One Does Not Simply Estimate State: Comparing
Model-based and Model-free Reinforcement Learning
on the Partially Observable MordorHike Benchmark

Sai Prasanna André Biedenkapp* Raghu Rajan*
{ramans, biedenka, rajanr} @cs.uni-freiburg.de
University of Freiburg

Abstract

Evaluating reinforcement learning agents on partially observable Markov decision
processes remains lacking as common benchmarks often do not require complex
state estimation under non-linear dynamics and noise. We introduce MordorHike,
a benchmark suite for rigorous state estimation testing, revealing performance
gaps which would not be possible on other benchmarks. We present an evaluation
framework assessing task performance and state estimation quality via probing.
Using this framework, we empirically compare model-based (Dreamer, R2I) and
model-free (DRQN) agents for sophisticated state estimation. The analysis reveals
that Dreamer excels in sample efficiency and achieves superior performance in the
hardest setting while R2I underperforms, suggesting its linear recurrent architecture
may be a bottleneck. Further analysis reveals links between state estimation quality
and task performance. Finally, out-of-distribution analysis shows a generalization
gap for all algorithms, although Dreamer maintains an edge in the most challenging
setting. The results highlight the need for robust state estimation and the need for
proper evaluation benchmarks while validating the usefulness of MordorHike for
future POMDP research.

1 Introduction

Learning optimal agents in partially observable Markov decision processes (POMDPs) [Astrom,
1963 is a significant challenge. In POMDPs, agents perceive the world through noisy and/or
incomplete sensors and must estimate the true state from a history of observations and actions to act
optimally [Kaelbling et al., [1998]]. This history is often compressed into a belief representation by a
recursive state estimator, typically using recurrent neural networks (RNNs) [Ni et al., [2021]).

While existing benchmarks like POPGym [Pasukonis et al., [2022] and MemoryMaze [Morad et al.,
2023]] have advanced partially observable RL evaluation, they fall short in testing sophisticated
non-linear belief filtering under uncertainty. POPGym focuses on computational efficiency to test
various different memorization strategies providing mostly small-scale memorization tasks, whereas
MemoryMaze was designed to evaluate long-term memory through spatial navigation tasks. In
contrast, we introduce MordorHike — an extension of the MountainHike environment [Igl et al.|
2018}, |ILambrechts et al.,|2022], a POMDP benchmark specifically designed to require sophisticated
state estimation. The tasks in MordorHike feature persistent multi-modality in the true belief state,
preventing simple state recovery strategies such as memorization. Successful solution strategies will
thus likely require non-linear filtering approaches which are critical in many real world applications,
ranging from underwater robotics navigation in ocean currents [Petillot et al., 2019 to legged robots
handling terrain uncertainty due to unreliable sensors [Lee et al.,[2024]]. MordorHike isolates the
challenge of state estimation by minimizing confounding factors like high-dimensional inputs or

*Equal contribution.

18th European Workshop on Reinforcement Learning (EWRL 2025).



long-horizon credit assignment and provides oracle belief states for evaluation of belief filtering via
probing. Thus, our benchmark fills a crucial gap in the POMDP landscape.

An emerging, interesting area of research has been whether we need non-linear recurrence for state
tracking, with work challenging the usefulness of linear RNNs [Merrill et al., [2024]]. To highlight
the utility of our benchmark, we shed light on this topic by comparing approaches using linear and
non-linear RNNs.

Lastly, previous work has largely focused on model-free RL for POMDPs [Hausknecht and Stonel
2015, Zhu et al., 2018| [Lambrechts et al., [2022]]. We analyze such approaches for model-based RL
(MBRL) and model-free RL (MFRL), with an additional advantage of MBRL being an explicit world
model which allows more interpretability into the kinds of state estimation being performed.

Our experiments provide a targeted evaluation of learning objectives and architectures for complex
state estimation in POMDPs, offering insights for developing robust agents for real-world scenarios.
Our main contributions are: (1) investigating MBRL (Dreamer [Hafner et al. |2023] (non-linear
recurrence) and R2I [[Samsami et al., 2024] (linear recurrence)) and MFRL (DRQN [Hausknecht
and Stone}, 2015, |Zhu et al., 2018]]) approaches to analyze performance and sample efficiency across
varying state estimation difficulties; (2) analyzing state estimation performance and studying its
correlation with task performance; (3) analyzing out-of-distribution generalization. The code for all
our experiments is available at github.com/sai-prasanna/mordorhike.

