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ABSTRACT

Causal inference on medical data containing treatments, such as estimation of
treatment effects, is crucial to ensure the efficacy and safety of interventions. How-
ever, privacy concerns can often limit access to the patient data necessary for such
analyses. Generative models can produce synthetic data that preserve privacy and
closely approximate the real data distribution, yet existing methods do not consider
downstream tasks for data containing treatments, nor the unique challenges these
pose. With our work we establish a set of desiderata that synthetic data containing
treatments should satisfy to maximise downstream utility: preservation of (i) the co-
variate distribution, (ii) the treatment assignment mechanism, and (iii) the outcome
generation mechanism. Based on these desiderata, we propose a set of evaluation
metrics to assess such synthetic data. Finally, we present STEAM: a novel method
for generating Synthetic data for Treatment Effect Analysis in Medicine. STEAM
mimics the data-generating process of data containing treatments and optimises
for our desiderata, while allowing differentially private generation. We empirically
demonstrate that STEAM achieves state-of-the-art performance across our metrics
as compared to existing generative models, particularly as the complexity of the
generative task increases.

1 INTRODUCTION

Medical data sharing is crucial for advancing research in healthcare, enabling the replication of results
to establish validity, and the discovery of new insights through alternative analyses (Bauchner et al.,
2016; Wirth et al., 2021). However, such sharing is hindered by stringent regulations which restrict
access to patient data for research purposes (Annas, 2003; Voigt & Von dem Bussche, 2017).

A potential solution is offered by synthetic data, which has gained increasing recognition in medical
literature (Jadon & Kumar, 2023). Generative models can produce synthetic copies of sensitive data,
which can be shared more freely (Jordon et al., 2018). If necessary, generation can satisfy formal
definitions of privacy, such as differential privacy (DP) (Dwork et al., 2006), ensuring provable
guarantees (Pan et al., 2024). Importantly, the promise of synthetic data hinges on its ability to
preserve information critical to relevant downstream tasks. Among the existing synthetic data
literature (Bauer et al., 2024), most works focus on downstream predictive (supervised) tasks, shaping
standard evaluation and generation practices to this setting.

However, medical data typically contain treatment assignment variables, which invite unique down-
stream analysis. Data containing treatments are typically analysed via causal inference methods (e.g.
treatment effect estimation methods) which examine the causal relationships between covariates,
treatments, and outcomes, in a manner distinct from associative prediction (Feuerriegel et al., 2024).
Despite this, synthetic data papers which use medical data containing treatments for motivation
and validation (Choi et al., 2018; Kotelnikov et al., 2022; Yan et al., 2022; Borisov et al., 2023)
generally employ standard, prediction-oriented, generation and evaluation techniques (see examples
in Appendix A). Failure to acknowledge the likely downstream use of synthetic data containing
treatments leads to low-quality generation, which is masked by misaligned evaluation metrics.

Evaluation. Standard synthetic data evaluation involves statistical comparison of synthetic and
real data (Table 1), and assessing the accuracy of synthetically-trained models in predicting a target
variable. In this evaluation paradigm, causal inference tasks are not considered, as treatments are
handled like any other feature, limiting the relevance of such assessment for synthetic data containing
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treatments. To illustrate this, consider the following key questions that an analyst working with
a synthetic dataset containing treatments, Dsynth, may ask: Q1 How representative are the patient
covariates in Dsynth?; Q2 How accurate are the treatment assignment decisions in Dsynth?; and
Q3 How much error might be introduced in treatment effect estimates derived from Dsynth? These
questions require differentiation between covariates, treatments, and outcomes, and they cannot be
accurately answered with current evaluation protocols.

Generation. Generic synthetic data generation (Table 2) seeks to minimise the difference in synthetic
and real joint distributions, and all variables are generated simultaneously from this distribution.
This overlooks the data-generating process (DGP) from which data containing treatments arise,
where covariates drive treatment assignments, and both covariates and treatments influence outcomes
(Pearl, 2009). In doing so, such generation fails to capitalise on a valuable inductive bias, producing
synthetic data which poorly preserve these important relationships for causal inference. Existing
causal generative models, on the other hand, generally assume access to the full causal graph G,
which is overly restrictive in complex settings, such as medicine, where G is unlikely to be known.

In this work we address these limitations by conducting an analysis of synthetic data containing
treatments, proposing novel approaches to evaluation and generation which operate under reasonable
assumptions and explicitly consider the likely downstream use of such data. In doing so, we make
the following contributions:

1 Desiderata: By examining the typical analysis conducted on data containing treatments, we
establish a set of desiderata that synthetic data should satisfy in this context (Section 4).

2 Evaluation: We show that existing evaluation metrics for synthetic data are inadequate in
this setting, as they do not measure how well these desiderata are respected. As a remedy, we
propose a principled set of metrics derived from our desiderata, allowing meaningful evaluation
of synthetic data containing treatments (Section 5).

3 Generation: We propose STEAM, a novel method for synthetic data generation that contains
inductive biases to optimise for our desiderata and mimic the real DGP of data containing
treatments. Furthermore, STEAM can satisfy DP if desired (Section 6).

4 Empirical Analysis: Using our newly established metrics, we demonstrate that STEAM
exhibits state-of-the-art performance in generating synthetic data containing treatments, partic-
ularly as the real DGP grows in complexity, and in high-dimensional scenarios (Sections 7).
Our code is available via https://anonymous.4open.science/r/STEAM-35EC.

2 PROBLEM FORMULATION

Setup. We consider a data owner with access to observational or experimental real data
Dreal = {(X(i)

real,W
(i)
real, Y

(i)
real )}ni=1 sampled from a population PX,W,Y , where X

(i)
real = {Xj}dj=1 ∈

X (d) is a vector of d binary or continuous covariates, W (i)
real ∈ {0, 1} is a binary treatment assignment,

and Y
(i)

real ∈ Y is a binary or continuous outcome. We refer to the set of all variables in Dreal as
V = {X1, ..., Xd,W, Y }. We denote the propensity score with π(x) = PW |X(W = 1|X = x).

Objective. We wish to enable the release of synthetic data to downstream users with various
analysis goals, such as estimation of propensity scores, average treatment effects (ATEs), and
conditional average treatment effects (CATEs).1 To do so, we aim to generate synthetic data
Dsynth = {(X(i)

synth,W
(i)
synth, Y

(i)
synth)}ni=1 from a distribution Q and evaluate how well Dsynth captures

information relevant to likely downstream tasks with a set of metrics M(Dreal,Dsynth).

Terminology. To avoid confusion, we clarify that ‘real data’ refers to the specific data of the data
owner (rather than simply any real-world observational data). Further, ‘synthetic data’ refers strictly
to data that serve as synthetic copies of real data. This should not be confused with simulated or
semi-simulated data, which are often used to benchmark CATE learners (Curth et al., 2021).

3 RELATED WORK

Evaluation. Evaluation of synthetic tabular data, the modality we focus on in this paper, is diverse,
although there are two common themes: resemblance and predictive utility (Murtaza et al., 2023).

1Denoting the potential outcomes as Y(0) and Y(1), ATE is defined as ATE = EP [Y (1)− Y (0)] and CATE
is τ(x) = EP [Y (1)− Y (0)|X = x].
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Table 1: Tabular synthetic data evaluation methods applied to data containing treatments. d(·) is an
abstract distance function. For ‘Prec., Rec.’, we use SP to denote the support of distribution P . For
‘Discriminator’, Dcomb = Dreal ∪ Dsynth, and c(i) is the dataset label for instance i. ‘Q. addressed?’:
which, if any, of the key questions from Section 1 does the method answer?

Method Formula Differentiates between X,W, Y ? Q. addressed?

E
xi

st
in

g

Marginal 1
|V|

∑
i∈V d(Pi, Qi) ✗ -

Correlation 1
|V|(|V|−1)

∑
i,j∈V
i ̸=j

d(corr(Pi, Pj), corr(Qi, Qj)) ✗ -

Joint d(PV , QV) ✗ -
Prec., Rec. |SP ∩ SQ|/|SQ|, |SP ∩ SQ|/|SP | ✗ -

Discriminator 1
2n

∑2n
i=1 1{C(D(i)

comb) = c(i)} ✗ -

O
ur

s Pα,X, Rβ,X Equations 3 and 4 ✓ Q1
JSDπ Equation 5 ✓ Q2
UPEHE Equation 6 ✓ Q3

Assessing predictive utility involves training a predictive model on Dsynth and measuring its accuracy.
Since key causal inference tasks, such as treatment effect estimation, do not have observable ground-
truths (Holland, 1986), model validation becomes a non-trivial task (Curth & Van Der Schaar, 2023)
and such utility assessment does not apply to our setting. On the other hand, methods for assessing
resemblance, which can involve comparison of synthetic and real marginals, 2-way correlation
matrices, joint distributions, supports via precision and recall, and assessment of a discriminator
model C in separating real and synthetic data, are summarised in Table 1. Importantly, these methods
handle all features within a dataset similarly, not differentiating between the variable classes X, W ,
and Y , and they therefore cannot directly answer any of the key questions Q1-3 posed in Section 1.
Our metrics, proposed in Section 5, remedy this.

Generation. We consider two related approaches to generative modeling, with a high-level compari-
son in Table 2. Firstly, generic generative models are those which make minimal assumptions on Dreal,
and seek to minimise the difference between real and synthetic joint distributions. Causal generative
models, on the other hand, assume access to the full causal graph G, and then seek to minimize the
difference between each real and synthetic conditional distribution, as dictated by the causal relation-
ships in G. The assumptions for our proposed method, STEAM, fall in between these two. While we
assume that the underlying DGP of Dreal is of the form X ∼ PX, W ∼ PW |X, Y ∼ PY |W,X, this
will hold for a wide array of datasets containing treatments, and it is generally less restrictive than
assuming complete knowledge of G, as we do not need the individual causal relationships between
variables. Therefore, STEAM is more applicable in complex settings. Furthermore, neither of these
existing approaches are tailored to downstream treatment effect estimation, and they do not target our
desiderata for synthetic data containing treatments (Section 4). For empirical comparisons against
generic generative models, see Section 7, and see Appendix O for comparison with causal generative
models. For further elaboration on specific evaluation and generation methods see Appendix B.

4 DESIDERATA FOR SYNTHETIC DATA CONTAINING TREATMENTS

We now consider three distributions that are critical in downstream analysis of data containing
treatments: (i) the covariate distribution PX, (ii) the treatment assignment mechanism PW |X, and
(iii) the outcome generation mechanism PY |W,X. Their importance, which we describe below, is
clear in the causal inference community, giving rise to the key questions Q1-3 which downstream
analysts may ask when using Dsynth. However, this has not been addressed by the synthetic data
community, and methods designed to specifically preserve them are missing. To bridge this gap, we
establish our desiderata for synthetic data containing treatments based on these distributions.

(i) The covariate distribution PX

PX describes the population of interest and, in medical practice, it is standard to report its
characteristics (Wolff et al., 2019), as it determines to whom analysis will be relevant.

Why is its preservation important? Failure to cover covariate levels in Dsynth can result in
exclusion from downstream analysis of members of the population whose covariates are not well
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Table 2: Tabular synthetic data generation methods. d(·) is an abstract distance function. PAG(Vi)
refers to the set of parents of node Vi in the causal graph G. [1]: Rezende & Mohamed (2016), [2]:
Xu et al. (2019), [3]: Kotelnikov et al. (2022), [4]: Watson et al. (2023), [5]: ANM (Hoyer et al.,
2008), [6]: Sánchez-Martin et al. (2022), [7]: Chao et al. (2024)

Methods Distributional target Assumptions on Dreal Dsynth application

G
en

er
ic

ge
n.

m
od

el
s

NFlow [1]

min d(QV , PV) None Prediction
CTGAN [2]
TVAE [2]

TabDDPM [3]
ARF [4]

C
au

sa
lg

en
.

m
od

el
s min d

(
QV1|PAG(V1), PV1|PAG(V1)

)
...

min d
(
QV|V||PAG(V|V|), PV|V||PAG(V|V|)

) Known G
Interventional

and counterfactual
queries on G

ANM [5]
VACA [6]
CGM [7]

O
ur

s

STEAM
min d(QX, PX)

Treatment effect
estimation

min d(QW |X, PW |X) Valid DGP
min d(QY |W,X, PY |W,X)

explored, as making reliable inferences can become infeasible (Petersen et al., 2010; Rudolph
et al., 2022). On the other hand, generating out-of-distribution covariates in Dsynth can cause
groundless extrapolation by synthetically-trained models, leading to potential misuse.

(ii) The treatment assignment mechanism PW |X

PW |X is often used as a nuisance parameter in treatment effect models (Austin, 2011; Curth &
van der Schaar, 2021), and it can be a target for analysis itself when examining treatment protocols.

