
Under review as submission to TMLR

Return-Aligned Decision Transformer

Anonymous authors
Paper under double-blind review

Abstract

Traditional approaches in offline reinforcement learning aim to learn the optimal policy that
maximizes the cumulative reward, also known as return. It is increasingly important to
adjust the performance of AI agents to meet human requirements, for example, in applica-
tions like video games and education tools. Decision Transformer (DT) optimizes a policy
that generates actions conditioned on the target return through supervised learning and
includes a mechanism to control the agent’s performance using the target return. However,
the action generation is hardly influenced by the target return because DT’s self-attention
allocates scarce attention scores to the return tokens. In this paper, we propose Return-
Aligned Decision Transformer (RADT), designed to more effectively align the actual return
with the target return. RADT leverages features extracted by paying attention solely to the
return, enabling action generation to consistently depend on the target return. Extensive
experiments show that RADT significantly reduces the discrepancies between the actual
return and the target return compared to DT-based methods.

1 Introduction

Offline reinforcement learning (RL) focuses on learning policies from trajectories collected in offline
datasets (Levine et al., 2020; Fujimoto & Gu, 2021; Yu et al., 2021; Jin et al., 2021; Xu et al., 2022).
While many offline RL methods aim to optimize policies for maximum cumulative rewards (returns), they
typically produce a single policy fixed to a specific performance level. This rigidity is problematic in scenarios
requiring agents with varying skill levels, as it forces developers to iteratively adjust reward functions and
retrain models for each desired performance. Obtaining lower-performing policies from intermediate model
checkpoints during training is also unsuitable for flexible performance adjustments. This is because accu-
rately assessing their performance requires online evaluation, which is often difficult to conduct in practice.
These limitations make it difficult to tailor policies to specific performance requirements.

To overcome these limitations, we propose training a single model that can achieve any desired target
return. By simply adjusting the target return parameter, one can obtain agents spanning a wide range of
performance levels. This capability streamlines the policy development process in real-world applications,
where heterogeneous performance is often required:
Example 1 (Creating AI opponents in video games and educational tools). Consider implementing AI
opponents using RL in video games (Yannakakis & Togelius, 2018) and educational tools (Singla et al., 2021)
development. Developers implement AI opponents with varied skill levels to ensure players, from beginners
to experts, are appropriately challenged (Shen et al., 2021; Wu et al., 2023a). Our proposed approach allows
developers to interactively adjust the target return to produce a diverse set of AI opponents with different
skill levels. This significantly reduces development overhead, enhancing game quality by providing tailored
experiences for each player.
Example 2 (Human motion generation). Human motion generation in robotics and animation (Zhu et al.,
2024) often uses RL to produce natural and controllable human pose sequences (Jiang et al., 2024; Peng
et al., 2022). Our approach enhances controllability by enabling a single policy to adjust its behavior based
on the target return. For example, using forward velocity as a reward function, a single policy model can
generate walking motions for low target returns and running motions for high target returns. This flexibility

1



Under review as submission to TMLR

t - 19 t - 10 t

Return
state

action
t - 19 t - 10 t

Return

0.00 0.09 0.18

DT RADT (ours)

Figure 1: Comparison of attention scores between DT and RADT trained on the MuJoCo
ant-medium-replay dataset. The figure shows the attention scores assigned to input sequences by the
first self-attention layer in DT and the first SeqRA in RADT. Each value represents the episode average of
the attention scores. DT assigns minimal attention to return-to-go tokens, while RADT assigns attention
exclusively to return-to-go tokens, thereby improving return alignment in action generation.

improves the efficiency and versatility of motion synthesis for various downstream tasks (Rempe et al., 2023;
Xie et al., 2024).

For these applications, Decision Transformer (DT) (Chen et al., 2021) is a promising method that enables
control over an agent’s performance via a target return. DT optimizes a policy through supervised learning
to generate actions conditioned on the target return. Specifically, it takes a sequence comprising desired
future returns (also known as return-to-go), past states, and actions as inputs, and outputs actions using
a transformer architecture (Vaswani et al., 2017). In the self-attention mechanism of the transformer, each
token selectively incorporates features from other tokens based on their relative importance, also known
as the attention score. DT leverages the self-attention mechanism to propagate return-to-go tokens across
the input sequence, enabling the conditioning of action generation on the target return. However, despite
this conditioning, DT often obtains an actual return that diverges significantly from the target return. Our
analysis, as illustrated in Fig. 1, reveals that the self-attention mechanism assigns only minimal attention
to the return-to-go tokens, causing the return-to-go information to be nearly lost as it propagates through
the network. This suggests that the return-to-go information nearly vanishes after passing through DT’s
self-attention, and leads DT to generate actions that are largely independent of the target return.

In this paper, we propose the Return-Aligned Decision Transformer (RADT), a novel architecture designed
to align the actual return with the target return. Our key idea is to separate the return-to-go sequence from
the state-action sequence so that the return-to-go sequence more directly influences action generation. To
achieve this, we adopt two complementary design strategies: Sequence Return Aligner (SeqRA), described in
Sec. 4.1, and Stepwise Return Aligner (StepRA), discussed in Sec. 4.2. SeqRA processes return-to-go tokens
from multiple past timesteps to capture long-term dependencies. In contrast, StepRA links each state
or action token directly to its corresponding return-to-go token at the same timestep, thereby capturing
their stepwise relationship. By integrating these two approaches, RADT effectively leverages return-to-go
information throughout the decision-making. In our experiments, RADT significantly reduces the absolute
error between the actual and target returns, achieving reductions of 54.9% and 34.4% compared to DT
in the MuJoCo (Todorov et al., 2012) and Atari (Bellemare et al., 2013) domains, respectively. Ablation
studies demonstrate that each strategy independently contributes to improving return alignment, and their
combination further enhances the model’s ability to match the actual return to the target return.

In summary, our contributions are as follows:

1. We introduce RADT, a novel offline RL approach designed to align the actual return with the target
return.

2. RADT employs a unique architectural design that treats the return-to-go sequences distinctly from
state-action sequences, enabling the return-to-go information to guide action generation effectively.

3. We present empirical evidence that RADT surpasses existing DT-based models in return alignment.

2



Under review as submission to TMLR

2 Preliminary

We assume a finite horizon Markov Decision Process (MDP) with horizon T as our environment, which can
be described as M = ⟨S, A, µ, P, R⟩, where S represents the state space; A represents the action space;
µ ∈ ∆(S) represents the initial state distribution; P : S × A → ∆(S) represents the transition probability
distribution; and R : S × A → R represents the reward function. The environment begins from an initial
state s1 sampled from a fixed distribution µ. At each timestep t ∈ [T ], an agent takes an action at ∈ A
in response to the state st ∈ S, transitioning to the next state st+1 ∈ S with the probability distribution
P (·|st, at). Concurrently, the agent receives a reward rt = R(st, at).

Decision Transformer (DT) (Chen et al., 2021) introduces the paradigm of transformers in the
context of offline reinforcement learning. We consider a constant Rtarget, which represents the total desirable
return obtained throughout an episode of length T . We refer to Rtarget as the target return. At each timestep
t during inference, the desirable return to be obtained in the remaining steps is calculated as follows:

R̂t = Rtarget −
t−1∑
t′=1

rt′ (1)

We refer to R̂t as return-to-go. DT takes a sequence of return-to-go, past states, and actions as inputs, and
outputs an action at. The input sequence of DT1 is represented as

τ = (R̂1, s1, a1, R̂2, s2, a2, ..., R̂t, st). (2)

Raw inputs, referred to as tokens, are individually projected into the embedding dimension by separate learn-
able linear layers for returns-to-go, state, and action respectively, to generate token embeddings. Note that
from this point onwards, we will denote tokens as R̂i, si, ai. The tokens are processed using a transformer-
based GPT model (Radford et al., 2018). The processed token st is input into the prediction head to predict
the action at. The model is trained using either cross-entropy or mean-squared error loss, calculated between
the predicted action and the ground truth from the offline datasets 2.

