What is the Solution for State-Adversarial Multi-Agent Reinforcement Learning?

Songyang Han' Sanbao Su' Sihong He' Shuo Han

Abstract

Various methods for Multi-Agent Reinforcement
Learning (MARL) have been developed with the
assumption that agents’ policies are based on
accurate state information. However, policies

2

Haizhao Yang® Fei Miao !

a) Cooperative navigation b) State Perturbations c) Robust Agent Policy
for Agent 2
landmarks 9 . _____ .
< < <
ll agent 1 S,A(agent 1 i\(agent 1
* 1 b Kl || Lg K
lzjﬁ(y 3 285 71 25, 7
) A) e® ‘v o,)
t t agent 3
agent 2 agent3 agent 2 agent 3 agent 2 9

learned through Deep Reinforcement Learning
(DRL) are susceptible to adversarial state pertur-
bation attacks. In this work, we propose a State-
Adversarial Markov Game (SAMG) and make the
first attempt to investigate the fundamental prop-
erties of MARL under state uncertainties. Our
analysis shows that the commonly used solution
concepts of optimal agent policy and robust Nash
equilibrium do not always exist in SAMGs. To
circumvent this difficulty, we consider a new so-
lution concept called robust agent policy, where
agents aim to maximize the worst-case expected
state value. We prove the existence of robust agent
policy for finite state and finite action SAMGs.
Additionally, we propose a Robust Multi-Agent
Adversarial Actor-Critic (RMA3C) algorithm to
learn robust policies for MARL agents under state
uncertainties. Our experiments demonstrate that
our algorithm outperforms existing methods when
faced with state perturbations and greatly im-
proves the robustness of MARL policies. Our
code is public on https://songyanghan.
github.io/what_is_solution/.

1. Introduction

Multi-Agent Reinforcement Learning (MARL) has been
successfully used to solve problems such as multi-robot co-
ordination (Hiittenrauch & §o§ic’, 2017), resource manage-
ment (Pretorius et al., 2020), etc. However, Deep Reinforce-

'Department of Computer Science and Engineering, University
of Connecticut, Storrs, CT, USA 2Depalrtment of Electrical and
Computer Engineering, University of Illinois at Chicago, Chicago,
IL, USA *Department of Mathematics, University of Maryland,
College Park, MD, USA. Correspondence to: Songyang Han
<songyang.han@uconn.edu>.

Workshop on New Frontiers in Learning, Control, and Dynamical
Systems at the International Conference on Machine Learning
(ICML), Honolulu, Hawaii, USA, 2023. Copyright 2023 by the
author(s).

Figure 1: In this scenario, the agents’ goal is to occupy
and cover all landmarks, requiring cooperation to decide
which landmark to cover. Figure a) illustrates the optimal
target landmark for each agent in the absence of adversarial
interference. However, in figure b), an adversary perturbs
the state observation of agent 2 (I — 1}), causing agent
2 to head in the wrong direction. Our work demonstrates
that traditional agent policies can be easily corrupted by
adversarial state perturbations. To counter this, we propose
a robust agent policy that maximizes average performance
under worst-case state perturbations.

ment Learning (DRL) policies are vulnerable to adversarial
state perturbation attacks (Behzadan & Munir, 2017; Pat-
tanaik & Tang, 2017; Huang et al., 2017; Lin et al., 2017;
Xiao et al., 2019). Even small changes to the state can lead
to drastically different actions (Huang et al., 2017; Lin et al.,
2017). To address this, it is important to develop robust
policies that can handle adversarial state perturbations. An
example of this is shown in Fig. 1 where agents need to
cooperate and avoid collisions while occupying landmarks.
In (a) with no adversarial state, the agents are able to tar-
get different landmarks, but in (b) with an adversarial state,
agent 2 is misled and heads in the wrong direction.

The adversarial state perturbation problem cannot be fully
understood using existing research on the Partially Ob-
servable Markov Decision Process (POMDP) or Decentral-
ized Partially Observable Markov Decision Process (Dec-
POMDP) (Oliehoek et al., 2016; Lerer et al., 2020), as
the conditional observation probability cannot capture the
worst-case uncertainty under adversarial attacks. Adver-
sarial perturbations have a greater impact on an agent’s
policy than random noise (Kos & Song, 2017; Pattanaik
et al., 2018). However, due to the complexity of interactions
among agents and adversaries, it remains challenging to
formally analyze the existence of optimal or equilibrium
solutions under adversarial state perturbations in MARL.
Therefore, it is essential to study the fundamental properties

https://songyanghan.github.io/what_is_solution/
https://songyanghan.github.io/what_is_solution/

What is the Solution for State-Adversarial Multi-Agent Reinforcement Learning?

of MARL under adversarial state perturbations.

To the best of our knowledge, we make the first attempt
to investigate the challenges and fundamental properties of
robust MARL under adversarial state perturbations. We
formulate a State-Adversarial Markov Game (SAMG) to
study the properties and solution concepts of MARL under
adversarial state perturbations. We prove that the optimal
agent policy or robust Nash equilibrium does not always
exist in such scenarios. Instead, we consider a new solution
concept, the robust agent policy, and prove its existence for
finite state and action spaces. We design an algorithm, called
Robust Multi-Agent Adversarial Actor-Critic (RMA3C), to
train robust policies for all agents under adversarial state per-
turbations. The algorithm uses a Gradient Descent Ascent
(GDA) optimizer to update each agent’s and adversary’s
policy network. Results from our experiments show that the
proposed RMA3C algorithm improves the robustness of the
agents’ policies compared to existing MARL methods.

In summary, the main contributions of this work are:

* We formulate a State-Adversarial Markov Game
(SAMG) to study the fundamental properties of MARL
under adversarial state perturbations. We prove that
widely used solution concepts such as optimal agent
policy or robust Nash equilibrium do not always exist.

* We consider a new solution concept, robust agent pol-
icy, where each agent aims to maximize the worst-case
expected state value. We prove the existence of a robust
agent policy for SAMGs with finite state and action
spaces. We propose a Robust Multi-Agent Adversarial
Actor-Critic (RMA3C) algorithm to solve the challenge
of training robust policies under adversarial state per-
turbations based on gradient descent ascent algorithm.

* We empirically evaluate our proposed RMA3C algo-
rithm. Our algorithm outperforms baselines with ran-
dom or adversarial state perturbations and improves
agent policies’ robustness under state uncertainties.

2. Related Work

Multi-Agent Reinforcement Learning (MARL) The
MARL has a long history in the Al field (Hu et al., 1998;
Busoniu et al., 2008). Recent works have been investigated
to encourage the collaboration of the agents by assigning
rewards appropriately, such as a value decomposition net-
work (Sunehag et al., 2018; Rashid et al., 2020; Su et al.,
2021), subtracting a counterfactual baseline (Foerster & Far-
quhar, 2018), or an implicit method (Zhou et al., 2020).
Multi-Agent Deep Deterministic Policy Gradient (MAD-
DPG) proposes a centralized Q-function to alleviate the
problem caused by the non-stationary environment (Lowe
et al., 2017). The scalability issue of MARL can be allevi-
ated by adding attention to the critic (Igbal & Sha, 2019),

using neighbor information (Qu et al., 2020), or using V-
learning (Jin et al., 2021). The “team stochastic game” (Mu-
niraj et al., 2018) splits the MARL agents into two teams to
compete. However, during training, all methods assume that
agents get the true state value. None of the recent MARL
advances specifies how to deal with perturbed state values
by malicious adversaries.

Robust Reinforcement Learning Most existing robust
MARL works focus on uncertainties in reward, transition
dynamics, and training partners’ policies, while our work
focuses on uncertainties in the state. Robust reinforcement
learning can be traced back to (Morimoto & Doya, 2005)
in the single-agent setting. With the advent of deep learn-
ing techniques, the robust MARL has been recently stud-
ied considering different types of uncertainties such as re-
ward (Zhang et al., 2020b), transition dynamics (Zhang et al.,
2020b; Sinha et al., 2020; Hu et al., 2020; Yu et al., 2021),
training partner’s type (Shen & How, 2021), training part-
ners’ policies (Li et al., 2019; van der Heiden et al., 2020;
Sun et al., 2021; 2022). The work in (Zhang et al., 2020b)
considers the robust equilibrium of multi-agents with reward
uncertainties where agents can access true state information
at each stage. The work in (Shen & How, 2021) considers
uncertain training partner’s type (e.g. adversary, neutral, or
teammate) to the protagonist in two-player scenarios. The
M3DDPG algorithm extends the MADDPG to get a robust
policy for the worst situation by assuming all the training
partners are adversaries (Li et al., 2019). However, none of
the above MARL works consider the state perturbations.

For adversarial state perturbations, there are some
works (Mandlekar et al., 2017; Pattanaik et al., 2018; Zhang
et al., 2020a; 2021; Liang et al., 2022) considering a robust
policy in single-agent reinforcement learning. Though the
work (Lin et al., 2020a) studies state perturbation, only one
single agent’s state observation can be perturbed in their
MARL. In this work, we focus on the more challenging
multi-agent cases where each agent’s state observation can
be perturbed by an adversary.

3. State-Adversarial Markov Game (SAMG)

We formulate a State-Adversarial Markov Game (SAMG)
with n agents in the agent set A" = {1,...,n}. Each agent
i is associated with an action a’ € A’. The global joint
actionisa = (a',...,a") € A, A:= A x --- x A™. The
global joint state is s € S. All agents share a stage-wise
reward function r : S x A — R. The total expected return
is Y20 ¥'7e41(se, ar) where v is a discount factor. We
consider that each agent is associated with an adversary as
shown in Fig. 2. Each adversary decides a perturbed state
p' € S for the corresponding agent as the agent’s perturbed
knowledge or observation about the global state. We denote
the joint perturbed state as p := [p‘];cnr. We consider the

What is the Solution for State-Adversarial Multi-Agent Reinforcement Learning?

>

admissible perturbed state as a task-specific “neighboring’
state of s, e.g. the bounded sensor measurement errors, to
model the challenges of getting accurate states for multi-
agent systems like connected and autonomous vehicles and
multi-robots systems (Liu et al., 2021; Kothandaraman et al.,
2021). To analyze a realistic problem, the power of the state
perturbation should also be limited (Everett et al., 2021;
Zhang et al., 2020a). We define an admissible perturbed
state set P, to restrict the perturbed state only to be within a
predefined subset of states such that p € Ps:

Definition 3.1 (Admissible Perturbed State Set). We con-
sider the set of admissible perturbed state for agent ¢ at state
sas P! C S. Denote the joint admissible perturbed state
set at state s as Py 1= Pl x .-+ x P

Note that the true state is included in the admissible per-
turbed state set, i.e., s € 73;' for any ¢ € N. For example,
consider a 2-agent 3-state system with S = {s1, s2, $3}.
When the current true state is s for both agents, adversary 1
perturbs agent 1’s state observation within P, = {s1,s2};
adversary 2 perturbs agent 2’s state observation within
PSZI = {81,83}.

The state perturbation reflects the state uncertainty from the
perspective of each agent, but it does not change the true
state of multi-agent systems. The state transition function is
p: S x A— A(S), where A(S) is a probability simplex
denoting the set of all possible probability measures on S.
The state still transits from the true state to the next state.
Each agent is associated with a policy 7* : S — A(A?)
to choose an action a’ € A’ given the perturbed state p’.
Note that the input of 7’ is the perturbed state p’. The
perturbed state affects each agent’s action. The set A(A?)
includes all possible probability measures on .A*. We use
7 = (m!, 72, ..., ™) to denote the joint agent policy.

The adversary policy, i.e. the state perturbation policy, as-
sociated with agent i is x*(+|s) : S — A(P?), where the
input of x* is the true state s € S. The power of the adver-
sary is limited by the admissible perturbed state set P¢. We
denote the joint adversary policy as x = (x!, x2, ..., x™).
The agents want to find a policy 7 to maximize their total
expected return while adversaries want to find a policy x to
minimize the agents’ total expected return.

Our SAMG problem cannot be solved by the existing
work for single-agent RL with adversarial state perturba-
tions (Mandlekar et al., 2017; Pattanaik et al., 2018; Zhang
et al., 2020a; 2021; Liang et al., 2022). Each agent’s ac-
tion in SAMG is selected based on its own perturbed state
observation and the state knowledge of each agent can be
different after adversarial perturbations, so the SAMG prob-
lem cannot be solved by the above single-agent RL where
the agent has only one state observation at each stage.

Our SAMG problem cannot be solved by the existing work

Perturbed State

pi~x* (p'ls)
Adversary 1 o
1 -

Tt

pe~x" (p"|s)

Reward 1t

State S;

Action

7, . A
—:‘L- —
L —

Iseyq

Figure 2: Multi-agent reinforcement learning under adver-
sarial state perturbations. Each agent is associated with an
adversary to perturb its knowledge or observation of the true
state. Agents want to find a policy 7 to maximize their total
expected return while adversaries want to find a policy x to
minimize agents’ total expected return.

in the Decentralized Partially Observable Markov Decision
Process (Dec-POMDP) (Bernstein et al., 2002; Oliehoek
et al., 2016). In contrast, the policy in SAMG needs to
be robust under a set of admissible perturbed states. The
adversary aims to find the worst-case state perturbation
policy x to minimize the MARL agents’ total expected
return, but the Dec-POMDP cannot characterize the worst-
case state perturbations. Moreover, all the agents cannot
get the true state s in Dec-POMDP, while in SAMG, the
true state s is known by the adversaries. Adversaries can
take the true state information and use it to select state
perturbations for the MARL agents. More details about the
connection between Dec-POMDP and SAMG are included
in Appendix A.

Additionally, our SAMG problem cannot be solved by ex-
isting methods for robust Markov games considering the
uncertainties from reward (Zhang et al., 2020b), transition
dynamics (Zhang et al., 2020b; Hu et al., 2020; Sinha et al.,
2020; Yu et al., 2021), training partner’s policies (Li et al.,
2019; van der Heiden et al., 2020). These methods are not
applicable to our problem because the agents do not have
access to the true state information after adversarial pertur-
bations. As a result, we introduce new solution concepts for
the agent policies and analyze their properties in the next
section.

