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ABSTRACT

Cross-domain few-shot classification induces a much more challenging problem
than its in-domain counterpart due to the existence of domain shifts between the
training and test tasks. In this paper, we develop a novel Adaptive Paramet-
ric Prototype Learning (APPL) method under the meta-learning convention for
cross-domain few-shot classification. Different from existing prototypical few-
shot methods that use the averages of support instances to calculate the class pro-
totypes, we propose to learn class prototypes from the concatenated features of
the support set in a parametric fashion and meta-learn the model by enforcing
prototype-based regularization on the query set. In addition, we fine-tune the
model in the target domain in a transductive manner using a weighted-moving-
average self-training approach on the query instances. We conduct experiments
on multiple cross-domain few-shot benchmark datasets. The empirical results
demonstrate that APPL yields superior performance than many state-of-the-art
cross-domain few-shot learning methods.

1 INTRODUCTION

Benefiting from the development of deep neural networks, significant advancement has been
achieved on image classification with large amounts of annotated data. However, obtaining large
amounts of annotated data is time-consuming and labour-intensive, while it is difficult to generalize
trained models to new categories of data. As a solution, few-shot learning (FSL) has been proposed
to classify instances from unseen classes using only a few labeled instances. FSL methods usually
use a base dataset with labeled images to train a prediction model in the training phase. The model
is then fine-tuned on the prediction task of novel categories with a few labeled instances (i.e. support
set), and finally evaluated on the test data (i.e. query set) from the same novel categories in the test-
ing phase. FSL has been widely studied in the in-domain settings where the training and test tasks
are from the same domain (Finn et al., 2017; Snell et al., 2017; Lee et al., 2019). However, when
the training and test tasks are in different domains, it poses a much more challenging cross-domain
few-shot learning problem than its in-domain counterpart due to the domain shift problem.

Recently, several methods have made progress to address cross-domain few-shot learning, including
the ones based on data augmentation, data generation (Wang & Deng, 2021; Yeh et al., 2020; Islam
et al., 2021) and self-supervised learning (Phoo & Hariharan, 2020) techniques. However, such data
generation and augmentation methods increase the computational cost and cannot scale well to sce-
narios with higher-shots (Wang & Deng, 2021). Some other works either require large amounts of
labeled data from multiple source domains (Hu et al., 2022) or the availability of substantial unla-
beled data from the target domain during the source training phase (Phoo & Hariharan, 2020; Islam
et al., 2021; Yao, 2021). Such requirements are hard to meet and hence hamper their applicability
in many domains. Although some existing prototypical-based few-shot methods have also been ap-
plied to address cross-domain few-shot learning due to their simplicity and computational efficiency
(Snell et al., 2017; Satorras & Estrach, 2018), these standard methods lack sufficient capacity in
handing large cross-domain shifts and adapting to target domains.

In this paper, we propose a novel Adaptive Parametric Prototype Learning (APPL) method under
the meta-learning convention for cross-domain few-shot image classification. APPL introduces a
parametric prototype calculator network (PCN) to learn class prototypes from concatenated feature
vectors of the support instances by ensuring the inter-class discriminability and intra-class cohe-
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sion with prototype regularization losses. The PCN is meta-learned on the source domain using
the labeled query instances. In the target domain, we deploy a weighted-moving-average (WMA)
self-training approach to leverage the unlabeled query instances to fine-tune the prototype-based
prediction model in a transductive manner. With PCN and prototype regularizations, the proposed
method is expected to have better generalization capacity in learning class prototypes in the feature
embedding space, and hence effectively mitigate the domain shift and adapt to the target domain
with WMA self-training. Comprehensive experiments are conducted on eight cross-domain few-
shot learning benchmark datasets. The empirical results demonstrate the efficacy of the proposed
APPL for cross-domain few-shot classification, by comparing with existing state-of-the-art methods.

The contributions of our proposed method are as follows:

1. We propose a novel adaptive prototype calculator network called Prototype Calculator Net-
work (PCN). Our key contribution is that we use a parameterization mechanism to generate
more representative prototypes and propose two loss functions to learn discriminative class
prototypes by enforcing both inter-class discriminability and intra-class cohesion in the
extracted feature space.

2. We propose a WMA self-training strategy that is tailored for the CDFSL problem. Com-
pared to existing methods, it overcomes the barrier of requiring large amounts of additional
data for the target domain and reduces domain shift by generating better pseudo-labels.
It ensures that the produced pseudo-labels are stable and clean (not noisy) by jointly em-
ploying three mechanisms: Weighted-Moving-Average updating of prediction vectors, a
rectified annealing schedule for the WMA and selectively sampling only the confident
pseudo-labels to adapt the model.

3. Our proposed method work outperforms existing methods on both low-shot (5-shot) and
high-shot (20-shot and 50-shot) classification tasks.