The transformer (Vaswani et al., 2017) is an architecture designed for processing sequential data, including
the attention mechanism, residual connection, and layer normalization. The attention mechanism processes
three distinct inputs: the query, the key, and the value. This process involves weighting the value by the
normalized dot product of the query and the key. The weight is also known as the attention score, and is
calculated as follows:

αij = softmax(⟨qi, kℓ⟩n
ℓ=1)j , (3)

where αij = 0, ∀j > i denotes a causal mask and n denotes the input length. The causal mask prohibits
attention to subsequent tokens, rendering tokens in future timesteps ineffective for action prediction. The
i-th output token of the attention mechanism is calculated as follows:

zi =
n∑

j=1
αij · vj , where

n∑
j=0

αij = 1 and αij ≥ 0. (4)

DT uses self-attention, where query, key, and value are obtained by linearly different transformations of the
input sequence,

qi = τiW
q, ki = τiW

k, vi = τiW
v, (5)

Layer normalization standardizes the token features to stabilize learning. Residual connection avoids gradient
vanishing by adding the input and output of attention layers or feed-forward layers. For further details on
DT, refer to the original paper (Chen et al., 2021).

1For practicality, only the last K timesteps are processed, rather than considering the full inputs.
2Rtarget is the total return of the trajectory in the dataset during training.

3



Under review as submission to TMLR

DT conditions action generation by employing the self-attention mechanism to disseminate return-to-go
information throughout the input sequence. Despite its design, DT cannot align the actual return with the
target return. To address this challenge, our goal is to minimize the following absolute error between the
target return Rtarget and the actual return

∑T
t=1 rt using a single model:

E

[∣∣∣∣∣Rtarget −
T∑

t=1
rt

∣∣∣∣∣
]

. (6)

3 Return Alignment Difficulty in DT

Overshooting 
target return

Reducing excess 
beyond target return

Figure 2: Comparison of return-to-go transitions with varying target returns. We evaluate DT
and RADT on the ant-medium-replay dataset of MuJoCo. For each target return, we conduct 100 episodes,
calculating the average and standard error of the target return at every step. The return-to-go of zero means
that the actual return exactly matches the target return.

In order to understand the behavior of DT, we analyze how DT trained on the ant-medium-replay dataset of
MuJoCo responds to the return-to-go throughout an episode. Ideally, the return-to-go should be zero at the
end of the episode, which means that the actual return perfectly matches the target return. Figure 2 plots
the changes in return-to-go input to the model during an episode. As shown in Fig. 2 (left), DT reaches
values of return-to-go that fall significantly below zero for all target returns, and it obtains actual returns
that differ greatly from the target returns.

We hypothesize that the problem lies in the architectural design of DT. Specifically, DT conditions action
predictions on target returns through return-to-go tokens within the input sequence. These tokens compete
for attention allocation in DT’s self-attention mechanism, as shown in Eq. (4). When attention is predom-
inantly given to state or action tokens, less attention is allocated to return-to-go tokens, weakening the
influence of target returns on action prediction.

This hypothesis is supported by analyzing attention scores from DT’s first self-attention layer, as shown in
Fig. 1 (left). We observe that attention is strongly biased toward state tokens, with minimal attention to
return-to-go tokens. This tendency could arise because the training data (Fu et al., 2020) includes samples
generated by Markov policies that do not take return as input, causing DT to disregard return.

4 Return-Aligned Decision Transformer

As previously discussed, DT struggles to align the actual return with the target return due to the under-
allocation of attention scores to the return-to-go tokens. One intuitive way to solve this problem is to
structure the transformer blocks such that the return-to-go tokens cannot be ignored when processing state
and action tokens. To realize this intuition, we introduce Return-Aligned Decision Transformer (RADT).

4



Under review as submission to TMLR

DT

𝑎!𝑎!"#

𝑠!"#𝑅!"# 𝑎!"# 𝑠!𝑅!

RADT

𝑎!𝑎!"#

𝑠!"#

𝑅!"#

𝑎!"# 𝑠!

𝑅!

RADT	Block

StepRA

StepRA

StepRA

Self-Attention

Feed-Forward

SeqRA

State-Action	
Tokens

Return-to-go	
Tokens

Self-Attention

Feed	Forward
DT	Block

Separate	Return-to-go	tokens	
from	State-Action	Sequence	

Figure 3: Comparison between DT and the proposed RADT architecture. DT processes a combined
sequence of returns-to-go, states, and actions as input. In contrast, RADT separates the return-to-go from
the state-action sequence and applies two Return Aligners: Sequence Return Aligner (SeqRA) and Stepwise
Return Aligner (StepRA).

We show the model structure of RADT in Fig. 3. We split the input sequence of τ in Eq. (2) into the
return-to-go and other modalities: the return-to-go sequence τr and the state-action sequence τsa

τr = (R̂1, R̂2, ..., R̂t), (7)
τsa = (s1, a1, s2, a2, ..., st). (8)

For practical purposes, RADT processes only the last K timesteps of these sequences. In the transformer
block, we first apply self-attention to the state-action sequence τsa to model dependencies within τsa. We
then apply our SeqRA and StepRA to τsa so that it strongly depends on the return-to-go sequence τr. After
the transformer blocks, the action at is predicted from the st token in the processed state-action sequence
τsa by the prediction head. The model is trained using the cross-entropy or mean-squared error loss between
the predicted action and the ground truth.

SeqRA and StepRA are designed as complementary alignment strategies that effectively condition the state-
action sequence on the return-to-go tokens. The first strategy, Sequence Return Aligner (SeqRA), is il-
lustrated in Fig. 4a. SeqRA can capture long-term dependencies involving distant return-to-go tokens by
referencing multiple past timesteps in the return-to-go sequence. The second strategy, Stepwise Return
Aligner (StepRA), is depicted in Fig. 4b. StepRA is designed to capture stepwise dependencies by having
each state or action token always reference the corresponding return-to-go token of the same timestep. Se-
qRA enables the model to preserve the influence of past returns-to-go, while StepRA ensures an immediate
response to the current return-to-go. These two strategies can be used independently or together. Guided
by these strategies, the model naturally acquires a policy that approaches the target return at the end of an
episode.

4.1 Sequence Return Aligner

SeqRA is designed to capture long-term dependencies within the return-to-go sequence τr, enabling it to
identify informative patterns that guide policy adjustments toward long-term objectives. This design lever-
ages the sequence modeling capabilities introduced by DT in offline RL. We employ an attention mechanism
to obtain the importance of each token in the return-to-go sequence and integrate the return-to-go sequence
into the state-action sequence according to this importance. We make the state-action sequence τsa as the

5



Under review as submission to TMLR

𝑖 − 4

𝑅"!"#$%

𝑠!"#
・・・

・・・

𝑖 − 3

𝑅"!"#$%
・・・

𝑅#!"# 𝑅#!"#

𝑎!"#

・・・

𝑅#!"#⋯𝑅#!"$%& 𝑅#!⋯𝑅#!"$%&

𝑖

𝛼!,#$%&'

𝛼!,#

𝑅#!

𝑅"!"#$%

𝑠!
・・・

・・・

𝑅#!

𝑅#!"&⋯𝑅#!"$%&

𝑖 − 2

𝑅"!"#$%

𝑠!"&
・・・

・・・

𝑖 − 1

𝑅"!"#$%

・・・

𝑅#!"& 𝑅#!"&

𝑎!"&

・・・

・・・

・・・

(a) Sequence Return Aligner (SeqRA)

𝑠!

𝑅#!"# 𝑅#!"$ 𝑅#!