4. Solution Concepts

In this section, we delve into the solution concepts of the
SAMG. We formally define key concepts such as the opti-
mal adversary policy, optimal agent policy, and robust Nash
equilibrium. However, we also demonstrate that under the
optimal adversary policy, the existence of an optimal agent
policy or robust Nash equilibrium is not guaranteed as they

What is the Solution for State-Adversarial Multi-Agent Reinforcement Learning?

can be easily corrupted by adversaries. Therefore, we intro-
duce a new objective, the worst-case expected state value,
and prove that there exists a robust agent policy to maximize
it. A concept diagram of this section is shown in Fig. 3.

Widely Used Solution Concepts

Robust State Value
Function (Definition 4.4)

State Value Function
(Equation 1)

Uniqueness in Theorem 4.5;

Maximize State Value No Agent Deviates Unilaterally
y

\4

Optimal Agent Policy
(Definition 4.2)

Robust Nash Equilibrium
(Definition 4.6)

New Solution Concepts

Worst Case Expected | Maximize

: Robust Agent Policy
: | State Value (Definition 4.8) >

(Definition 4.9)
v

Equivalent to a Maximin
Problem (Theorem 4.10)

| Existence of Robust Agent
Policy (Theorem 4.11)

Eoo
N\

Figure 3: Solution concepts for the SAMGs. We first exam-
ine the widely used concepts (optimal agent policy and ro-
bust Nash Equilibrium) and demonstrate their non-existence
under adversarial state perturbations. In response, we con-
sider a new objective, the worst-case expected state value,
and a new solution concept, the robust agent policy.

We first introduce the widely used state value function con-
cept for our proposed SAMG as follows:

o0

= Eat~”(‘|ﬁt)vﬂt~X('|5t) Z’VtrtJrl(stv at)|80 =S
t=0
(H

Vx(s)

where ~y is the discount factor.

4.1. Optimal Adversary Policy

For a fixed agent policy m, the optimal (worst-case) ad-
versary x*(7) aims to minimize the agents’ total expected
return, that is to say,

Vs (m(8) = m)in Vi (8). 2)

The following proposition shows the existence of the opti-
mal adversary for an SAMG.

Proposition 4.1 (Existence of Optimal Adversary Policy).
Given an SAMG G = (N, S, A,r, Ps,p,), for any fixed
agent policy , there exists an optimal adversary policy x*
such that Vi \«(x)(5) < Vi () forany s € S and any .

Proof. See proof in Appendix B.4. O

The key process of the proof is constructing an MDP for the
adversary where the adversary gets the negative of the agent
reward. Since for an MDP with finite state and finite action
spaces, there always exists an optimal policy [Theorem
6.2.10 in (Puterman, 2014)], the optimal adversary policy
x* of the corresponding SAMG always exists as well.

4.2. Optimal Agent Policy

The optimal adversary policy is very powerful and it can
easily corrupt the MARL agents’ policies through state per-
turbations. We first define the optimal agent policy as fol-
lows:

Definition 4.2 (Optimal Agent Policy). Under the optimal
adversary policy x*, an agent policy 7* is an optimal policy
if Vi yo(2+)(8) > Vi y=(r)(s) forany m and all s € S.

In the following theorem, we show that the optimal agent
policy 7* does not always exist for SAMGs under the opti-
mal state perturbation adversary.

Theorem 4.3 (Non-existence of Optimal Agent Policy).
Under the optimal adversary policy x*, an optimal agent
policy m* does not always exist for SAMGs such that
Vi xr(2)(8) = Vi y=(m) (8) for any mand all s € S.

Proof. See proof in Appendix B.5. O

The proof is done by constructing a counterexample where
there is no optimal policy for the agents. An optimal agent
policy 7* should maximize the state value for all states.
However, under the adversarial state perturbations, some-
times agents have to make trade-offs between different state
values and no agent policy can maximize all the state values.

4.3. Robust Nash Equilibrium

Then we look at the widely used Nash equilibrium concept
in MARL for SAMGs. A Nash equilibrium is used to de-
scribe policies where no agent wants to deviate unilaterally.
If an agent deviates from a Nash equilibrium, its total ex-
pected return won’t increase. Denote the agent policies and
adversary policies of all other agents and adversaries except
agent 7 and adversary i as 7 and Y~ respectively. Before
giving the definition of a robust Nash equilibrium, we first
show that there exists a unique robust state value function
V*i,r,-’*’x,,- for agent i given any 7w —* and .
Definition 4.4 (Robust state value function). A state value
function Vz,r’i,*,x*i : S — R for agent ¢ given 7% and

X~ is called a robust state value function if for all s € S,

Vietaner(s) = maxmin 3 x(pls)) (alo)

pPEPs acA

What is the Solution for State-Adversarial Multi-Agent Reinforcement Learning?

(s,a) +7 Y pl

s'eS

‘S Cl ,TT ’,*,X (8/)> . (3)

Theorem 4.5 (Existence of Unique Robust State Value
Function). For an SAMG with finite state and finite action
spaces, for any i € N, given any 7% and x~" of other
agents and adversaries except agent i and adversary i, there
exists a unique robust state value function V:W -
S — R for agent i such that for all s € S,

= max mm Z Z m(alp)

pEP; acA

§'|s,a) _i)*)X_i(sl)> . 4

1

(s,a) +7 > pl

s'eS

Proof. See proof in Appendix C.1. O

The proof is based on the contraction mapping property and
Banach’s fixed point theorem. Based on the well-defined
robust state value function, a robust Nash equilibrium is de-
fined considering each agent is associated with an adversary
that tries to minimize its total expected return.

Definition 4.6 (Robust Nash Equilibrium). For an SAMG,
the policy (7*, x*) is a robust Nash equilibrium if for all
s € Sandall i € A and all 7% and ?, it holds that

Vi e an(8) S Ve e e ia(8)
< V‘/:” ST e oy T (5)3 (5)

where 7% and y ~* denotes the agent policies and adversary
policies of all the other agents except agent ¢, respectively.

Definition 4.6 shows that 7* is in a robust Nash equilibrium
if each agent’s policy is a robust best response to the other
agents’ policies under adversarial state perturbations. When
agent ¢ is calculating its robust best response, it assumes a
worst-case perspective of the state perturbations.

Theorem 4.7 (Non-existence of Robust Nash Equilib-
rium). For SAMGs with finite state and finite action spaces,
the robust Nash equilibrium defined in Definition 4.6 does
not always exist.

Proof. See proof in Appendix C.3. O

The proof is done by constructing a counterexample. For
any state s € S, there exists a stage-wise equilibrium among
the agents and adversaries (See the proof for a stage-wise
equilibrium in Theorem C.8 in Appendix C.2). However,
due to the uncertainty of the true state under adversarial state
perturbations, it is possible that the stage-wise equilibrium
in one state conflicts with the stage-wise equilibrium in an-
other state. As a result, the agents may be required to make
trade-offs between different states, making it impossible to
find an equilibrium that holds for all states.

4.4. Robust Agent Policy

The optimal agent policy and robust Nash equilibrium con-
cepts do not always exist in our SAMG problem according
to the above non-existence analysis. To circumvent this dif-
ficulty, we consider another solution concept in which each
agent adopts a policy (hereafter referred to as a robust agent
policy) that maximizes the reward under the worst-case state
perturbation. We further show that a robust policy always
exists for all agents. We first introduce a new objective for
SAMG, the worst-case expected state value:

Definition 4.8 (Worst-case Expected State Value). The
worst-case expected state value under the optimal state per-
turbation adversary is:

EonPr(so) [V (m)(50)] (6)

where Pr(sg) is the probability distribution of the initial
state.

To account for the fact that a policy is not able to maximize
all state values in SAMG, we can use the probability of each
state as a measure of its importance, and balance the values
of different states. The worst-case expected state value is
calcualted by taking a weighted sum of all state values based
on their initial state distribution. The agent policy that aims
to maximize this worst-case expected state value is referred
to as a robust agent policy.

Definition 4.9 (Robust Agent Policy). An agent policy 7*
that maximizes the worst-case expected state value is called
a robust agent policy:

x* () (30)] : @)

e arg maX]ESONPr(So) [Vm

The following proposition shows finding a robust agent
policy is equivalent to solving a maximin problem.

Theorem 4.10. Finding an agent policy m to maximize
the worst-case expected state value under the optimal
adversary for m is equivalent to the maximin problem:
max, miny >, Pr(so)Vr y(s0)-

Proof. According to the Proposition 4.1, for any fixed agent
policy 7, there exists an optimal adversary policy x* such
that V7 \«(x)(S0) = min, Vi \ (so0) for any s¢ € S. Thus,

mgXESONPr(SO) (Vi x= () (50)]

= mEX ESONPI‘(S()) |:1’I1X11’1 VTr,x(SO):| (Eq (2))

=max Z Pr(so) min V; , (so) (Definition of Expectation)
™ X

S0

- inS" Pr(so)V, +(so), (Proposition4.1) (8
maxm;nz r(s0)Vr,x(s0), (Proposition4.1) (8)

i
S0

O

What is the Solution for State-Adversarial Multi-Agent Reinforcement Learning?

In the following theorem, we show the existence of a robust
agent policy for finite state and finite action spaces.

Theorem 4.11 (Existence of Robust Agent Policy). For
SAMGs with finite state and finite action spaces, there exists
a robust agent policy T to maximize the worst-case expected
state value defined in Definition 4.8.

Proof. See proof in Appendix C.4. O

The proof is based on the Weierstrass M-test (Rudin et al.,
1976), uniform limit theorem (Rudin et al., 1976), and the
extreme value theorem. Different from the definitions of
the optimal agent policy and robust Nash equilibrium, the
worst-case expected state value objective does not require
the optimality condition to hold for all states. Agents won’t
get stuck in trade-offs between different states, therefore, we
can find a robust agent policy to maximize the worst-case
expected state value for the SAMG problem.

5. Robust Multi-Agent Adversarial
Actor-Critic (RMA3C) Algorithm

In general, it is challenging to develop algorithms that com-
pute optimal or equilibrium policies for MARL under un-
certainties (Zhang et al., 2020b; 2021). It is practical to use
neural networks as function approximations in MARL in
case the joint state and action spaces grow exponentially
with the total number of agents. In order to handle mas-
sive or even continuous state-action space, we design an
actor-critic algorithm based on the recent MARL advances
to approximate a robust agent policy under adversarial state
perturbations. Our algorithm adopts centralized training
and decentralized execution paradigm following the pop-
ular framework in (Lowe et al., 2017). During training,
there is a centralized critic Q(s, a) that records the total
expected return given the global state s and global action
a. The connection between Q(s, a) and V' (s) is that for any
1e€N,s€S,ac A,

Q(s,a) =r(s,a) + Z p(s'|s,a)V (s).)

s'eS

Each agent’s state input for the actor is perturbed by an
adversary x'(-|s) : S — A(P?). During execution, each
agent i selects action a' based on the perturbed state p* €
S using a trained policy 7° : S — A(AY). We want to
find a policy 7’ for each agent to maximize the worst-case
expected state value in Definition 4.8 under adversarial state
perturbations.

As shown in Alg. 1, our algorithm has a centralized critic
network () for training. Each agent has one actor network
7' and one adversary network x’. The critic Q) takes in
the true global state and global action during the training
process. It returns a (Q-value denoting the total expected

Algorithm 1 Robust Multi-Agent Adversarial Actor-Critic
(RMA3C) Algorithm

1: Randomly initialize the critic network @, the actor net-
work 7, and the adversary network x* for each agent

2: Initialize target networks Q’, 7/, ¥/

3: for each episode do

4: The initial state so < sample from Pr(sp)

5. Initialize a random process X for action exploration

6 for each time step do

7: for i = 1tondo

8

9

p* < sample from x(-|s)
: a’ < sample from 7t (-|p?) + X
10: end for

11: Execute actions a = (al,...,a")

12: Obtain the reward r and the next state s’

13: D+ DU(s,a,rs)

14: s+ &

15: @ + MGD_Optimizer(Q,D,Q’, 7', x’) {Mini-
batch gradient descent optimizer for critic. }

16: 7, x < GDA_Optimizer(Q, 7, x) {Gradient de-
scent ascent optimizer for policies. }

17: Update all target networks: 67 < 76+ (1 —7)0".

18: end for

19: end for

return given s and a. The state transition experience is
represented by (s, a,r,s’) where s is the next state. It is
stored in a replay buffer D for the critic network’s train-
ing. We apply “replay buffer” and “target network™ tech-
niques (Mnih et al., 2015). The critic network is trained with
a mini-batch gradient descent optimizer in line 15. In line
16, we use Gradient Descent Ascent (GDA) optimizer (Lin
et al., 2020b) to update parameters for each agent’s actor
network and adversary network for the maximin problem
max, miny >, Pr(so)Vr y(s0) in Theorem 4.10. A de-
tailed introduction for the GDA optimizer is included in
Appendix D .4.

6. Experiments

To demonstrate the effectiveness of our algorithm, we utilize
the multi-agent particle environments developed in (Lowe
et al., 2017) which consist of multiple agents and landmarks
in a 2D world. The host machine adopted in our experi-
ments is a server configured with AMD Ryzen Threadripper
2990WX 32-core processors and four Quadro RTX 6000
GPUs. Our experiments are performed on Python 3.5.4,
Gym 0.10.5, Numpy 1.14.5, Tensorflow 1.8.0, and CUDA
9.0. In our experiments, we consider the set of admissible
perturbed state for agent i at state s as an /. norm ball
around s: P! := {p' € S : ||p® — s||oc < d} where dis a
radius denoting the perturbation budget. In implementation,
the adversary network takes in the true state s and learns a
state perturbation vector A? and we project s + A to P?.
The environments used in our experiments include coop-

What is the Solution for State-Adversarial Multi-Agent Reinforcement Learning?