2 RELATED WORKS

2.1 FEW-SHOT LEARNING

Most FSL studies have focused on the in-domain settings. The FSL approaches can be grouped into
three main categories: metric-based and meta-learning approaches (Finn et al., 2017; Snell et al.,
2017; Lee et al., 2019), transfer learning approaches (Guo et al., 2019; Jeong & Kim, 2020; Ge &
Yu, 2017; Yosinski et al., 2014; Dhillon et al., 2019) and augmentation and generative approaches
(Zhang et al., 2018; Lim et al., 2019; Hariharan & Girshick, 2017; Schwartz et al., 2018; Reed et al.,
2018). In particular, the representative meta-learning approach, MAML (Finn et al., 2017), learns
good initialization parameters from various source tasks that make the model easy to adapt to new
tasks. The non-parametric metric-based approach, MatchingNet (Vinyals et al., 2016), employs at-
tention and memory in order to train a network that learns from few labeled samples. ProtoNet (Snell
et al., 2017) learns a metric space where each class is represented by the average of the available
support instances and classifies query instances based on their distances to the class prototypes. A
few meta-learning works, such as RelationNet (Sung et al., 2018), GNN (Satorras & Estrach, 2018)
and Transductive Propagation Network (TPN) (Liu et al., 2019), exploit the similarities between
support and query instances to classify the query instances. MetaOpt uses meta-learning to train a
feature encoder that obtains discriminative features for a linear classifier (Lee et al., 2019). Transfer
learning methods initially train a model on base tasks and then use various fine-tuning methods to
adapt the model to novel tasks (Guo et al., 2019; Jeong & Kim, 2020; Ge & Yu, 2017; Yosinski et al.,
2014; Dhillon et al., 2019). Generative and augmentation approaches generate additional samples
to increase the size of available data during training (Zhang et al., 2018; Lim et al., 2019; Hariharan
& Girshick, 2017; Schwartz et al., 2018; Reed et al., 2018).

2.2 CROSS-DOMAIN FEW-SHOT LEARNING

Recently cross-domain few-shot learning (CDFSL) has started receiving more attentions (Guo et al.,
2020; Phoo & Hariharan, 2020). Tseng et al. (2020) propose a feature-wise transformation (FWT)
layer that is used jointly with standard few-shot learning methods for cross-domain few-shot learn-
ing. The FWT layer uses affine transformations to augment the learned features in order to help
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the trained network generalize across domains. Du et al. (2022) address the domain shift problem
by proposing a prototype-based Hierarchical Variational neural Memory framework (HVM), where
the hierarchical prototypes and the memory are both learned using variational inference. Adler
et al. (2020) propose a Cross-domain Hebbian Ensemble Fusion (CHEF) method, which applies an
ensemble of Hebbian learners on different layers of the neural network to obtain a representation
fusion. Data augmentation and data generation methods have also been used to bridge the gap be-
tween the source and target domains (Wang & Deng, 2021; Yeh et al., 2020; Islam et al., 2021).
Wang & Deng (2021) propose an Adversarial Task Augmentation approach (ATA) to generate dif-
ficult training tasks in an adversarial fashion and improve the generalizability of few-shot methods
across largely different domains. Islam et al. (2021) employ dynamic distillation and consistency
regularization to train student and teacher network jointly on the source domain data and unlabeled
data from the target domain. Hu et al. (2022) propose domain-switch learning framework with
multiple source domains, and use re-weighted cross-entropy loss and binary KL divergence loss
to prevent overfitting and catastrophic forgetting. Sun et al. (2021) adapt the explanation method
of Layer-wise Relevance Propagation (LRP) to the FSL setup, which guides the FSL training by
dynamically highlighting the discriminative features of the input samples.

Some other works (Triantafillou et al., 2019; Liu et al., 2021; Bateni et al., 2020; Doersch et al.,
2020) have tested alternative cross-domain few-shot learning settings such as Meta-Dataset (Tri-
antafillou et al., 2019) CDFSL setting where models are trained on several source-domain datasets
and tested on multiple target-domain datasets. In this work, we focus on the CDFSL setting in Guo
et al. (2020) as it is the most widely studied CDFSL setting.

3 APPROACH

3.1 PRELIMINARY

The cross-domain few-shot learning problem aims to train a model on the source domain with its
large set of labelled instances and then adapt the model to address the prediction task in the target
domain with few labeled instances. We assume the two domains have different distributions in the
input space (Ps ̸= Pt) and have disjoint classes (Ys ∩ Yt = ∅). In the target domain, the model is
provided with a support set S = {(xi, yi)}Ns

i=1 and tested on a query set Q = {(xi, yi)}
Nq

i=1 where
Ns and Nq are the sizes of the support and query sets respectively. The support set is made up of N
classes with K instances in each class, which is commonly described as N-way K-shot.

In the classic prototypical few-shot learning (Snell et al., 2017), each image x first goes through a
feature encoder fθ and obtains its embedding vector in the feature space. Then, for each class in
the support set, a prototype pn ∈ RD is computed as the average embedding vector of the support
instances: pn = 1

K

∑
(x,y)∈Sn

fθ(x), where Sn denotes the set of K support instances from class
n. To classify the query instances, the distances between each query sample and the prototypes
of all classes in the support set are computed. Then the softmax function is used to normalize the
calculated distances to obtain the class prediction probabilities as follows:

P (y = j|x) = exp(−d(fθ(x), pj))∑N
n=1 exp(−d(fθ(x), pn))

, (1)

where d(., .) is a distance function and P (y = j|x) is the predicted probability that query sample
x belonging to class j. During the meta-training phase, the model is trained to minimize the cross-
entropy loss on the query instances:

LCE(Q) =
∑

x∈Q
ℓCE(Px, Yx), (2)

where ℓCE is the cross-entropy function, Px and Yx are the predicted class probability vector and
ground-truth label indicator vector respectively for a query sample x.