Why is its preservation important? Given the use of PW |X as a nuisance parameter, errors in its
modelling will propagate to errors in treatment effect estimates derived from Dsynth. Furthermore,
PW |X can guide the difficult task of CATE model selection (Hüyük et al., 2024), so poor
preservation may lead to inconsistency in this area between Dreal and Dsynth, which is unideal
(Hansen et al., 2023). Finally, misrepresenting PW |X can lead to misreporting of treatment
protocols. Given that extreme propensities of π(x) ≈ 0 (or π(x) ≈ 1) are common in high-
dimensional data, such as electronic health records (Li et al., 2018), an inaccurate QW |X could
lead to subsequent exploration of treatments in patient subgroups for which they are unsafe.

(iii) The outcome generation mechanism PY |W,X

PY |W,X is the distribution through which treatment effects can be estimated by comparing the
statistical functionals of PY |W=1,X and PY |W=0,X.

Why is its preservation important? PY |W,X must be preserved, so that Dsynth can permit accurate
estimation of treatment effects. If QY |W,X is inaccurate, then even a perfect model could not
estimate correct treatment effects from Dsynth, and the worse this relationship is preserved, the
less useful it becomes.

Preserving (i)-(iii) is necessary and sufficient for Q to be a high quality approximation of P . Modelling
each distribution well is evidently necessary given the above reasons, and it is also sufficient, which
is clear from the following decomposition of PX,W,Y :

PX,W,Y (X,W, Y ) = PX(X)︸ ︷︷ ︸
(i)

PW |X(W |X)︸ ︷︷ ︸
(ii)

PY |W,X(Y |W,X)︸ ︷︷ ︸
(iii)

(1)

The components (i)-(iii) offer a complete factorisation of the joint distribution, and therefore Q
matching P in each component is sufficient for Q to match P entirely. As such, accurate modelling
of (i)-(iii) forms our desiderata for synthetic data containing treatments. Generation methods should
seek to maximise adherence to these desiderata, and evaluation metrics should assess how successful
Dsynth is in this regard (and therefore answer Q1-3). In the following sections, we show that existing
metrics (Section 5.1), and generation methods (Section 7) perform poorly in this regard.
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On causal assumptions. Even if these desiderata are satisfied, Dsynth may not permit correct causal
inference. Required assumptions, such as typical identifiability assumptions,2 must still be critically
examined, since any violations in Dreal will almost surely be violated in a faithful Dsynth as well.
Identifying and accounting for such violated assumptions is a task orthogonal to synthetic data
generation, with existing literature (Kallus et al., 2019; Frauen & Feuerriegel, 2022), and we do
not consider it necessary for Q to improve upon such factors. Instead, any biases in P should be
maintained in Q, allowing post-generation methods to rectify them if necessary.

5 HOW TO EVALUATE SYNTHETIC DATA CONTAINING TREATMENTS

With our desiderata established, we now investigate how to evaluate the adherence of Dsynth.

5.1 INADEQUACY OF EXISTING METRICS

Existing evaluation metrics, discussed in Section 3, do not offer a clear sense of how well Dsynth
satisfies our desiderata. These metrics do not differentiate between X, W , and Y , and they therefore
cannot directly assess any of QX, QW |X, or QY |W,X. Within these existing metrics, joint-distribution-
level metrics, such as Kullback–Leibler divergence (KL) (Kullback & Leibler, 1951), are most popular,
since they offer a complete, holistic assessment of how well Q models P . However these are, at best,
loosely related to our desiderata, and they do not allow a user to disentangle how each of (i)-(iii)
is preserved, limiting the depth of information offered on Dsynth. Furthermore, we argue that these
metrics will tend to be dominated by the covariate distribution as X grows in dimensionality, and they
will lose sensitivity to the treatment assignment and outcome generation mechanisms. In this sense,
sensitivity refers to the effect that differences in the modelling of PW |X or PY |W,X by a proposal
distribution Q have on a metric M.

To demonstrate this more formally, consider a simple PX,W,Y which can be factorized as PX,W,Y =∏d
i=1 PXi

PW |X PY |W,X. Let there be two learnable distributions Qθ1
X,W,Y and Qθ2

X,W,Y , which

estimate PX,W,Y , with the same form Qθk
X,W,Y =

∏d
i=1 Q

θX
Xi

Q
θW,k

W |X Q
θY,k

Y |W,X, and which only differ
in either θW,k or θY,k (i.e. they either model PW |X or PY |W,X differently). In this setting, the
following holds:

Theorem 1. Let P , Qθ1 , Qθ2 be of the above form, and M be KL divergence. If we assume that
Qθ1 and Qθ2 have sufficient capacity to have bounded error on each component, i.e. ∀i, 0 <

M(PXi
, QθX

Xi
) < εX, and 0 < M(PW |X, Q

θW,k

W |X) < εW,k, and 0 < M(PY |W,X, Q
θY,k

Y |W,X) < εY,k,
then:

M(PX,W,Y , Q
θ1
X,W,Y )

M(PX,W,Y , Q
θ2
X,W,Y )

→ 1, as d → ∞ (2)

Proof. See Appendix B.
Theorem 1 shows that KL divergence loses sensitivity to W |X and Y |W,X as d grows, suggesting
that this metric will struggle in selecting between Qθ1

X,W,Y and Qθ2
X,W,Y , since their scores will

converge to the same value despite any difference in their modelling of PW |X or PY |W,X. For an
empirical example of this phenomena, with an extended array of joint-distribution-level metrics, see
Appendix D.

5.2 METRICS TAILORED TO SYNTHETIC DATA CONTAINING TREATMENTS

These formal and empirical findings motivate us to design our own metrics for synthetic data contain-
ing treatments. We now propose an appropriate set of metrics M = (Pα,X, Rβ,X, JSDπ, UPEHE)
which directly measure performance in line with desiderata (i)-(iii), and can offer answers to Q1-3.

5.2.1 THE COVARIATE DISTRIBUTION PX

Evaluation of the preservation of PX requires direct comparison of the generally high-dimensional
covariate distributions of Dreal and Dsynth, which is non-trivial. Nevertheless this is a standard
synthetic data evaluation task, as Xreal and Xsynth do not contain treatments. We see precision/recall
analysis as the most useful evaluation practice in this context. There is typically a trade-off between
these two qualities, which generative models approach differently (Sajjadi et al., 2018; Bayat, 2023),

2Consistency: Y (i) = Y (W (i)), overlap: 0 < π(x) < 1, and unconfoundedness: Y (0), Y (1) ⊥⊥ W |X

5
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and by measuring them both a data holder can guide generation towards their preferences of covariate
realism and diversity. If the data holder has no strong preference, balancing the two is recommended
to achieve the best downstream results (Jordon et al., 2022).

We propose the use of the integrated Pα and Rβ scores, introduced by Alaa et al. (2022). Intuitively,
Pα captures how much of the synthetic data falls within the support of the real data, and Rβ reflects
how much of the real data is covered by the support of synthetic data. We denote the covariate
precision and recall with Pα,X and Rβ,X respectively, which are calculated by applying integrated
Pα and Rβ to the covariate distribution only, as in (3) and (4).

To assess the preservation of PX

Pα,X(Dreal,Dsynth) = 1− 2

∫ 1

0

|P(X̃synth ∈ Sα
real)− α| dα (3)

Rβ,X(Dreal,Dsynth) = 1− 2

∫ 1

0

|P(X̃real ∈ Sβ
synth)− β| dβ (4)

where X̃⋄ and S□
⋄ are the embedding X̃⋄ = Φ(X⋄) and □-support as defined by Alaa et al.

(2022), respectively.

We have 0 < Pα,X, Rβ,X < 1, and scores near 1 indicate a realistic and diverse QX. Together, these
metrics can be used to answer Q1.

5.2.2 THE TREATMENT ASSIGNMENT MECHANISM PW |X

While in general we do not have access to PW |X and QW |X, we know that, for each X = x, they
are Bernoulli distributions, since W is a binary variable. The success probabilities can be estimated
from Dreal and Dsynth with a probabilistic classifier, which can be used to form approximations of
PW |X and QW |X. There is then an array of valid options to compare these approximations. We
propose the use of Jensen-Shannon distance3 given its desirable properties of symmetry, smoothness,
and boundedness (we discuss alternatives in Appendix E). For a given probabilistic classifier π̂, we
define P̂W |X=x = Bern(π̂real(x)) and Q̂W |X=x = Bern(π̂synth(x)) where π̂real and π̂synth are trained
on Dreal and Dsynth respectively, and we measure the preservation of PW |X as in (5).

To assess the preservation of PW |X

JSDπ(Dreal,Dsynth) = 1− EPX

[√
1

2
DKL(P̂W |X=x||M) +

1

2
DKL(Q̂W |X=x||M)

]
(5)

where M = 1
2 (P̂W |X=x + Q̂W |X=x) and DKL is KL divergence using log2.

JSDπ can be used to answer Q2. We have 0 < JSDπ < 1, with scores near 1 indicating that QW |X
matches PW |X well. The validity of JSDπ will depend on the accuracy of π̂, so conducting π̂ model
selection is an important pre-evaluation step, although amongst reasonable model choices which
exhibit similar performance, the information offered by JSDπ will not significantly differ.

5.2.3 THE OUTCOME GENERATION MECHANISM PY |W,X

To evaluate the preservation of PY |W,X, we consider a treatment effect analogue of predictive utility.
In this, we address the unavailability of ground-truths by aiming for agreement in performance on
Dreal and Dsynth, rather than attempting to quantify error from an oracle value. Such evaluation
is inherently task dependent, yet the specific quantity Dsynth may be used to estimate is unclear.
Assessment should therefore centre on a complex task, in which comparable performance will likely
imply the same for simpler tasks. In this case, we consider the most difficult treatment effect task
likely to arise in the medical field—CATE estimation—as similarity in this between Dsynth and Dreal
will tend to imply similarity in simpler tasks, such as ATE estimation. Therefore, we evaluate how
well QY |W,X preserves PY |W,X by calculating the PEHE between synthetic- and real-trained CATE

3JSD(P ∥Q) =
√

1
2
DKL(P ∥M) + 1

2
DKL(Q ∥M), where M = 1

2
(P +Q) and DKL is KL divergence.
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learners (see Appendix E for alternatives). Given a family F of CATE learners τ̂ , where τ̂real and
τ̂synth are trained on Dreal and Dsynth respectively, we assess the preservation of PY |W,X as in (6).

To assess the preservation of PY |W,X

UPEHE(Dreal,Dsynth) =
1

|F|
∑
τ̂∈F

√
EPX

[(τ̂synth(X)− τ̂real(X))2] (6)

UPEHE can answer Q3. We average over F since CATE model validation is difficult (Curth & Van
Der Schaar, 2023), so τ̂ cannot be set as the best performing model in a similar fashion as is done
for JSDπ (we discuss choices for F in Appendix E.3.2). As such, UPEHE rewards generators which
permit proximity in CATE estimations across a wide array of potential learners, where a lower UPEHE
indicates better preservation of PY |W,X.

6 GENERATING SYNTHETIC DATA CONTAINING TREATMENTS

To illustrate the standard DGP of data contraining treatments, shown in the middle of Figure 9,
consider a simple hospital dataset. Patient covariates X, such as height, weight etc., are drawn from
an underlying covariate distribution PX, which is dictated by the local population. Treatments are
then assigned by a domain expert, such as a doctor, conditioned on X, i.e. W ∼ PW |X. Finally,
patients’ outcomes are dictated by the dynamics of their ailments, conditional upon W and X, i.e.
Y ∼ PY |X,W . We now propose STEAM, a novel method for generating Synthetic data for Treatment
Effect Analysis in Medicine which mimics the real DGP.

6.1 STEAM

Mimicry of the real DGP acts as an inductive bias, pushing Q closer towards the P in structure, and
directly targeting each distributions from our desiderata. STEAM, shown on the right of Figure 9,
conducts a three-step generation process, involving the following:

1 QX. X is generated from a generative model trained to match the covariate distribution PX.
2 QW |X. Treatments are assigned according to a propensity function trained on Dreal. If Dreal is

experimental data with known PW |X, then QW |X can be directly set as the true distribution,
negating the need for any optimisation at this step.

3 QY |W,X. PO estimators are trained to match PY |W=0,X and PY |W=1,X, and the relevant
outcome is generated for each instance based on their assigned treatment.

Each component can be defined with any relevant model. QX can be any generative model, QW |X
can be any classifier, and QY |W,X can use any regressors.

6.2 DIFFERENTIAL PRIVACY WITH STEAM

Theoretical guarantees of the privacy of synthetic data are often required in high-stakes scenarios,
such as medicine. STEAM can permit this, satisfying DP when its three component models do, as an
application of the post-processing and composition theorems of DP (Dwork & Roth, 2014).
Proposition 1. If QX, QW |X, and QY |W,X satisfy (ϵX, δX)-, (ϵW , δW )-, and (ϵY , δY )-differential
privacy respectively, STEAM satisfies (ϵtotal, δtotal)-differential privacy, where ϵtotal = ϵX + ϵW +
ϵY , δtotal = δX + δW + δY .