Cooperative navigation

I
o
=)

Exchange target

o ———

Keep-away

|
~
o)

|
-
o
o

kel kel -
© -500 © —100 5128
3 2 2
2 550 o 0 -15.0
3 Y -150 3
3 -600 3 g-175
5 Algorithm 5 Algorithm =
@ _g50 —— RMA3C 2 500 —— RMA3C @ _20.0
5 MADDPG with noise & MADDPG with noise < Algorithm
@ —-700 —— MADDPG with x* [—— MADDPG with x* [_225 —— RMA3C
1S —— M3DDPG with noise £ 250 —— M3DDPG with noise £ MADDPG with noise
—750 —— M3DDPG with y* - —— M3DDPG with x* _250 —— MADDPG with x*
—— MAPPO with noise —— MAPPO with noise . —— M3DDPG with noise
—800 MAPPO with x* MAPPO with x* —— M3DDPG with x*
-300 -27.5
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
episode(k) episode(k) episode(k)

Figure 4: Our RMA3C algorithm compared with several baseline algorithms during the training process. The results
showed that our RMA3C algorithm outperforms the baselines, achieving higher mean episode rewards and displaying
greater robustness to state perturbations. The baselines were trained under either random state perturbations or a well-trained
adversary policy x*. It’s worth noting that the MAPPO algorithm only works in fully cooperative tasks, and as such, its
results are only reported in the cooperative navigation and exchange target scenarios. Overall, our RMA3C algorithm
achieved up to 58.46% higher mean episode rewards than the baselines.

Table 1: Mean episode reward of 2000 episodes during testing. Our RMA3C policy achieves up to 46.56% higher mean
episode rewards than the baselines with random state perturbations A/. Our RMA3C policy achieves up to 54.02% higher

mean episode reward than the baselines with well-trained x*.

Environment CN ET KA PD CC
MA (Lowe et al., 2017) —388.59 +60.72 —45.79 £23.50 -8.80+5.07 3.03 £0.67 3.53 +14.72
M3 (Liet al., 2019) -390.94 4 59.83 -39.55 +20.53 -8.54+504 2.124+1.04 5.19 £+ 15.81
MP (Yu et al., 2022) -381.70 4= 54.06 -37.62 + 18.94 - - -
MADDPG (MA) w/ N -487.67 & 72.28 -55.79 +£26.78 -11.21+6.82 1.244+0.47 -16.88 +0.46
M3DDPG (M3) w/ N -478.96 + 70.27 -54.40 +26.64 -11.28+6.71 1.304+0.58 -16.75 £+ 0.28
MAPPO (MP) w/ N/ -523.83 4+ 78.45 -86.51 + 30.86 - - -
RMA3C w/ N (ours) -390.20 + 64.82 -46.23 + 24.76 -9.02 +5.87 248 126 -11.82 +0.79
MADDPG (MA) w/x* -537.56 + 72.28 -71.65 £42.50 -14724+544 -095+1.32 -16.64 +0.20
M3DDPG (M3) w/x* -515.85 + 74.58 -70.68 +=41.54 -13.51 =530 -0.704+0.96 -20.60 £+ 0.21
MAPPO (MP) w/x* -572.39 +£79.34 -109.26 4+ 47.97 - - -
RMA3C w/x* (ours) -400.82 + 62.59 -50.23 + 26.97 -9.64 - 5.31 1.23 +£0.82 -14.64 £ 1245

erative navigation (CN), exchange target (ET), keep-away
(KA), physical deception (PD), and covert communication
(CC). A detailed introduction to these environments can
be found in Appendix D.1. All hyperparameters used in
our experiments for RMA3C and the baselines are listed in
Appendix D, along with additional implementation details
and experiment results.

6.1. Baselines

In our experiment, we have a total of 9 baselines: MAD-
DPG (Lowe et al., 2017), M3DDPG (Li et al., 2019),
MAPPO (Yu et al., 2022), as well as versions of these algo-
rithms with random and well-trained adversarial state per-
turbations. Detailed explanation of these baselines can be
found in Appendix D.2. To evaluate robustness under state
uncertainty, we add state noise to MADDPG, M3DDPG,
and MAPPO produced by a truncated normal distribution
N(0, X, u,1) where X is the uncertainty level, u and [are the

upper and lower bounds to ensure noise compact. This sim-
ulates adversaries selecting random state perturbations. In
contrast, our RMA3C algorithm trains agents under adver-
saries that try to minimize the agents’ total expected return.
We save the well-trained adversaries x* for each scenario in
RMAZ3C to represent the optimal state perturbation adver-
saries. We then use these adversaries to perturb the states for
MADDPG, M3DDPG, and MAPPO to train and test their
robustness under adversarial state perturbations. Note that
MAPPO only works in fully cooperative tasks, so we only
report its results in cooperative navigation and exchange
target. For both training and testing, we report statistics that
are averaged across 10 runs in each scenario and algorithm.

6.2. Comparison Results
Training Comparison Under different Perturbations

We compare our RMA3C algorithm with baselines during
the training process to demonstrate its superiority in terms

What is the Solution for State-Adversarial Multi-Agent Reinforcement Learning?

of mean episode rewards under different state perturbations
as shown in Fig. 4. As RMA3C has a built-in adversary
to perturb states, we do not train it under random state per-
turbations. In comparison to other baselines with different
state perturbations, RMA3C consistently achieved higher
mean episode rewards, demonstrating its robustness under
varying state perturbations. Furthermore, when comparing
each baseline with random state perturbations to the same
baseline with the well-trained adversary policy x*, we can
see that the adversary policy trained by RMA3C is more
effective than random state perturbations. This is because
x* is designed to intentionally select state perturbations
that minimize the agents’ total expected return. The mean
episode rewards of the last 1000 episodes during training are
shown in the table in Appendix D.5. Our RMA3C algorithm
achieved up to 58.46% higher mean episode rewards than
the baselines under different state perturbations.

Training Comparison With More Agents Our RMA3C
algorithm is compared with baselines in the cooperative nav-
igation scenario with an increasing number of agents. As
shown in Fig.4, the original cooperative navigation environ-
ment has 3 agents and our RMA3C algorithm outperforms
the baselines in terms of mean episode rewards. In Fig.5,
we present the results of training with 4 agents, where our
RMA3C algorithm still surpasses the baselines. We in-
clude the training results with 6 agents in Appendix D.6.
Our RMA3C algorithm continues to achieve higher mean
episode rewards, even with an increasing number of agents

in the environment.
_gocCOOperative navigation with more agents

-900

~1000 Algorithm

— RMA3C
MADDPG with noise
—— MADDPG with x*
—— M3DDPG with noise
—— M3DDPG with x*
MAPPO with noise
v MAPPO with x*

|
e
NP
S o
S o

—1300

mean episode reward
’_‘ |

N

8

3

—1500

—1600-, 20 40 60 80 100

episode(k)
Figure 5: Our RMA3C algorithm continues to achieve
higher mean episode rewards, even with an increasing num-
ber of agents in the environment.

Training Comparison With Different Perturbation Bud-
gets We compare our algorithm with baselines in the coop-
erative navigation scenario with varying levels of perturba-
tion budgets d. We consider the set of admissible perturbed
state for agent ¢ at state s as an /., norm ball around s:
Pii={p' € S:|p' — 5|l < d} where d is a radius
denoting the perturbation budget. As shown in Fig. 6, when
d increases, adversaries have greater freedom to perturb
the state within a larger admissible perturbed state set. As
d increases, adversaries get more powerful and lead to a
decrease in agents’ total expected return.

Cooperative navigation with different d-value

-400

!
ES
a
S

d-value
d=0.5
d=1.0
— d=2.0
d=4.0

mean episode reward
&
3
8

|
o
I
S

-600

0 20 80 100

4?episode(l?)]
Figure 6: Our RMA3C algorithm is trained in the coop-
erative navigation environment with different perturbation
budgets d. When d increases, adversaries get more advan-
tage, and may further decrease agents’ total expected return.

Testing Comparison in different Environments Our
RMA3C algorithm is tested in different environments to
demonstrate its robustness under state perturbations. As
shown in Table 1, the mean episode rewards are averaged
across 2000 episodes and 10 test runs in each environment.
The results of MADDPG, M3DDPG, and MAPPO, which
are not designed to handle state perturbations, are shown
as a reference for the no state perturbation scenario. These
algorithms perform poorly when random state perturbations
are introduced, indicating the need for an algorithm that can
handle state perturbations. As seen in Table 1, the RMA3C
policy achieves up to 46.56% higher mean episode rewards
than the baselines in environments with random state per-
turbations. Additionally, we also test the learned policies
using different algorithms in environments with well-trained
adversary policies x* to perturb states. The results indicate
that the RMA3C policy achieves up to 54.02% higher mean
episode reward than the baselines with well-trained adver-
sarial state perturbations. Overall, these tests demonstrate
that the RMA3C algorithm achieves higher robustness in
different environments with state perturbations.

7. Conclusion

In this work, we propose a State-Adversarial Markov Game
(SAMG) and investigate the fundamental properties of ro-
bust MARL under adversarial state perturbations. We prove
that the widely used solution concepts such as optimal agent
policy and robust Nash equilibrium do not always exist for
SAMG:s. Instead, we consider a new solution concept (the
robust agent policy) to maximize the worst-case expected
state value and prove its existence. This is the primary the-
oretical contribution of our work. Additionally, we also
propose a RMA3C algorithm to find a robust policy for
MARL agents under state perturbations. Our numerical ex-
periments demonstrate that the RMA3C algorithm improves
the robustness of the trained policies against both random
and adversarial state perturbations. Some discussions and
future directions are provided in Appendix E.

What is the Solution for State-Adversarial Multi-Agent Reinforcement Learning?

References

Behzadan, V. and Munir, A. Vulnerability of deep reinforce-
ment learning to policy induction attacks. In MLDM, pp.
262-275. Springer, 2017.

Bernstein, D. S., Givan, R., Immerman, N., and Zilberstein,
S. The complexity of decentralized control of markov
decision processes. Mathematics of operations research,

27(4):819-840, 2002.

Busoniu, L., Babuska, R., and De Schutter, B. A comprehen-
sive survey of multiagent reinforcement learning. /EEE
Trans. Syst., Man, Cybern. Syst., 38(2):156—-172, 2008.

Debreu, G. A social equilibrium existence theorem. Pro-
ceedings of the National Academy of Sciences, 38(10):
886-893, 1952.

Everett, M., Liitjens, B., and How, J. P. Certifiable robust-
ness to adversarial state uncertainty in deep reinforcement
learning. IEEE Trans. Neural Netw. Learn. Syst., 2021.

Fan, K. Fixed-point and minimax theorems in locally convex
topological linear spaces. Proceedings of the National
Academy of Sciences of the United States of America, 38
(2):121, 1952.

Fink, A. M. Equilibrium in a stochastic n-person game.
Journal of science of the hiroshima university, series ai
(mathematics), 28(1):89-93, 1964.

Foerster, J. and Farquhar, G. Counterfactual multi-agent
policy gradients. In AAAZ 2018.

Glicksberg, I. L. A further generalization of the kakutani
fixed point theorem, with application to nash equilibrium
points. Proceedings of the American Mathematical Soci-
ety, 3(1):170-174, 1952.

Guo, D., Tang, L., Zhang, X., and Liang, Y.-C. Joint opti-
mization of handover control and power allocation based

on multi-agent deep reinforcement learning. /EEE Trans.
Veh. Technol., 69(11):13124-13138, 2020.

Hu, J., Wellman, M. P, et al. Multiagent reinforcement
learning: theoretical framework and an algorithm. In
ICML, volume 98, pp. 242-250. Citeseer, 1998.

Hu, Y., Shao, K., Li, D., Jianye, H., Liu, W., Yang, Y., Wang,
J., and Zhu, Z. Robust multi-agent reinforcement learning
driven by correlated equilibrium. 2020.

Huang, S., Papernot, N., Goodfellow, I., Duan, Y., and
Abbeel, P. Adversarial attacks on neural network policies.
ICLR, 2017.

Hiittenrauch, M. and goéié, A. Guided deep reinforce-
ment learning for swarm systems. arXiv preprint
arXiv:1709.06011, 2017.

Igbal, S. and Sha, F. Actor-attention-critic for multi-agent
reinforcement learning. In ICML, pp. 2961-2970. PMLR,
2019.

Iyengar, G. N. Robust dynamic programming. Mathematics
of Operations Research, 30(2):257-280, 2005.

Jin, C., Netrapalli, P., and Jordan, M. What is local optimal-
ity in nonconvex-nonconcave minimax optimization? In
ICML, pp. 4880—4889. PMLR, 2020.

Jin, C., Liu, Q., Wang, Y., and Yu, T. V-learning—a simple,
efficient, decentralized algorithm for multiagent rl. arXiv
preprint arXiv:2110.14555, 2021.

Kardes, E., Ordéiez, F., and Hall, R. W. Discounted robust
stochastic games and an application to queueing control.
Operations research, 59(2):365-382, 2011.

Kos, J. and Song, D. Delving into adversarial attacks on
deep policies. ICLR, 2017.

Kothandaraman, D., Chandra, R., and Manocha, D. Ss-sfda:
Self-supervised source-free domain adaptation for road

segmentation in hazardous environments. In ICCV, pp.
3049-3059, 2021.

Kreyszig, E. Introductory functional analysis with applica-
tions, volume 17. John Wiley & Sons, 1991.

Lerer, A., Hu, H., Foerster, J., and Brown, N. Improving
policies via search in cooperative partially observable
games. In AAAI volume 34, pp. 7187-7194, 2020.

Li, S., Wu, Y, Cui, X., Dong, H., Fang, F., and Russell, S.
Robust multi-agent reinforcement learning via minimax
deep deterministic policy gradient. In AAAI, volume 33,
pp. 4213-4220, 2019.

Liang, Y., Sun, Y., Zheng, R., and Huang, F. Efficient
adversarial training without attacking: Worst-case-aware
robust reinforcement learning. NeurlIPS, 2022.

Lin, J., Dzeparoska, K., Zhang, S. Q., Leon-Garcia, A.,
and Papernot, N. On the robustness of cooperative multi-
agent reinforcement learning. In 2020 IEEE Security and
Privacy Workshops (SPW), pp. 62-68. IEEE, 2020a.