3.2 ADAPTIVE PARAMETRIC PROTOTYPE LEARNING

In this section, we present our proposed Adaptive Parametric Prototype Learning (APPL) method
for cross-domain few-shot image classification. The overall framework of APPL is illustrated in
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Figure 1: The proposed APPL method. (a) Training on the source domain. The concatenated
feature vectors of each class are fed into the PCN (ψϕ) to produce class prototypes, which are used
to compute the meta-training loss terms on query instances. (b) Fine-tuning on the target domain.
Both the labelled support set and the unlabeled query set with soft pseudo-labels computed using
WMA are used to fine-tune the feature encoder in the target domain with prototype based losses.

Figure 1. APPL first performs meta-training in the label-rich source domain by meta learning an
adaptive prototype calculator network (PCN) after the feature encoder. PCN generates the prototype
of each class by segregating information from the concatenated feature vectors of the K-shot support
instances. Then the trained model can be fine-tuned for the few-shot classification task in the target
domain using a weighted-moving-average (WMA) self-training approach, which aims to adapt the
model to the target domain and further improve the quality of the learned class prototypes. We
describe the details below.

3.2.1 ADAPTIVE PROTOTYPE CALCULATOR NETWORK

Simply averaging the support instances to calculate the class prototypes has the evident drawback of
ignoring the inter-class and intra-class instance relations. To overcome this drawback, we propose to
learn class prototypes from the support instances through a parametric prototype calculator network
by enforcing both inter-class discriminability and intra-class cohesion in the extracted feature space.
Such a parametric prototype generation mechanism is expected to produce more representative class
prototypes from various support instance layouts, and guide the feature encoder to better adapt to
the target domain through fine-tuning in the testing phase.

We define the adaptive prototype calculator network (PCN) as ψϕ : RK·D → RD, where D is the
size of the learned embeddings by the feature encoder, fθ, K is the number of support instances per
class, and ϕ denotes the parameters of the PCN. Specifically, PCN takes the concatenated feature
vectors of the support instances of a given class as input, and outputs the prototype of the corre-
sponding class:

pn = ψϕ(concat(fθ(x
n
1 ), .., fθ(x

n
K))), (3)

where xnj denotes the j-th support instance from class n and pn is the learned prototype of class
n. By feeding the support instances of each class to ψϕ, we can obtain the prototypes for all the N
classes: P = {p1, p2, .., pN}.
We train the PCN during the meta-training phase using the few-shot training tasks in the source do-
main. Specifically, given the feature encoder trained on the support instances, we update the param-
eters of the PCN by minimizing the cross-entropy loss on the query instances, LCE(Q). Moreover,
we introduce two auxiliary regularization loss terms, a prototype discriminative loss and a prototype
cohesive loss, to ensure the learned prototypes are both discriminative and representative of the un-
derlying classes. To elaborate, the prototype discriminative loss Ldis aims to push the prototypes of
different classes away from each other and is defined as follows:

Ldis =
1∑

{pi,pj}∈P d(pi, pj)
, (4)
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We in particular use a squared Euclidean distance as d(·, ·). By contrast, the prototype cohesive loss
Lcoh is designed to pull the prototypes and the query instances of their corresponding classes to be
closer to each other:

Lcoh =
∑N

n=1

∑
x∈Qn

d(pn, fθ(x)), (5)

where Qn denotes the set of query instances from class n. Overall, PCN is meta-trained in the
source domain by minimizing the following joint loss:

min
ϕ
Ltrain = LCE(Q) + λdisLdis + λcohLcoh, (6)

where λdis and λcoh are the trade-off hyper-parameters that control the contribution of the two
regularization loss terms, Ldis and Lcoh, respectively.

3.2.2 WEIGHTED MOVING AVERAGE SELF-TRAINING

For cross-domain few-shot image classification, significant distribution discrepancies in the input
image space typically exist between the source and target domains. Hence after meta-training the
feature encoder fθ and the PCN ψϕ in the source domain, it is critical to fine-tune the feature encoder
fθ on the few-shot test task in the target domain to overcome the cross-domain gap as well as adapt
fθ to the target test task. Due to the scarcity of the labeled support instances in the target task, we
propose to employ the unlabeled query instances with predicted soft pseudo-labels to increase the
size and diversity of the target data for fine-tuning and mitigate the domain shift between the source
and target domains. To this end, we develop a weighted-moving-average (WMA) self-training ap-
proach to compute the soft pseudo-labels and deploy the query instances for fine-tuning.