2 Related Work

Reinforcement learning (RL) in partially observable Markov decision processes (POMDPs) often
critically hinges on effective state estimation [Sondik} [1978| Monahan| |1982] |[Kaelbling et al., [199§].
Existing POMDP benchmarks often have limitations for focused state estimation research. Some,
like Atari [Mnih et al.| [2013]], become near fully observable with simple frame stacking [Mnih et al.,
2013]]. Others are computationally prohibitive or confounded by factors beyond state estimation
[Vinyals et al.,[2019]. Benchmarks like Memory Maze [PaSukonis et al.,2022] and POPGym [Morad
et al.| 2023 primarily test memory or information retrieval rather than continuous, non-linear belief
filtering under uncertainty. MordorHike fills this gap by demanding sophisticated state estimation
from low-dimensional, noisy observations leading to persistent multi-modal beliefs, and uniquely
provides oracle belief states for direct evaluation.

As mentioned, our work builds on previous work evaluating MFRL for POMDPs [Hausknecht and;
Stonel 2015, Zhu et al.| 2018}, |[Lambrechts et al., 2022]] by evaluating state-of-the-art MBRL agents
with explicit world models that lend themselves better to the kind of probing analysis we employ.

We focus on latent state models like Dreamer [Hafner et al., |2023|], which uses non-linear recurrence
(GRU [Cho et al.l [2014]), and Recall-to-Imagine (R2I) [Samsami et al., 2024]], featuring a linear
recurrent architecture (S4 [Gu et al., [2022]]). This architectural distinction is important to gain a
deeper understanding of potential limitations of linear recurrence in complex state tracking [Merrill
et al.,[2024]], which MordorHike is designed to test.

3 Background

POMDPs We define a POMDP as (S, A, O, R, T, O, p(so), ), representing state, action, and ob-
servation spaces, reward, transition, and observation models, initial state distribution, and discount
factor, respectively [Kaelbling et al.| [1998|. At each timestep ¢, an agent takes action a; leading
to state sg11 ~ T(S¢+1]8¢, at), observation oy ~ O(0¢4+1|St+1,a:) and reward ;1. The agent’s
objective is to maximize the cumulative discounted future reward.

Belief state and Policy: The agent maintains a belief state b;(s), a posterior over states given history,
updated via Bayesian filtering: b;11(s") o< O(o441|s") [ T(s|s, a;)bi(s)ds. This integral is often
intractable, necessitating approximations like particle filters which use weighted samples to represent
bi(s) [Gustafsson, [2013||. RL agents for POMDPs learn a policy m(a;|o<;, a<;) by typically using a
state estimator fy (e.g., an RNN) to map a history to a belief representation by = fg(bi—1, 0r, at—1),
which then conditions the policy g (a:|b;). Model-free methods, such as DRQN, learn fy implicitly
via the policy or value learning objective, while model-based methods (e.g., Dreamer or R2I) learn
fo explicitly by modeling environment dynamics and observation/reward predictions.


https://github.com/sai-prasanna/mordorhike

@® Start
@® Goal

(a) Top-down view with contour lines showing (b) 3D visualization of the terrain with altitude repre-
altitude. sented as height.

Figure 1: MordorHike environment visualization. The agent navigates a terrain to reach a goal
position. The red dot indicates the start position and the blue dot indicates the center of the goal
position. The small line protruding from the red dot signifies the discretized orientation of the agent.
Partial observability arises from noisy and indirect observations.

4 MordorHike Benchmark

MordorHik(ﬂ is a benchmark designed to isolate and test an agent’s ability to infer its latent state.
It consists of one environment with different variations designed to make it progressively difficult.
In line with the MountainHike environment Lambrechts et al|[2022], [TgI et al.| [2018]], an agent has
to navigate a mountainous landscape, depicted in Figure[I} to reach a peak by making decisions
in the presence of noisy and indirect observations. The agent’s state comprises its continuous 2D
position (z,y) on a map and its discrete orientation 6 (e.g., North, East, South, West). The agent
observes the state through noisy (Gaussian) altitude readings, h(s) + €, where s = (z,y,0), and
does not directly have access to s The altitude h(s) is the maximum of a mixture of three Gaussians
over the 2D coordinates (z,y). The terrain (Gaussian mixture) parameters remain fixed across all
episodes to ensure consistent evaluation. The agent can either only translate or translate and rotate
depending on the current environment’s difficulty. The result of taking an action is also subject to
Gaussian noise in the (z, y)—space but not in the —space, i.e., translations are noisy and rotations
are deterministic. The movements are clipped to stay within the map boundaries. Translation moves
the agent 1 fixed step at a time after which the noise is applied. Altitude does not affect the agent’s
movement capability. The agent moves freely in the 2D (x, y)—space with altitude serving only as
an indirect position sensor. As such, the altitude can be seen as a proxy reading of the (z, y) position
of the agent and since multiple (x, y)s correspond to the same altitude, estimating the true underlying
state from the observations is challenging.