𝑠!"$ 𝑎!"$𝑠!"# 𝑎!"#

𝛾!, 𝛽!𝛾!"#, 𝛽!"#𝛾!"$, 𝛽!"$

・・・

・・・

(b) Stepwise Return Aligner (StepRA)

Figure 4: Two strategies for conditioning the state-action sequence on the return-to-go sequence.
(a) In SeqRA, each state or action token is conditioned on all return-to-go tokens (R̂t−K+1, . . . , R̂j), where
j ≤ t, to capture long-term dependencies. (b) In StepRA, each state or action token is conditioned only on
the return-to-go token from the same timestep R̂j to focus on stepwise relationships.

query, and the return-to-go sequence τr as both the key and value.

qi = τsa,iW
q, kj = τr,jW k, vj = τr,jW v. (9)

These query, key, and value are applied to Eq. (3) to get the attention scores. The attention score αij

represents how important the return-to-go token τr,j is compared to other return-to-go tokens in the return-
to-go sequence. Note that we use a causal mask to ensure that tokens in the state-action sequence τsa cannot
access future return-to-go tokens. By definition,

∑t
j=t−K+1 αij = 1 and αij ≥ 0. As shown on the right

side of Fig. 1, these attention scores are assigned exclusively to return-to-go tokens, ensuring that the model
always references them without allocating any attention to state or action tokens. According to the attention
scores, the return-to-go tokens are aggregated (see Fig. 4a),

zi =
t∑

j=t−K+1
αij · τr,jW v, (10)

The token zi serves as an embedding that captures the long-term dependencies of the return-to-go sequence
in relation to τsa,i.

Linear

Multi-Head
Attention

Concat

1 + 𝜆

𝑧

𝑞 𝑘 𝑣

Return-to-go	
Tokens

State-Action	Tokens

𝜏!"⋕

𝜏!"

𝜏!"

𝜏$

SeqRA

𝜏!"

Figure 5: Illustration of SeqRA. We first apply an
attention mechanism to obtain z that integrates the
return-to-go sequence τr into the state-action sequence
τsa. We then derive a scaling parameter λ from τsa and
z to compute the weighted sum τ ♯

sa.

We next incorporate the z sequence into the state-
action sequence τsa. A simple addition may overem-
phasize τsa, potentially preventing the effective use
of the long-term dependencies of the return-to-go
sequence from z. To address this, we learn param-
eters that adaptively adjust the scale of z against
τsa using a powerful method (Nguyen et al., 2022)
from computer vision, which integrates two differ-
ent types of features. The flow of this process is
illustrated in Fig. 5. We concatenate τsa,i and zi as
[zi; τsa,i] ∈ R2D and obtain dimension-wise scaling
parameters λ through a learnable affine projection.
The addition of τsa,i and zi is then formulated as
follows, using λ,

λi = W [zi; τsa,i] + b, (11)

τ ♯
sa,i = (1 + λi) ⊗ zi + τsa,i, (12)

where W ∈ RD×2D and b ∈ RD are learnable param-
eters, and ⊗ denotes the Hadamard product. τ ♯

sa is
the output of SeqRA and the input to the subsequent StepRA. By zero-initializing W and b, the term 1 + λi

allows the model to start with a baseline scaling factor of one (simple addition). At the start of training,

6



Under review as submission to TMLR

we can also interpret this as a residual connection, a common technique in many transformer-based mod-
els (Vaswani et al., 2017; Chen et al., 2021; Dosovitskiy et al., 2021). As training progresses, λi is updated,
adjusting the balance between zi and τsa,i.

4.2 Stepwise Return Aligner

Layer	Norm

1 + 𝛾

MLP

Return-to-go
Tokens

State-Action	Tokens

𝛽

MLP𝛾

β

𝜏!"

𝜏#

𝜏!"⋕

StepRA

Figure 6: Illustration of StepRA. The state and
action tokens are first normalized using layer normal-
ization. They are then linearly transformed using the
scaling factor 1 + γ and the shift parameter β, both
inferred from the return token at the same time step.

StepRA associates the state or action token with
the corresponding return-to-go token at the same
timestep to capture their stepwise relationship.
Specifically, at any timestep j, it applies a linear
transformation to the state token sj or action to-
ken aj using weights inferred from the return-to-go
token rj . The linear transformation directly em-
beds the features of the return-to-go token into the
state or action tokens. This process is applied sep-
arately and identically at each timestep. We train
MLPγ and MLPβ to predict the linear transforma-
tion weights γj , βj ∈ RD. The process is formulated
as follows:

s♯
j = (1 + γj) ⊗ LayerNorm(sj) + βj , (13)

a♯
j = (1 + γj) ⊗ LayerNorm(aj) + βj , (14)

γj = MLPγ(rj), βj = MLPβ(rj), (15)

where sj represents the state token τsa,2j−1, aj represents the action token τsa,2j , and rj represents the return-
to-go token τr,j . The process flow of StepRA is illustrated in Fig. 6. We first perform layer normalization on
the state and action tokens, and then apply this linear transformation. Because layer normalization ensures
that the inputs share a uniform scale and distribution, the scaling and shifting parameters learned by the
MLPs can work more stably. Similar to 1 + αi in Eq. (12), by zero-initializing the parameters of the linear
layer, Eqs. (13) and (14) can be considered as the standard layer normalization at the beginning of training.
The outputs s♯ and a♯ from the linear transformations are then concatenated to form the sequence τ ♯

sa, which
is used as input to the next components (self-attention, SeqRA, feed-forward).

4.3 Arrangement of SeqRA and StepRA

Figure 3 illustrates the placement of SeqRA and StepRA, which are inspired by the decoder of the original
transformer (Vaswani et al., 2017). SeqRA corresponds to the cross-attention mechanism in the original
transformer decoder, while StepRA serves as the layer normalization. SeqRA and cross-attention share a
common function of integrating one type of information with another. In the case of SeqRA, it integrates
the return-to-go sequence with the state-action sequence through an attention mechanism. For this reason,
in RADT, we place SeqRA at the position of cross-attention in the original transformer (i.e., between
self-attention and feed-forward layers). StepRA is designed to stabilize training by incorporating layer
normalization. Therefore, we position StepRA immediately after each sublayer, including self-attention,
SeqRA, and feed-forward.

5 Experiments

We conduct extensive experiments to evaluate our RADT’s performance. First, we verify that RADT is
effective in earning returns consistent with various given target returns, compared to baselines. Next, we
demonstrate through an ablation study that the two types of return aligners constituting RADT are effective
individually, and using both types together further improves performance. Furthermore, by comparing the
transitions of return-to-go throughout an episode, we show that RADT can adaptively adjust its action
in response to changes in return-to-go. Finally, we compare RADT with baselines in terms of maximizing
actual return.

7



Under review as submission to TMLR

5.1 Datasets

We evaluate RADT on continuous (MuJoCo (Todorov et al., 2012)) and discrete (Atari (Bellemare et al.,
2013)) control tasks in the same way as DT. MuJoCo requires fine-grained continuous control with dense
rewards. We use four gym locomotion tasks from the widely-used D4RL (Fu et al., 2020) dataset: ant,
hopper, halfcheetah, and walker2d. Atari requires long-term credit assignments to handle the delay between
actions and their resulting rewards and involves high-dimensional visual observations. We use four tasks:
Breakout, Pong, Qbert, and Seaquest. Similar to DT, we use 1% of all samples in the DQN-replay datasets
as per Agarwal et al. (2020) for training.

5.2 Baselines and Settings

We utilize DT-based methods with various architecture designs as baselines, which enable action generation
to be conditioned on the target return. Specifically, we use DT (Chen et al., 2021), StARformer (Shang
et al., 2022), and Decision ConvFormer (DC) (Kim et al., 2024). For these baselines, we rely on their official
PyTorch implementations. Further details about the baselines can be found in Appendix B.

In MuJoCo, for each method, we train three instances with different seeds, and each instance runs 100
episodes for each target return. In Atari, for each method, we train three instances with different seeds, and
each instance runs 10 episodes for each target return.