Specifically, at each iteration i of the fine-tuning process, we first calculate the distances between
each query instance x and the class prototypes [pi1, p

i
2, · · · , piN ] produced by the PCN ψϕ from the

support set S for all the N classes, and form the following distance vector for x:

hi(x) = [d(fθi(x), pi1), d(fθi(x), pi2), .., d(fθi(x), piN )]⊤. (7)

Then we use this distance vector hi(x) to perform weighted moving average update and maintain a
weighted-moving-average distance vector h̃i(x) for the current iteration i as follows:

h̃i(x) = αi h
i(x) + (1− αi) h̃

i−1(x), (8)

where αi is a trade-off parameter that controls the combination weights between distances computed
from the current iteration and previous iterations. The weighted-moving-average distance vectors
can then be used to compute the class prediction probabilities over each query instance x by using
the softmax function:

P̃ i(y = j|x) =
exp(−h̃ij(x))∑N

n=1 exp(−h̃in(x))
, (9)

where P̃ i(y = j|x) is the probability of the query instance x being assigned to class j at iteration i.
By using the predicted class probabilities as soft pseudo-labels, the query instances can subsequently
be used to support the fine-tuning of fθ in a self-training manner. The weighted-moving-average
(WMA) update mechanism can stabilize the self-training process and dampen possible oscillating
predictions for challenging query instances. Moreover, to increase the stability and convergence
property of the WMA self-training, we adopt the following rectified annealing schedule for the
WMA hyper-parameter αi:

αi = max(αmin, γ αi−1), (10)

where αmin specifies the smallest value αi can take, and γ ∈ (0, 1) is a reduction ratio parameter for
updating the α value with increasing iterations. This annealing schedule can enable larger updates
to the h̃i vectors in the beginning iterations of fine-tuning by starting with a large value α0, while
gradually reducing the degree of update with the decreasing of αi in later iterations.

With the soft pseudo-labels predicted by the current prototype-based model (θi, ϕ), the query in-
stances can be deployed through a cross-entropy loss to guide the further update, i.e., fine-tuning,
of the feature encoder fθ. However, using all pseudo-labeled query instances may lead to noisy
updates and negatively impact the model due to the low-confidence predictions of the pseudo-labels.
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Algorithm 1 Fine-tuning Procedure on Target Domain

Input: Target N-way-K-shot test task (S,Q); source trained model (fθ, ψϕ);
hyper-parameters λdis, λcoh, αmin, α0, γ, ϵ; initialize: θ1=θ, {h̃0(x) = 0, ∀x ∈ Q}

Output: Fine-tuned feature encoder parameter θ
for i = 1 to maxiters do

Compute pn = ψϕ(concat(fθ(x
n
1 ), .., fθ(x

n
K))), for Sn = {xn1 , · · · , xnK},∀n∈{1, · · · , N}

∇θLft ← 0
Compute αi using Eq.(10)
for x ∈ Q do

Compute the prediction probabilities P̃ i(Y |x) using Eq.(7)(8)(9).
∇θLft ← ∇θLft +∇θLtr

CE((x, P̃
i(Y |x)); θ, ϕ)

end for
∇θLft ← ∇θLft +∇θLCE(S) + λdis∇θLdis + λcoh∇θLft

coh

θi+1 ← θi − η∇θ=θiLft; θ = θi+1

end for

Therefore, we choose to only employ query instances with high prediction confidence scores that
are larger than a predefined threshold ϵ and compute the query-based cross-entropy loss as follows:

Ltr
CE(Q) =

∑
x∈Q

{
LCE(x, P̃

i(Y |x); θ, ϕ) if max(P̃ i(Y |x)) > ϵ,

0 otherwise
(11)

where P̃ i(Y |x) denotes the soft pseudo-label vector computed via Eq.(9) for query instance x, while
the maximum predicted probability, max(P̃ i(Y |x)), is used as the prediction confidence score for
query instance x. Here LCE(x, P̃

i(Y |x); θ, ϕ) denotes the cross-entropy loss computed over the
soft pseudo-labeled pair (x, P̃ i(Y |x)) with fθ and ψϕ.

In addition to the cross-entropy loss on both the support and query instances, we also use the pro-
totype regularization losses, Ldis and Lcoh, introduced in the meta-training phase to guide the fine-
tuning process. Since the true labels of the query instances are unknown in the meta-testing phase,
we modify the prototype cohesive loss Lcoh and compute it on the support instances instead:

Lft
coh =

∑N

n=1

∑
x∈Sn

d(pn, fθ(x)), (12)

where Sn is the set of support instances from class n. Overall, the feature encoder is fine-tuned by
minimizing the following joint loss function with gradient descent:

min
θ
Lft = LCE(S) + Ltr

CE(Q) + λdisLdis + λcohLft
coh. (13)

This fine-tuning procedure is also summarized in Algorithm 1.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets We conducted comprehensive experiments on eight cross-domain few-shot learning
(CDFSL) benchmark datasets. We use MiniImageNet (Vinyals et al., 2016) as the single source
domain dataset, and use the following eight datasets as the target domain datasets: CropDiseases
(Mohanty et al., 2016), EuroSAT Helber et al. (2019), ISIC (Tschandl et al., 2018), ChestX (Wang
et al., 2017), CUB (Wah et al., 2011), Cars (Krause et al., 2013), Places (Zhou et al., 2017) and
Planate (Van Horn et al., 2018). We use the same train/val/test split as Guo et al. (2020). We select
the hyperparameters based on the test accuracy on the MiniImageNet validation set.