The agent receives a dense reward at each step, which is the negative of its current altitude relative to
the highest point (the goal); thus, higher altitudes yield better rewards. When the agent successfully
navigates to a designated goal region around the peak defined by the altitude, the agent the episode
terminates with the agent receiving zero reward. The negative rewards everywhere but the goal
region ensure that the reward maximization objective encourages the agent to reach the goal as fast as
possible.

'The name is inspired by the fictional region of Mordor from The Lord of the Rings. Just as Mordor makes
navigation difficult for the Hobbits, our benchmark presents a significant navigational challenge to RL agents.



4.1 Environment Variations: Difficulty Progression

Three difficulty levels systematically increase the challenge of state estimation by modifying elements
of the underlying MDP (specifically, the action set .A and the initial state distribution p(sg) concerning
orientation). The easier settings are also present in MountainHike. The three difficulty settings are:

Easy: The initial orientation of the agent is fixed (0°) and the action space includes only translation
(forward, backward, left, right). Resulting POMDP Challenge: Estimate (z,y) position knowing
the fixed orientation. Primarily involves filtering noisy altitude observations while accounting for
stochastic transitions.

Medium: The initial orientation is random (uniform over {0°,90°,180°,270°}) and the action
space is the same as for the easy setting (translation only). Resulting POMDP Challenge: Estimate
(z,y) and infer the unknown but fixed initial orientation 6. Requires using sequences of ambiguous
observations to disambiguate the initial orientation, adding complexity to belief tracking.

Hard: The initial orientation is random and the action space includes both translation and rotation
actions (rotate left, rotate right) in addition to the translation actions from easier settings. Importantly,
in the hard setting, the translation actions are relative to the current orientation (forward moves in the
direction the agent is facing), making rotation actions non-redundant as they change the reference
frame for subsequent movements. Resulting POMDP Challenge: Estimate (z,y) while simultane-
ously tracking the changing orientation 6, starting from an unknown 6. Requires disentangling
altitude changes caused by noisy observations, stochastic translations (dependent on current 6;), and
deterministic rotations (which change 6,). This is the most complex belief tracking scenario for
MordorHike.

4.2 Formal POMDP Description

The MordorHike environment is a Partially Observable Markov Decision Process (POMDP). The
underlying Markov Decision Process (MDP) is defined by the tuple (S,.A, T, R, p(so),y), where v
is the discount factor (set to 0.99 in our experiments).

State Space (S). The state s; = (x4, yt, 0:) at timestep ¢ includes the agent’s continuous 2D position
(z¢,yt) € [-1,1] x [—1,1] and its discrete orientation 8; € {0°,90°,180°,270°}.

Action Space (A). The agent selects actions from a discrete set .A. The specific actions available
depend on the difficulty level (see Section [d.T)) but generally involve either translations (moving
forward, backward, left, or right relative to 6;) or rotations (changing 6; by +90°). For example,
in the "easy” and "medium’ settings, A = {forward, backward, left, right}, and in the "hard’ setting,
A = {forward, backward, rotate left, rotate right}. Each translation step is a fixed distance (e.g., 0.1
units).

Initial State Distribution (p(so)). The agent’s starting 2D position (zo, yo) is fixed at (—0.8, —0.8).
The initial orientation 6y depends on the difficulty level:

1 if § = 0° (Easy difficulty)
p(so = ((—0.8,—0.8),0)) =< 1/4 if 6 € {0°,90°,180°,270°} (Medium, Hard difficulties)
0 otherwise
“.1)

Transition Dynamics (7'(s¢+1]|s¢, a¢)). The next state s;41 is sampled from the transition distribution
T. Given the current state s; = (x4, Y, 0¢) and action a;, the environment transitions stochastically
as follows: Let (AZntended, AYintended) be the intended position change based on a; and 6;, and
Ab;ntendeq e the intended orientation change. Noise is added to the position update:

Tiy1 = clip(zy + ATintended + €z, —1,1) (4.2)
Yt+1 = Clip(yt + Ayintended + €y, _17 1) (43)
0,5_;,.1 = (9t =+ Aeintended) HlOd 3600 (44)

where €, €, ~ N (0, 0%) are independent Gaussian noise variables with o = 0.05. Movement is
clipped to the map boundaries [—1,1] x [—1, 1]. Orientation changes are deterministic given the
chosen rotation action.