Proof. See Appendix G.
There are a number of existing DP generative models, classifiers, and regressors which can be set as
QX, QW |X, and QY |W,X respectively to enable this.

7 EMPIRICAL ANALYSIS

We now demonstrate the superior performance of STEAM. In Section 7.1, we compare STEAM
with generic generation methods in the non-DP setting. In Section 7.2, we examine performance in
targeted settings to better understand where STEAM is particularly successful. In Section 7.3 we
demonstrate STEAM’s capability in satisfying DP generation. To avoid infeasible model selection and
unwieldy notation, in STEAM we consistently model QW |X using logistic regression, and QY |W,X

using T-learner (Künzel et al., 2019) PO estimators. We use the open source synthcity (Qian et al.,
2023) for all generative models, and we indicate which we set for QX in STEAM with subscript, i.e.
STEAM⋄ uses generative model ⋄ for QX. We detail experimental set-ups in Appendix H.
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Table 3: Pα,X, Rβ,X, JSDπ, and UPEHE for the best performing standard and STEAM models on
medical data. Full results in Table 11. Averaged over 20 runs, with 95% CIs. Bold indicates
significant differences.

Dataset Model Pα,X (↑) Rβ,X (↑) JSDπ (↑) UPEHE (↓)

ACTG TVAE 0.926 ± 0.013 0.483 ± 0.010 0.946 ± 0.004 0.564 ± 0.017
STEAM TVAE 0.929 ± 0.008 0.486 ± 0.009 0.958 ± 0.004 0.492 ± 0.011

IHDP CTGAN 0.663 ± 0.018 0.419 ± 0.013 0.888 ± 0.010 2.521 ± 0.161
STEAM CTGAN 0.674 ± 0.014 0.424 ± 0.011 0.928 ± 0.009 1.709 ± 0.052

ACIC TVAE 0.763 ± 0.011 0.515 ± 0.006 0.926 ± 0.007 4.202 ± 0.134
STEAM TVAE 0.767 ± 0.009 0.514 ± 0.004 0.972 ± 0.002 2.013 ± 0.112

7.1 GENERATION OF MEDICAL DATA CONTAINING TREATMENTS

Setup
We compare STEAM with state-of-the-art generic tabular data generators in the non-DP setting,
across three medical datasets:

1. AIDS Clinical Trial Group (ACTG) study 175. A clinical trial on subjects with HIV-1
(Hammer et al., 1996).

2. Infant Health and Development Program (IHDP). A semi-synthetic medical dataset,
with real covariates and simulated outcomes, using data from a randomised experiment
designed to evaluate the effect of specialist childcare on the cognitive test scores of
premature infants (Brooks-Gunn et al., 1992).

3. Atlantic Causal Inference Competition 2016 (ACIC). A semi-synthetic medical dataset,
with real covariates and simulated outcomes, containing data from the Collaborative
Perinatal Project (Niswander, 1972).

ACTG allows us to assess performance on real-world medical data, and the IHDP and ACIC will
be familiar to the causal inference community. We use baselines across the major families of
tabular data generators (CTGAN, TVAE (Xu et al., 2019), TabDDPM (Kotelnikov et al., 2022),
ARF (Watson et al., 2023), and normalising flow (Rezende & Mohamed, 2016)).

Takeaway
We display the performance across our metrics of the best performing standard model, and its
STEAM analogue, on each dataset in Table 3 (extended results in Appendix I). STEAM and
standard generation demonstrate similar performance in terms of desiderata (i), as Pα,X and
Rβ,X are similar across datasets. This is expected, since both methods approach the modelling of
PX similarly. Larger differences occur in terms of desiderata (ii) and (iii). JSDπ and UPEHE are
improved by STEAM at a statistically significant level across all datasets, indicating that targeted
modelling of PW |X and PY |W,X improves their preservation. The most notable improvement is
in the UPEHE metric, which is up to twice as good in STEAM models.

7.2 COMPARISONS ON SIMULATED DATA

To investigate the performance delta between STEAM and standard generation, we design ex-
periments on simulated data using a DGP with tunable experimental knobs, similar to that pro-
posed in Crabbé et al. (2022). Our tunable knobs include covariate dimensionality d, propensity
function π : X (d) → [0, 1], and prognostic and predictive functions µprog., µpred. : X (d) → R.4

Sample i is generated by drawing X(i) ∼ N (0, Id), W (i) ∼ Bern[π(X(i))], and Y (i) ∼
N (µprog.(X

(i)) + W (i) · µpred.(X
(i)), 1). With this DGP, we can assess performance on datasets

tailored to specific situations. Across experiments, we consistently compare between TabDDPM and
STEAMTabDDPM, and the default settings for each experimental knob are:

d = 10, π(X) = (1 + e−1/2(X1
2+X2

2))−1, µprog.(X) = X1
2 +X2

2, µpred.(X) = X3
2 +X4

2

4Prognostic variables affect an outcome regardless of treatment, while predictive variables only affect treated
outcomes. Prognostic and predictive functions dictate the effect of each covariate on the outcome.
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7.2.1 COVARIATE DIMENSIONALITY

Setup
To investigate performance as Dreal increases in dimensionality,
we vary d ∈ {5, 10, 20, 50}, with all other settings at default.

Takeaway
The performance delta between STEAM and standard generation
grows with the dimensionality of X. This follows the intuition
that, as d grows, PX will dominate the joint distribution, and
the comparatively small PW |X and PY |W,X will be overlooked
by standard models. The top of Figure 1 shows that, as d in-
creases, both STEAMTabDDPM and TabDDPM preserve PY |W,X

worse, however STEAMTabDDPM is less affected by d. The bot-
tom of Figure 1 is similar, showing that TabDDPM degrades in
performance more than STEAMTabDDPM in preserving PW |X as
d grows. Direct modelling with QW |X and QY |W,X allows these
small, but important, components to be better preserved in high
dimensions.

5 10 20 50
1

2

3

4

5

U
PE

H
E

5 10 20 50
d

0.7

0.8

0.9

JS
D

Standard
STEAM

Figure 1: UPEHE (↓) and
JSDπ (↑) as d increases. Av-
eraged over 10 runs, shaded
area represents 95% CIs.

7.2.2 TREATMENT ASSIGNMENT COMPLEXITY

Setup
To investigate performance as PW |X increases in complexity, we
vary the number of covariates upon which it depends. We set
π(X) = (1 + e−1/K

∑K
k=1 X2

k)−1 for K ∈ {1, 2, 3, 4, 5}, with all
other settings at default.

Takeaway
STEAM increasingly outperforms standard generation in preserv-
ing more complex PW |X. Figure 2 shows that, as K increases,
STEAMTabDDPM maintains a good estimate of PW |X, with JSDπ

consistently near 1. On the other hand, the estimate by standard
TabDDPM degrades with K, widening the performance gap. Di-
rect modelling allows more complex PW |X to be preserved.

1 2 3 4 5
K

0.80

0.85

0.90

0.95

1.00

JS
D

Standard
STEAM

Figure 2: JSDπ (↑) as K in-
creases. Averaged over 10
runs, shaded area represents
95% CIs.

7.2.3 OUTCOME HETEROGENEITY

Setup
To investigate performance as outcomes become increasingly het-
erogeneous, we vary the number of covariates upon which PY |W,X

depends. We set µpred.(X) =
∑K

k=3 X
2
k , K ∈ {3, 4, 5, 6, 7},

with all other settings at default.

Takeaway
As PY |W,X becomes increasingly heterogeneous, its preserva-
tion by STEAMTabDDPM degrades slightly, and much more dra-
matically for TabDDPM, as shown in Figure 3. Again, direct
modelling with QY |W,X better preserves complex distributions.

3 4 5 6 7
K

1

2

3

4

5

U
PE

H
E

Standard
STEAM

Figure 3: UPEHE (↓) as K in-
creases. Averaged over 10
runs, shaded area represents
95% CIs.

These experiments demonstrate that the performance delta between STEAM and standard generation
grows in complex settings. Whether difficulty arises from high-dimensionality, or through complex
dependencies in PW |X or PY |W,X, STEAM increasingly outperforms in the more difficult scenarios.
These situations are likely to emerge in real-world data, which is often highly complex, heightening
the relevance of STEAM to the medical setting.
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Figure 4: Pα,X (↑), Rβ,X (↑), JSDπ (↑), and UPEHE (↓) evaluating STEAMAIM and standard AIM
across privacy budgets. Averaged over 5 runs, shaded area represents 95% CIs.

7.3 DIFFERENTIALLY PRIVATE GENERATION WITH STEAM

Setup

We examine STEAM’s performance in (ϵ, δ)-DP generation. For comparison we use (ϵ, δ)-AIM
(McKenna et al., 2024), and for STEAM, we set QX as (ϵ/3, δ/3)-AIM, QW |X as an (ϵ/3, δ/3)-
DP random forest, and QY |W,X as an (ϵ/3, δ/3)-T-Learner, such that STEAM is also (ϵ, δ)-DP.
We compare performance on the ACTG dataset across ϵ ∈ {0.25, 0.5, 1, 2, 3, 5, 10, 15} with
δ = 10−6.

Takeaway
Figure 4 shows the results, and results with more baselines are in Appendix I.2. STEAMAIM
models PY |W,X better on all tested values of ϵ, as UPEHE is significantly lower than for standard
AIM. PW |X is better modelled by STEAMAIM at small ϵ, with equivalent performance between
the methods at less conservative budgets. PX, on the other hand, is better preserved by standard
AIM, scoring higher on Pα,X and Rβ,X at most ϵ. This is likely because assigning QX one third
of the budget of the standard AIM model and having it model largely the same distribution, save
for the removed W and Y , is prohibitively restrictive given the high-dimensionality of X. As
such, with uniform distribution of (ϵ, δ) across each component, there is a trade-off between
STEAMAIM and standard AIM, where STEAMAIM better preserves PW |X and PY |W,X, while
standard AIM preserves PX better. Distributing (ϵ, δ) differently amongst QX, QW |X, and
QY |W,X could address this trade-off, as we discuss in Section 8 and Appendix M.

8 DISCUSSION

Impact. In this paper, we tackle a problem impeding progress in the causal inference for medicine
community—unavailability of data. Existing synthetic data solutions are inadequate, producing poor
quality data containing treatments, which are evaluated with misaligned metrics. Our evaluation and
generation proposals, grounded in our desiderata which stem from the needs of analysts, remedy
this. We enable generation of synthetic data of substantially higher quality, which we demonstrate
across a range of experiments in Section 7, as well as in an additional ablative study (Appendix J)
and hyperparameter stability study (Appendix K). Furthermore, we allow meaningful evaluation with
our metrics, proposed in Section 5, that can answer the key questions Q1-3 of downstream analysts
from Section 1. Our paper’s impact is heightened by the fact that STEAM increasingly outperforms
standard generation in complex situations likely to arise in real-world settings. While we focus on
medical data, our methods are also applicable to other fields where data contain treatments, such as
education, marketing, and public policy, broadening our impact.

Limitations. STEAM has room for refinement. Uniform distribution of the privacy budget across
QX, QW |X, and QY |W,X during DP generation, as we do in Section 7.3, is sub-optimal, as particular
component models may benefit from a larger share of ϵ depending on their importance and complexity
(Appendix M). Also, generative models, used to model QX, can struggle when covariate shift is high
(Appendix N). This does not uniquely affect STEAM, as it occurs under standard generation as well,
however it is important to acknowledge that poor performance may occur in this setting.

Future work. There are many future research directions in this setting. These include improving
the limitations discussed above, and examining further applications of STEAM. For example, in
this work we focus on static medical data, and longitudinal data, with continuous measurement of
covariates, treatments, and outcomes, may require further novel thought (Appendix P).
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A EXAMPLES OF MISUSE OF MEDICAL DATA CONTAINING TREATMENTS

Here, we detail a select few synthetic data papers which use medical data, containing treatments,
to demonstrate on, yet they do not consider the downstream task of causal inference and how their
methods may need to be altered for this. Note that we do not claim that this list is exhaustive, as this
is a pervasive problem in the synthetic data literature, and we mean only to provide a few examples
here to demonstrate this problem, and provide motivation for our paper.

A.1 MEDGAN

In the paper ‘Generating Multi-label Discrete Patient Records using Generative Adversarial Networks’
(Choi et al., 2018), the authors propose a GAN-based approach to generate ‘realistic synthetic patient
records’. In doing so, they experiment on multiple datasets containing treatments, including one
from Sutter Palo Alto Medical Foundation (PAMF) which consists of longitudinal medical records
of 258,000 patients, as well as the MIMIC-III dataset (Johnson et al., 2016), which includes 46,000
intensive care unit patient records. Given the nature of these datasets, they both include treatments
administered to patients, and they therefore invite downstream analysts to conduct causal inference
tasks, such as treatment effect estimation.