Lin, T., Jin, C., and Jordan, M. On gradient descent ascent
for nonconvex-concave minimax problems. In Interna-
tional Conference on Machine Learning, pp. 6083—-6093.
PMLR, 2020b.

Lin, Y.-C., Hong, Z.-W., Liao, Y.-H., Shih, M.-L., Liu, M.-
Y., and Sun, M. Tactics of adversarial attack on deep
reinforcement learning agents. IJCAI, 2017.

What is the Solution for State-Adversarial Multi-Agent Reinforcement Learning?

Liu, Z., Cai, Y., Wang, H., Chen, L., Gao, H., Jia, Y., and Li,
Y. Robust target recognition and tracking of self-driving
cars with radar and camera information fusion under se-
vere weather conditions. IEEE Trans. Intell. Transp. Syst.,
2021.

Lowe, R., Wu, Y. 1., Tamar, A., Harb, J., Abbeel, O. P,
and Mordatch, I. Multi-agent actor-critic for mixed
cooperative-competitive environments. In NeurlIPS, pp.
6379-6390, 2017.

Mandlekar, A., Zhu, Y., Garg, A., Fei-Fei, L., and Savarese,
S. Adversarially robust policy learning: Active construc-
tion of physically-plausible perturbations. In IROS, pp.
3932-3939. IEEE, 2017.

Mnih, V., Kavukcuoglu, K., et al. Human-level control
through deep reinforcement learning. Nature, 518(7540):
529-533, 2015.

Morimoto, J. and Doya, K. Robust reinforcement learning.
Neural computation, 17(2):335-359, 2005.

Muniraj, D., Vamvoudakis, K. G., and Farhood, M. Enforc-
ing signal temporal logic specifications in multi-agent
adversarial environments: A deep g-learning approach. In
2018 IEEE Conference on Decision and Control (CDC),
pp. 4141-4146. IEEE, 2018.

Nash, J. Non-cooperative games. Annals of mathematics,
pp. 286-295, 1951.

Nilim, A. and El Ghaoui, L. Robust control of markov
decision processes with uncertain transition matrices. Op-
erations Research, 53(5):780-798, 2005.

Oliehoek, F. A., Amato, C., et al. A concise introduction to
decentralized POMDPs, volume 1. Springer, 2016.

Pattanaik, A. and Tang, Z. Robust deep reinforcement learn-
ing with adversarial attacks. AAMAS, 2017.

Pattanaik, A., Tang, Z., Liu, S., Bommannan, G., and
Chowdhary, G. Robust deep reinforcement learning with
adversarial attacks. In AAMAS, pp. 2040-2042, 2018.

Pretorius, A., Cameron, S., et al. A game-theoretic analysis
of networked system control for common-pool resource
management using multi-agent reinforcement learning.
In NeurIPS, volume 33, pp. 9983-9994, 2020.

Puterman, M. L. Markov decision processes: discrete
stochastic dynamic programming. John Wiley & Sons,
2014.

Qu, G, Lin, Y., Wierman, A., and Li, N. Scalable multi-
agent reinforcement learning for networked systems with
average reward. In NeurIPS, volume 33, pp. 2074-2086,
2020.

Rashid, T., Farquhar, G., Peng, B., and Whiteson, S.
Weighted gmix: Expanding monotonic value function
factorisation for deep multi-agent reinforcement learning.
In NeurIPS, December 2020.

Razaviyayn, M., Huang, T., Lu, S., Nouiehed, M., Sanjabi,
M., and Hong, M. Nonconvex min-max optimization:
Applications, challenges, and recent theoretical advances.
IEEE Signal Process. Mag., 37(5):55-66, 2020.

Rudin, W. et al. Principles of mathematical analysis, vol-
ume 3. McGraw-hill New York, 1976.

Shapley, L. S. Stochastic games. Proceedings of the national
academy of sciences, 39(10):1095-1100, 1953.

Shen, M. and How, J. P. Robust opponent modeling via
adversarial ensemble reinforcement learning. In ICAPS,
volume 31, pp. 578-587, 2021.

Sinha, A., O’Kelly, M., et al. Formulazero: Distributionally
robust online adaptation via offline population synthesis.
In ICML, pp. 8992-9004. PMLR, 2020.

Su, J., Adams, S., and Beling, P. Value-decomposition
multi-agent actor-critics. In AAAZ, volume 35, pp. 11352—
11360, 2021.

Sun, C., Kim, D.-K., and How, J. P. Romax: Certifiably
robust deep multiagent reinforcement learning via convex
relaxation. arXiv preprint arXiv:2109.06795, 2021.

Sun, Y., Zheng, R., Hassanzadeh, P., Liang, Y., Feizi, S.,
Ganesh, S., and Huang, F. Certifiably robust policy learn-
ing against adversarial communication in multi-agent
systems. ICLR, 2022.

Sunehag, P., Lever, G., et al. Value-decomposition net-
works for cooperative multi-agent learning based on team
reward. In AAMAS, pp. 2085-2087, 2018.

Sutton, R. S., Barto, A. G, et al. Introduction to reinforce-
ment learning, volume 135. MIT press Cambridge, 1998.

van der Heiden, T., Salge, C., Gavves, E., and van Hoof,
H. Robust multi-agent reinforcement learning with so-
cial empowerment for coordination and communication.
arXiv preprint arXiv:2012.08255, 2020.

Xiao, C., Pan, X., et al. Characterizing attacks on deep
reinforcement learning. arXiv preprint arXiv:1907.09470,
2019.

Yu, C., Velu, A., Vinitsky, E., Wang, Y., Bayen, A., and
Wau, Y. The surprising effectiveness of ppo in cooperative
multi-agent games. NeurlPS, 2022.

What is the Solution for State-Adversarial Multi-Agent Reinforcement Learning?

Yu, J., Gehring, C., Schifer, F., and Anandkumar, A. Robust
reinforcement learning: A constrained game-theoretic

approach. In Learning for Dynamics and Control, pp.
1242-1254. PMLR, 2021.

Zhang, H., Chen, H., Xiao, C., Li, B., Liu, M., Boning,
D., and Hsieh, C.-J. Robust deep reinforcement learning
against adversarial perturbations on state observations.
NeurlPS, 33:21024-21037, 2020a.

Zhang, H., Chen, H., Boning, D., and Hsieh, C.-J. Robust
reinforcement learning on state observations with learned
optimal adversary. arXiv preprint arXiv:2101.08452,
2021.

Zhang, K., Sun, T., Tao, Y., Genc, S., Mallya, S., and Basar,
T. Robust multi-agent reinforcement learning with model
uncertainty. In NeurIPS, 2020b.

Zhou, M., Liu, Z., Sui, P, Li, Y., and Chung, Y. Y. Learning
implicit credit assignment for cooperative multi-agent re-
inforcement learning. In NeurIPS, volume 33, pp. 11853—
11864, 2020.

What is the Solution for State-Adversarial Multi-Agent Reinforcement Learning?

Appendix

A. Comparison with Dec-POMDP and
Markov Games

A.1. Comparison with Dec-POMDP

Our SAMG problem cannot be solved by the existing work
in the Decentralized Partially Observable Markov Decision
Process (Dec-POMDP) (Olichoek et al., 2016). In contrast,
the policy in our problem needs to be robust under a set
of admissible perturbed states. The adversary aims to find
the worst-case state perturbation policy x to minimize the
MARL agents’ total expected return. In the following propo-
sition, we show that under certain additional conditions our
proposed SAMG problem becomes a Dec-POMDP prob-
lem.

Proposition A.1. When the adversary policy x is a fixed pol-
icy, the SAMG problem becomes a Dec-POMDP (Oliehoek
etal., 2016).

Proof. When the adversary policy x is a fixed policy,
an SAMG (N, S, A,r, Ps, p,, Pr(so)) becomes a Dec-
POMDP (NS, A,7,0,0,p,7,Pr(sp)). The agent set
N ={1,...,n}. The global joint state is s € S. Each agent
i is associated with an action a® € A’. The global joint
actionis a = (a',...,a") € A, A := A x ... x A", All
agents share a stage-wise reward functionr : § x A — R.
The state transition functionis p : S x A — A(S), where
A(S) is a probability simplex denoting the set of all possible
probability measures on S. The state transits from the true
state to the next state. The discount factor is . The joint
observation set O is the same as the joint state set S. The
observation probability function O(o|s) = x(o|s) for any
o € Py and O(o|s) = 0 for any o ¢ P, where o is the
observation given the state s. The Pr(sy) is the probability
distribution of the initial state. O

a' = a?
r=1
a1¢a2< 9—’)alqta2
r=20 r=1
a' = a?
r=0

Figure 7: A two-agent two-state game example. Agents get
reward 1 at state s; if they choose the same action. Agents
get reward 1 at state sy if they choose different actions.

In Dec-POMDP, the observation probability function is
fixed, and it will not change according to the change of
the agent policy. However, in SAMG the adversary policy
is not a fixed policy, it may change according to the agents’
policies and always select the worst-case state perturbation

for agents. In contrast to Dec-POMDP, the adversary’s pol-
icy x is chosen to minimize the total expected return of the
agents in our problem. Additionally, in Dec-POMDP the
agents do not have access to the true state s, whereas in our
problem, the adversaries are aware of the true state and can
use it to select perturbed states.

A.2. SAMG cannot be solved by Dec-POMDP:
Two-Agent Two-State Game Example

We use a two-agent two-state game to show the difference
between Dec-POMDP and SAMG. Consider a game with
two agents NV = {1,2} and two states S = {s1, 2} as
shown in Fig. 7. Each agent has two actions A' = A? =
{a1,as}. The transition probabilities are defined below.

p(s' = s1|s = s1,a" # a?) =1,

p(s' = sa|s = s1,a = a?) =1,

p(s' = sa|s = s9,a" # a?) =1,

p(s' = s1|s = s9,a' =a?) =1 (10)
Specifically, a' = a? includes two cases: a' = a? = a;

oral = a?

al :al,aQ = a2 OI‘CL1 = a2,a

= ay. Similarly, a' # a? includes two cases:

2:a1.

Two agents share the same reward function:

1

— 42 —
, a =a“,and s = s7,

, a'#a?and s = sq,

1_ 2 _
, a =a”,and s = s9,

1

0
r(s,a',a?) = (11)

0

1

. a' #a®and s = so.

In a SAMG, each agent is associated with an adversary
to perturb its knowledge or observation of the true state.
For the power of the adversary, we allow the adversary to
perturb any state to the other state:

Py =PZ = {s1,5}. (12)

We use v = 0.99 as the discount factor. Agents want to
find a policy 7 to maximize their total expected return while
adversaries want to find a policy x to minimize agents’ total
expected return.

This problem cannot be formulated as a Dec-POMDP
Consider one agent policy where both agents select the same
action in s1 and select different actions in so: 7! (a1]s1) =
7l(a1|s2) = 7%(ay|s1) = 72(az|s2) = 1. When there is
no adversary, agents keep receiving rewards. The values
for each state are V (s,) = V(s2) = ﬁ = 100. Because
agents share the same reward function, they also share the
same values for each state. However, this policy receives
V(s1) = V(s2) = 0 when agents are facing the worst-case
adversaries x*(s1|s2) = x*(s2|s1) = 1 fori = 1,2 and
always taking the wrong actions with 0 reward.

What is the Solution for State-Adversarial Multi-Agent Reinforcement Learning?

Observation
01
’
Function
. T
*
o Function
1%)
§ Reward 1%
el
“ Action
| 1 Te+1 ai~mt (at|ob)
I DU
Istia
Dec — POMDP

Perturbed State
pi~x* (p'ls)
: Tt

pE~x™ (p™s)
-
[%)
§ Reward 1;
=
. Action

[1 Tex1 aj~n' (ailp?)
I DU
Isiiq
SAMG

Figure 8: Comparison between Dec-POMDP and SAMG. In Dec-POMDP, the observation probability function is fixed, and
it will not change according to the change of the agent policy. However, in SAMG the adversary policy is not a fixed policy,
it may change according to the agents’ policies and always select the worst-case state perturbation for agents.

If the adversary policy is fixed at x*(s1]s2) = X' (s2]s1) = 1
for i = 1, 2, this problem becomes a Dec-POMDP with the
observation space O = {01 = s1,02 = s2}. The obser-
vation function is 0'(01|s2) = 0'(02|s1) = 1 fori = 1,2.
The agent policy is 7! (ay]o1) = 7t (ai]o2) = 72(a1|oy) =
7r2(a2|02) =1.

However, when we consider a different agent policy where
both agents select the same action in sy and select differ-
ent actions in s1: 7l(ay|s2) = 7 (a1]s1) = 7%(a1]s2) =
72(ag|s1) = 1, agents keep receiving 0 rewards even when
the adversary does nothing. For the new agent policy, the
worst-case adversary policy is x*(s1]s1) = x*(s2]s2) = 1
for ¢+ = 1,2. The corresponding observation function for
the new adversary policy is 0’(01|s1) = 0%(02|s2) = 1 for
i = 1,2, which is completely different from the previous
observation functions. Because the observation function
in Dec-POMDP won’t change according to agents’ poli-
cies, therefore, the SAMG problem cannot be formulated
by Dec-POMDP when adversary policy is not fixed.

Under different observation functions, Dec-POMDP can
lead to contradictory agent policies. Besides the analysis
of why this problem cannot be formulated as a Dec-POMDP,
we also demonstrate that Dec-POMDPs fail to solve this
problem from a different perspective.

Let’s consider a Dec-POMDP with the observation space
O = {01 = s1,02 = s2}. The observation function is
defined as o'(01|s2) = o'(02|s1) = 1fori = 1,2. In
this scenario, the optimal agent policy is to select the same
action in response to 02 and choose different actions for 0.
Agents keep receiving rewards based on this policy.

Now let’s consider another Dec-POMDP with the observa-
tion space O = {07 = s1, 02 = sa}. The observation func-
tion is defined as 0’(01|s1) = 0%(0a]sy) = 1 fori = 1,2.

In this case, the optimal agent policy is to select the same
action in response to 01 and choose different actions for 0.
Agents keep receiving rewards based on this policy. How-
ever, the new optimal agent policy contradicts the previous
one.