Reward Model (R(7441|St41,a+)). A deterministic reward 7,1 is received after transitioning into
state sy11. It is based on the agent’s altitude h(s;1) relative to the goal peak (defined by a specific
terrain function):

Tt4+1 = h(5t+1) 4.5)

The function h(s) is designed such that h(s) = 0 at the goal peak (e.g., at position (0.8,0.8)) and is
negative elsewhere on the map.

Termination. An episode ends if the agent enters the goal region, defined as a circle of radius 0.2
around the goal peak position:

V(@1 —0.8)2 + (41 — 0.8)2 < 0.2
Episodes also terminate after a maximum number of steps (e.g., 200).

(4.6)

Observation Space (O). At each step ¢ + 1, after transitioning to state s¢41, the agent receives a
scalar observation 0.1 from a continuous space O C R.

Observation Model (O(0;+1|st+1,a:)). The observation is the true altitude h(s;41) at the agent’s
position in state sy, corrupted by Gaussian noise:

Ot41 ~ O('|St+17at) = N(h(8t+1),0%) (47)

This means 0;11 = h(st41) + €, Where €, ~ N(0,02) with 0o = 0.1. The agent does not observe
its (x, y) coordinates or its orientation 6 directly.

4.3 Oracle Belief States

Importantly, to advance research on state estima-
tion capabilities and belief representation, our
environment distinctively offers access to approx-
imate oracle belief states via particle filtering.
Refer to Appendix [A] for a description of how
particle filtering is done when we have Oracle ac-
cess to the POMDP structure. Figure 2] shows an
example of particle filtering in the MordorHike
medium difficulty.

4.4 The Challenge of MordorHike

MordorHike specifically tests belief filtering un-
der key technical challenges that distinguish it
from existing memory-focused POMDP bench-
marks:

Figure 2: Example particle filter visualization in
MordorHike. Orange dots with protruding lines
represent particles forming samples from the be-

Persistent Multi-modal Beliefs.
The  altitude  function  A(s) =
max(Gaussian; , Gaussiang, Gaussiang) cre-

ates observational ambiguity where multiple
(x,y) positions yield identical readings. As
Figure [2| shows, this leads to persistent multi-
modal beliefs that prevent simple memorization
strategies. Learning to Approximate Bayes
Filtering. Neural agents must learn to mimic
Bayesian belief updates without knowing true
dynamics. With both transition noise and obser-
vation noise, agents cannot trust observations
blindly but must learn to weight them against
historical evidence, discovering that identical
altitude readings can correspond to different
locations.

lief distribution over possible agent positions and
orientations. White contour lines show the terrain
elevation. The red dot indicates the agent’s true
position, the small line shows its orientation and
the blue dot shows the goal. Note the multi-modal
nature of the belief distribution, with particles
clustered in multiple locations despite using the
true dynamics and observation models, demon-
strating the inherent ambiguity of state estimation
in MordorHike.

This focus on learning sophisticated probabilistic filtering under persistent uncertainty positions dis-
tinguishes MordorHike from other memory-focused environments like POPGym and MemoryMaze.



5 Experiments

In this section, we present our experimental evaluation of three reinforcement learning algorithms
across the MordorHike environments. We describe our training setup and evaluation protocol
and present results addressing various research questions. Our evaluation goes beyond standard
performance metrics to assess the quality of belief state representations and their generalization to
out-of-distribution scenarios.

5.1 Algorithms and Training Procedures

We evaluate three RL algorithms with distinct approaches to state estimation in POMDPs. Each must
learn a state estimator to form a belief representation from history and a policy that maps these beliefs
to actions.