Target returns are set by first identifying the range of cumulative reward in trajectories in the training
dataset, specifically from the bottom 5% to the top 5%. This identified range is then equally divided into
seven intervals, not based on percentiles, but by simply dividing the range into seven equal parts. Each of
these parts represents a target return. Further details are provided in Appendix C.

5.3 Results

Figures 7 and 8 show the absolute error between the actual return and target return, plotted for each target
return, for MuJoCo and Atari, respectively. We then average the absolute errors over all target returns,
and present the mean and standard error of these averages across seeds in Tab. 1 for MuJoCo and Tab. 2
for Atari. In these figures and tables, the target returns, actual returns, and absolute errors are normalized
with the largest target return set to 100 and the smallest set to 0. Overall, RADT significantly reduces
the absolute error compared to DT, achieving 44.6% on MuJoCo and 65.5% on Atari, as calculated from
Figures 9 and 11 in Appendix A.

MuJoCo Domain. In the MuJoCo domain, as shown in Tab. 1, RADT outperforms all baseline methods
across all tasks. Furthermore, as illustrated in Fig. 7, RADT consistently achieves lower absolute error than
the baselines in most target returns across all tasks. The baselines exhibit low sensitivity to changes in
target returns and tend to bias their actual returns toward specific values. For example, significant errors
are observed for baseline methods at lower target returns in the ant-medium-expert and walker2d-medium
tasks. This is because the ant-medium-expert and walker2d-medium datasets contain few trajectories with
low target returns. Additionally, StARformer achieves low absolute error for specific target returns (50
and 66.7) in the ant-medium environment in Fig. 7. However, its overall performance still results in a high
absolute error, as shown in Tab 1. In contrast, RADT consistently shows lower absolute errors across a wide
range of target returns. These results suggest that RADT can effectively align the actual return with the
target return in environments requiring fine-grained control with dense rewards.

We observe that differences in the environment affect return alignment. From Fig. 10 in Appendix A.2,
we observe that the actual returns are approximately 75 regardless of the target return across all methods.
This is likely because the returns of the trajectories in halfcheetah-medium are biased around 75, causing
the model to overfit to it. Therefore, substantial bias in the dataset’s return distribution may reduce the
effectiveness of return alignment across most methods.

Atari Domain. In the Atari domain, as shown in Tab. 2, RADT outperforms all baseline methods across
all tasks. Figure 8 shows that the baselines tend to exhibit large absolute errors for most target returns.

8



Under review as submission to TMLR

Table 1: Absolute error↓ comparison in the MuJoCo domain. Target returns are split into seven
equally spaced points from the bottom 5% to the top 5% of the dataset. We report the mean and standard
error (across three seeds) of the average absolute error over all target returns. A comparison for each target
return is shown in Fig. 7.

Dataset Environment DT StARformer DC RADT (ours)

medium-replay

ant 23.2 ± 1.3 14.1 ± 3.7 21.5 ± 3.1 3.5 ± 0.5
halfcheetah 7.2 ± 1.8 23.0 ± 5.0 7.0 ± 0.8 1.8 ± 0.6
hopper 12.2 ± 4.3 14.3 ± 1.9 5.8 ± 0.4 4.4 ± 0.5
walker2d 8.1 ± 0.3 8.7 ± 2.4 8.5 ± 1.6 4.0 ± 0.8

medium-expert

ant 22.0 ± 2.6 23.1 ± 0.8 24.9 ± 1.0 9.2 ± 0.3
halfcheetah 17.0 ± 0.7 18.3 ± 2.3 14.6 ± 1.6 10.6 ± 2.0
hopper 12.9 ± 2.2 12.1 ± 0.6 8.4 ± 1.6 4.8 ± 0.5
walker2d 17.2 ± 3.7 23.3 ± 0.3 17.1 ± 1.7 11.0 ± 2.3

medium

ant 37.3 ± 2.7 32.8 ± 1.2 36.8 ± 3.5 26.3 ± 3.0
halfcheetah 36.9 ± 2.8 42.3 ± 0.6 38.8 ± 2.0 36.3 ± 4.4
hopper 16.3 ± 0.3 14.8 ± 2.4 13.1 ± 1.1 6.5 ± 1.1
walker2d 23.6 ± 5.7 35.6 ± 2.5 16.5 ± 6.4 10.8 ± 4.1

0 25 50 75 100
0

15

30

45

Ab
so

lu
te

 E
rro

r

ant-m-r

0 25 50 75 100
0

15

30

45
halfcheetah-m-r

0 25 50 75 1000

10

20

30

hopper-m-r

0 25 50 75 1000

6

12

18

walker2d-m-r

0 25 50 75 100
0

20

40

60

Ab
so

lu
te

 E
rro

r

ant-m-e

0 25 50 75 1000

15

30

45
halfcheetah-m-e

0 25 50 75 100
0

10

20

30
hopper-m-e

0 25 50 75 100
0

20

40

walker2d-m-e

0 25 50 75 1000

25

50

75

Ab
so

lu
te

 E
rro

r

ant-m

0 25 50 75 1000

25

50

75

halfcheetah-m

0 25 50 75 100

10

20

30
hopper-m

0 25 50 75 1000

25

50

75
walker2d-m

Target Return (Normalized)
DT StARformer DC RADT (ours)

Figure 7: Absolute error↓ comparison of across target returns in the MuJoCo domain. We report
the mean and standard error over three seeds. The dataset names are shortened: ‘medium-replay’ to ‘m-r’,
‘medium-expert’ to ‘m-e’, and ‘medium’ to ‘m’.

This suggests that accurate return modeling in the Atari domain is challenging due to the delays between
actions and their rewards. Despite this difficulty, RADT consistently demonstrates small absolute errors
across a wide range of target returns. These results indicate that RADT can effectively match actual returns
to target returns in environments requiring long-term credit assignment.

9



Under review as submission to TMLR

Table 2: Absolute error↓ comparison in the Atari domain. The way to interpret this table is the
same as that of Tab. 1. A comparison for each target return is shown in Fig. 8.

Game DT StARformer DC RADT (ours)
Breakout 21.8 ± 5.2 28.8 ± 8.9 20.1 ± 3.2 11.9 ± 3.3
Pong 20.4 ± 0.4 10.9 ± 3.8 16.6 ± 3.9 10.4 ± 2.1
Qbert 184.1 ± 137.0 176.5 ± 103.6 192.7 ± 37.2 40.7 ± 6.3
Seaquest 42.5 ± 18.6 71.0 ± 4.4 49.6 ± 22.1 21.0 ± 4.6

0 25 50 75 100

20

40

60

80

Ab
so

lu
te

 E
rro

r

Breakout

0 25 50 75 100
10

20

30

40

50
Pong

0 25 50 75 1000

100

200

300

400
Qbert

0 25 50 75 100

25

50

75

100

Seaquest

Target Return (Normalized)
DT StARformer DC RADT (ours)

Figure 8: Absolute error↓ comparison across target returns in the Atari domain. We report the
mean and standard error over three seeds.

However, when examining target returns of 66.7, 83.3, and 100 in Pong, StARformer exhibits the smallest
error. We consider this discrepancy to arise from differences in the image encoders used for observations.
While RADT uses the same CNN-based image encoder as DT, StARformer employs a more powerful Vision
Transformer-based encoder (Dosovitskiy et al., 2021). This suggests that adopting a stronger image encoder
could potentially close the performance gap.

5.4 Behavior of RADT in Achieving Return Alignment

In Sec 3, we confirmed that DT cannot adjust its actions according to decreases in the return-to-go, leading
to an actual return that significantly exceeds the target return. In this section, we compare the behavior of
RADT and DT to evaluate whether RADT addresses this issue. For each target return, we perform 100 runs
and calculate the mean and standard error of the return-to-go at each step. Figure 2 plots the transitions of
return-to-go input to the models during an episode.