Nevertheless, in this paper, standard generation and evaluation practices are followed, not differen-
tiating between covariates, treatments, and outcomes. In particular, the evaluation protocol relies
on marginal comparisons, and predictive utility assessment, which offers limited information as to
how well the generation method, medGAN, produces useful data for causal inference. Furthermore,
medGAN itself draws samples directly from the joint distribution, not mimicking the DGP of treatment
data, or optimising for the distributions most important for causal inference.

A.2 TABDDPM

The paper ‘TabDDPM: Modelling Tabular Data with Diffusion Models’ (Kotelnikov et al., 2022)
proposes a diffusion-based tabular data generation method. While not explicitly geared towards
medical data, this paper does use medical data with variables that could be seen as treatments
in its experiments. It therefore, at least implicitly, positions itself to work on data containing
treatments, and invites users to conduct generation with TabDDPM on such data. Specifically, the
cardiovascular disease dataset from https://www.kaggle.com/datasets/sulianova/
cardiovascular-disease-dataset is used, and this data could be analysed via causal
inference by setting ‘physical activity’ as a treatment, to estimate its effect on cardiovascular disease.

However, in this paper, only standard evaluation and generation methods are used, and the needs
of downstream analysts pursuing causal inference tasks are not acknowledged. Evaluation involves
only predictive utility measures, and the TabDDPM method generates all variables in a sample
simultaneously, not optimising for the distributions most important for causal inference.

A.3 GREAT

The paper ‘Language Models are Realistic Tabular Data Generators’ (Borisov et al., 2023) proposes an
LLM-based generator. Similar to the TabDDPM paper, this paper is not explicitly geared towards med-
ical data, but it demonstrates on medical data containing treatments, thereby implicitly condoning its
use on this type of data. Specifically, the dataset sick from https://www.openml.org/
search?type=data&sort=runs&id=38&status=active is demonstrated on, which
could be analysed via causal inference to assess the effect of ‘thyroxine’ or ‘antithyroid’ treat-
ments. Nevertheless, once again this paper does not consider downstream analysis involving causal
inference, only evaluating its GReaT method with predictive utility metrics and a discriminator score.

A.4 BENCHMARKING PROCESS FOR SYNTHETIC ELECTRONIC HEALTH RECORDS

Finally, the paper ‘A Multifaceted benchmarking of synthetic electronic health record generation
models’ proposes a benchmarking framework for use on synthetic electronic health record (EHR)
data (Yan et al., 2022). Naturally, EHRs will include treatments administered to patients, and they
will likely be analysed with treatment effect estimation in mind. In the proposed benchmarking
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framework, the evaluation procedures—including marginal comparison, correlation comparison, and
predictive utility—do not differentiate between covariates, treatments, and outcomes, or acknowledge
the needs of downstream analysts conducting causal inference.

B EXTENDED LITERATURE REVIEW

To provide useful context for readers, we extend on our literature review here.

Evaluation. We extend on the synthetic data evaluation practices summarised in Table 1 here.

Marginal comparison. Assessing the distributional distance between synthetic and real marginals is
often used to offer a quantitative assessment of how well individual variables are modelled (Yan et al.,
2022; Tucker et al., 2020; Goncalves et al., 2020). The distance function d to conduct this can be set
from a variety of choices, including including KL divergence (Kullback & Leibler, 1951), Jensen-
Shannon distance (Lin, 1991), Wasserstein distance (Kantorovich, 1960), Kolmogorov-Smirnov score
(Massey Jr, 1951), MMD (Gretton et al., 2012), and many more.

Correlation matrix comparison. Correlation-based assessment can offer a sense of how well inter-
dependencies between variables are modelled in synthetic data (Murtaza et al., 2023). This commonly
involves calculating synthetic and real 2-way correlation matrices, and assessing their difference, by
setting d as a distance such as Frobenius norm (Goncalves et al., 2020) and absolute error (Kaur et al.,
2020).

Joint distribution comparison. Metrics based on notions of statistical divergence can offer a means
of quantifying how different the entire joint distributions of real and synthetic data are (Yoon et al.,
2020; Tucker et al., 2020; Torfi et al., 2022). The distance function d can be set to largely to the same
family of functions as in the marginal comparison case.

Precision and recall analysis. Precision and recall, originally proposed for generative model assess-
ment in Sajjadi et al. (2018), measure if generated samples are covered by real samples, and vice
versa. Alpha precision and beta recall (Alaa et al., 2022) are refined versions of the original metrics
which account for the densities of the real and generative distributions, rather than just comparing
supports.

Discriminator performance. Discriminator performance is a slightly unique evaluation practice,
involving a ‘discriminator’, which predicts whether instances are synthetic or real, where poor
performance of the discriminator indicates realism in the synthetic data (Kaur et al., 2020; Lee et al.,
2020; Emam et al., 2021; Borisov et al., 2023).

Predictive utility. Predictive utility metrics offer a practical evaluation of synthetic data by quantifying
the performance of a synthetically-trained predictive model. The “train on synthetic, test on real”
(TSTR) paradigm (Esteban et al., 2017) is the common approach to such assessment, measuring the
accuracy of a synthetically-trained model in predicting a target label on a real test set.

Generic generative models. We expand on the generic generative modelling paradigm outlined
in Table 2 by describing specific existing generative models which adhere to it. These models
approximate the real joint distribution using a diverse range of techniques.

GAN-based models. GANs (Goodfellow et al., 2020) consist of a generator and discriminator network,
which are trained adversarially to generate and identify synthetic data, respectively, until the samples
are realistic. Originally proposed for image generation, GANs have been adapted to tabular generation,
and there are many methods which adopt this popular architecture (e.g. CTGAN (Xu et al., 2019),
TableGAN (Park et al., 2018)), including those specifically designed for medical data (e.g. MedGAN
(Choi et al., 2018)).

VAE-based models. VAEs (Kingma & Welling, 2022) are another common architecture, which learn
to encode data into a lower-dimensional latent space and then decode it back to reconstruct the
original data. They generate new data samples by sampling from the latent distribution and decoding
these samples, and their application to tabular data involve techniques to handle mixed data types
(e.g.TVAE (Xu et al., 2019)), and regularisation for improved robustness (e.g. RTVAE Akrami et al.
(2020)).
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Diffusion-based models. Diffusion models (Ho et al., 2020; Song et al., 2020) learn the gradient of
the data distribution, and generate data via progressive denoising, beginning with a noisy sample and
using a neural network to predict and remove noise over a number of timesteps, including for tabular
data (e.g. TabDDPM (Kotelnikov et al., 2022)).

Forest-based models. Random forests can estimate the density of a probability distribution, as leaf
nodes partition the data space into distinct hyper-rectangles with estimated densities of the proportion
of samples which fall into them. Samples can then be drawn from this estimated density. Random
forests can easily handle heteorgeneous data types, so their application to tabular data synthesis is
natural. They are particularly fast to train and generate from (Shi & Horvath, 2006; Watson et al.,
2023)).

Normalizing flow-based models. Normalizing flows estimate the target density by transforming a
tractable density (e.g. a Gaussian) into the target through a series of invertible transformations, called
’flows’. Probabilities from the target distribution can then be found using the change of variables
formula (e.g. Rezende & Mohamed (2016)). Recent work has shown their theoretical similarity to
diffusion models (Lipman et al., 2023).

Causal generative models. Causal generative models (Komanduri et al., 2024; Blöbaum et al.,
2024; Chao et al., 2024) are a class of generative model, distinct from generic tabular data generators,
that approximate the underlying structural causal model (SCM) (Pearl, 2009) of a dataset. While such
models are related to our work with STEAM, and are likely to better preserve causal relationships than
generic generators in settings where they can be used, their assumptions can restrict their practical
use cases. In comparison to STEAM, they generally differ in terms of their (1) assumptions, (2)
motivation, and (3) flexibility, which we detail here.

(1): Importantly, causal generative models typically assume that the data holder has knowledge of the
entire causal graph of the real data, which is a more restrictive assumption than we make in this work.
We assume that our specification of the underlying DGP X ∼ PX, W ∼ PW |X, Y ∼ PY |W,X is
correct for datasets containing treatments, but we do not require knowledge of the causal graph, as we
do not need to know the causal links between individual variables. We do not assume knowledge of
the causal relationships amongst the covariates, nor knowledge of which covariates cause treatment
assignment or patient outcomes. As such, we make less restrictive assumptions than works which
require knowledge of a causal graph, and we suggest that our approach is more realistic in complex,
real-world scenarios, such as those that arise in medicine, where the true causal graph is unlikely to
be available.

(2): The motivation for causal generative models is typically to allow generation of data to answer
graph-specific interventional and counterfactual queries, that require knowledge of the full causal
graph. With STEAM, however, we seek to generate useful synthetic data only from the observational
distribution, for use by analysts with goals such as treatment effect estimation (e.g., CATE).

(3): STEAM’s design can, in principle, incorporate any generative model for QX, essentially acting
as a wrapper around QX to improve its generation quality for causal inference tasks. This allows
STEAM to very easily empower many existing generative modelling frameworks, without having to
incorporate bespoke generators. Also, it allows STEAM models to continuously improve along with
the base generative model. Existing causal generative models do not generally allow such flexibility,
and therefore cannot as easily benefit from future improvements in underlying generic generative
models.

Despite these differences, we conduct empirical comparisons between STEAM and some baseline
causal generative models in Appendix O.

Privacy. Despite the popularity of some of the above generators, memorisation of training samples
is a phenomenon observed in generative models (Ghalebikesabi et al., 2023). Therefore, provably
private generation is often desired to limit the amount of information leaked. Differential privacy
Dwork et al. (2006) is the most common standard adopted, and there are multiple generators which
guarantee this, including GAN-based methods (e.g. PATE-GAN (Jordon et al., 2018), DP-GAN (Xie
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et al., 2018)) and query-based methods (e.g. GEM (Liu et al., 2021), MST (McKenna et al., 2021),
RAP (Aydore et al., 2021), AIM (McKenna et al., 2022)).

C THEOREM 1 PROOF

Theorem 1. Let P , Qθ1 , Qθ2 be of the form described in Section 5.1, and M be KL divergence. If we
assume that Qθ1 and Qθ2 have sufficient capacity to have bounded error on each component, i.e. ∀i,
0 < M(PXi , Q

θX
Xi

) < εX, and 0 < M(PW |X, Q
θW,k

W |X) < εW,k, and 0 < M(PY |W,X, Q
θY,k

Y |W,X) <

εY,k, then:

M(PX,W,Y , Q
θ1
X,W,Y )

M(PX,W,Y , Q
θ2
X,W,Y )

→ 1, as d → ∞ (7)

Proof. From the factorizations of P and Q, KL divergence decomposes:

DKL(P∥Qθk) =

d∑
i=1

DKL(PXi∥Q
θX
Xi

) + EPX

[
DKL(PW |X∥QθW,k

W |X)
]
+ EPX,W

[
DKL(PY |W,X∥QθY,k

Y |W,X)
]

(8)

As such, the following holds for when KL divergence is set as M.

Define the ratio:

R(d) =
M(PX,W,Y , Q

θ1
X,W,Y )

M(PX,W,Y , Q
θ2
X,W,Y )

.

Substituting the decompositions, we have:

R(d) =

∑d
i=1 M(PXi , Q

θX
Xi

) + EPX

[
M(PW |X, Q

θW,1

W |X)
]
+ EPX,W

[
M(PY |W,X, Q

θY,1

Y |W,X)
]

∑d
i=1 M(PXi

, QθX
Xi

) + EPX

[
M(PW |X, Q

θW,2

W |X)
]
+ EPX,W

[
M(PY |W,X, Q

θY,2

Y |W,X)
] .

As the dimensionality d increases, the marginal summations
∑d

i=1 M(PXi∥Q
θX
Xi

) grow linearly
with d, since each M(PXi∥Q

θX
Xi

) is, by assumption, non-negative, and they therefore dominate the
bounded conditional contributions:

EPX

[
M(PW |X, Q

θW,k

W |X)
]
< εW,k,

EPX,W

[
M(PY |W,X, Q

θY,k

Y |W,X)
]
< εY,k.

Thus, M(PX,W,Y , Q
θk
X,W,Y ) ∼

∑d
i=1 M(PXi

, QθX
Xi

) and R(d) ∼
∑d

i=1 M(PXi
,Q

θX
Xi

)∑d
i=1 M(PXi

,Q
θX
Xi

)
= 1.

Therefore:
R(d) → 1, as d → ∞

D EMPIRICAL DEMONSTRATIONS OF CURRENT METRIC FAILURE
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Table 4: Joint-distribution-level metrics on Di
synth which differ in Qi

Y |W,X architecture only. Averaged
over 10 runs, with 95% CIs.