By comparing these two Dec-POMDPs with different obser-
vation functions, we observe that Dec-POMDPs can yield
different agent policies based on different observation func-
tions. This implies that Dec-POMDPs do not address the
problem of selecting an agent policy when the observation
function is determined by an adversary.

Furthermore, we will reanalyze this problem and demon-
strate how a SAMG can solve this two-agent two-state game
in Appendix B and C. The SAMG formulation addresses
this problem by selecting the agent policy against the worst-
case observation function.

A.3. Comparison with Markov Games

Under a specific condition, when the adversary policy x is
a bijective mapping from S to S, the SAMG problem is
equivalent to a Markov game, as demonstrated in the follow-
ing proposition. This proposition illustrates the relationship
between a SAMG and a Markov game with a particular
form of state perturbation.

When Y is a bijective mapping from S to S, the adversary
policy follows x(p|s) = 1 selecting the perturbed state p for
the true state s with probability 1. Let us use the notation
X(s) = p for this special case.

Proposition A.2. Specially, when the adversary policy x is
a fixed bijective mapping from S to S, the SAMG problem
becomes a Markov game.

Proof. When the adversary policy x is a fixed bi-

What is the Solution for State-Adversarial Multi-Agent Reinforcement Learning?

jective mapping from S to S, an SAMG problem
(N, S, A,r, Ps,p,7v,Pr(sp)) becomes a Markov game
(Nnews Snews Anecws Thews Prews Vs PT(8new 0)) that is con-
structed as follows:

Taking Sy, = p = Xx(8) as the new state, the new global
joint state set is Sy := S. The global joint action set
Apew = A=Al x -+ x A" and the agent set N0, = N
stay the same.

We can construct a new reward function 7% 1 Spew X
Apew — R for each agent 7 as
T:Lew(snew = X(5)7 Anew = Cl) = T(Sv a)a (13)

and a new state transition function prew : Snew X Anew —

A(Spew) defined as

pnew(p/ = X(Sl)|p = X(S)v a) = p(5,|57 a)- (14)
The new probability of the initial state is
Pr(snew,O = X(SO)) = PI‘(S()). (15)

Each agent uses a policy 7%, : Spew — A(A?) to choose
an action based on the new state. Hence, the SAMG problem

becomes a Markov game. O

If the adversary’s policy Y is a fixed bijective mapping from
S to S, the new global joint state set S,¢,, is a perturbation
of § and each state is assigned a new “label” by the adver-
sary. Under this condition, the SAMG is equivalent to a
Markov game.

B. Two-Agent Two-State Game

In this section, we analyze the existence of the optimal ad-
versary policy and the optimal agent policy. We will utilize
the two-agent two-state game introduced in Appendix A.
For completeness, let us revisit this game with two agents
N = {1, 2} and two states S = {s1, s2} as shown in Fig. 9.
Each agent has two actions A = A% = {ay,a2}. The
transition probabilities are defined below.

p(s' = s1]s = s1,a" #a?) =1,

p(s

p(s’ = sy|s = sp,a #a?) =1,

"= sy|s = 51,0 = a?) =1,

p(s' = s1]s = s9,a' = a*) =1. (16)
Specifically, a' = a? includes two cases: a' = a? = a;
or a' = a? = ay. Similarly, a' # a2 includes two cases:

CLl = CL1,CL2 = a2 OI'O,1 = az,aQ = aj.

Two agents share the same reward function:

1_ .2 _
1, a =a”,and s = sq,

1 2
, a a“,and s = sq,
r(s,a',a?) = 7 Toan

0
0, a'=a’ands=so,
1

. a' #a®and s = so.

al = a?
r=1
al;taz(p—» Dalqtaz
r=20 r=
al = a?
r=20

Figure 9: A two-agent two-state game example. Agents
get reward 1 at state s; if they choose the same action.
Agents get reward 1 at state so if they choose different
actions. This example was used in Appendix A to show
the difference between Dec-POMDP and SAMG. We will
revisit this game in Appendix B to discuss optimal adversary
policy and optimal agent policy.

In a SAMG, each agent is associated with an adversary
to perturb its knowledge or observation of the true state.
For the power of the adversary, we allow the adversary to
perturb any state to the other state:

Pi=PZ = {s1,52}. (18)

We use v = 0.99 as the discount factor. Agents want to
find a policy 7 to maximize their total expected return while
adversaries want to find a policy x to minimize agents’ total
expected return.

B.1. Optimal Agent Policy Without Adversaries

When there is no adversary, the optimal policy for agents
is to choose the same action in s; and choose different
actions in sp. One example is 7' (a1|s1) = 7l(ay]s2) =
72(a1|s1) = 7%(az|s2) = 1. The agents keep receiving
rewards. The values for each state are V (s;) = V(sy) =
ﬁ = 100. Because agents share the same reward function,
they also share the same values for each state. However,
this policy receives V'(s1) = V(s2) = 0 when agents are
facing adversaries x*(s1|s2) = x*(s2|s1) = 1 fori = 1,2
and always taking the wrong actions with 0 reward.

B.2. A Stochastic Policy With Adversaries

We consider a stochastic policy m!(ay|s1) = 7! (a1]s2) =
72 (a1|s1) = 7% (aals2) = 0.5. Under this policy, the prob-
abilities of taking the same or different actions are the same
for each state Pr(a! = a? | s1) = Pr(at # a? | s1) =
Pr(a' = a? | s2) = Pr(a' # a? | s3) = 0.5. Agents
randomly stay or transit in each state and receive a posi-
tive reward with a 50% probability. The adversary has no
power under this policy because 7 is the same for both states.
The values for each state are V(sy) = V(s2) = V(s1) =
‘7(82) = 10_757 = 50.

B.3. Deterministic Policies With Adversaries

Since each agent has two actions for each state, there are
in total 2* = 16 possible deterministic policies for the two-

What is the Solution for State-Adversarial Multi-Agent Reinforcement Learning?

agent two-state game example. All possible deterministic
policies can be classified into three cases: (1) If agents select
the same action in one state s; and select different actions in
the other state s;, then we always have V' (s1) = V(s2) = 0.
This is because adversaries can always use x*(s1]s;) =
X¥(s2]s;) = 1 for k = 1,2 such that agents always receive
a 0 reward. (2) If agents always select different actions in
both states, then V' (s1) = 0, V(s2) = 100. This is because
agents never transit to the other state and keep receiving the
same reward. (3) If agents always select the same action in
both states, then V' (s1) = ﬁ ~ 50.25,V (s2) = 1_772 ~
49.75. This is because agents circulate through both states
and adversaries have no power to change it.

B.4. Optimal Adversary Policy

In this section, we examine the optimal policies for both
the adversary and the agent in a State-Adversarial Markov
Game (SAMG). We use the notation x*(7) to represent
the optimal adversary policy for a given agent policy .
The following proposition demonstrates the existence of an
optimal adversary in an SAMG.

Proposition B.1 (Existence of Optimal Adversary Policy).
Given an SAMG G = (N, S, A,r, Ps,p,7), for any fixed
agent policy T, there exists an optimal adversary policy x*
such that Vi () (s) < Vi (s) for any s € S and any x.

Proof. We prove this by constructing an MDP M =
(S, A, 7D, ~v) such that the optimal policy of M is the op-
timal adversary policy x* for the SAMG given the fixed
m. In the MDP M, we take all adversaries as a joint adver-
sary agent. The joint adversary learns a policy X to find a
joint perturbed state given the current true state. The action
space A=8x8x---x&. Note that the joint admissible
perturbed state set in Definition 3.1 Py C A.

The reward function 7 is defined as:

- Z w(ala)r(s,a) fora € Ps. (19)

acA

7(s,a) =

The transition probability p is defined as
p(s']s,a) = Y mw(ala)p(s'|s,a) fora € Py (20)

acA

The reward function is defined based on the intuition that
when the agent receives r given s, a, the reward of the
adversary is the negative of the agent reward, that is to
say, 7 = —r. Considering that r(s,a) = E[R|s,a] =
—E[R]s, al,

=Y |D>_RPr[R|s,a] | n(ala)
acA R
- Z E[R|s, a]m(ald)
acA
- _ Z E[R|s, a]m(ala)
acA
— Z s,a)m(ala). (21)
acA

Based on the properties of MDP (Sutton et al., 1998; Put-
erman, 2014), we know that the MDP M has an optimal
policy x* that satisfies Vy ,~(s) > Vi, (s) for all 5 and all
X, Where me is the state value function of the MDP M.

The Bellman equation for the MDP M is

Fral) = T (m S (s) <s'>)
s’'eS
=Y x(als) > w(ala (—7‘+v > p(s']s,a) (8’)) :

acPs acA s’eS
(22)

By multiplying —1 on both sides, we have

(~Vax()) = D x(als) Y w(ala)

a€Ps acA

rJr’yz

s'eS

On the other side, for the SAMG, we have the Bellman
equation for any fixed policies 7 and yx as

Var(s) = > x(pls) Y w(alp)

PEPs acA

(r + Z s'|s, a) (s')) .2

s'eS

s'ls,a)(— Vi (s '))] - 23

When 7 and x are fixed, they can be taken together as a
single policy, and the existing results from Dec-POMDP
can be directly applied. Comparing Eq. (24) and (23), we
know that Vi, (s) = (= Vi, (s)).

The optimal adversary policy x* for the MDP M satisfies
Vax+(8)) > Vi, (s)) for any s and any x. Therefore, x*
also satisfies V.« (s) < Vi, (s) for any s and any x, and
the optimal policy of the MDP M is the optimal adversary
policy x* for the SAMG given the fixed 7.

O

B.5. Optimal Agent Policy With Adversaries

We have established the existence of an optimal adversary
in SAMGs. Next, we consider the optimal agent policy

What is the Solution for State-Adversarial Multi-Agent Reinforcement Learning?

under this optimal adversary. The following proposition
demonstrates that a deterministic agent policy is not always
superior to a stochastic policy in SAMGs.

Proposition B.2. There exists an SAMG and some stochas-
tic policy 7 such that we cannot find a better determinis-
tic policy ' satisfying Vs o« (x1)(8) 2> Vi y=(r)(8) for all
seS.

Proof. We prove this theorem by giving a counter-example
where no deterministic policy is better than a stochastic
policy. As shown in the two-agent two-state game example
in Fig. 9, all 16 deterministic policies are no better than the
stochastic policy m!(ay|s1) = 7' (a1|s2) = 7%(ay|s1) =
7r2(a2|52) =0.5. O

Finally, we show the optimal agent policy 7* does not al-
ways exist such that Vi« «(z)(s) > Vi = (x)(s) for any
7 and all s € S under the optimal adversary policy x* in
SAMG:s in the following theorem.

Theorem B.3 (Non-existence of Optimal Agent Policy).
Under the optimal adversary policy x*, an optimal agent
policy ©* does not always exist for SAMGs such that
Vs xx (021 (8) = Vi x=(m) (8) for any m and any s € S.

Proof. We prove this theorem by showing that the two-
agent two-state game in Fig. 9 does not have an optimal
policy. We first show that the policy 71 : 7' (ay|s;) =
7l(a1|s2) = 7%(az|s1) = 7%(az|s2) = 1 is not an opti-
mal policy. Because agents always select different actions
in both states, agents always stay in the same state and
adversaries have no power to change it. The values for
each state are Vi, \«(r,)(51) = 0,V y+(my)(52) = 100.
Now we consider the stochastic policy 7y : m!(ay|s1) =
7l(a1]s2) = 7%(a1]s1) = 7%(az|s2) = 0.5. The values
for each state are Vi, \«(r,)(51) = Vi, y*(ma)(52) = 50.
Because Vi, = (x,)(51) > Vi, y= () (51), the policy 7y is
not the optimal policy for agents.

If there exists an optimal policy 7*, then it must be better
than 7 and have V‘n’*,x*(w*)(sl) > 07V7T*7X*(ﬂ.*)(82) =
100. In order to have Vi« y«(r+)(s2) = 100, agents must
select different actions in sy and keep receiving the positive
rewards from each step. In order to have Vv .« () (51) >
0, agents must have a chance to select the same action in
s1, i.e., Pr(a' = a® | s1) > 0. However, if Pr(a! = a? |
s1) > 0, then adversaries can have x*(s1|s2) > 0 fori =
1,2 to perturb the state s, to s; and reduce Vi« y-(r+)(52).
Therefore, no policy can do better than 7; and since 71 is not
the optimal policy, there is no optimal policy for agents. [

In the comparison of 7; and 7, in the above proof, it is
apparent that it is not always possible to maximize the state
value of all states and that trade-offs may need to be made
among different states. Using the traditional definition of

an optimal policy, it is not possible to determine which
policy, 1 or 7o, is better. However, if we use the worst-case
expected state value concept from Definition 4.8 and assume
that the initial state is always so, then we can conclude that
m1 is the optimal agent policy, as it gives the maximum
worst-case expected state value of 100 in this case.

C. Stage-wise Equilibrium, Robust Nash
Equilibrium, and Robust Agent Policy

In Theorem 4.3, it has been proven that an optimal agent pol-
icy does not always exist for SAMGs. This section explores
alternative solution concepts for the agent policy in SAMGs.
We begin by demonstrating the existence of a unique robust
state value function for each agent in C.1. Building on this
property, we establish the existence of a stage-wise equilib-
rium for each state in C.2. However, we show in C.3 that
the robust Nash equilibrium may not always exist. As an
alternative, we propose the concept of a robust agent policy
and demonstrate its existence in C.4.

We first give a review of the Nash equilibrium used in the
literature. The Nash equilibrium is a widely used solution
concept in game theory, first proposed by Nash in (Nash,
1951) for general-sum finite one-shot games. It states that
each player selects the best response strategy to the oth-
ers’ strategies and no player would want to deviate from
the equilibrium, as doing so would result in a worse utility.
This concept was later extended to infinite games by De-
breu (Debreu, 1952), Glicksberg (Glicksberg, 1952), and
Fan (Fan, 1952). Markov games, which involve a sequen-
tial decision process in a two-player zero-sum setting, were
first defined by Shapley in (Shapley, 1953). Fink extended
the Nash equilibrium concept to Markov games in (Fink,
1964) and proved that an equilibrium point exists in n-player
general-sum discounted Markov games. The uncertainty
in transition dynamics of a Markov game was considered
in (Nilim & El Ghaoui, 2005; Iyengar, 2005) using a robust
optimization approach, with independent proofs for the ex-
istence of the equilibrium point. Additionally, uncertainty
in utility (or “reward” in reinforcement learning) was also
taken into account in (Kardes et al., 2011) for n-player finite
state/action discounted Markov games, with a proof for the
existence of the equilibrium point.