Implementation Details We use ResNet10 (He et al., 2016) as our backbone network and use a
simple network made up of a single linear layer followed by ReLU activation to represent PCN. We
train our prototype-based prediction model (feature encoder and PCN) on the source domain for 400
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Table 1: Mean classification accuracy (95% confidence interval in brackets) for cross-domain 5-way
5-shot classification. ∗ and † denote the results reported in Guo et al. (2020) and Wang & Deng
(2021) respectively. Transductive methods are indicated using (T). Methods sharing query data via
Batch Normalization are indicated using (BN)

ChestX CropDisea. ISIC EuroSAT Places Planate Cars CUB
MatchingNet∗(Vinyals et al., 2016) 22.40(0.7) 66.39(0.78) 36.74(0.53) 64.45(0.63) − − − −
MAML(BN)∗(Finn et al., 2017) 23.48(0.96) 78.05(0.68) 40.13(0.58) 71.70(0.72) − − − −
ProtoNet∗(Snell et al., 2017) 24.05(1.01) 79.72(0.67) 39.57(0.57) 73.29(0.71) 58.54(0.68) 46.80(0.65) 41.74(0.72) 55.51(0.68)
MetaOpt∗(Lee et al., 2019) 22.53(0.91) 68.41(0.73) 36.28(0.50) 64.44(0.73) − − − −
RelationNet(BN)†(Sung et al., 2018) 24.07(0.20) 72.86(0.40) 38.60(0.30) 65.56(0.40) 64.25(0.40) 42.71(0.30) 40.46(0.40) 56.77(0.40)
GNN†(Satorras & Estrach, 2018) 23.87(0.20) 83.12(0.40) 42.54(0.40) 78.69(0.40) 70.91(0.50) 48.51(0.40) 43.70(0.40) 62.87(0.50)
TPN(T) †(Liu et al., 2019) 22.17(0.20) 81.91(0.50) 45.66(0.30) 77.22(0.40) 71.39(0.40) 50.96(0.40) 44.54(0.40) 63.52(0.40)
MatchingNet+FWT∗(Tseng et al., 2020) 21.26(0.31) 62.74(0.90) 30.40(0.48) 56.04(0.65) − − − −
ProtoNet+FWT∗(Tseng et al., 2020) 23.77(0.42) 72.72(0.70) 38.87(0.52) 67.34(0.76) − − − −
RelationNet+FWT(BN)†(Tseng et al., 2020) 23.95(0.20) 75.78(0.40) 38.68(0.30) 69.13(0.40) 65.55(0.40) 44.29(0.30) 40.18(0.40) 59.77(0.40)
GNN+FWT†(Tseng et al., 2020) 24.28(0.20) 87.07(0.40) 40.87(0.40) 78.02(0.40) 70.70(0.50) 49.66(0.40) 46.19(0.40) 64.97(0.50)
TPN+FWT(T) †(Tseng et al., 2020) 21.22(0.10) 70.06(0.70) 36.96(0.40) 65.69(0.50) 66.75(0.50) 43.20(0.50) 34.03(0.40) 58.18(0.50)
ATA †(Wang & Deng, 2021) 24.43(0.20) 90.59(0.30) 45.83(0.30) 83.75(0.40) 75.48(0.40) 55.08(0.40) 49.14(0.40) 66.22(0.50)
LRP-CAN (T) (Sun et al., 2021) − − − − 76.90(0.39) 51.63(0.41) 42.57(0.42) 66.57(0.43)
LRP-GNN (Sun et al., 2021) − − − − 74.45(0.47) 54.46(0.46) 46.20(0.46) 64.44(0.48)
CHEF(Adler et al., 2020) 24.72(0.14) 86.87(0.20) 41.26(0.34) 74.15(0.27) − − − −
HVM(Du et al., 2022) 27.15(0.45) 87.65(0.35) 42.05(0.34) 74.88(0.45) − − − −
APPL (T) 24.87(0.41) 92.51(0.84) 46.28(0.64) 79.78(0.78) 68.84(0.80) 55.20(0.58) 52.67(0.42) 67.46(0.78)

epochs with 100 meta-training tasks and 15 query instances per class. Adam optimizer with weight
decay of 1e-2 and learning rate of 1e-6 is used to train the APPL. The trade-off parameters λdis and
λcoh are set to 0.1 and 1e-3 respectively. The proposed APPL is evaluated on 600 randomly selected
few-shot learning tasks in each target domain. We fine-tune the feature encoder for 100 iterations for
each task with a learning rate of 1e-2. For the fine-tuning hyperparameters, αmin, α0, γ and ϵ take
the values of 0.1, 0.5, 0.99 and 0.4 respectively. For all experiments we report the average accuracy
(%) as well as 95% confidence interval.

4.2 COMPARISON RESULTS

4.2.1 LEARNING WITH FEW SHOTS

We first evaluate the performance of the proposed APPL method on the common cross-domain 5-
way 5-shot classification tasks. We compare APPL with both a set of representative FSL methods
(MatchingNet (Vinyals et al., 2016), MAML (Finn et al., 2017), ProtoNet (Snell et al., 2017), Re-
lationNet (Sung et al., 2018), MetaOpt (Lee et al., 2019), GNN (Satorras & Estrach, 2018) and
TPN (Liu et al., 2019)) and five state-of-the-art CDFSL methods (FWT (Tseng et al., 2020), ATA
(Wang & Deng, 2021), LRP (Sun et al., 2021), CHEF (Adler et al., 2020) and HVM (Du et al.,
2022)). FWT has been applied jointly with five standard FSL methods: MatchingNet, ProtoNet,
RelationNet, GNN and TPN. LRP has been applied jointly with two standard FSL methods: GNN
and Cross-attention network (CAN). The comparison results are presented in Table 1, where the top
part of the table reports the results of the standard FSL methods and the bottom part reports the
results of the CDFSL methods.