Qi
Y |W,X Pα (↑) Rβ (↑) Inv. KL (↑) KS (↑) WD (↓) JSD (↓) Oracle (↓)

T-Learner 0.927 ± 0.001 0.584 ± 0.006 0.947 ± 0.000 0.979 ± 0.000 0.002 ± 0.000 0.002 ± 0.000 0.525 ± 0.012
TARNet 0.919 ± 0.002 0.573 ± 0.005 0.950 ± 0.006 0.985 ± 0.001 0.002 ± 0.000 0.002 ± 0.000 0.616 ± 0.015
DragonNet 0.921 ± 0.001 0.574 ± 0.004 0.947 ± 0.000 0.984 ± 0.001 0.002 ± 0.000 0.002 ± 0.000 0.618 ± 0.007
S-Learner 0.926 ± 0.002 0.579 ± 0.007 0.957 ± 0.009 0.990 ± 0.000 0.002 ± 0.000 0.001 ± 0.000 1.279 ± 0.015

D.1 FAILURE TO IDENTIFY CHANGES TO THE OUTCOME GENERATION MECHANISM

We demonstrate this with a simple experiment investigating how four Dsynth of size n = 1000,
which only differ in their outcome generation mechanisms, are assessed by an array of cur-
rent metrics. We simulate Dreal from a simple DGP with 10 covariates with PX = N (0, I),
PW |X = Bern(0.5), PY |W,X = N (W · X1

2, 1). We generate four Di
synth with the same

Qi
X

d
= PX, Qi

W |X
d
= PW |X, ∀i ∈ {1, 2, 3, 4}. We vary each Qi

Y |W,X ∼ N (W ·Φi(X, 1)+ (1−
W ) ·Φi(X, 0), 1) where Φi represents a potential outcome (PO) estimator with the architecture from
either an S-Learner, T-Learner (Künzel et al., 2019), DragonNet (Shi et al., 2019), or TARNet (Shalit
et al., 2017). These four architectures will model Qi

Y |W,X differently, inducing the only point of
variation amongst the Di

synth.

Since we simulate Dreal, we know the ground-truth treatment effects, and an oracle metric can be
established to determine the true quality of each Di

synth. We define this as the precision of estimating
heterogeneous effects (PEHE) (Hill, 2011) of estimates from a CATE learner trained on Di

synth and
the ground-truth CATEs. In Table 4 we report the scores of Pα, Rβ (Alaa et al., 2022), inverse KL
divergence (Kullback & Leibler, 1951), Kolmogorov-Smirnov (KS) score (Massey Jr, 1951), Wasser-
stein distance (WD) (Kantorovich, 1960), and Jensen-Shannon distance (JSD) (Lin, 1991) on each
Di

synth. All report very similar scores across the Di
synth, with most offering no statistically significant

best option, suggesting that their quality is the same. The oracle metric, however, determines that
Di

synth using a T-Learner for Φi is a clear best, and Di
synth with an S-Learner as Φi is more than twice

as bad at preserving the true treatment effects. Clearly, even in a moderately sized dataset, these
metrics cannot reliably identify changes in Qi

Y |W,X, despite the large effect that this distribution has
on downstream performance. Table 5: UPEHE on Di

synth with varied Qi
Y |W,X.

Averaged over 10 runs, with 95% CIs.

Qi
Y |W,X UPEHE (↓) Oracle (↓)

T-Learner 0.693 ± 0.013 0.525 ± 0.012
TARNet 0.731 ± 0.016 0.616 ± 0.015
DragonNet 0.754 ± 0.019 0.618 ± 0.007
S-Learner 0.906 ± 0.019 1.279 ± 0.015

Comparison to UPEHE Since we only alter
Qi

Y |W,X between each Di
synth, all have the same Pα,X,

Rβ,X, and JSDπ . In Table 5 we report UPEHE on each
dataset, and we see that it fully reproduces the ora-
cle ranking, and correctly identifies the best dataset
to a statistically significant level, which no existing
metric could do.

D.2 FAILURE TO IDENTIFY CHANGES TO THE TREATMENT ASSIGNMENT MECHANISM

We conduct a similar experiment varying Qi
W |X across three Di

synth. We simulate Dreal ∼ PX,W,Y

from a DGP with 5 covariates, all of which contribute to the propensity score. We set PX = N (0, I),
PW |X = Bern(π(X)), π(X) = (1 + e−1/5

∑5
i=1 Xi)−1, PY |W,X = N (0, 1). We generate three

Di
synth ∼ Qi

X,W,Y which vary only in the degree to which they correctly model π(X) by setting

Qi
X

d
= PX, Qi

Y |W,X

d
= PY |W,X, ∀i ∈ {1, 2, 3} and Qi

W |X = Bern(πi(X)) where π1(X) =

(1 + e−X1)−1, π2(X) = (1 + e−1/3
∑3

i=1 Xi)−1, and π3(X) = (1 + e−1/5
∑5

i=1 Xi)−1. In this way,
we know that, in truth, Q3

X,W,Y is a better model than Q2
X,W,Y , which in turn is better than Q1

X,W,Y ,
and we can now assess how well existing metrics, and our JSDπ metric, recover this ranking.

We display the scores of Pα, Rβ , inverse KL, Kolmogorov-Smirnov score, Wasserstein distance,
Jensen-Shannon distance, and our metric JSDπ on each Di

synth in Table 6. We see that the existing
metrics report very similar scores across the three datasets, and none offer a statistically significant

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 6: # correct var.: The number of correctly identified variables in the propensity score. Pα: α
precision. Rβ : β recall. Inv. KL: Inverse KL divergence. KS: Kolmogorov-Smirnov score. WD:
Wasserstein distance. JSD: Jensen-Shannon distance. JSDπ: Ours. Averaged over 10 runs, with 95%
CIs.

# correct var. Pα (↑) Rβ (↑) Inv. KL (↑) KS (↑) WD (↓) JSD (↓) JSDπ (↑)

5 0.863 ± 0.024 0.456 ± 0.017 0.989 ± 0.002 0.965 ± 0.003 0.017 ± 0.001 0.004 ± 0.000 0.963 ± 0.007
3 0.868 ± 0.022 0.457 ± 0.012 0.981 ± 0.006 0.966 ± 0.003 0.018 ± 0.001 0.004 ± 0.000 0.942 ± 0.006
1 0.866 ± 0.021 0.453 ± 0.013 0.985 ± 0.003 0.965 ± 0.003 0.018 ± 0.001 0.004 ± 0.000 0.908 ± 0.013

best option. This contrasts with our JSDπ metric, which correctly orders the three models, and selects
Q3

X,W,Y as the best option to a statistically significant level.

To further elucidate the differences in rankings between existing and our metrics, both in this
experiment and the outcome generation comparison in Section 5, we list each ranking and their
Spearman’s rank correlation coefficient with the oracle ranking in Tables 7 and 8. Assessment via our
metrics is the only protocol that reproduces the oracle ranking across both experiments.

Table 7: Treatment assignment experiment: rankings by different metrics, sorted by Spearman’s rank
correlation coefficient (rs) with oracle ranking. Numbering indicates the oracle order of πi(X).

Metric Ranking rs (↑)

Pα 2,3,1 -0.5
KS 2,1,3 0.5

Inv. KL 1,3,2 0.5
Rβ 2,1,3 0.5
WD 1,2,3 1

JSDπ 1,2,3 1

Table 8: Outcome generation experiment: Rankings by different metrics, sorted by Spearman’s rank
correlation coefficient (rs) with oracle ranking. Qi

Y |W,X are number by oracle ranking, 1: T-Learner,
2: TARNet, 3: DragonNet, 4: S-Learner.

Metric Ranking rs (↑)

KS 4,2,3,1 -0.80
Inv. KL 4,2,1,3 -0.40
Pα 1,4,3,2 0.20
Rβ 1,4,3,2 0.20
WD 2,3,1,4 0.40
UPEHE 1,2,3,4 1

D.3 EXISTING METRIC FAILURE: EXTREME EXAMPLE

As a ‘proof by contradiction’ that current metrics can offer a good level on information on the preser-
vation of (i)-(iii), we present some extreme examples. We show that joint-distribution-level metrics
do not have enough resolution to identify how well (i)-(iii) are preserved, even if Q comprehensively
fails in modelling any one of the component distributions PX, PW |X, or PY |W,X.

We perform a series of experiments where we evaluate adversarial synthetic versions of a simulated
dataset, with each synthetic version failing in one of the above components, and we show that standard
metrics do not identify these failure modes. We simulate real data using the DGP in CATENets
from Curth & van der Schaar (2021) and we create three Dsynth that perfectly model two component
distributions of Dreal but poorly approximate the remaining one. For poorly modelled PX, we set
X = 0; for poorly modelled PW |X, we assign all instances with W = 0; and for poorly modelled
PY |W,X, we draw Y from a normal distribution with mean 0 regardless of treatment. All such Dsynth
are useless for treatment effect estimation.
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Table 9: Scores on adversarially created Dsynth which poorly perform on desiderata (i), (ii), or (iii).

Inv. KL (↑) Pα (↑) Rβ (↑) MMD (↓)

Poor (i) 0.681 0.902 0.368 0.085

Poor (ii) 0.685 0.501 0.333 0.074

Poor (iii) 0.844 0.905 0.430 0.008

We report the inverse of KL divergence, Pα, Rβ and MMD, which all have range [0, 1], for these
synthetic datasets in Table 9. We see that these conventional evaluation metrics do not accurately
reflect the invalidity of each Dsynth for treatment effect estimation. None report significantly low
scores, despite the failure of each Dsynth. Rβ reflects these failures best, although its scores still do
not adequately reflect how these datasets render correct treatment effect analysis impossible, and
it does not allow a granular enough analysis to disentangle which component distribution is poorly
modelled.

In further detail, for the experiments that examine poor modelling of PX and PW |X, we simulate
Dreal of size n = 1000 with d = 1 covariate as follows:

X ∼ N (0, 1) (9)
W ∼ Bernoulli(0.5) (10)

Y (0), Y (1) = 0 (11)
Y = (1−W )Y (0) +WY (1) + ϵ, ϵ ∼ N (0, 1) (12)

We manufacture Dsynth that exhibits poor modelling of PX by generating W and Y from the true
distributions as above, but set X = 0. For Dsynth that exhibits poor modelling of PW |X, we generate
X and Y from their true distributions, but set all W = 0.

To demonstrate assessment under poor modelling of PY |W,X, we set the covariate in Dreal to be
predictive, such that it affects the value of the potential outcome Y (1), but not Y (0). The distributions
remain the same as the above, although now the potential outcomes are:

Y (0) = 0 (13)

Y (1) = X2 (14)

We manufacture Dsynth that poorly models of PY |W,X by generating X and W from their true
distributions, but we set Y (0), Y (1) = 0.

E DISCUSSION ON ALTERNATIVE METRICS

While we propose a set of metrics M for evaluation of Dsynth, there are many possible alternatives to
each choice we make. Our choices enable evaluation of how well Dsynth adheres to our desiderata,
but, like any metrics, they may be sub-optimal for certain data holders with specific preferences.
Here, we list some alternative definitions, and we detail when they may be preferable. We would like
to emphasise that conducting any reasonable assessment of the preservation of (i)-(iii) is beneficial
compared to standard evaluation practices.

E.1 ALTERNATIVE COVARIATE DISTRIBUTION ASSESSMENT

As we state in the main paper, comparison of PX and QX is essentially a standard synthetic data
evaluation problem, and therefore any standard protocol can be applied.

For example, if the dimensionality of X is small, manual evaluation via visualisation may be
preferable to the precision/recall analysis we suggest, as this can provide a more granular and
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interpretable assessment. On the other hand, if a single all-encompassing score is desired, rather than
the two-dimensional metric (Pα,X, Rβ,X), then statistical divergence metrics can offer this. These
one-dimensional metrics can lead to more straightforward model selection than (Pα,X, Rβ,X), as
ordering based on a two-dimensional metric can be ambiguous.

E.2 ALTERNATIVE TREATMENT ASSIGNMENT MECHANISM ASSESSMENT

Similarly, there is a vast array of metrics which could be substituted into (5) over Jensen-Shannon
distance which could measure the difference between PW |X and QW |X. These include metrics
such as KL divergence and Wasserstein distance, which are also very common in machine learning
literature. For example, a data holder may prefer KL divergence if they want to more harshly punish
QW |X for failing to place density where PW |X is probable, encouraging mode-covering behaviour.
On the other hand, if a data holder wants to more harshly punish QW |X for spreading mass away
from the modes, Wasserstein distance may be preferable, leading to mode-seeking behaviour. JSD
achieves a balance between these two focuses, but if a data holder has a strong preference for one
or the other, these alternate choices would be preferable. Nevertheless, we suggest that, apart from
extreme scenarios, most reasonable methods to assess the preservation of PW |X will lead to similar
analysis.

