461.10 1,508.60 1,547.80 1,568.60

Amidar 115.62 124.92 123.30 125.58 121.84

Asterix 4, 855.00 5,484.50 5,576.00 5,743.50 5,647.00

Asteroids 873.40 899.60 1, 414.70 1, 486.40 1,642.10

Atlantis 35, 182.00 35,720.00 36,277.00 35, 314.00 35,756.00

BankHeist 475.50 458.60 622.30 636.70 631.40

BeamRider 2,616.72 2,661.30 2,822.18 2, 558.94 2,804.88

Breakout 303.04 296.14 309.03 300.35 316.68

Centipede 1, 782.18 1, 728.69 2,012.86 2,253.42 2,258.89

DemonAttack 579.90 640.80 1,044.50 1,124.70 1,113.30

Enduro 129.28 124.20 128.79 134.88 132.05

Frostbite 1, 244.00 1, 332.10 2,388.20 2,369.80 2,260.60

Gopher 3, 348.40 3, 303.00 3,536.40 3,372.80 3,447.80

Hero 3, 009.95 3, 010.55 3,044.55 3,077.20 3,074.00

MsPacman 1, 940.20 1, 907.10 2, 018.30 2,190.30 2,094.40

Phoenix 2, 747.30 2, 626.60 3, 098.30 2, 582.30 3,975.30

Qbert 7, 987.25 8, 033.50 8, 051.25 8, 254.00 8,437.75

Robotank 11.43 11.00 11.59 11.51 11.47

Seaquest 3,276.40 3,217.20 3,312.40 3,345.20 3,324.40

Solaris 895.00 923.20 1,118.20 1,115.00 1,127.60

SpaceInvaders 778.45 835.90 832.55 867.35 822.95

WizardOfWor 685.00 666.00 1,211.00 1,241.00 1,231.00

# Highest mean 6/22 7/22 17/22 16/22 22/22

branching factors, such as Asteroids and Phoenix, confirming the results of our experiment with
synthetic trees and the theoretical advantages of TENTS in Section 6.

8 Conclusion

We introduced a unified view of the use of α-divergence in Monte-Carlo Tree Search(MCTS). We
show that Power-UCT and the convex regularization in MCTS can be connected using α-divergence.
In detail, the Power Mean backup operator used in Power-UCT can be derived as the solution of using
α function as the probabilistic distance to replace the Eclipse distance used to calculate the average
mean, in which the closed-form solution is the generalized power mean. Furthermore, entropic
regularization in MCTS can be derived using α-function regularization. We provided the analysis
of the regret bound with respect to the α parameter. We further analyzed the error bound between
the regularized value estimate and the optimal regularized value at the root node. Empirical results
in Synthetic Tree and Atari showed the effective balance between exploration and exploitation of
α-divergence in MCTS with different values of α.
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A Theoretical analysis of α-divergence in Monte-Carlo Tree Search

Theorem 1. When α ∈ (0, 1), the regret of α-E3W is

E[Rn] ≤
τ

α(1− α)
(|A|1−α − 1) + n(2τ)−1|A|α +O( n

log n
).

Proof. We consider the generalized Tsallis Entropy Ω(π) = Hα(π) =
1

1−α (1−
∑

i π
α(ai|s)).

According to Section 3 [Abernethy et al., 2015], when α ∈ (0, 1)

DΩ∗(V̂t(·) + V (·), V̂t(·)) ≤ (τα)−1|A|α

−Ω(π̂n) ≤
1

1− α
(|A|1−α − 1). (31)

Then, for the generalized Tsallis Entropy, when α ∈ (0, 1), as the result from Theorem 1 [Dam et al.,
2021] the regret is

E[Rn] ≤
τ

1− α
(|A|1−α − 1) + n(τα)−1|A|α +O( n

log n
),

when α = 2, which is the Tsallis entropy case we consider, according to Zimmert and Seldin [2019],
By Taylor’s theorem ∃z ∈ conv(V̂t, V̂t + V ), we have

DΩ∗(V̂t(·) + V (·), V̂t(·)) ≤
1

2

〈
V (·),∇2Ω∗(z)V (·)

〉
≤ |K|

2
.