Despite the extensive study of the Nash equilibrium in game
theory, the uncertainty in the state has not yet been explored
in the context of Markov games. To the best of our knowl-
edge, we are the first to formulate the problem of n-player
finite state/action discounted Markov games with state un-
certainty and to demonstrate the existence of a stage-wise
equilibrium, as well as the non-existence of a robust Nash
equilibrium.

We use the following Assumption C.1 throughout this sec-

What is the Solution for State-Adversarial Multi-Agent Reinforcement Learning?

tion.
Assumption C.1. The global state set S and the global

action set A are finite sets.
C.1. Unique Robust State Value Function

Denote the agent policies and adversary policies of all other
agents and adversaries except agent ¢ and adversary ¢ as m—"*

and x* respectively. We show that there exists a unique
robust state value function V:W - , for agent 7 given
any 7% and y~°.

Definition C.2 (Robust state value function). A state value
function VlTr - : S — R for agent ¢ given 7% and

x " tis called a robust state value function if for all s € S,

V*i77r_i7*’x_ (s) maxmln Z Z m(alp)
pEP; acA
((s,a) + Z s's,)V, i - (s’)) . (25
s'eS

Note that we use 7(a|p) = I, 7 (a|p’) to denote the
joint agent policy. We use x(p|s) = I, x*(p’|s) to denote
the joint adversary policy.

Before proving the existence of the unique robust state value
function, we first introduce some notations for this proof.
For a given state value function V: — : S — Rde-
fined on a finite state set S, we can construct a state value
vector v' = vec(V*‘W iex-i) = Vi —i(8)lses €
V := RIS| by traversing all states, where vec(-) is a vec-
torization function. The infinity norm on V is ||v?]|» =
maxses [V* ()|. Define the total expected return in state s
for 7* and x* as

it m i) = 3 xels) S w(alp)

pEP, acA
(st

s'eS

(8'|s,a)[vec 1(#)](5’)) . (26)

where 7~% and x ¢ denotes the agent policies and the ad-
versary policies of all other agents except agent 7.

Define the robust state value in state s given 7—% and y ~*
as a function ¢ : V — R,
O LXLXTY)
27)

) = maxmin f(vf, 7, 7

Note that)% gives a real number that denotes the total ex-
pected return in state s given 7~ * and x~*. We can construct
a mapping \Ili :V — V from any state value vector v’ to
a robust state Value vector [W2 (v)]seg by traversing all
s, that is to say, [W2 | (v")]ses = YL(v", 77" x7").

Lemma C.3. For any i € N, the function \Hr,x V=V
is a contraction mapping given any ©~" and x " of other
agents and adversaries except agent i and adversary 1.

Proof. Let us consider two vectors v*, 2* € V. For any
1 € N, given any 7% and x ¢, for all s € S, we have
Pt T X)) = LxhxT)

XD, @)

max min f{ (v, it
T xX*

= fs(/U 77Ti*7ﬂ—_

where 7* is the corresponding maximizer, and x** is the
corresponding optimizer for 7**. Similarly, with the opti-
mizers w®* and i* for the following maximin optimization
problem, we have

wz(zi,ﬂ_i,x_i):malxmlnf (z wh ot xTY)
wi ol

Lot x T

sy XY, (29)

> fizm
where
apg* = arg min fsi(zi, T
i

LehxTh. (30)

Then, for any i € N, given any 7% and x ¢, forall s € S,

it holds that
Yo', m X T = (2 T X TY)
— f;(vz’ ﬂ,i*ﬂrfi’ Xi*a Xfi) _ f‘z(zi,wi*,ﬂii, (pzi*7xfi)
< ot m T X X T = faE T T o5 X T

=Y I[P 1s) Y m(a'lp’)x

pEPs J#i acA
T = (*16") <T+WZ /|5, a)[vec 1<vi>]<s’>>
k#i s'eS
= > el [(1s) Y w*(a’]p') x
PEPs VED) acA
TT = (a*16") <T+WZ '[s,a)[vec 1(%‘)1(5’))
k#i s'eS
=Y (s [T (P 1s) D 7 (alp') %
PEPs Ve acA

LT 7" @157 > p(s'ls, a)x

k#i s'eS
{[Vec_l(vi)](s’) — [Vec_l(zi)](s’)}
< Z 5 (p']s) HXJ(P]‘S) Z 7 (a’]p") x

PEPs VES a€A

[7@ 17 3 pls'ls, o’ =+l

k#i s'eS

What is the Solution for State-Adversarial Multi-Agent Reinforcement Learning?

=" = 2[loo- (31
The second inequality in Eq. (31) follows
X =argmin fI(v', 7", 77 X", x 7). (32)

x?

Because for any i € A/, given any 7% and x ¢, for all

seS
H—yi(zh 77 x T < vt =2 0o, (33)

Based on symmetry, we have

UAC

AT

X =l X T < vl =0
=7]v" = 2"||co-
(34)

—1

Thus, it holds that for any i € A/, given any 7% and

197 (0") = 7 ()l A" =2, (35)

that is to say, the function \Ilan is a contraction mapping.

O

Theorem C.4 (Existence of Unique Robust State Value
Function). For an SAMG with finite state and finite action
spaces, for any i € N, given any m—% and x~" of other
agents and adversaries except agent i and adversary i, there
exists a unique robust state value function V*inr*i,*,x*i :
S — R for agent i such that for all s € S,

i () = max m}n Z Z m(alp)

pPEP; acA

s's,)V mi o - (s’)) (36)

VZ

, 7T 1)(

(s,a) +7 Y pl

s'eS

Proof. For any i € N, there exists a state value func-

tion V*’7T ey satisfying (36) if and only if v* =
vec(V:7T i« x—i) 1s a fixed point of Ui 2V — V, where

(¥ (v")]ses = ¥i(v, 77, x) and lﬁé(viﬂr*", X1 is
defined in (27). We use Banach’s fixed point theorem to
prove this as follows.

Because any finite-dimensional normed vector space is com-
plete (Kreyszig, 1991), the (V, || - ||) is a complete Ba-
nach space. Also, for any i € N, given any 7% and xy*,
the function Wi 7.x is a contraction mapping according to
Lemma C.3. Therefore, by Banach’s fixed point theorem,
there is a unique fixed point v* such that ¥% _ (v*) = v*. In

other words, for any i € N, given any 7—¢ and x %, there

exists a unique Vl7r b aox- , such that
V*l,r i ay—i(8) = H;%Xn)léll’lf ‘T X T,
(37

O

Denote the state value function for agent i given any 7 *

and x~* of other agents and adversaries except agent i and
adversary 7 as
V;iﬂr*i,X’ﬂXﬁ (S) = f;(zﬂ, T, X" X_Z>7 (38)

(2
where v’ = vec(V .~

corollary for Theorem C.4.

Corollary C.5. For an SAMG with finite state and finite
action spaces, let V’ ; be the unique robust state

;). Then we have the following

,TT =i kX T))
value function for agent i given any 7~" and x " such that
foralls € S,
V,,f’,rﬂz’*’xfi(s) = max min f ‘(T T
T x*
= [7w XD, (39)

— 7 i
where v* Vec(V* i X_) T
maximizer at state s, and x"* is the corresponding op-
timizer for ™ at state s, then for state s it holds that

Vi, _i(s) > V4§ .(s) for any 7', and

is the corresponding

T i _
Viie miyio i (8) S Ve i i —i(8) for any X°.

C.2. Existence of the Stage-wise Equilibrium
Before we show the existence of the robust Nash equilib-
rium, we first show a concept of the stage-wise equilibrium.
Definition C.6 (Stage-wise Equilibrium). For an SAMG,
the policy (7%, x*) is a stage-wise equilibrium for state s if
for all i € A and all ¢ and ?, it holds that
() VT:7,* T i i (S)
< V;z* Ty T (8),

V’L

Tt T —i* X1*7X—i*

(40)

where 7% and y ~* denotes the agent policies and adversary
policies of all the other agents except agent ¢, respectively.

The Nash equilibrium was originally proposed by Nash for
finite one-shot games, in which the state transition of the
environment is not considered. When the concept of Nash
equilibrium is extended to Markov games, the existence of
the equilibrium is shown through the existence of a state-
wise equilibrium for each state. A policy that is a stage-wise
equilibrium for all states is considered a Nash equilibrium
for the Markov game.

This idea brings the following proposition to show the re-
lationship between the robust Nash equilibrium and the
stage-wise equilibrium for SAMGs.

Proposition C.7. The policy (7*, x*) is a robust Nash equi-
librium for an SAMG if the policy (7*, x*) is a stage-wise
equilibrium for all s € S.

Proof. 1t is a natural result according to the Definition 4.6
and the Definition C.6. O

What is the Solution for State-Adversarial Multi-Agent Reinforcement Learning?

We show the existence of the stage-wise equilibrium defined
in Definition C.6 in the following theorem.

Theorem C.8 (Existence of Stage-wise equilibrium). For
SAMGs with finite state and finite action spaces, the stage-
wise equilibrium defined in Definition C.6 exists for any
seS.

Proof. Let us construct a 2n player game for any s € S.
We have n agents and n adversaries in the player set.
We introduce uniform notations for the agents and adver-
saries to describe a 2n player game at state s. The player
set Z = {1,....,n,n + 1,...,2n}. The first half of the
player set {1, ..., n} represents agents, while the second half
{n +1,...,2n} represents adversaries. The set of available
actions for player ¢ is

At x AT x AL =1,
—_—

total number: |P?| (41)
pi-n i=n+1,..,2n.

A =

Each adversary’s action set includes all possible perturbed
states in the admissible perturbed state set at state s. Each
agent’s action set includes all possible joint actions given
every possible perturbed state. Take the two-agent two-state
game in Fig. 9 as an example, the player set Z = {1, 2,3, 4}.
Player 3 is the adversary for agent player 1. Player 4 is the
adversary for agent player 2. If the current true state is sy,
then Ay, = A2 = {(a1, @), (a1,02), (a2, a2), (a2, a1)}
are the action sets for two agent players. In A;l for agent 1,
the joint action (a1, az) means selecting a; if the perturbed
state for agent 1 is s and selecting as if the perturbed state
for agent 1 is so. For two adversary players, A3 = A L=
{s1, s2}, as adversaries can perturb the true state s; to ss.

We consider the mixed strategy 0! € A(A%) for player i.
Note that the mixed strategy for each adversary gives us the
probability distribution of all possible perturbed states for
state s, i.e. X' " (p'""|s) = ol(p*~") fori =n+1,...,2n.
Then we show how we can get each agent’s policy 7 (a’|p?)
based on its mixed strategy o by calculating the marginal
probabilities. Denote the total number of possible perturbed
state for agent 7 at state s as P such that P = |P!|. Here
we drop the subscript s in P; for a concise representa-
tion. The perturbed state set for agent ¢ is represented
as {pt,p5,...,p5}. Denote the joint action of agent i
as b° = (bi,bh,...,b%) where bt is the action selected
for the perturbed state pi, € P.. Then the mixed strategy
ol (bt b, ..., b%) gives us the joint probability of selecting
bi for pt forall k = 1,2,..., P. We can get the marginal
probability of selecting action a’ given the perturbed state
pi € Plas

mi(a'|pt) = Z ol (bY, b5, ..., b%). 42)

{bicAL|bl =a’}

The marginal probability of selecting action a’ given the
perturbed state p§ is calculated by summing up the joint
probability over all joint actions in which agent 7 selects a’
given the perturbed state pt . Take the two-agent two-state
game in Fig. 9 as an example, if the current perturbed state
for agent 1is p' = s1, then agent 1’s policy is

7l (ai|pt = s1) = o' (a1,a1) + o' (ay, a9)

7l (az|p! = 51) = o' (ag, a1) + o' (az, az). (43)

Note that the mixed strategy o2 € A(A%) only gives part of
the agent and adversary policies. For example, the mixed
strategy for the adversaries only gives a distribution of the
perturbed states for s; = s. We construct the complete
agent and adversary policies as follows: For¢ = 1, ..., n,
the agent ¢’s policy is

Z{bieAyb}C:ai} Ué(biv bév) b%)v
for p* = pj, € Pg;

UA),

for p* ¢ Py,

i (allp') = (44)

where U (A?) represents a uniform distribution on A?. For
i =1, ...,n, the adversary ¢’s policy is

o oltm(ph), forsy =s;
Hptlsy) =< 2 ’ 45
X@“){mmx fors, £5,)
where U(7P?) represents a uniform distribution on P?.
The utility function for player i is
Fiw™, mtm =t x),
fori =1,...,n;
u(oy,001) = § —f T ar Al 46)

X)),
fori =n+1,...,2n.

where o, denotes the strategies of all other players except
player i, v** = Vec(V*i,Tr,i,*,X,i), and V*i,vr*i,*,x*i is the
unique robust state value function of agent + when the poli-
cies of other agents and adversaries are given by 7~ and

x~%. The v™* satisfies

[vec™! (v)](s) = maxmin f;(v™, 7", 7" X', x7"),

ﬂ—’l Xl
(47)
where f! is defined for player i in (26) as

Fimm i) = 3 xels) S w(alp)

PEPs acA

(T(&a) +7) P(S'ls,a)[vec_l(vi)](s/)> :

s'eS

What is the Solution for State-Adversarial Multi-Agent Reinforcement Learning?

Note that o * includes both 7—¢ and x ~* for any i € Z, and
the existence of V*i i i is guaranteed by Theorem C.4.
Thus, the utility function is well-defined.