For all target returns, DT exhibits a nearly linear decrease in the return-to-go, eventually reaching values
far below zero. This indicates that DT does not adjust its behavior in response to decreases in the return-
to-go. These findings suggest that DT generates actions largely independent of the return-to-go decrease.
In contrast, RADT demonstrates a gradual decrease in return-to-go that converges near zero, significantly
reducing the margin by which it exceeds zero compared to DT. This suggests that RADT adaptively adjusts
its actions in response to the changing return-to-go.

5.5 Ablation Study

We conduct ablation studies on the two types of return aligners comprising RADT using the medium-
replay dataset in MuJoCo and the Atari dataset. The results for the medium-replay dataset in MuJoCo are
summarized in Tab. 3, and those for the Atari dataset are presented in Tab. 4. Each value represents the
mean of the absolute errors between the actual return and the target return across multiple target returns.
These values are then normalized so that the average and standard error of the DT’s results are 1.0. The
results from both Tab. 3 and Tab. 4 demonstrate that individually introducing either SeqRA or StepRA
is effective. Combining both aligners results in the smallest error across all tasks, implying that SeqRA
and StepRA effectively complement each other. In the MuJoCo domain, RADT w/o SeqRA outperforms

10



Under review as submission to TMLR

Table 3: Absolute error↓ comparison in the ablation study on SeqRA and StepRA. We conduct
the ablation study on the medium-replay dataset in MuJoCo. “w/o X” refers to the ablation of X from
RADT. Each value indicates the mean of absolute errors across multiple target returns as defined in Sec. 5.2.
We report the mean and standard error over three seeds, and normalize so that the average and standard
error of the DT’s results are 1.0 respectively.

Approach ant halfcheetah hopper walker2d
RADT (ours) 0.15 ± 0.42 0.25 ± 0.34 0.36 ± 0.13 0.50 ± 2.78
w/o SeqRA 0.19 ± 0.43 0.28 ± 0.49 0.59 ± 0.54 0.56 ± 0.60
w/o StepRA 0.42 ± 2.97 0.32 ± 0.25 0.93 ± 0.73 0.63 ± 3.34
DT 1.00 ± 1.00 1.00 ± 1.00 1.00 ± 1.00 1.00 ± 1.00

Table 4: Absolute error↓ comparison in the ablation study on SeqRA and StepRA in the Atari
domain. The way to interpret this table is the same as that of Tab 3.

Approach Breakout Pong Qbert Seaquest
RADT (ours) 0.55 ± 0.63 0.51 ± 4.72 0.22 ± 0.05 0.49 ± 0.25
w/o SeqRA 0.61 ± 0.60 0.91 ± 11.13 0.24 ± 0.02 0.95 ± 0.72
w/o StepRA 0.57 ± 0.20 0.59 ± 7.16 0.24 ± 0.04 0.81 ± 1.11
DT 1.00 ± 1.00 1.00 ± 1.00 1.00 ± 1.00 1.00 ± 1.00

RADT w/o StepRA, indicating that StepRA is particularly advantageous for continuous control tasks with
dense rewards in MuJoCo. Conversely, in the Atari domain, RADT w/o StepRA performs equally or better
compared to RADT w/o SeqRA, suggesting that SeqRA is beneficial for long-term credit assignment required
in the Atari domain.

5.6 Comparison on Maximizing Expected Returns

In this section, we evaluate the influence of our proposed method on maximizing expected returns. We use
three environments: MuJoCo tasks characterized by dense rewards, AntMaze tasks featuring sparse rewards,
and Atari tasks requiring long-term credit assignment. For RADT, we train three instances with different
seeds. Each instance is evaluated over 100 episodes for MuJoCo and AntMaze, and 10 episodes for Atari.
The resulting average normalized returns are summarized in Tab. 5 for MuJoCo and AntMaze, and in Tab. 7
for Atari. The normalized returns are computed so that 100 represents the score of an expert policy, as per
Fu et al. (2020) for MuJoCo and AntMaze, and Hafner et al. (2021) for Atari. Additionally, these tables
include the highest episode returns in each dataset.

From Tab. 5 and Tab. 6, RADT achieves performance close to the maximum returns of the datasets in
MuJoCo and AntMaze, and its performance is comparable to or exceeds that of DT and DC. Similarly,
from Tab. 7, RADT reaches returns near the maximum values of the datasets in Breakout and Pong. In
Qbert and Seaquest, although RADT also successfully achieves returns well above the maximum returns
of the datasets, it falls short of the baselines specializing in maximizing returns, despite outperforming all
approaches in return alignment as shown in Tab 2. RADT effectively reproduces near-maximum dataset
performance, but faces challenges in scenarios requiring extrapolation to substantially higher target returns
beyond the training distribution. We further discuss this limitation in Sec. 7.

6 Related work

Return-conditioned Offline RL Recent studies have focused on formulating offline reinforcement learn-
ing (RL) as a problem of predicting action sequences that are conditioned by goals and rewards (Chen et al.,
2021; Janner et al., 2021; Emmons et al., 2022; David et al., 2023; Schmidhuber, 2019; Srivastava et al.,
2019). This approach differs from the popular value-based methods (Kumar et al., 2020; Fujimoto & Gu,

11



Under review as submission to TMLR

Table 5: Performance↑ comparison of return maximization in the MuJoCo domain. We report
the average across three seeds from our simulation results for RADT. The boldface numbers denote the
maximum score. We cite the results for DT and DC from their reported scores. We exclude StARformer
from the comparison since the original paper does not report results on MuJoCo tasks. The max return of
the dataset indicates the highest episode returns for each dataset.

Dataset Environment DC DT RADT (ours) Max Return
of Dataset

medium-replay
halfcheetah 41.3 36.6 41.3 ± 0.30 42.4
hopper 94.2 82.7 95.7 ± 0.22 98.7
walker2d 76.6 66.6 75.9 ± 1.55 90.0

medium-expert
halfcheetah 93.0 86.8 93.1 ± 0.01 92.9
hopper 110.4 107.6 110.4 ± 0.38 116.1
walker2d 109.6 108.1 109.7 ± 0.16 109.1

Table 6: Performance↑ comparison of return maximization in the AntMaze domain. We cite the
results for DC from their reported scores. We exclude StARformer and DT from the comparison since the
original papers do not report results on AntMaze tasks. The way to interpret this table is the same as that
of Tab. 5.

Dataset DC RADT (ours) Max Return
of Dataset

umaze 85.0 90.7 ± 4.35 100.0
umaze-diverse 78.5 80.7 ± 2.37 100.0

Table 7: Performance↑ comparison of return maximization in the Atari domain. We cite the
results for DC, StARformer, and DT from their reported scores. The way to interpret this table is the same
as that of Tab. 5.

Environment DC StARformer DT RADT (ours) Max Return
of Dataset

Breakout 352.7 436.1 267.5 302.6 ± 22.6 371.4
Pong 106.5 110.8 106.1 107.0 ± 2.1 116.7
Qbert 67.0 51.2 15.4 12.8 ± 3.5 5.8
Seaquest 2.7 1.7 2.5 1.2 ± 0.1 0.6

2021; Kostrikov et al., 2022) by modeling the relationship between rewards and actions through supervised
learning. Decision transformer (DT) (Chen et al., 2021) introduces the concept of desired future returns and
improves performance by training the transformer architecture (Vaswani et al., 2017) as a return-conditioned
policy. Based on DT, various advancements have been proposed for introducing value functions (Yamagata
et al., 2023; Gao et al., 2024; Wang et al., 2024), finetuning models online (Zheng et al., 2022), adjusting
the history length (Wu et al., 2023b), and improving the transformer architecture (Shang et al., 2022; Kim
et al., 2024). However, these approaches do not explicitly address the alignment between the actual returns
and the target return, which is a central focus of our work.