So that when α = 2, we have

E[Rn] ≤ τ(
|A| − 1

|A|
) +

n|K|
2

+O( n

log n
).

when α = 1, which is the maximum entropy case in our work, we derive.

E[Rn] ≤ τ(log |A|) + n|A|
τ

+O( n

log n
)

Finally, when the convex regularizer is relative entropy, One can simply write KL(πt||πt−1) =
−H(πt)− Eπt

log πt−1, let m = mina πt−1(a|s), we have

E[Rn] ≤ τ(log |A| − 1

m
) +

n|A|
τ

+O( n

log n
).

Theorem 2. When α ∈ (1,∞), the regret of α-E3W is

E[Rn] ≤
τ

α(1− α)
(|A|1−α − 1) +

n|K|
2

+O( n

log n
).

where |K| is the number of actions that are assigned non-zero probability in the policy at the root
node.

Proof. From Theorem 1 [Dam et al., 2021], we have

E[Rn] ≤ −τΩ(π̂) +
n∑

t=1

DΩ∗(V̂t(·) + V (·), V̂t(·)) +O(
n

log n
).

Here, Ω(π̂) = Hα(π̂) =
1

α(1−α) (1−
∑

i π̂
α(ai|s)). So as the result from equation 31, we have

−Ω(π̂n) ≤
1

α(1− α)
(|A|1−α − 1).
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By Taylor’s theorem ∃z ∈ conv(V̂t, V̂t + V ), we have

DΩ∗(V̂t(·) + V (·), V̂t(·)) ≤
1

2

〈
V (·),∇2Ω∗(z)V (·)

〉
.

So that according to Equations (18), (19), (20), (21), we have

DΩ∗(V̂t(·) + V (·), V̂t(·)) ≤
1

2

〈
V (·),∇2Ω∗(z)V (·)

〉
≤ |K|

2
.

so that

E[Rn] ≤
τ

α(1− α)
(|A|1−α − 1) +

n|K|
2

+O( n

log n
).

We analyze the error of the regularized value estimate at the root node n(s) w.r.t. the optimal value:
εΩ = VΩ(s)− V ∗(s). where Ω is the α-divergence regularizer Hα.

Theorem 3. For any δ > 0 and α-divergence regularizer Hα (α ̸= 1, 2), with some constant C, Ĉ,
with probability at least 1− δ, εΩ satisfies

−

√
Ĉσ2 log C

δ

2N(s)
− τ

α(1− α)
(|A|1−α − 1) ≤ εΩ ≤

√
Ĉσ2 log C

δ

2N(s)
. (32)

Proof. We have

0 ≤ −Ω(π̂n) ≤
1

α(1− α)
(|A|1−α − 1).

combine with Theorem 4 [Dam et al., 2021] we will have

−

√
Ĉσ2 log C

δ

2N(s)
− τ

α(1− α)
(|A|1−α − 1) ≤ εΩ ≤

√
Ĉσ2 log C

δ

2N(s)
. (33)

B Additional experiments in Synthetic Tree

We perform additional experiments in the Synthetic Tree task with high branching factors to show
the effectiveness of α divergence. We show in Figure 3(a) that TENTS outperforms other methods in
high branching factor problems in terms of approximation error and regret. Additionally, we conduct
a sensitivity analysis of each algorithm w.r.t. the values of the exploration coefficient ε and τ in two
different trees in Figures 3(b) and 3(c). Our results demonstrate the superiority of TENTS in this toy
problem, confirming our theoretical findings about the advantages of TENTS in problems with many
actions in terms of approximation error and regret.
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(a) Results in trees with high branching factor.
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(b) k = 100, d = 1.
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(c) k = 8, d = 3.
Figure 3: High branching factor trees (a), regret sensitivity study w.r.t. ε and τ (b, c).
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