Since the state set S is finite, Pﬁ C Sis afinite set forall 7 €
N. Also, A’ is a finite set for all i € N. Therefore, A(A?%)
is compact and convex for all ¢ € Z. Moreover, for all
i € Z,ul(cl,) is linear in o and therefore continuous and
concave in . According to the theorem (Debreu (Debreu,
1952), Glicksberg (Glicksberg, 1952), Fan (Fan, 1952)),
the conditions for the existence of a Nash Equilibrium are
satisfied, hence, there exists a Nash equilibrium o for this
2n player game for any s € S such that for any i € Z,

ul (o, 07™) > ul(ol,o;"™) for any o,

Denote the agent and adversary policies as (7*, x*) that are
constructed following Eq. (44) and Eq. (45) by plugging in
the Nash equilibrium (o, o7 ™). Substituting the (7*, x*)
into u’ (0, 07 *) > ui (0!, 07 *) and plugging in the defi-
nition of the utility functions, for any ¢ = 1,2, ..., n, it holds

that

f;(vi*7 ﬂ-i*v Trii*a Xi*7 Xﬁz*) Z fsi(vi*y 7Ti7 7777;*5 Xi*y X*i*)v
(48)
for any 7t Also, for any i = 1,2, ..., n, it holds that

fg(vi*77ri*a77_i*a Xi*vx_i*) S fg(vi*yﬂi*,ﬂ_i*y Xivx—i*)v

| (49)
for any x*. Therefore,
max min f;(vi*, ﬂ'ia 77_”; Xi7 X_i*)
Ty
:f;‘(vi*, 7_‘_1'*7 ﬂ_—z’*’ Xi*a X—z*) (50)

According to Corollary C.5, for any 7%, it holds that

V;i*,ﬂ.—i*yxi*yx—i* (S) > Vﬂ?i7ﬂ—i*,xi*,x—i* (S), (51)
Also, for any x*, it holds that

V;i*,ﬂ.—i*vxi*yxfi* (3) < V;i*,ﬂ.—i*yxi,x—i* (S) (52)

Thus, the stage-wise equilibrium defined in Definition C.6
exists for any s € S. O

C.3. Non-existence of Robust Nash Equilibrium

Theorem C.8 demonstrates the existence of a stage-
wise equilibrium for any state s € S. In classic
Markov games (Fink, 1964) and Markov games with re-
ward/transition uncertainties (Kardes et al., 2011; Nilim &
El Ghaoui, 2005; Iyengar, 2005), this result naturally ex-
tends to the existence of a Nash equilibrium policy, as all
agents’ and adversaries’ policies are based on the current
true state. If a stage-wise equilibrium exists for any state
s € S, then a Nash equilibrium can be constructed by taking
the policies for each state s from their corresponding stage-
wise equilibrium for state s (Fink, 1964; Kardes et al., 2011;

Nilim & El Ghaoui, 2005; Iyengar, 2005). However, this
natural extension cannot be used for our SAMG problem
because the agent’s policy is based on the perturbed state
instead of the true state. The problem is that the agent’s
stage-wise equilibrium in one state may not be consistent
with its stage-wise equilibrium in a different state. We il-
lustrate this idea in the following theorem to show that the
robust Nash equilibrium does not always exist for SAMGs.

Theorem C.9 (Non-existence of Robust Nash Equilib-
rium). For SAMGs with finite state and finite action spaces,
the robust Nash equilibrium defined in Definition 4.6 does
not always exist.

Proof. We prove this theorem by showing that the following
two-agent two-state game in Fig. 10 does not have a robust
Nash equilibrium. The two-agent two-state game in Fig. 10

at # a?
r=20
al:az ®—>®aliaz
r=1 FE—— r=1
al = a?
r=20

Figure 10: A new two-agent two-state game example.
Agents get reward 1 at state s; if they choose the same
action. Agents get reward 1 at state s if they choose differ-
ent actions.

is basically the same as the two-agent two-state game in
Fig. 9. The only difference is we changed the state transition
for the state s;. The new state transition functions for the
state s, are

p(s' = sa|s = s1,a" #a?) =1,
p(s' = s1|s = s1,a' =a?) =1. (53)

We first consider the stage-wise equilibriums for each state.

For state s1, the stage-wise equilibrium requires Pr(a; =
a?) = 1 for all t. One example of the agent policy is
7T1(a1|81) = 7r1(a1|32) = 7r2(a1|51) = 72((11‘82) = 1.
Note that the agent should have a policy for both s; and
so even when considering the state-wise equilibrium for
the state sy (This means the current true state is s1). This
is because the adversary can perturb each agent’s state ob-
servation to be s,. There is no requirement for the ad-
versary policy in the state-wise equilibrium because when
Pr(a} = a?) = 1, the true state never transits. The state
value for sq is V(s1) = 100.

Similarly, for state s, the stage-wise equilibrium requires
Pr(a} # a?) = 1 for all t. One example of the agent policy
is m(a1]s1) = 7i(a1]s2) = m2(az|s1) = 7%(aslse) = 1.
There is no requirement for the adversary policy in the state-

What is the Solution for State-Adversarial Multi-Agent Reinforcement Learning?

wise equilibrium of s,. The state value for sq is V(s2) =
100.

Since the stage-wise equilibriums have conflict requirements
for the agent policy in s; and sg, there is no agent policy
satisfying the requirements of the stage-wise equilibriums
in both s; and sy at the same time. Therefore, there is
no robust Nash equilibrium for agents in this two-agent
two-state game. O

Our conclusion is similar to that of Theorem 4.3, in that
it is not always possible to find a policy that is a stage-
wise equilibrium for all states. When facing adversarial
state perturbations, trade-offs must be made among different
states. As a result, the traditional solution concepts of an
optimal agent policy and the robust Nash equilibrium cannot
be applied to SAMGs.

C.4. Existence of Robust Agent Policy

We need to consider a new objective that is not state-
dependent. Therefore, we propose a new objective, the
worst-case expected state value, in Definition 4.8 as

E’sowpr(so) [Vw,x*(ﬂ') (30)])

where Pr(sg) is the probability distribution of the initial
state.

The new objective of “worst-case expected state value” is de-
signed specifically for the state perturbation problem present
in SAMG:s. It is proposed as a response to our analysis of
the non-existence of widely-used concepts. We demonstrate
that these concepts can be easily corrupted by adversaries,
requiring agents to make trade-offs between different states.
This is the reason for introducing the new objective. The
agent policy that aims to maximize this worst-case expected
state value is referred to as a robust agent policy.

In this section, we show the existence of a robust agent
policy to maximize the worst-case expected state value. We
first introduce two lemmas for this proof.

Denote p™X:%(s,) as the probability of reaching state s,
given the agent policy 7, adversary policy ¥, and initial
state so. Let p™X*0(sy) = 1. The connection between
PTX50 (g,1) and P00 (s4) is:

PO (5441) =

Z Z Zp(5t+1|$taat)ﬂ(at\Pt)X(Pt\St)PW’X’SU(St)~

st€S ar€A p€P
(54)

For a concise representation, we omit the subscript s; of
P, in this section. Consider the function

Cmx) =D D D T (s)x

st€S ar€Ap P

m(aelpe)x(pelse)y res1(se, a). (55)

Lemma C.10. The function g;° is continuous on A(A) x
A(P) foranyt =0,1,2,...,n where n € Nj.

Proof. To prove the continuity, we construct some equiv-
alent vectors as follows. We define a vector # € RIIIP|
and 7(a,p) = 7w(alp) fora € A,p € P, and a vector
X € RIPIS| where)2'(p7 5) = X(p|) for p € P,s € S.
And a vector constant 7 € RISl where (s, a) = r(s, a).

AT = [m(allp), - (@) w(a]p)), - (a4
X7 = De(esh), - ox (0P lsh) x(p?lsh), - x (01 s1)]
Py = [P0 (e = s1), e pTO0 (s = 5N (50)

Note that when p ¢ P, then the entry x(p|s) = 0. p; €
RIS! can be expressed as a linear combination of p;_1, 7
and X according to (54). Let’s first consider the case ¢t = 0,

=2 2

ag€A poEP

(aolpo)x(polso)r(so,an) (57)

Function g;° can be expressed as a linear combination of
7,7 and Y. We consider the general case

LX) =D DY P (sh) %

st€SareApeP

m(aelpe) x(pe|se)V i1 (e, a0). (58)

Function g;° can be expressed as a linear combination of
7, pt, ™ and X. Therefore, g;° is continuous on A(A) x
A(P) forany t =0,1,2,...,n where n € N. O

Lemma C.11. For any sg e S, the series

Do ogi®(mx)t,n = 1,2,..., converges uniformly
on A(A) x A(P).

Proof. Consider M;° (7, x) = v R™**, where R is the
largest absolute value of the rewards. We can check that

|9:° (0, X)| < M;* (m, x) for t > 0 as follows.

97" (m, X))

SPIPIP LY

st€S at€A p€P

3P I IO

st€Sar€Ap€P

m(at|pe)x (Pt|8t)’yt7't+1($t,at)

tRmaw

IN

m(at|pe)x(pelst)y

What is the Solution for State-Adversarial Multi-Agent Reinforcement Learning?

_,thmaz « Z Z Z pTX 50 St at‘pt) (Pt|3t)
st€S ar€ A p€P
_’VtRmaz « Z Z Z Pr(s¢, at, pt | So, 7, X)
st€ES ar€A pLe€P
:,thmaz x 1= MtSo (71.7 X)' (59)
Meanwhile,
Rma:z:
s t maxr __
ZMDWX Z R 71_7’ (60)

t=0

so > g;° converges uniformly on A(.A) x A(P) according
to the Weierstrass M-test in Theorem 7.10 of (Rudin et al.,
1976). O

Lemma C.11 shows the series {}_, ; ¢;°(m,x)},n = 1,
2, ..., converges uniformly on A(A) x A(P) for any s¢ €
S. In the following lemma, we show >_,° ¢;°(m, x) is
continuous on A(A) x A(P) for any sg € S. Denote
h*o(m, X) = 3212 98° (7, X)-

Lemma C.12. The function h*® is continuous on A(A) X
A(P) for any s € S.

Proof. Consider hi°(m, x) = Y1, 9:°(m, x) forn € N,.
Since hf° is a linear combination of {g;°}i=0.1,2, n
and ¢;° is continuous on A(A) x A(P) for any t =
0,1,2,--- ,n according to Lemma C.10, the sequence
{h?°} is a sequence of continuous functions on A(A) x
A(P). Meanwhile, h5> — h% uniformly on A(A) x A(P)
for any so € S according to Lemma C.11, therefore h®° is
continuous on A(A) x A(P) for any sg € S according to
the uniform limit theorem in Theorem 7.12 of (Rudin et al.,
1976). O

Finally, we show the existence of the robust agent policy to
maximize the worst-case expected state value in the follow-
ing theorem.

Theorem C.13. For SAMGs with finite state and finite ac-
tion spaces, there exists a robust agent policy 7 to maximize
the worst-case expected state value defined in Definition 4.8

Proof. According to Proposition 4.10, finding an agent pol-
icy 7 to maximize the worst-case expected state value under
the optimal adversary for 7 is equivalent to the following
maximin problem:

max F'(7)

s

= mﬁmx]ESONPr(So) [Vrr,x*(ﬂ) (50)}

- in'S" Pr(so) Vs
mgxmxmz (50)Vr x(S0)

50

=max min J(m, X), (61)
T X

where the objective function in (61) can be expanded as
follows:

J(m,x)
= ESONPI‘(SO) [VTUX (SO)]

— Z Pr(so)Vr x(s0)
So
= ZPr(SO)EatNW,PtNX lz Ve (st ar) | 50]

= ZPr S0 ZE%NW prX [V Te+1(8t, ar) | 50]

S0

(linearity of the expectation)

=2 Pile0) PP IS

t=0 s, €S ar€A p€P

7r(at|ﬂt)X(Pt|St)7 Ter1(St, at)
= ZPT(SO)ZQSO(W»X)
S0 t=0

= Z Pr(sq)h*°. (62)

Because J(m, x) is a linear combination of {h*°}, cs, S
is finite, and h® is continuous on A(A) x A(P) for any
sp € S according to Lemma C.12, the objective function
J(m,x) = >_,, Pr(so)h™ is continuous on A(A) x A(P).
Consider the function F'(r) = min, J(m,x). Since the
adversary policy space A(P) is compact, the function F’
is continuous in m. Meanwhile, the agent policy space
A(A) is closed. Therefore, there exists an agent policy 7 to
maximize F' according to the extreme value theorem.

O

Theorem C.13 shows the existence of a robust agent policy.
Different from the definitions of the optimal agent policy
and robust Nash equilibrium, the worst-case expected state
value objective does not require the optimality condition
to hold for all states. Agents won’t get stuck in trade-offs
between different states, therefore, we can find a robust
agent policy to maximize the worst-case expected state value
for the SAMG problem.

D. Implementation Detail

All hyperparameters used in experiments are listed in ta-
ble 2.

What is the Solution for State-Adversarial Multi-Agent Reinforcement Learning?

Table 2: Hyperparameters for our RMA3C algorithm and the baselines.

Parameter RMA3C | M3DDPG | MADDPG | MAPPO
optimizer for the critic network Adam Adam Adam Adam
learning rate for agent policy 7 0.01 0.01 0.01 0.0007
learning rate for adversary policy x 0.001 / / /
discount factor 0.95 0.95 0.95 0.99
replay buffer size 108 106 106 /
activation function Relu Relu Relu Relu
number of hidden layers 2 2 2 1
number of hidden units per layer 64 64 64 64
number of samples per minibatch 1024 1024 1024 1
target network update coefficient 7 0.01 0.01 0.01 /
GDA optimizer steps 20 / / /
radius d 1.0 / / /
uncertainty level A 0.5 0.5 0.5 0.5
upper boundary u 1.0 1.0 1.0 1.0
lower boundary [-1.0 -1.0 -1.0 -1.0
episodes in training 10k 10k 10k 10k
time steps in one episode 25 25 25 25

D.1. Environments

We have tested our algorithm in environments provided
by (Lowe et al., 2017) as shown in Fig. 11.