Improving Transformer Architecture for Offline RL Among the advancements based on DT, we
delve deeper into studies that focus on modifying the model architecture similarly to our approach. Some
efforts focus on refining the transformer architecture for offline RL. StARformer (Shang et al., 2022) in-
troduces two transformer architectures, one aggregates information at each step, and the other aggregates
information across the entire sequence. The image encoding process is improved by dividing the observation
images into patches and feeding them into the transformer to enhance step information, similar to Vision

12



Under review as submission to TMLR

Transformer (Dosovitskiy et al., 2021). Decision ConvFormer (Kim et al., 2024) replaces attention with
convolution to capture the inherent local dependence pattern of MDP. These methods focus primarily on
improving aspects of performance. To the best of our knowledge, this is the first work to explicitly align
actual returns with target returns as the main objective in return-conditioned offline RL.

7 Discussion and Conclusion

In this paper, we proposed RADT, a novel decision-making model for aligning the actual return with the
target return in offline RL. RADT splits the input sequence into return-to-go and state-action sequences,
and reflects return-to-go in action generation by uniquely handling the return-to-go sequence. This unique
handling includes two strategies that capture long-term dependencies and stepwise relationships within the
return-to-go sequence. Experimental results demonstrated that RADT has superior aligning capabilities
compared to existing DT-based models. One limitation of our method is a slight increase in computational
cost compared to DT. This could potentially be improved by introducing a lightweight attention mechanism,
such as Flash Attention (Dao et al., 2022), into our SeqRA. Another limitation is the difficulty in adapting to
target returns that significantly exceed the maximum returns within the dataset. This issue could potentially
be addressed by enhancing the training data returns through data augmentation techniques Li et al. (2024);
Luo et al. (2025). We believe that RADT’s alignment capability will improve the usability of offline RL
agents in a wide range of applications: creating diverse AI opponents in video games and educational tools,
controlling heterogeneous agents in simulations, and efficiently generating human motions for animation
or robotics. Investigating how RADT generalizes to multi-agent environments with diverse and adaptive
opponents is an exciting avenue for future work.

References
Rishabh Agarwal, Dale Schuurmans, and Mohammad Norouzi. An optimistic perspective on offline rein-

forcement learning. In Proc. of ICML, 2020.

Marc G. Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environment: An
evaluation platform for general agents. Journal of Artificial Intelligence Research, 47(1):253–279, 2013.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel, Aravind
Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence modeling. In
Proc. of NeurIPS, 2021.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-efficient
exact attention with io-awareness. In Proc. of NeurIPS, 2022.

Shmuel Bar David, Itamar Zimerman, Eliya Nachmani, and Lior Wolf. Decision S4: Efficient sequence-based
RL via state spaces layers. In Proc. of ICLR, 2023.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Un-
terthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil
Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale. In Proc. of ICLR,
2021.

Scott Emmons, Benjamin Eysenbach, Ilya Kostrikov, and Sergey Levine. Rvs: What is essential for offline
RL via supervised learning? In Proc. of ICLR, 2022.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep data-
driven reinforcement learning, 2020.

Scott Fujimoto and Shixiang Gu. A minimalist approach to offline reinforcement learning. In Proc. of
NeurIPS, 2021.

Chenxiao Gao, Chenyang Wu, Mingjun Cao, Rui Kong, Zongzhang Zhang, and Yang Yu. Act: Empowering
decision transformer with dynamic programming via advantage conditioning. In Proc. of AAAI, 2024.

13



Under review as submission to TMLR

Danijar Hafner, Timothy Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari with discrete world
models. In Proc. of ICLR, 2021.

Kaidong Hu, Brandon Haworth, Glen Berseth, Vladimir Pavlovic, Petros Faloutsos, and Mubbasir Kapa-
dia. Heterogeneous crowd simulation using parametric reinforcement learning. IEEE Transactions on
Visualization and Computer Graphics, 2023.

Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big sequence modeling
problem. In Proc. of NeurIPS, 2021.

Zhengyao Jiang, Yingchen Xu, Nolan Wagener, Yicheng Luo, Michael Janner, Edward Grefenstette, Tim
Rocktäschel, and Yuandong Tian. H-GAP: Humanoid control with a generalist planner. In Proc. of ICLR,
2024.

Ying Jin, Zhuoran Yang, and Zhaoran Wang. Is pessimism provably efficient for offline RL? In Proc. of
ICML, 2021.

Jeonghye Kim, Suyoung Lee, Woojun Kim, and Youngchul Sung. Decision ConvFormer: Local filtering in
MetaFormer is sufficient for decision making. In Proc. of ICLR, 2024.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit Q-learning. In
Proc. of ICLR, 2022.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative Q-learning for offline rein-
forcement learning. In Proc. of NeurIPS, 2020.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial, review,
and perspectives on open problems, 2020.

Guanghe Li, Yixiang Shan, Zhengbang Zhu, Ting Long, and Weinan Zhang. Diffstitch: Boosting offline
reinforcement learning with diffusion-based trajectory stitching. In Proc. of ICML, 2024.

Yunhao Luo, Utkarsh A Mishra, Yilun Du, and Danfei Xu. Generative trajectory stitching through diffusion
composition, 2025.

C.M. Macal and M.J. North. Tutorial on agent-based modeling and simulation. In Proc. of WSC, 2005.

Van-Quang Nguyen, Masanori Suganuma, and Takayuki Okatani. Grit: Faster and better image captioning
transformer using dual visual features. In Proc. of ECCV, 2022.

Andreas Panayiotou, Theodoros Kyriakou, Marilena Lemonari, Yiorgos Chrysanthou, and Panayiotis Char-
alambous. Ccp: Configurable crowd profiles. In Proc. of SIGGRAPH, 2022.

Xue Bin Peng, Yunrong Guo, Lina Halper, Sergey Levine, and Sanja Fidler. Ase: Large-scale reusable
adversarial skill embeddings for physically simulated characters. ACM Trans. Graph., 2022.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language understanding
by generative pre-training, 2018.

Davis Rempe, Zhengyi Luo, Xue Bin Peng, Ye Yuan, Kris Kitani, Karsten Kreis, Sanja Fidler, and Or Litany.
Trace and pace: Controllable pedestrian animation via guided trajectory diffusion. In Proc. of CVPR,
2023.

Juergen Schmidhuber. Reinforcement learning upside down: Don’t predict rewards–just map them to actions,
2019.

Jinghuan Shang, Kumara Kahatapitiya, Xiang Li, and Michael S. Ryoo. StARformer: Transformer with
state-action-reward representations for visual reinforcement learning. In Proc. of ECCV, 2022.

14



Under review as submission to TMLR

Ruimin Shen, Yan Zheng, Jianye Hao, Zhaopeng Meng, Yingfeng Chen, Changjie Fan, and Yang Liu.
Generating behavior-diverse game ais with evolutionary multi-objective deep reinforcement learning. In
Proc. of IJCAI, 2021.

Adish Singla, Anna N Rafferty, Goran Radanovic, and Neil T Heffernan. Reinforcement learning for educa-
tion: Opportunities and challenges, 2021.

Rupesh Kumar Srivastava, Pranav Shyam, Filipe Mutz, Wojciech Jaśkowski, and Jürgen Schmidhuber.
Training agents using upside-down reinforcement learning, 2019.

Emanuel Todorov, Tom Erez, and Yuval Tassa. MuJoCo: A physics engine for model-based control. In Proc.
of IROS, 2012.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In Proc. of NeurIPS, 2017.

Yuanfu Wang, Chao Yang, Ying Wen, Yu Liu, and Yu Qiao. Critic-guided decision transformer for offline
reinforcement learning. In Proc. of AAAI, 2024.

Shuang Wu, Jian Yao, Haobo Fu, Ye Tian, Chao Qian, Yaodong Yang, QIANG FU, and Yang Wei. Quality-
similar diversity via population based reinforcement learning. In Proc. of ICLR, 2023a.