We can see that the CDFSL methods (ATA, CHEF, HVM, LRP and APPL) designed specifically to
handle vast differences between source and target domains perform largely better than the standard
FSL works for in-domain settings. FWT however only produces improvements in most cases over
its base RelationNet. Notably, the proposed APPL outperforms all standard FSL methods includ-
ing ProtoNet and ProtoNet+FWT on all the eight datasets. In particular, its performance gain over
ProtoNet is remarkable, exceeding 10% on four out of the eight datasets, which highlights the im-
portance of the prototype learning network. In addition, APPL outperforms all the CDFSL methods
on five datasets, and produces the second best results on the two datasets. These results demonstrate
the effectiveness of the proposed APPL method for cross-domain few-shot learning.

4.2.2 LEARNING WITH HIGHER SHOTS

We further investigated CDFSL with higher-shot tasks in the target domain. In particular, we
evaluate the proposed method with cross-domain 5-way 20-shot and 5-way 50-shot learning tasks
on four target-domain datasets (ChestX, CropDiseases, ISIC and EuroSAT), on which previous
works also reported results. To handle higher-shot problems and increase the scalability of APPL,
we extend APPL by adding a clustering function g (details are given in appendix) prior to the PCN
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Table 2: Mean classification accuracy (95% confidence interval within brackets) for cross-domain 5-
way 20-shot and 50-shot classification. ∗ denotes results reported in Guo et al. (2020).Transductive
methods are indicated using (T). Methods sharing query data via Batch Normalization are indicated
using (BN)

ChestX CropDiseases ISIC EuroSAT
20-shot 50-shot 20-shot 50-shot 20-shot 50-shot 20-shot 50-shot

MatchingNet∗(Vinyals et al., 2016) 23.61(0.86) 22.12(0.88) 76.38(0.67) 58.53(0.73) 45.72(0.53) 54.58(0.65) 77.10(0.57) 54.44(0.67)
MAML(BN)∗(Finn et al., 2017) 27.53(0.43) − 89.75(0.42) − 52.36(0.57) − 81.95(0.55) −
ProtoNet∗(Snell et al., 2017) 28.21(1.15) 29.32(1.12) 88.15(0.51) 90.81(0.43) 49.50(0.55) 51.99(0.52) 82.27(0.57) 80.48(0.57)
MetaOpt∗(Lee et al., 2019) 25.53(1.02) 29.35(0.99) 82.89(0.54) 91.76(0.38) 49.42(0.60) 54.80(0.54) 79.19(0.62) 83.62(0.58)
RelationNet(BN)∗(Sung et al., 2018) 26.63(0.92) 28.45(1.20) 80.45(0.64) 85.08(0.53) 41.77(0.49) 49.32(0.51) 74.43(0.66) 74.91(0.58)
MatchingNet+FWT∗(Tseng et al., 2020) 23.23(0.37) 23.01(0.34) 74.90(0.71) 75.68(0.78) 32.01(0.48) 33.17(0.43) 63.38(0.69) 62.75(0.76)
ProtoNet+FWT∗(Tseng et al., 2020) 26.87(0.43) 30.12(0.46) 85.82(0.51) 87.17(0.50) 43.78(0.47) 49.84(0.51) 75.74(0.70) 78.64(0.57)
RelationNet+FWT(BN)∗(Tseng et al., 2020) 26.75(0.41) 27.56(0.40) 78.43(0.59) 81.14(0.56) 43.31(0.51) 46.38(0.53) 69.40(0.64) 73.84(0.60)
CHEF(Adler et al., 2020) 29.71(0.27) 31.25(0.20) 94.78(0.12) 96.77(0.08) 54.30(0.34) 60.86(0.18) 83.31(0.14) 86.55(0.15)
HVM(Du et al., 2022) 30.54(0.47) 32.76(0.46) 95.13(0.35) 97.83(0.33) 54.97(0.35) 61.71(0.32) 84.81(0.34) 87.16(0.35)
APPL(T) 30.75(0.41) 33.14(0.88) 95.77(0.53) 98.14(0.56) 57.97(0.73) 62.17(0.43) 88.60(0.85) 89.75(0.76)

component. The g function clusters the support instances in each class into K ′ = 5 clusters based
on their learned embeddings. The obtained cluster centroid vectors are then concatenated as input
for PCN. We compared APPL with both standard FSL methods and several CDFSL methods, and
the results are presented in Table 2, where the top part of the table presents the results of the FSL
methods and the bottom part presents the results of the CDFSL methods.