E.3 ALTERNATIVE OUTCOME GENERATION MECHANISM METRICS

Raw similarity of PEHE in CATE estimation between Dreal and Dsynth may not be the most important
quantity of interest for certain data holders. This can be particularly true in medical practice, as raw
performance is not the only important aspect of a downstream model. We propose some alternatives
which may be more applicable in the following situations:

1. Correct estimation of the sign of the CATE may be of heightened importance if the CATE
learner is assisting with policy decisions. The wrong CATE sign will lead to incorrect policy
administration, whereas the magnitude of the effect may not be as important for decision
making.

2. Discovering the correct drivers of effect heterogeneity may be important, as how a learner
arrives at its final estimation is particularly important to consider in applications such as in
drug discovery or clinical practice (Hermansson & Svensson, 2021; Crabbé et al., 2022).

E.3.1 POLICY ASSIGNMENT

If policy guidance is of interest, then quantification of how well the sign of CATE estimates is
preserved between Dsynth and Dreal may be desired, which can be done as follows:

Upolicy(Dreal,Dsynth) =
1

|F|
∑
τ̂∈F

EPX
[I(τ̂synth(X)× τ̂real(X) > 0)] (15)

where I is the indicator function.

E.3.2 FEATURE IMPORTANCE

If assessing how well Dsynth permits the discovery of the correct drivers of effect heterogeneity is
important, this can be quantified through the use of feature importance methods. Given a CATE
learner τ̂ , feature importance methods offer a means to measure the sensitivity of the model to each
covariate by assigning an importance score ai(τ̂ ,x) to each feature xi that reflects its importance
in the prediction of the CATE τ̂(x). There are many different instantiations of feature importance
methods with different strengths (Ewald et al., 2024), and the metric we propose here is method-
agnostic. We quantify how well PY |W,X is modelled according to feature importance similarity
between Dsynth and Dreal as follows:

Uint(Dreal,Dsynth) =
1

|F|
∑
τ̂∈F

SC(Areal,τ̂ , Asynth,τ̂ ) (16)
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where SC is cosine similarity, and Areal,τ̂ and Asynth,τ̂ are d-dimensional vectors with ith entries

Ai
⋄,τ̂ = EPX

[ai(τ̂⋄,X)], ⋄ ∈ {real, synth} (17)

Uint ∈ [−1, 1], where Uint = 1 indicates total agreement in the feature importances of Dreal and Dsynth,
while Uint = 0 indicates that the feature importances are uncorrelated, suggesting that QY |W,X does
not allow discovery of the correct drivers of heterogeneity. Finally, Uint = −1 indicates antithetical
feature importances, suggesting a drastic failure of QY |W,X in estimating PY |W,X.

F DEFINING F FOR UPEHE

In CATE estimation, model validation is a difficult task (Curth & Van Der Schaar, 2023). As such, it
is reasonable to expect that a set of downstream analysts conducting CATE estimation on Dsynth will
use different learners. Therefore, we want UPEHE to reflect the expected difference in downstream
performance between Dsynth and Dreal across a diverse array of potential learners, such that it is
representative for the entire population of analysts, and has limited bias towards any particular learner
class. To achieve this, we propose averaging UPEHE across a family of CATE learners F , and we
suggest that larger |F|, and diverse selection of the learners within F , is preferable.

Of course, there is a trade off between the size of F , and therefore the stability of UPEHE, and the
computational cost of repeated CATE estimation. With this in mind, to limit the computation involved
in calculating UPEHE, we suggest that users should be selective of the learners included in F to
maximize learner diversity, and minimise |F|. For example, in our experiments we set |F| = 4, and
we chose learners from both of the high-level CATE learning strategies described in Curth & van der
Schaar (2021) (i.e. one-step plug-in learners, and two-step learners). Specifically, for the one-step
learners we use S- and T- learners (Künzel et al., 2019), and for the two-step learners we use RA and
DR learners (Kennedy et al., 2020). All four of these learners conduct CATE estimation differently,
and encode different inductive biases in their approaches, and thus they form a good diverse base for
F .

For our experiments, on each of the real datasets from Section 7.1, the runtime for calculating UPEHE
for one run are shown in Table 10. Note that these are much less than the typical generation times for
each dataset, so this step is unlikely to be a large time burden for the data holder. Also note that these
calculations can be parallelized across the learner classes, which we did not do, and this can improve
the computational feasibility of using a larger |F|.

Table 10: Runtime to calculate UPEHE

Dataset UPEHE runtime (s)

ACTG 26
IHDP 60
ACIC 191

G STEAM DIFFERENTIAL PRIVACY PROOF

The theoretical guarantee of STEAM’s differential privacy (DP) when using individual DP compo-
nents is grounded in the post-processing and composition theorems of DP (Dwork & Roth, 2014),
as we state in the main body of the paper. We make this derivation clear here, by first outlining the
post-processing and composition theorems in full.
Theorem (Post-Processing Theorem). Let M : N|X | → R be a randomized algorithm that is (ϵ, δ)-
differentially private. Let f : R → R′ be an arbitrary randomized mapping. Then the composition
f ◦M : N|X | → R′ is (ϵ, δ)-differentially private.

Theorem (Composition Theorem). Let Mi : N|X | → Ri be an (ϵi, δi)-differentially private algo-
rithm for i ∈ [k]. Define M[k] : N|X | →

∏k
i=1 Ri as:

M[k](x) = (M1(x),M2(x), . . . ,Mk(x)),
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then M[k] is
(∑k

i=1 ϵi,
∑k

i=1 δi

)
-differentially private.

Given these theorems, we have our guarantee of DP generation with STEAM. Specifically:
Proposition 1. If QX satisfies (ϵX, δX)-differential privacy, QW |X satisfies (ϵW , δW )-differential
privacy, and QY |W,X satisfies (ϵY , δY )-differential privacy, STEAM satisfies (ϵtotal, δtotal)-differential
privacy, where ϵtotal = ϵX + ϵW + ϵY , δtotal = δX + δW + δY .

Proof. QX generates X, and satisfies (ϵX, δX)-differential privacy by assumption.

By the post-processing theorem, inputting X as the condition to QW |X does not affect its privacy.
QW |X generates W , and satisfies (ϵW , δW )-differential privacy by assumption.

By the post-processing theorem, inputting W and X as the conditions to QY |W,X does not affect
their privacy. QY |W,X generates Y , and satisfies (ϵY , δY )-differential privacy by assumption.

STEAM generates (X,W, Y ), and is the composition of QX, QW |X, and QY |W,X, i.e. STEAM =
(QX, QW |X, QY |W,X)

Therefore, by the composition theorem STEAM satisfies (ϵtotal, δtotal)-differential privacy, where
ϵtotal = ϵX + ϵW + ϵY , δtotal = δX + δW + δY .

H MAIN EXPERIMENTAL DETAILS

Here we add any additional details to the experiment set-ups from Section 7. All experiments were
run on an Azure VM with a 48-Core AMD EPYC Milan CPU, an A100 GPU with 80GB of VRAM,
and 880GB of RAM. We report typical runtimes where relevant. An estimated total compute time
for all experimental runs is ~72 hours. This does not include the compute required for preliminary
experimentation.

For all generative models, we use the open source library synthcityQian et al. (2023) (Apache-2.0
License), and we do not change the default hyperparameters. We set the treatment and outcome
generators of STEAM as a logistic regression function from scikit-learn Pedregosa et al. (2011)
and T-Learner from CATENets Curth & van der Schaar (2021), respectively.

H.1 GENERATION OF MEDICAL DATA CONTAINING TREATMENTS

To assess sequential generation in a number of real-world scenarios, we evaluate performance on
ACTG (Hammer et al., 1996) and on the popular treatment effect estimation datasets IHDP (Hill, 2011)
and ACIC (Dorie et al., 2018). We also report further results in Table 11 on a non-medical dataset,
Jobs (LaLonde, 1986), which is also popular amongst the treatment effect estimation community, to
show that STEAM can be applied beyond the medical context, to any dataset containing treatments.
More in depth descriptions of the datasets used are here:

1. AIDS Clinical Trial Group (ACTG) study 175. A clinical trial on subjects with HIV-1
(Hammer et al., 1996). Preprocessed as in Hatt et al. (2022) to compare CD4 counts at the
beginning of the study and after 20 ± 5 weeks across treatment arms using zidovudine (ZDV)
and zalcitabine (ZAL) vs. ZDV only. The ACTG dataset contains n = 1056 instances with
d = 12 covariates and a continuous outcome, and we use the publicly available version from
https://github.com/tobhatt/CorNet.

2. Infant Health and Development Program (IHDP). A semi-synthetic medical dataset, with
real covariates and simulated outcomes, using data from a randomised experiment designed
to evaluate the effect of specialist childcare on the cognitive test scores of premature infants
(Brooks-Gunn et al., 1992). Confounding and treatment imbalance were introduced in Hill
(2011) to mimic an observational dataset. The IHDP dataset consists of n = 747 instances
with d = 25 covariates and a continuous outcome. We use the publicly available version from
https://github.com/AMLab-Amsterdam/CEVAE (Louizos et al., 2017), with the
first batch of simulated outcomes.

3. Atlantic Causal Inference Competition 2016 (ACIC). A semi-synthetic medical dataset,
with real covariates and simulated outcomes, containing data from the Collaborative Perinatal
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Project (Niswander, 1972). The data was modified in Dorie et al. (2018) to simulate an
observational study examining the impact of birth weight in twins on IQ. The ACIC dataset
consists of n = 4802 instances with d = 58 covariates and a continuous outcome. We use the
publicly available version from the causallib package (Shimoni et al., 2019) (Apache-2.0
License) available here https://github.com/BiomedSciAI/causallib, using the
first simulated set of treatments and potential outcomes.

4. Jobs. Jobs contains experimental data from a male sub-sample from the National Supported
Work Demonstration from LaLonde (1986) to evaluate the effect of job training on income.
The Jobs dataset consists of n = 722 instances with d = 7 covariates and a continuous
outcome. We use the publicly available version used in Dehejia & Wahba (1998; 2002), from
https://users.nber.org/~rdehejia/data/.nswdata2.html.

We report extended results for all models tested, and the further results on the Jobs dataset, in
Table 11. For each model on each dataset we conduct 20 runs. A typical run for a given real dataset
and generative model took 15 minutes.

H.2 SIMULATED EXPERIMENTS

For our simulated insight experiments, we compare performance of a standard TabDDPM with
STEAMTabDDPM, and we report average results over 10 runs. A typical run took 5 minutes. For
simulation of Dreal, we use the DGP from CATENets (Curth & van der Schaar, 2021).

H.3 DIFFERENTIALLY PRIVATE GENERATION

For our experiment which showcases the performance of STEAM when satisfying DP, we compare
the generative performance of baseline methods AIM (McKenna et al., 2022), GEM (Liu et al.,
2021), MST (McKenna et al., 2021), RAP (Aydore et al., 2021) with their STEAM counterparts.
We use the code provided by McKenna et al. (2022) in their GitHub https://github.com/
ryan112358/private-pgm for the AIM and MST implementations, and we use the code pro-
vided in the GitHub https://github.com/terranceliu/dp-query-release for the
GEM and RAP implementations. We use the default hyperparameter settings of these implemen-
tations, with the workload set as 3-way marginals. For the STEAM models, we use the relevant
base model for QX, DP random forest from the diffprivlib library (Holohan et al., 2019) (MIT
License) for QW |X, and a custom implementation of a T-Learner Künzel et al. (2019) based on
Curth & van der Schaar (2021) which guarantees DP by training with DP stochastic gradient descent,
implemented with the Opacus library (Yousefpour et al., 2021) (Apache-2.0 License). We report
comparative results on varying ϵ, averaged over 5 runs.

I EXTENDED RESULTS

I.1 SECTION 7.1 EXTENDED RESULTS

We report the full set of results for each model and dataset from Section 7.1 in Table 11. We pair
each standard model with its STEAM analogue, and report the relative difference between them
for each metric, where (green) indicates better performance by STEAM, and (red) indicates better
performance by standard modelling. We see that STEAM clearly outperforms. Almost all STEAM
models perform better in each metric than all standard models.

I.2 SECTION 7.3 EXTENDED RESULTS

We report the full (ϵ, δ)-DP generation results on the ACTG across a set of baseline models with the
same set-ups as in Section 7.3. In Figure 5 we compare GEM (Liu et al., 2021) with STEAMGEM, in
Figure 6 we compare MST (McKenna et al., 2021) with STEAMMST, and in Figure 7 we compare RAP
(Aydore et al., 2021) with STEAMRAP. While there are some nuances to each baseline comparison,
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Table 11: Pα,X, Rβ,X, JSDπ , and UPEHE values for STEAM and standard models. Averaged over 20
runs, with 95% confidence intervals. Each STEAM model is placed after its corresponding standard
model. Coloured numbers in brackets indicate relative difference between standard and STEAM
model, where (green) indicates better performance by STEAM, and (red) indicates better performance
by standard modelling.