Yueh-Hua Wu, Xiaolong Wang, and Masashi Hamaya. Elastic decision transformer. In Proc. of NeurIPS,
2023b.

Yiming Xie, Varun Jampani, Lei Zhong, Deqing Sun, and Huaizu Jiang. Omnicontrol: Control any joint at
any time for human motion generation. In Proc. of ICLR, 2024.

Haoran Xu, Li Jiang, Jianxiong Li, and Xianyuan Zhan. A policy-guided imitation approach for offline
reinforcement learning. In Proc. of NeurIPS, 2022.

Taku Yamagata, Ahmed Khalil, and Raul Santos-Rodriguez. Q-learning decision transformer: Leveraging
dynamic programming for conditional sequence modelling in offline RL. In Proc. of ICML, 2023.

Georgios N. Yannakakis and Julian Togelius. Artificial Intelligence and Games. Springer, 2018.

Tianhe Yu, Aviral Kumar, Rafael Rafailov, Aravind Rajeswaran, Sergey Levine, and Chelsea Finn. Combo:
Conservative offline model-based policy optimization. In Proc. of NeurIPS, 2021.

Qinqing Zheng, Amy Zhang, and Aditya Grover. Online decision transformer. In Proc. of ICML, 2022.

W. Zhu, X. Ma, D. Ro, H. Ci, J. Zhang, J. Shi, F. Gao, Q. Tian, and Y. Wang. Human motion generation:
A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024.

15



Under review as submission to TMLR

Broader Impact

RADT can bring about a positive social impact by enabling adaptation to new application fields such as
game production, educational content production, and simulations, as it can control the performance of
agents more accurately. However, this advantage also comes with potential negative impacts such as the
tracing of user behavior patterns. Such impact can be mitigated by applying methods such as blinding
personal information during data generation and collection process.

A Additional Experimental Results

To better understand RADT, this section first explains additional analysis of the discrepancies between
actual return and target return. Then, we describe an ablation study on adaptive scaling from Sec 4.1, and
ablation studies on each sublayer in the Atari domain.

A.1 Additional Analysis of Discrepancies

Ab
so

lu
te

 E
rro

r 19.5
21.9

17.7

10.8

DT
StARformer

DC
RADT (ours)

Figure 9: Absolute errors↓ between the target return and the actual return in the MuJoCo
domain.

We present Fig. 9, which summarizes the discrepancies between the actual return and the target return in
the MuJoCo domain. The figure shows the averages of the absolute errors between the actual return and
the target return from Fig. 7, across seven target returns and twelve tasks. We normalize these absolute
errors by the difference between the top 5% and bottom 5% returns in the dataset 3. RADT outperforms
the baselines, achieving a 44.6% reduction in discrepancies compared to DT. Among the baselines, DC has
the smallest discrepancies, while the StARformer has the largest.

To further delve into the results of the MuJoCo domain, we present a comparison of the actual returns
in Fig 10. The black dotted line represents y = x, indicating that the actual return matches the target
return perfectly. The closer to the black dotted line, the better the result. In all tasks except halfcheetah-
medium, RADT is closer to the target return than the baseline is. It can be seen that ant-medium and
halfcheetah-medium are struggling due to the extremely biased distribution of target returns in the datasets.
In some tasks, the baselines show a constant actual return regardless of the input target return (e.g., DT in
ant-medium-replay, StARformer in walker2d, DC and StARformer in ant-medium-expert, etc.). We believe
this is due to the models overfitting the target return in areas where the data is concentrated.

We present Fig 11, which illustrates the discrepancies between the actual return and the target return in the
Atari domain. The values in this figure represent the average absolute errors between the actual return and

3We normalize returns from each dataset split, unifying the normalized ranges to facilitate comparisons between splits
(medium, medium-replay, medium-expert). D4RL’s normalization uses the same values across different splits, making it difficult
to compare results because the achievable performance limits for trained agents vary significantly between splits.

16



Under review as submission to TMLR

0 25 50 75 100
0

25

50

75

100

No
rm

al
ize

d 
Re

tu
rn

ant-m-r

0 25 50 75 100
0

25

50

75

100
halfcheetah-m-r

0 25 50 75 100
0

30

60

90

120
hopper-m-r

0 25 50 75 100
0

25

50

75

100
walker2d-m-r

0 25 50 75 100
0

25

50

75

100

No
rm

al
ize

d 
Re

tu
rn

ant-m-e

0 25 50 75 100
0

25

50

75

100
halfcheetah-m-e

0 25 50 75 100
0

25

50

75

100
hopper-m-e

0 25 50 75 100
0

25

50

75

100
walker2d-m-e

0 25 50 75 100
0

25

50

75

100

No
rm

al
ize

d 
Re

tu
rn

ant-m

0 25 50 75 100
0

25

50

75

100
halfcheetah-m

0 25 50 75 100
0

25

50

75

100
hopper-m

0 25 50 75 100
0

25

50

75

100
walker2d-m

Target Return (Normalized)
DT StARformer DC RADT (ours)

Figure 10: Comparisons of actual returns per target return in the experiments of Fig. 7 for
MuJoCo. Each column represents a task. The x-axis represents the target return, and the y-axis represents
the actual return. The x-axis and y-axis are normalized in the same way as in Fig. 7. Target returns are set
in the same way as Fig. 7. The black dotted line represents y = x, indicating that the actual return matches
the target return perfectly. We report the mean and standard error over three seeds. The dataset names are
shortened:‘medium-replay’ to ‘m-r’, ‘medium-expert’ to ‘m-e’, and ‘medium’ to ‘m’.

17



Under review as submission to TMLR

Ab
so

lu
te

 E
rro

r 74.6 79.2 74.3

25.7

DT
StARformer

DC
RADT (ours)

Figure 11: Absolute errors↓ between the target return and the actual return in the Atari domain.

the target return, averaged over seven target returns and four tasks. These absolute errors are normalized
by the difference between the top 5% and the bottom 5% of returns in the dataset. RADT significantly
outperforms the baseline methods. Specifically, it achieves a 65.5% reduction in discrepancies compared
to DT, which is a greater reduction margin than what we observed in the MuJoCo domain. Among the
baseline methods, DC exhibits the smallest discrepancies, while StARformer shows the largest, a pattern
that is consistent with the MuJoCo domain.

A.2 Additional Ablation Study

We conduct an ablation study on the adaptive scaling in SeqRA on the medium-replay dataset in MuJoCo
and the Atari dataset. The experimental setup is the same as described in Sec.5.5. The results are summa-
rized in Tab. 8 and Tab. 9. These results demonstrate that introducing adaptive scaling (RADT w/o StepRA)
outperforms the case where only the attention mechanism of SeqRA is used (RADT w/o StepRA and Adap-
tive Scaling). This suggests that adaptive scaling effectively merges z, which includes information from the
return sequence, with the state-action sequence τsa.

Table 8: Absolute error↓ comparison in the ablation study for the adaptive scaling in SeqRA
on the medium-replay dataset in MuJoCo domain. The way to interpret this table is the same as
that of Tab 3.

Approach ant halfcheetah hopper walker2d
RADT (ours) 0.15 ± 0.42 0.25 ± 0.34 0.36 ± 0.24 0.50 ± 2.78
w/o StepRA 0.42 ± 2.97 0.32 ± 0.25 0.93 ± 0.73 0.63 ± 3.34
w/o StepRA and Adaptive Scaling 0.74 ± 2.94 0.85 ± 0.45 0.99 ± 0.73 0.87 ± 2.00
DT 1.00 ± 1.00 1.00 ± 1.00 1.00 ± 1.00 1.00 ± 1.00

Table 9: Absolute error↓ comparison in the ablation study for the adaptive scaling in SeqRA
on the Atari domain. The way to interpret this table is the same as that of Tab 3.