D.1.1. COOPERATIVE NAVIGATION (CN)

This is a cooperative task. There are 3 agents and 3 land-
marks. Agents want to occupy/cover all the landmarks.
They need to cooperate through physical actions about their
preferred landmark to cover. Also, they will be penalized
when collisions happen.

D.1.2. EXCHANGE TARGET (ET)

This is a cooperative task. There are 2 agents and 3 land-
marks. Each agent needs to get to its target landmark, which
is known only by another agent. They have to learn com-
munication and get to landmarks. Besides, both of them are
generous agents that pay more attention to helping others,
i.e. rewarded more if the other agent gets closer to the target
landmark.

D.1.3. KEEP-AWAY (KA)

This is a competitive task. There is 1 agent, 1 adversary,
and 1 landmark. The agent knows the position of the target
landmark and wants to reach it. The adversary does not
know the target landmark and wants to prevent the agent
from reaching the target by pushing them away or occupying
the target temporarily.

D.1.4. PHYSICAL DECEPTION (PD)

This is a mixed cooperative and competitive task. There are
2 collaborative agents, 2 landmarks including a target, and 1
adversary. Both the collaborative agents and the adversary
want to reach the target, but only collaborative agents know
the correct target. The collaborative agents should learn a
policy to cover all landmarks so that the adversary does not
know which one is the true target.

D.1.5. COVERT COMMUNICATION (CC)

This is a mixed cooperative and competitive task. There
are 2 agents, Alice and Bob, and 1 adversary Eve. This
environment is from symmetric-key encryption considering
eavesdropping attacks in cryptography. Alice and Bob want
to transfer a plaintext while Eve can eavesdrop on it. Alice
and Bob need to encode their message to ciphertext using a
randomly generated secret key.

D.2. Baselines

We compare the performance of our algorithm with MAD-
DPG (Lowe et al., 2017), M3DDPG (Li et al., 2019), and
MAPPO (Yu et al., 2022) and follow their open-source im-
plementation. We have a brief introduction of these methods
in the following sections. There is no robustness consid-
ered in MADDPG and MAPPO. The M3DDPG considers
the robustness of training partner’s policies, but it does not
consider state uncertainty. The MAPPO is the multi-agent
version of the Proximal Policy Optimization (PPO), a popu-
lar policy gradient algorithm. Because MAPPO only works
in fully cooperative tasks, we only report its results in coop-

What is the Solution for State-Adversarial Multi-Agent Reinforcement Learning?

a) Cooperative navigation

agent 2

b) Exchange target

c) Keep-way
agent 1 ® I
agent 1 X
./ landmar
77k
adversary

d) Physical deception

4 X

A A
‘ adversary
agent 1 agent 2

e) Covert communication

"Secret"
_—

Alice 9 Bob

@

Eve

Figure 11: Some environments to test our algorithm, including a) Cooperative navigation (CN) b) Exchange target (ET) c)
Keep-away (KA) d) Physical deception (PD) e) Covert Communication (CC).

erative navigation and exchange target. Note that MAPPO
is also used in (Guo et al., 2020) but they do not provide an
open-source implementation. Therefore, we select the latest
implementation in (Yu et al., 2022) with the open-source
code.

D.3. Multi-Agent Deep Deterministic Policy Gradient
(MADDPG)

It is difficult to apply single-agent RL algorithms directly to
the multi-agent case because the environment’s state tran-
sition is also influenced by the policy of other agents and
it is non-stationary from a single agent’s view. To alleviate
this problem and stabilize training, the MADDPG algorithm
is proposed using a centralized () function that has global
state and global action information (Lowe et al., 2017). It
assumes all agents are self-interested and every agent’s ob-
jective is to maximize its own total expected return. The
objective for agent i is .J(0%) = E[R’] and its gradient is

Vi J(07) = (63)
Ex,a~D [Vgi (0 Vi Q' (x,at, ..., a™)

where Q%(x,al,...,a") is a centralized action-value func-
tion, x = (0, ...,0"), and o’ represents agent i’s observa-
tion. The experience replay buffer D contains transition ex-
perience x, a’, ...,a™,x’, !, ..., 7™ to decorrelate data. The

centralized (Q° can be trained using the Bellman loss:

E(al) - Ex,a,r,x’ND [y - Qi(xv alv ceey an)}Q’
Yy = Ti —+ ’}/Qi/(X/, a1’7 ceny (Ln/)|a_7/:”_7‘/(0_7‘)7

ai=pi(on)]

(64)

where Q" is the target network whose parameters are copied
from @ with a delay to stabilize the moving target. Note

that this algorithm adopts a centralized training and decen-
tralized execution paradigm. When testing, each agent can
only access its local observation to select actions.

In M3DDPG (Li et al., 2019), the uncertainty from the train-
ing partner’s policies is considered: all other partners are
considered as adversaries that select actions to minimize the
total expected return of the training agent. In other words,
when updating both actor and critic, they select training

partner’s actions by a/7% = arg ming;» Q'(x, al, ..., a").

D.4. Gradient Descent Ascent (GDA)

Gradient Descent Ascent (GDA) (Lin et al., 2020b) is cur-
rently one widely-used algorithm for solving the following
minimax optimization problem:

(65)

minmax f(x,y).
z oy

GDA simultaneously performs gradient descent update on
the variable x and gradient ascent update on the variable y
according to (66) with step sizes 7, and 7,,.

Tip1 = Ty — N2 Ve [(T, Ye),

Yer1 = Yo T 0y Vo f(Te,y1)- (66)

It has a variety of variants to accommodate different
types of geometries of the minimax problem, such as
convex-concave geometry, nonconvex-concave geometry,
nonconvex-nonconcave geometry, etc.

What is the Solution for State-Adversarial Multi-Agent Reinforcement Learning?

Cooperative navigation

B e
@ —500 c —100
3 2
[[
= -550 =
3 Y -150
2 -600]
2 Algorithm £
¥ —650 —— RMA3C @ 500
5 MADDPG with noise &
@ -700 —— MADDPG with x* 9]
1S —— M3DDPG with noise £ 250
—750 —— M3DDPG with y* -
—— MAPPO with noise
-800 MAPPO with x*
-300
0 20 40 60 80 100 0 20

episode(k)

Exchange target

o ———

40

episode(k)

Keep-away

|
~
o)

|
-
o
o

|
-
N
o

|
-
a
=)

Algorithm
—— RMA3C

MADDPG with noise
—— MADDPG with x*
—— M3DDPG with noise
—— M3DDPG with x*
—— MAPPO with noise

MAPPO with x*

|
N
o
=)

Algorithm
—— RMA3C

MADDPG with noise
—— MADDPG with x*
—— M3DDPG with noise
—— M3DDPG with x*

mean episode reward
&
<
n

60 80 100 0 20 40 60 80

episode(k)

100

Figure 12: Our RMA3C algorithm compared with baseline algorithms during the training process. Our RMA3C algorithm
gets higher mean episode rewards and is more robust to the state perturbations. All baselines are trained under random state
perturbations or well-trained adversary policy x*. Because MAPPO only works in fully cooperative tasks, we only report its

results in cooperative navigation and exchange target.

D.5. Training Comparison Under different
Perturbations

We first compare our algorithm with baselines during the
training process to show that our RMA3C algorithm can
outperform baselines to get higher mean episode rewards
under different state perturbations. Note that our RMA3C
algorithm has a built-in adversary to perturb states, so we
do not train it under random state perturbations. Comparing
RMAZ3C to other baselines with different state perturbations,
the RMA3C gets higher mean episode rewards. It shows
our RMA3C algorithm is more robust under different state
perturbations. Comparing each baseline with random state
perturbations to the same baseline with the well-trained ad-
versary policy x*, we can see the adversary trained by the
RMA3C is more powerful than the random state perturba-
tions. Because the adversary policy x* intentionally selects
state perturbations to minimize agents’ total expected re-
turn. The mean episode reward of the last 1000 episodes
during training is shown in Table 3. Our RMA3C algorithm
achieves up to 58.46% higher mean episode rewards than
the baselines under different state perturbations.

Table 3: Mean episode reward of the last 1000 episodes
during the training. Our RMA3C algorithm achieves up
to 58.46% higher mean episode rewards than the baselines.
The corresponding figure is 12, and it is also included in the
main content.

CN ET KA
RMA3C (ours) -401.7 -47.02 -8.93
MADDPG w/ N -506.48 -63.76 -13.76
M3DDPG w/ N -506.54 -61.71 -13.45
MAPPO w/ N -569.07 -94.28 -
MADDPG w/ x* -548.80 -77.01 -16.30
M3DDPG w/ x* -547.99 7587 -16.26
MAPPO w/ y* -585.83 -113.19 -

D.6. Cooperative Navigation With 6 Agents
Cooperative navigation with 6 agents
—3000
—3200
—3400
—3600

—3800

|
N
o
=}
o

Algorithm
RMA3C
MADDPG with x*
M3DDPG with x*
MAPPO with x*

mean episode reward

—4200

—4400

0 20 40 60

episode(k)

80 100

Figure 13: Our RMA3C algorithm compared with baselines
during the training process in the cooperative navigation
scenario with 6 agents added. Our algorithm gets higher
mean episode rewards in the environment with an increased
agent number.

We compare our RMA3C algorithm with baselines in the co-
operative navigation scenario with more agents added. The
original cooperative navigation environment has 3 agents
and the training results are shown in Fig. 4. We show the
training results with 6 agents in Fig. 13. After increasing
the total number of agents in the environment, our RMA3C
algorithm still gets higher mean episode rewards than base-
lines under adversarial state perturbations.

We also test the learned policies in the 6-agent Cooperative
Navigation (CN) environment to show our RMA3C policy
is more robust under adversarial state perturbations. During
testing, the mean episode rewards are averaged across 2000
episodes and 10 test runs for each algorithm. We put all
the well-trained agents using different algorithms into the 6-
agent CN environment with well-trained adversary policies
x* to perturb states. The result is shown in Table 4. Our

What is the Solution for State-Adversarial Multi-Agent Reinforcement Learning?

Table 4: Mean episode rewards of 2000 episodes during
testing under well-trained adversarial state perturbations in
the cooperative navigation environment with 6 agents. Our
RMA3C policy achieves up to 9.57% higher mean episode
reward than the baselines with well-trained x*.

Environment CN with 6 agents
MADDPG w/x* -3405.274 £ 66.18
M3DDPG w/x* -3452.22 4+ 80.16

MAPPO w/x* -3121.90 £ 18.49
RMA3C w/x* -3079.37 £ 16.16

RMA3C policy achieves up to 9.57% higher mean episode
reward than the baselines with well-trained adversarial state
perturbations. The result shows that our RMA3C algorithm
achieves higher robustness for a multi-agent system under
adversarial state perturbations.

E. Discussions and Future Work

In this section, we add several discussions of our work as a
first attempt to study the SAMG problem formally. We also
point out several future directions for the SAMG problem.

E.1. GDA Convergence

In our RMA3C algorithm, we use Gradient Descent Ascent
(GDA) optimizer (Lin et al., 2020b) to update parameters for
each agent’s actor network and the adversary network. Each
agent updates the actor network to maximize the worst-case
expected state value in Definition 4.8, while the correspond-
ing adversary updates the adversary network to minimize the
worst-case expected state value. How to solve a non-convex
non-concave minimax problem is a very challenging and not
yet well-solved problem. To the best of our knowledge, the
GDA optimizer is currently one of the most widely used and
accepted optimizers for this type of problem, though it is not
guaranteed to always converge (Jin et al., 2020; Razaviyayn
et al., 2020; Lin et al., 2020b). Our RMA3C algorithm
with GDA optimizer shows performance improvement in
terms of policy robustness in our experiments. Note that
we only use the GDA optimizer as a tool in our algorithm
by leveraging the existing literature on solving non-convex
non-concave minimax problems. Future advances of nu-
merical algorithms and solvers for this kind of minimax
problem will also benefit our algorithm by replacing the
GDA optimizer with new advances.

E.2. Non-Markovian Policy

In this work, we give the first attempt to focus on the Marko-
vian policy under adversarial state perturbations. Dealing
with the non-Markovian policy will significantly complicate
the problem. We are aware of the suboptimality of Marko-

vian policies, however, considering the computational cost
of the non-Markovian policy of MARL, we decide to fo-
cus on Markovian policies in this work for computational
tractability. Moreover, as shown in Proposition A.1, our
SAMG problem is different from a Dec-POMDP. Consider-
ing a non-Markovian policy based on the observation-action
history may not give an advantage to the agents. For ex-
ample, for the two-agent two-state game in Fig. 9, if the
adversary randomly perturbs the state with x*(s1|s2) = 0.5
for i = 1,2, then the agents still only have a 50% chance
to guess the true state even with observation-action history.
Considering another example for the two-agent two-state
game in Fig. 9, if the adversary perturbs all states to state
s1 with x?(s1|s2) = 1 and x%(s1|s1) = 1 fori = 1,2, then
the agents cannot get extra information for the true state
even with observation-action history. We leave the formal
analysis of non-Markovian, non-stationary policy as future
work.

E.3. Non-collaborative Game

In the problem formulation, we consider a collaborative
game, where all agents share one stage-wise reward func-
tion. The new objective for the SAMG, the worst-case ex-
pected state value under state perturbations, is well-defined
as proved in Theorem C.13. For non-collaborative games,
if each agent has its own reward function, and adversary
wants to minimize the total expected return of agent ¢, then
for a fixed agent policy m, the n adversaries are playing a
Markov game. In this case, only the Nash equilibrium exists
among n adversaries, but optimal adversary policy may not
exist. Therefore, for non-collaborative games, the worst-
case expected state value is not well-defined. Even though
the worst-case expected state value is not well-defined for
non-collaborative games, the experiment results of the com-
petitive games and mixed-cooperative-competitive game en-
vironments in Table 1 also show that our RMA3C algorithm
can get larger mean episode rewards in non-collaborative
games under adversarial state perturbations. Hence, our
RMAS3C algorithm can increase the robustness of policies
of non-collaborative games in empirical experiments. We
leave the formal analysis of the non-collaborative games as
future work.