Dataset Model Pα,X (↑) Rβ,X (↑) JSDπ (↑) UPEHE (↓)

ACTG TVAE 0.926 ± 0.013 0.483 ± 0.010 0.946 ± 0.004 0.564 ± 0.017
STEAM TVAE 0.929 ± 0.008 (+0.003) 0.486 ± 0.009 (+0.003) 0.958 ± 0.004 (+0.012) 0.492 ± 0.011 (-0.072)
ARF 0.818 ± 0.012 0.453 ± 0.007 0.960 ± 0.004 0.577 ± 0.015
STEAM ARF 0.836 ± 0.008 (+0.018) 0.464 ± 0.007 (+0.011) 0.962 ± 0.004 (+0.002) 0.423 ± 0.016 (-0.154)
CTGAN 0.889 ± 0.020 0.446 ± 0.014 0.934 ± 0.008 0.586 ± 0.017
STEAM CTGAN 0.892 ± 0.017 (+0.003) 0.435 ± 0.012 (-0.011) 0.959 ± 0.005 (+0.025) 0.436 ± 0.012 (-0.150)
NFlow 0.817 ± 0.032 0.418 ± 0.008 0.913 ± 0.016 0.643 ± 0.026
STEAM NFlow 0.837 ± 0.040 (+0.020) 0.417 ± 0.015 (-0.001) 0.962 ± 0.005 (+0.049) 0.445 ± 0.020 (-0.198)
TabDDPM 0.067 ± 0.060 0.036 ± 0.035 0.812 ± 0.029 1.761 ± 0.230
STEAM TabDDPM 0.612 ± 0.106 (+0.545) 0.310 ± 0.055 (+0.274) 0.952 ± 0.009 (+0.140) 0.468 ± 0.013 (-1.293)

IHDP CTGAN 0.663 ± 0.018 0.419 ± 0.013 0.888 ± 0.010 2.521 ± 0.161
STEAM CTGAN 0.674 ± 0.014 (+0.011) 0.424 ± 0.011 (+0.005) 0.928 ± 0.009 (+0.040) 1.709 ± 0.052 (-0.812)
TabDDPM 0.477 ± 0.036 0.340 ± 0.022 0.862 ± 0.011 2.706 ± 0.138
STEAM TabDDPM 0.553 ± 0.029 (+0.076) 0.396 ± 0.015 (+0.056) 0.918 ± 0.011 (+0.056) 2.346 ± 0.088 (-0.360)
ARF 0.528 ± 0.009 0.381 ± 0.010 0.921 ± 0.009 3.019 ± 0.117
STEAM ARF 0.565 ± 0.014 (+0.037) 0.394 ± 0.010 (+0.013) 0.921 ± 0.009 (+0.000) 1.629 ± 0.056 (-1.390)
TVAE 0.622 ± 0.014 0.410 ± 0.010 0.880 ± 0.014 3.198 ± 0.172
STEAM TVAE 0.629 ± 0.015 (+0.007) 0.412 ± 0.011 (+0.002) 0.927 ± 0.007 (+0.047) 2.100 ± 0.075 (-1.098)
NFlow 0.406 ± 0.028 0.309 ± 0.012 0.882 ± 0.012 3.835 ± 0.345
STEAM NFlow 0.435 ± 0.034 (+0.029) 0.333 ± 0.020 (+0.024) 0.921 ± 0.007 (+0.039) 2.177 ± 0.118 (-1.658)

ACIC TVAE 0.763 ± 0.011 0.515 ± 0.006 0.926 ± 0.007 4.202 ± 0.134
STEAM TVAE 0.767 ± 0.009 (+0.004) 0.514 ± 0.004 (-0.001) 0.972 ± 0.002 (+0.046) 2.013 ± 0.112 (-2.189)
ARF 0.936 ± 0.003 0.396 ± 0.003 0.948 ± 0.002 4.742 ± 0.165
STEAM ARF 0.939 ± 0.004 (+0.003) 0.393 ± 0.004 (-0.003) 0.977 ± 0.002 (+0.029) 2.176 ± 0.141 (-2.566)
CTGAN 0.880 ± 0.016 0.421 ± 0.013 0.942 ± 0.005 4.518 ± 0.186
STEAM CTGAN 0.873 ± 0.014 (-0.007) 0.424 ± 0.014 (+0.003) 0.972 ± 0.002 (+0.030) 2.268 ± 0.154 (-2.250)
NFlow 0.691 ± 0.052 0.298 ± 0.014 0.872 ± 0.024 5.222 ± 0.332
STEAM NFlow 0.673 ± 0.044 (-0.018) 0.285 ± 0.019 (-0.013) 0.973 ± 0.002 (+0.101) 2.790 ± 0.337 (-2.432)
TabDDPM 0.260 ± 0.043 0.001 ± 0.000 0.787 ± 0.032 10.104 ± 1.205
STEAM TabDDPM 0.273 ± 0.035 (+0.013) 0.001 ± 0.000 (+0.000) 0.941 ± 0.020 (+0.154) 6.178 ± 0.619 (-3.926)

Jobs TabDDPM 0.890 ± 0.014 0.477 ± 0.011 0.949 ± 0.004 3.335 ± 0.516
STEAM TabDDPM 0.929 ± 0.009 (+0.039) 0.493 ± 0.008 (+0.016) 0.954 ± 0.003 (+0.005) 1.446 ± 0.052(-1.889)
ARF 0.832 ± 0.010 0.431 ± 0.019 0.964 ± 0.004 3.173 ± 0.691
STEAM ARF 0.863 ± 0.011 (+0.031) 0.481 ± 0.016 (+0.050) 0.953 ± 0.004 (-0.011) 2.280 ± 0.381 (-0.893)
TVAE 0.886 ± 0.017 0.288 ± 0.009 0.944 ± 0.006 4.471 ± 0.336
STEAM TVAE 0.887 ± 0.014 (+0.001) 0.300 ± 0.012 (+0.012) 0.949 ± 0.004 (+0.005) 1.540 ± 0.167 (-2.931)
CTGAN 0.830 ± 0.049 0.339 ± 0.023 0.925 ± 0.033 4.608 ± 0.792
STEAM CTGAN 0.778 ± 0.076 (-0.052) 0.298 ± 0.030 (-0.041) 0.939 ± 0.007 (+0.014) 1.846 ± 0.270 (-2.762)
NFlow 0.716 ± 0.058 0.374 ± 0.017 0.920 ± 0.018 5.445 ± 0.883
STEAM NFlow 0.800 ± 0.041 (+0.084) 0.375 ± 0.017 (+0.001) 0.952 ± 0.006 (+0.032) 2.666 ± 0.200 (-2.779)
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Figure 5: Pα,X (↑), Rβ,X (↑), JSDπ (↑), and UPEHE (↓) evaluating STEAMGEM and standard GEM
across privacy budgets. Averaged over 5 runs, shaded area represents 95% CIs.
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Figure 6: Pα,X (↑), Rβ,X (↑), JSDπ (↑), and UPEHE (↓) evaluating STEAMMST and standard MST
across privacy budgets. Averaged over 5 runs, shaded area represents 95% CIs.
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Figure 7: Pα,X (↑), Rβ,X (↑), JSDπ (↑), and UPEHE (↓) evaluating STEAMRAP and standard RAP
across privacy budgets. Averaged over 5 runs, shaded area represents 95% CIs.

the general takeaway remains similar to those reported in Section 7.3 - STEAM models preserve
PW |X and PY |W,X better, while standard models preserve PX better.

It is worth noting, however, that when baseline models perform poorly in modelling PX, as is the
case for GEM and RAP, then the relevant STEAM model exhibits similar performance in this regard.
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J ABLATIVE STUDY

To add to the evidence of STEAM’s efficacy, we conduct an ablative study by assessing how jointly
modelling PX,W affects performance. On the medical datasets used in the main body of the paper,
we compare performance of the best standard models with their relevant ablation STEAM ⋄, joint X,W,
which models PX,W with the generative model and PY |W,X with a PO estimator, and regular STEAM.
We report the results in Table 12.

We see that the ablative model, while often improving upon standard generation, is not as effective as
STEAM. Directly modelling PW |X, as STEAM does, better preserves the treatment assignment and
outcome generation mechanisms, and both JSDπ and UPEHE are significantly improved by STEAM
in most cases. Using the full inductive bias of directly modelling each distribution of our desiderata,
and following the true DGP of data containing treatments is the best approach to generation.

Table 12: Pα,X, Rβ,X, JSDπ , and UPEHE values on standard, ablation, and STEAM models. Averaged
over 10 runs, with 95% CIs.

Dataset Model Pα,X (↑) Rβ,X (↑) JSDπ (↑) UPEHE (↓)

ACTG TVAE 0.926 ± 0.013 0.483 ± 0.010 0.946 ± 0.004 0.564 ± 0.017
STEAM TVAE, joint X,W (ablation) 0.918 ± 0.021 0.473 ± 0.012 0.939 ± 0.010 0.475 ± 0.012
STEAM TVAE 0.929 ± 0.008 0.486 ± 0.009 0.958 ± 0.004 0.492 ± 0.011

IHDP CTGAN 0.663 ± 0.018 0.419 ± 0.013 0.888 ± 0.010 2.521 ± 0.161
STEAM CTGAN, joint X,W (ablation) 0.639 ± 0.021 0.428 ± 0.009 0.908 ± 0.019 2.140 ± 0.134
STEAM CTGAN 0.674 ± 0.014 0.424 ± 0.011 0.928 ± 0.009 1.709 ± 0.052

ACIC TVAE 0.763 ± 0.011 0.515 ± 0.006 0.926 ± 0.007 4.202 ± 0.134
STEAM TVAE, joint X,W (ablation) 0.747 ± 0.023 0.506 ± 0.005 0.920 ± 0.009s 2.530 ± 0.187
STEAM TVAE 0.767 ± 0.009 0.514 ± 0.004 0.972 ± 0.002 2.013 ± 0.112

K HYPERPARAMETER STABILITY

Generative modelling performnce is typically sensitive to hyperparameters. To assess the stabil-
ity of STEAM’s performance across hyperparameters, on IHDP we compare the performance
of CTGAN with STEAMCTGAN with multiple hyperparameter configurations. We report re-
sults by changing three hyperparameters: number of hidden units within the generator layers
(generator_n_hidden_units) (Table 13), number of hidden layers within the generator
(generator_n_hidden_layers) (Table 14), and activation functions used in the generator
(generator_nonlin) (Table 15), keeping all other hyperparameters default.

The performance gap between STEAMCTGAN and CTGAN is relatively stable across these configura-
tions. STEAMCTGAN outperforms CTGAN in each metric at almost all hyperparameter levels. The
most statistically significant differences are consistently noted in the JSDπ and UPEHE metrics, which
is compatible with the results displayed in the main paper.

Table 13: Comparison of STEAM with standard generation on IHDP at different
generator_n_hidden_units levels. Averaged over 5 runs, with 95% CIs.

generator_n_hidden_units Model Pα,X (↑) Rβ,X (↑) JSDπ (↑) UPEHE (↓)

5 CTGAN 0.517 ± 0.026 0.396 ± 0.015 0.863 ± 0.033 2.914 ± 0.047
STEAM CTGAN 0.565 ± 0.011 0.405 ± 0.011 0.941 ± 0.000 2.194 ± 0.265

50 CTGAN 0.622 ± 0.028 0.411 ± 0.043 0.916 ± 0.15 2.282 ± 0.141
STEAM CTGAN 0.664 ± 0.020 0.444 ± 0.017 0.905 ± 0.041 1.960 ± 0.174

100 CTGAN 0.607 ± 0.038 0.418 ± 0.032 0.894 ± 0.010 2.560 ± 0.289
STEAM CTGAN 0.682 ± 0.016 0.439 ± 0.018 0.912 ± 0.004 2.097 ± 0.095

300 CTGAN 0.619 ± 0.030 0.434 ± 0.030 0.908 ± 0.023 2.426 ± 0.289
STEAM CTGAN 0.699 ± 0.018 0.458 ± 0.015 0.928 ± 0.016 2.028 ± 0.163

500 CTGAN 0.663 ± 0.018 0.419 ± 0.013 0.888 ± 0.010 2.521 ± 0.161
STEAM CTGAN 0.674 ± 0.014 0.424 ± 0.011 0.928 ± 0.009 1.709 ± 0.052
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Table 14: Comparison of STEAM with standard generation on IHDP at different
generator_n_hidden_layers levels. Averaged over 5 runs, with 95% CIs.

generator_n_hidden_layers Model Pα,X (↑) Rβ,X (↑) JSDπ (↑) UPEHE (↓)