Approach Breakout Pong Qbert Seaquest
RADT (ours) 0.55 ± 0.63 0.51 ± 4.72 0.22 ± 0.05 0.49 ± 0.25
w/o StepRA 0.57 ± 0.20 0.59 ± 7.16 0.24 ± 0.04 0.81 ± 1.11
w/o StepRA and Adaptive Scaling 0.72 ± 1.52 0.86 ± 2.16 0.26 ± 0.07 0.86 ± 1.22
DT 1.00 ± 1.00 1.00 ± 1.00 1.00 ± 1.00 1.00 ± 1.00

18



Under review as submission to TMLR

A.3 Additional Analysis of Parameter Size

We compare RADT and models where we increase the number of blocks in DT to bring the number of
parameters closer to RADT. Table 10 shows the parameters for each model on the medium-replay dataset
of MuJoCo. Because RADT adds both SeqRA and StepRA to the transformer block, it has 1.6 times the
number of parameters compared to DT. By increasing the number of blocks in DT to six, it surpasses the
number of parameters of RADT. Therefore, we compare RADT with a DT that has six blocks and present
the results on the medium-replay dataset of MuJoCo in Tab. RADT outperforms the DT with six blocks.
On the other hand, we find that DT with 6 blocks performs worse than that with 3 blocks in the hopper and
walker2d environments. This result suggests that simply increasing the number of parameters of DT does
not improve return alignment, and that the improved model structure of RADT is effective.

Table 10: Comparison of parameters. Since the dimensions of the state and action spaces vary for each
dataset, the model size differs depending on the dataset.

Environment DT(3 blocks) DT(5 blocks) DT(6 blocks) RADT(3 blocks)
ant 740,232 1,136,776 1,335,048 1,219,848
halfcheetah 727,686 1,124,230 1,322,502 1,207,302
hopper 726,147 1,122,691 1,320,963 1,205,763
walker2d 727,686 1,124,230 1,322,502 1,207,302

Table 11: Absolute error↓ comparison between RADT and DT with increased parameters. We
use the medium-replay dataset in MuJoCo. The way to interpret this table is the same as that of Tab 1.

Environment DT(3 blocks) DT(6 blocks) RADT(3 blocks)
ant 23.2 ± 1.3 16.8 ± 4.5 3.5 ± 0.5
halfcheetah 7.2 ± 1.8 5.5 ± 0.5 1.8 ± 0.6
hopper 12.2 ± 4.3 12.8 ± 2.4 4.4 ± 0.5
walker2d 8.1 ± 0.3 10.0 ± 0.7 4.0 ± 0.8

B Baseline Details

We use the model code for DT, StARformer, and DC from the following sources. DT: https://github.
com/kzl/decision-transformer. StARformer: https://github.com/elicassion/StARformer. DC:
https://openreview.net/forum?id=af2c8EaKl8. Although StARformer uses step-by-step rewards instead
of returns, in our experiments, we employ return-conditioning using returns. This modification allows StAR-
former to condition action generation on target return. The original paper (Shang et al., 2022) states that
this modification has a minimal impact on performance. For visual observations in the Atari domain, RADT
and DC use the same CNN encoder as DT. StARformer, in addition to the CNN encoder, also incorporates
more powerful patch-based embeddings like Vision Transformer (Dosovitskiy et al., 2021).

The baseline results for aligning the actual return with the target return (Sec. 5.3) and the ablation study
(Sec. 5.5) are from our simulations. The hyperparameters for each method in our simulations are set according
to the defaults specified in their original papers or open-source codebases. The baseline results for maximizing
the expected return (Sec. 5.6) stem from the original papers or third-party reproductions.

C Experimental Details

For the reproducibility of the experiments, this section explains the comparison of computational costs and
the hyperparameters used in the experiments.

19

https://github.com/kzl/decision-transformer
https://github.com/kzl/decision-transformer
https://github.com/elicassion/StARformer
https://openreview.net/forum?id=af2c8EaKl8


Under review as submission to TMLR

Table 12: Comparision of computational cost.

Method Training Time (s) GPU memory usage (GiB)
DT 363 0.030
RADT 466 0.034

C.1 Comparison of Computational Cost

Table 12 shows a comparison of the computational costs of DT and RADT. We compare the training time
and GPU memory usage incurred when running 104 iterations of training on the hopper-medium-replay
dataset. In this comparison, we use an NVIDIA A100 GPU. RADT has slight increases in computation time
and memory usage from DT. We believe these increases are due to the addition of SeqRA and StepRA. The
computational costs of RADT could potentially be improved by introducing efficient attention mechanisms
such as Flash Attention (Dao et al., 2022).

C.2 Hyperparameters

Our implementation of RADT is based on the public codebase of DT. We used an Nvidia A100 GPU for
training in the Atari and MuJoCo domains. The full list of hyperparameters of RADT is found in Tab. 13
and Tab. 14. The hyperparameter settings of RADT are the same in both aligning and maximizing.

Table 13: Hyperparameters settings of RADT in the MuJoCo domain and the AntMaze domain.
The dataset names are shortened: ‘medium’ to ‘m’, ‘medium-expert’ to ‘m-e’, ‘umaze’ to ‘u’, and ‘umaze-
diverse’ to ‘u-d’.

Hyperparameter Value
Number of blocks 2, hopper-m

3, otherwise
Number of heads 1

Embedding dimension 256, ant-m-e, halfcheetah-m,
antmaze-u, antmaze-u-d

128, otherwise
Batch size 256, antmaze-u, antmaze-u-d

64, otherwise
Nonlinearity function GELU, transformer

SiLU, StepRA
Context length K 20
Dropout 0.1
Learning rate 10−4

Grad norm clip 0.25
Weight decay 10−4

Learning rate decay Linear warmup for first 104 steps

D Additional Real-World Application Example

We describe the additional real-world application that requires return alignment, as mentioned in Sec. 1.
Example 3 (Agent-based modeling and simulation). Agent-based modeling and simulation (Macal & North,
2005) involves examining system dynamics by representing them as collections of interacting, autonomous
agents. In this context, incorporating heterogeneous behaviors (Hu et al., 2023) and controllable poli-

20



Under review as submission to TMLR

Table 14: Hyperparameters settings of RADT in the Atari domain.

Hyperparameter Value
Number of blocks 6
Number of heads 8
Embedding dimension 128
Batch size 512 Pong

128 Breakout, Qbert, Seaquest
Context length K 50 Pong

30 Breakout, Qbert, Seaquest
Nonlinearity ReLU encoder

GELU transformer
SiLU StepRA

Encoder channels 32, 64, 64
Encoder filter size 8 × 8, 4 × 4, 3 × 3
Encoder strides 4, 2, 1
Max epochs 15
Dropout 0.1
Learning rate 6 × 10−4

Adam betas (0.9, 0.95)
Grad norm clip 1.0
Weight decay 0.1

Learning rate decay Linear warmup and
cosine decay

Warmup tokens 512 ∗ 20
Final tokens 2 ∗ 500000 ∗ K

cies (Panayiotou et al., 2022) is essential. Our approach introduces a controlled variety of agent behaviors
by adjusting their performance levels based on a specified target return.

21


	Introduction
	Preliminary
	Return Alignment Difficulty in DT
	Return-Aligned Decision Transformer
	Sequence Return Aligner
	Stepwise Return Aligner
	Arrangement of SeqRA and StepRA

	Experiments
	Datasets
	Baselines and Settings
	Results
	Behavior of RADT in Achieving Return Alignment
	Ablation Study
	Comparison on Maximizing Expected Returns

	Related work
	Discussion and Conclusion
	Additional Experimental Results
	Additional Analysis of Discrepancies
	Additional Ablation Study
	Additional Analysis of Parameter Size

	Baseline Details
	Experimental Details
	Comparison of Computational Cost
	Hyperparameters

	Additional Real-World Application Example