We can see that again the CDFSL methods (CHEF, HVM, and APPL) outperform the standard
FSL methods. The performance gains of APPL over Protonet and Protonet+FWT are remarkable
exceeding 6% and 9% on three datasets (CropDiseases, ISIC and EuroSAT) in the cases of 20-shot
and 50-shot respectively. Moreover, APPL consistently outperforms all the other methods on all the
four datasets for both the 20-shot and 50-shot cases. These results again validate the effectiveness
of APPL for cross-domain few-shot learning and demonstrate its capacity in handling cross-domain
higher-shot learning problems. Two factors account for our proposed method’s good performance
in the case of higher shots: First, benefiting from the proposed WMA self-training approach in the
target domain, we are able to generate more accurate pseudo-labels with higher shots, which enables
our model to obtain better results. Second, we conduct clustering over the embeddings of support
instances to generate class centroids with higher shots, which can eliminate some noisy information
and allow the PCN to learn the most representative features.

4.3 ABLATION STUDY

To investigate the importance of each component of the proposed APPL approach, we conducted
an ablation study to compare APPL with its six variants: (1) “−w/o ψϕ”, which drops PCN and
replaces it with a simple average of the support instances of each class. (2) “−w/o Ldis” and (3)
“−w/o Lcoh”, which drop the Ldis loss and Lcoh loss respectively. (4) “−w/o LCE(S)”, which
drops the cross-entropy loss over the support instances in fine-tuning. (5) “−w/o Ltr

CE(Q)”, which
drops the cross-entropy loss over the query instances and hence the WMA self-training component
in fine-tuning. (6) “ProtoNet”, which can be considered as a variant of APPL that drops both PCN
and WMA self-training, as well as Ldis and Lcoh.

We compared APPL with its six variants on the cross-domain 5-way 5-shot setting on all the eight
datasets, and the results are reported in Table 3. We can see that APPL outperforms all the other
variants on almost all datasets. The “−w/o LCE(S)” variant produced the largest performance
drop among all variants, which highlights the importance of the few labeled support instances for
fine-tuning in the target domain. The performance degradation for ProtoNet and “−w/o ψϕ” high-
lights the importance of the proposed PCN component. In addition, “−w/o ψϕ” outperforms Pro-
toNet, which underlines the performance gain obtained by using pseudo-labeled query instances
with WMA self-training and the prototype regularization losses in the absence of PCN. The other
three variants, “−w/o Ldis”, “−w/o Lcoh” and “−w/o Ltr

CE(Q)”, also perform worse than APPL,
which verifies the contributions of the two prototype regularization loss terms and the WMA self-
training component respectively.
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Table 3: Ablation study results for cross-domain 5-way 5-shot classification tasks.

ChestX CropDisea. ISIC EuroSAT Places Planate Cars CUB
ProtoNet 24.05(1.01) 79.72(0.67) 39.57(0.57) 73.29(0.71) 58.54(0.68) 46.80(0.65) 41.74(0.72) 55.51(0.68)
APPL 24.87(0.41) 92.51(0.84) 46.28(0.64) 79.78(0.78) 68.84(0.80) 55.20(0.58) 51.67(0.42) 67.46(0.78)

−w/o ψϕ 22.33(0.56) 89.11(0.66) 43.99(0.68) 77.99(0.68) 67.57(0.33) 53.69(0.60) 50.30(0.81) 64.03(0.97)
−w/o Ldis 24.84(0.69) 91.31(0.72) 43.23(0.82) 78.25(0.76) 66.18(0.49) 54.56(0.84) 51.56(0.85) 60.45(0.85)
−w/o Lcoh 23.77(0.68) 90.19(0.76) 43.69(0.49) 79.53(0.71) 65.89(0.47) 51.62(0.77) 50.32(0.81) 60.96(0.85)
−w/o LCE(S) 21.08(0.42) 59.15(0.59) 26.90(0.78) 49.95(0.80) 34.79(0.85) 25.72(0.77) 27.19(0.87) 30.12(0.74)
−w/o Ltr

CE(Q) 22.36(0.42) 88.24(0.86) 42.14(0.59) 77.63(0.65) 67.14(0.82) 55.69(0.60) 51.59(0.82) 60.22(0.85)

(a) α0 (b) ϵ (c) λcoh (d) λdis

Figure 2: Sensitivity analysis for the proposed method on hyper-parameters α0, ϵ, λcoh and λdis on
CropDisease dataset under cross-domain 5-way 5-shot task: (a) α0, (b) ϵ, (c) λcoh, (d) λdis.

5 HYPER-PARAMETER SENSITIVITY ANALYSIS

To demonstrate the effect of the hyper-parameters of our proposed method, we summarize the re-
sults of various studies in Figure 2. The figure shows the performance of our proposed method on
CropDisease dataset under the cross-domain 5-way 5-shot task as we modify each hyper-parameter
separately. As seen from the results, it is clear that our proposed APPL is not sensitive to the choice
of value for α0, as the performance of APPL is stable across all values of α0. As for λcoh, too large
or too small a value will pull the query/support instances to the prototypes more strongly or more
weakly, thus having a negative impact on the results. A reasonable value between 1e-1 and 5e-3
is required to obtain reasonable performance. In the case of λdis, the experimental results improve
as the value of λdis increases. And the results become stable when the parameter reaches 1e-1.
We believe that this is because λdis controls the scale of pushing the prototypes of different classes
away from each other so that when the distance between the prototypes reach a certain threshold,
embedding is no longer susceptible to mutual influence.