2 CTGAN 0.663 ± 0.018 0.419 ± 0.013 0.888 ± 0.010 2.521 ± 0.161
STEAM CTGAN 0.674 ± 0.014 0.424 ± 0.011 0.928 ± 0.009 1.709 ± 0.052

3 CTGAN 0.595 ± 0.067 0.395 ± 0.066 0.868 ± 0.064 2.982 ± 0.647
STEAM CTGAN 0.693 ± 0.075 0.441 ± 0.043 0.924 ± 0.018 2.028 ± 0.143

4 CTGAN 0.583 ± 0.049 0.259 ± 0.074 0.807 ± 0.054 3.278 ± 0.191
STEAM CTGAN 0.596 ± 0.220 0.301 ± 0.084 0.886 ± 0.014 2.690 ± 0.836

5 CTGAN 0.490 ± 0.092 0.313 ± 0.069 0.770 ± 0.127 2.871 ± 0.599
STEAM CTGAN 0.691 ± 0.071 0.386 ± 0.041 0.915 ± 0.010 2.498 ± 0.536

Table 15: Comparison of STEAM with standard generation on IHDP at different
generator_nonlin settings. Averaged over 5 runs, with 95% CIs.

generator_nonlin Model Pα,X (↑) Rβ,X (↑) JSDπ (↑) UPEHE (↓)

ReLU CTGAN 0.663 ± 0.018 0.419 ± 0.013 0.888 ± 0.010 2.521 ± 0.161
STEAM CTGAN 0.674 ± 0.014 0.424 ± 0.011 0.928 ± 0.009 1.709 ± 0.052

SELU CTGAN 0.604 ± 0.020 0.419 ± 0.015 0.855 ± 0.023 2.509 ± 0.160
STEAM CTGAN 0.699 ± 0.017 0.445 ± 0.025 0.929 ± 0.014 2.043 ± 0.130

Leaky ReLU CTGAN 0.648 ± 0.045 0.415 ± 0.015 0.889 ± 0.016 2.482 ± 0.210
STEAM CTGAN 0.699 ± 0.028 0.457 ± 0.019 0.916 ± 0.011 2.036 ± 0.135

L CONGENIALITY BIAS

Congeniality bias (Curth & Van Der Schaar, 2023) is a phenomenon which may arise from generation
with STEAM. In this scenario it refers to the fact that downstream models which are structurally
similar to the outcome generator, QY |W,X, may be advantaged in their performance on Dsynth. For
example, if the POs from an S-learner are used for QY |W,X, the outcome generation mechanism
in Dsynth may be modelled in such a way that it allows downstream S-learners to better estimate
CATEs than other learners. While we acknowledge this phenomenon may disadvantage certain
downstream models, we note that our outcome error metric, UPEHE, averages across a number of
downstream learner types, such that conducting generative model selection with UPEHE should lead
to good performance across a wide variety of downstream learners, not just those similar to QY |W,X,
helping to reduce this congeniality bias.

M ALLOCATION OF THE PRIVACY BUDGET IN STEAM

In STEAM, uniform distribution of the privacy budget ϵ amongst the three component models ensures
(ϵ, δ)-DP. However, such allocation is uninformed on the difficulty of modelling of PX, PW |X, and
PY |W,X, and their relative importance to downstream analysts.

In relation to the importance of each distribution, one immediate improvement can be to distribute
ϵ according to some preference function f : (0,∞) ×△2 → ϵ · △2 (where △2 is the 2-simplex)
which takes input of the budget ϵ and weights w for the relative importance of good modelling in QX,
QW |X, and QY |W,X, and outputs a corresponding ϵ distribution. For example, a simple preference
function definition would be f(ϵ,w) = ϵ ·w where w could be defined by a data holder with some
prior knowledge of the importance level of each component distribution to downstream analysts.
Another approach, if it is not necessary to specify the desired ϵ distribution a priori, is to treat it as a
hyperparameter, to be tuned over a series of runs to optimize some metric, such as a combination of
Pα,X , Rβ,X , JSDπ , and UPEHE.

Incorporating knowledge of the complexity of modelling PX, PW |X, and PY |W,X is more difficult.
While some proxy measures could be established, such as the number of covariates in X indicating the
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complexity of PW |X, establishing a robust understanding of how the complexity of these distributions
relate and compare, is highly non-trivial, and as such we leave this for future work.

N GENERATION UNDER COVARIATE SHIFT

Generative model performance degrades under covariate shift. Covariate shift is a phenomenon
which arises in data containing treatments, as the covariates of treated and untreated patients tend
to differ, i.e. treated and untreated covariates tend to be drawn from different distributions. As the
difference between these distributions grows, so too does covariate shift. We demonstrate degradation
under high covariate shift through a simple experiment, where we create Dreal with d = 50 covariates
that are drawn from the following mixture model:

X ∼ 9

10
N (µ, I) +

1

10
N (−µ, I) (18)

We set the mixture to have uneven weights between the two distributions to more closely simulate
a real-world scenario, as treated instances are typically outnumbered in datasets, such as in IHDP
and Jobs, which have under 20% treated. We model Dsynth on Dreal with varied µ using a TabDDPM
model, and we see in Figure 8 that the metrics Pα and Rβ decrease as µ, and therefore the covariate
shift, increases.

2.0 2.5 3.0 3.5 4.0 4.5 5.0

0.2
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Alpha precision
Beta recall

Figure 8: Pα and Rβ for Dsynth as covariate shift within Dreal increases.

Since this effect is observed in standard generative models, it will also be observed in STEAM, which
uses a generative model for QX. Performance degredation under this setting is unideal, since some
degree of covariate shift is likely to arise in observational data, and therefore future works to remedy
this are important.

A simple idea we explored was to use separate models to generate the covariates of each treatment
group. We found, however, that the reduction in sample size that each generator received, as a result
of the data splitting, negated any gains made by removing covariate shift, except in extreme shift
scenarios. This was especially true for treated instances, due to their typical under-representation in
data. There are many potential avenues that stem from this approach. Generation with fine-tuning
(Hinton et al., 2012) on each treatment group is one possible direction. Another possibility is
designing custom generative models that approach generation similarly to plug-in CATE learners, by
scaling the degree to which a representation space is shared between treated and untreated instances.
Given the non-trivial nature of this issue, we leave such explorations to future work.

O CAUSAL GENERATIVE MODEL COMPARISON

Causal generative models, which estimate the underlying structural causal model of a dataset, are
a related family of generative models. We discuss the differences in positioning and assumptions
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of our work compared to causal generative models in our extended related works, and here we
produce empirical results for these model on the ACTG, IHDP, and ACIC datasets from Sec-
tion 7.1. For baseline models, we consider two causal generative models: the additive noise
model (ANM) (Hoyer et al., 2008) implementation in the DoWhy-GCM python package (Blöbaum
et al., 2024), and a diffusion-based causal model (DCM) from Chao et al. (2024). We use the
code provided by Chao et al. (2024) in their GitHub https://github.com/patrickrchao/
DiffusionBasedCausalModels for the baseline implementations, and we use the same hy-
perparameter settings for both ANM and DCM as in that work.

However, in order to fairly compare these models with STEAM, we must first reconcile the differences
in assumptions made, as discussed in Appendix B. For ACTG, IHDP, and ACIC, we do not have
knowledge of the true causal graph, we simply know which features are the treatment and outcome.
As such, we must first construct some reasonable causal graph using this knowledge to supply to
these methods. We do so with three methods:

1. Construction of a naive graph Gnaive, in which each covariate causes W and Y , W causes Y ,
and every pair of covariates has a causal relationship between them;

2. Using the constraint-based PC causal discovery algorithm (Spirtes et al., 2001) to discover
an estimated graph Gdiscovered from the Markov Equivalence Class for the true causal graph
and;

3. Pruning the discovered causal graph Gdiscovered by removing any edges which contradict the
DGP we assume. As such, any edges from Y to W or X, or from W to X are removed to
form Gpruned.

In Table 16 we report the results for ANM and DCM with each of these graph discovery methods,
and we compare to the best performing STEAM models from Appendix I. For each dataset, we see
that the relevant STEAM model outperforms all instantiations of the causal generative models in
almost every metric, only being outperformed to a statistically significant level in Rβ,X on the ACIC
dataset. These results validate that, when the true causal graph is not known, our less restrictive
assumptions enable more useful generation of synthetic data containing treatments. We also see that
the differences between the graph discovery methods are relatively small.

P FUTURE WORK: EXTENSIONS TO OTHER DGPS

STEAM places minimal assumptions upon the causal graph of Dreal. We see that our assumed DGP
involving PX, PW |X, and PY |W,X is applicable across a very wide range of scenarios for datasets
containing treatments, particularly in medical settings, as we describe in Section 6. If this DGP is
known to not hold for Dreal, then it would be unadvisable to apply STEAM in its current form, as its
inductive biases may not be helpful. However, if a similar setting arises where the overarching DGP
is known, but the specific causal graph is not, then altering the generation order between X, W , and
Y to mimic this alternative DGP, with a similar underlying motivation as in STEAM - that generation
mimicking the real DGP is preferable to joint-level generation - can be done.

An example of a more complicated setting, where STEAM is not immediately applicable is when
dealing with longitudinal data, which has time-varying covariates, treatments, and outcomes. In this
setting, our assumed DGP would not hold in general, as features at a specific time point will likely
have temporal causal relationships with earlier features, e.g. at time t, Xt could be affected by Wt−1,
which is not modelled in our assumed DGP. Potential alterations to STEAM could adjust for this
time-varying DGP, where one could consider a ‘base’ STEAM model, as described in this work,
operating at each time step, with additional inputs from the immediately preceding time step to model
temporal causal relationships.
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Table 16: Pα,X, Rβ,X, JSDπ , and UPEHE values for the best performing STEAM models from Table I
in comparison to causal generative models. Averaged over 20 runs, with 95% confidence intervals.
Bold indicates the statistically significant best performing model.

Dataset Model Pα,X (↑) Rβ,X (↑) JSDπ (↑) UPEHE (↓)

ACTG STEAM TVAE 0.929 ± 0.008 0.486 ± 0.009 0.958 ± 0.004 0.492 ± 0.011
DCM Gnaive 0.773 ± 0.013 0.369 ± 0.006 0.937 ± 0.006 0.665 ± 0.034
DCM Gdiscovered 0.756 ± 0.011 0.350 ± 0.007 0.956 ± 0.005 0.605 ± 0.023
DCM Gpruned 0.758 ± 0.013 0.358 ± 0.007 0.957 ± 0.003 0.596 ± 0.017
ANM Gnaive 0.787 ± 0.007 0.389 ± 0.008 0.954 ± 0.005 0.580 ± 0.017
ANM Gdiscovered 0.836 ± 0.007 0.419 ± 0.007 0.952 ± 0.004 0.578 ± 0.019
ANM Gpruned 0.839 ± 0.008 0.412 ± 0.005 0.952 ± 0.005 0.582 ± 0.014

IHDP STEAM CTGAN 0.674 ± 0.014 0.424 ± 0.011 0.928 ± 0.009 1.709 ± 0.052
DCM Gnaive 0.557 ± 0.010 0.340 ± 0.009 0.883 ± 0.016 4.878 ± 0.395
DCM Gdiscovered 0.658 ± 0.011 0.360 ± 0.007 0.893 ± 0.008 2.059 ± 0.140
DCM Gpruned

∗ 0.658 ± 0.011 0.360 ± 0.007 0.893 ± 0.008 2.059 ± 0.140
ANM Gnaive 0.597 ± 0.029 0.379 ± 0.011 0.900 ± 0.005 1.868 ± 0.147
ANM Gdiscovered 0.589 ± 0.012 0.359 ± 0.009 0.892 ± 0.008 1.865 ± 0.059
ANM Gpruned

∗ 0.589 ± 0.012 0.359 ± 0.009 0.892 ± 0.008 1.865 ± 0.059

ACIC† STEAM ARF 0.939 ± 0.004 0.393 ± 0.004 0.977 ± 0.002 2.176 ± 0.141
DCM Gdiscovered 0.942 ± 0.004 0.422 ± 0.003 0.957 ± 0.003 4.249 ± 0.132
DCM Gpruned 0.939 ± 0.004 0.420 ± 0.004 0.959 ± 0.002 4.340 ± 0.159
ANM Gdiscovered 0.929 ± 0.003 0.404 ± 0.003 0.872 ± 0.002 4.193 ± 0.127
ANM Gpruned 0.930 ± 0.004 0.404 ± 0.003 0.880 ± 0.002 4.481 ± 0.174

∗ Gpruned is the same as Gdiscovered for IHDP
† Excessive runtime caused the exclusion of Gnaive ACIC results

Q STEAM DIAGRAM

See the below for a pictoral representation of the DGPs generic synthetic data generation methods,
real datasets containing treatments, and STEAM. STEAM is designed to closely mimic the real DGP.

Figure 9: DGPs for generic generative models (left), real datasets (middle), and STEAM (right).
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