Finally, it is worth noting that ϵ is an important hyperparameter. ϵ represents the degree of certainty
of the pseudo-labels’ predictions utilized in fine-tuning. When ϵ is too small, more unlabeled sam-
ples are used in fine-tuning with their noisy pseudo-labels, and when ϵ is too large, less unlabeled
samples are used in fine-tuning with less noisy pseudo-labels. Experimental results show that when
the intermediate value of 0.4 is selected, the number and accuracy of pseudo-labels can be balanced
and the best results for this model were obtained.

6 CONCLUSION

In this paper, we proposed a novel Adaptive Parametric Prototype Learning (APPL) method to ad-
dress the cross-domain few-shot learning problem. APPL meta-trains an adaptive prototype calcu-
lator network in the source domain to learn more discriminative and representative class prototypes
from various support instance layouts, which can then guide the feature encoder to adapt to the
target domain through fine-tuning. Moreover, a weighted-moving-average self-training approach
is adopted to enhance fine-tuning by exploiting the unlabeled query instances in the target domain
to mitigate domain shift and avoid overfitting to support instances. Experimental results on eight
benchmark cross-domain few-shot classification datasets demonstrate that the proposed APPL out-
performs existing state-of-the-art methods.
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Algorithm 2 Training Procedure on Source Domain

Input: Source domain dataset Ds, K, N ; pre-trained feature extractor fθ;
learning-rate γ1 and γ2;

Output: Learned model parameters θ, ϕ
Initialize: ϕ← ϕ0, θ ← θ0
for iter = 1 to maxiters do

V ← randomly sample N class indices from all classes in Ds

for n in {1, .., N} do
Sn, Qn ← randomly sample support & query sets for class n from DV

s
end for
S = S1 ∪ .. ∪ SN , Q = Q1 ∪ .. ∪QN

for initer=1 to maxiniters do
θ ← θ − γ1∇θLCE(S)

end for
Compute Ldis and Lcoh with Eq. (4) and Eq.(5) respectively.
Ltrain = λdisLdis + λcohLdis

for (x, y) ∈ Q do
Ltrain ← Ltrain + ℓCE(x, y)

end for
ϕ← ϕ− γ2∇ϕLtrain

end for

A META-TRAINING ON SOURCE DOMAIN

We present the meta-training procedure for our proposed APPL in Algorithm 2.

B DETAILS ON LEARNING WITH HIGHER SHOTS

In order to demonstrate the scalability of the proposed APPL in the case of higher shots experimental
setup, we propose a clustering-based solution to guarantee that the Adaptive Prototype Calculator
Network scales efficiently with the number of support samples.

Specifically, we first cluster the embeddings of support instances of each class into K ′ clusters as
follows:

µ = g(fθ(x
i
1), .., fθ(x

i
K)), (14)

where g is the clustering function that takes as input the learned embeddings of the support instances
of a given class. As a result, the class centroids µ = (µ1, µ2, .., µK′) are obtained, where K ′ is
the number of clusters. In this process, the clustering function g learns the cluster centroids by
minimizing the following loss function:

min
µ,c
Lclust =

K∑
j=1

K′∑
ℓ=1

1(cj=ℓ)||fθ(xj)− µℓ||2, (15)

where c is the clustering assignment vector. Then, we use the concatenation of the obtained cluster
centroid vectors as input to the adaptive prototype calculator network as follows:

pi = ψϕ(conct(µ1, µ2, .., µK′)), (16)
Consequently, the number of learnable parameters of our adaptive prototype calculator network is
fixed regardless of the number of support instances in each class, which ensures the proposed APPL
to be scalable and easy to apply in the cases of higher shots.

C IMPACT OF THE INPUT ORDER OF ADAPTIVE PROTOTYPE CALCULATOR
NETWORK

To demonstrate the effectiveness of the order of the input samples fed to the adaptive prototype
calculator network, we summarize the results in Table 4. Since the concatenated embeddings of the
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support set instances are fed as input to the adaptive prototype calculator network to generate the
prototypes of each class, it is important to demonstrate that APPL is resilient to the concatenation
order of the support samples. Therefore, we evaluate the performance of APPL under the cross-
domain 5-way 5-shot learning task under 4 different datasets where the order of the input samples
to the adaptive prototype calculator network is randomly permuted during the evaluation step of the
fine-tuning step. We generate 5 different random permutations of the input samples and report the
corresponding results for each permutation in Table 4.

Table 4: Input order of Adaptive Prototype Calculator Network results in terms of mean classifi-
cation accuracy (95% confidence interval within brackets) on 4 target domain datasets using the
cross-domain 5-way 5-shot task.

ChestX CropDiseases ISIC EuroSAT
Permutation # 1 24.79(0.36) 92.37(0.77) 46.12(0.55) 79.69(0.72)
Permutation # 2 24.68(0.35) 92.73(0.78) 46.29(0.54) 79.57(0.72)
Permutation # 3 24.82(0.36) 92.52(0.77) 46.28(0.56) 79.68(0.74)
Permutation # 4 24.90(0.36) 92.54(0.76) 46.18(0.55) 79.79(0.74)
Permutation # 5 24.87(0.41) 92.51(0.84) 46.28(0.64) 79.78(0.78)
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