Model-based Approaches: These methods learn an explicit world model. We study latent state
models where the learned representations are shared with the policy. Dreamer [Hafner et al.,
2023]] learns a generative world model using a Recurrent State Space Model (RSSM). Its belief
representation combines a deterministic state h; from a GRU and a stochastic latent state z;, learned
via variational inference to predict future observations and rewards. Policy learning occurs via
actor-critic methods in the learned latent space. Recall to Imagine (R2I) [Samsami et al., | 2024]] adapts
Dreamer’s RSSM framework but replaces the GRU with a linear recurrent architecture (S4 model
[Gu et al.| [2022]]) and uses a non-recurrent posterior for z; based only on the current observation o, to
enable parallelization. Contrasting these methods allows us to investigate if linear recurrence limits
complex state estimation. Model-free Approach: DRON [Hausknecht and Stonel 2015} Zhu et al.|
2018]| learns belief representations implicitly. Following |[Lambrechts et al.| [[2022]], we use a GRU
to update a deterministic belief representation b; = fp(bi—1, 04, a;—1). This b, directly inputs to an
MLP estimating Q-values, optimizing fy end-to-end via temporal difference learning [Sutton and
Barto, [2018]).

Each algorithm is trained for 500 000 environment steps across three difficulty levels of MordorHike.
For each setting, we use five different random seeds. This differs from the evaluation protocol of
Lambrechts et al|[2022], where they evaluate over 10 000 episodes, which can have a differing
number of environment steps and may be less accurate.

We performed hyperparameter tuning using random search with priors [Mallik et al.l [2023]] with
50 configurations per algorithm on the medium difficulty level, then applied the best configurations
across all difficulty levels. Details of the hyperparameters used are provided in the Appendix [B]

Throughout the training phase, we systematically record checkpoints for each model after every
100 000 steps taken in the environment. This results in the generation of five distinct checkpoints over
the course of an entire training session for each model. By evaluating the models at these specific
checkpoints, we obtain insights into the agents’ learning dynamics.

5.2 Evaluation

For each checkpoint of the RL agents saved during training, we collect 300 episodes by executing the
agent’s policy and recording the desired evaluation metrics and visualizations during these rollouts.

Task Performance For each episode we calculate the score. The score is the undiscounted sum of
rewards collected in an episode until truncation. We average the scores across episodes to get the
average score for a given checkpoint and seed. To summarize this average score across seeds, we
follow the recommendation of |Agarwal et al.|[2021]] and report the average scores’ Inter-Quartile
Mean (IQM).

Belief Representation Probing To directly assess the quality of learned belief representations (b;),
we employ linear probing. For each algorithm, we train a linear model to predict the approximate ora-
cle belief state from b;. The oracle belief states are approximated using a particle filter given the true
POMDP model, run on trajectories collected from the agent’s policy. These particle distributions are
discretized into a D, x Dy, x Dy grid (20 x 20 x 4) to serve as the target Py, for the linear probe. The
probe, f.;(b;), is then trained to minimize the average KL divergence £(¢)) = E[JKL(Pyye || fu(bt))
with early stopping on a held-out portion of the collected trajectories.



Environment True Belief Predicted Belief

= = = ———— === S====
Figure 3: Illustration of probing: In left plot, a particular timestep in the agent’s trajectory is
discretized. The discretized grid is used to marginalize over the particles of a particle filter that
employs the true POMDP model which gives us the heatmap in the center plot illustrating the discrete
probability mass over the X and Y coordinates (we also marginalize the orientation for obtaining this
two-dimensional illustration). In the rightmost plot, a linear probe is used to predict this oracle belief
using the agent’s belief representation.

The quality of an agent’s belief representation is quantified by the average KL divergence on an unseen
test set of trajectories. Lower KL divergence (in nats) indicates that the agent’s internal representation
b, more effectively encodes the true belief state in a linearly decodable manner. Figure [3| provides an
overview of the process.

Generalization The state estimator of the baseline agents compresses the history of observations
and actions into a belief state representation. The training data is, however, dependent on the current
policy and this data distribution gets increasingly narrow as the policy converges to the optimal policy

[see also the discussion by; 2024].

As discussed previously, we can compute the optimal belief state using Bayes filtering or its approxi-
mation for any trajectory. In case the state estimator of our RL agents also learns some form of actual
Bayes filtering (implicitly or explicitly), it should be able to use the learned Bayes filter to generalize
and perform better on out-of-distribution (OOD) trajectories. To test this hypothesis, we generate
novel trajectories that the state estimator has not encountered during training. We take two different
approaches to generate such OOD trajectories.

1. Noisy Actions: Here, we employ random actions with a probability of 0.25 and the trained policy
with a probability of 0.75. This creates trajectories that differ from those seen by the state estimator
and the policy during training while remaining relatively close to on-policy trajectories. This allows
us to assess how well the belief state estimator and the policy generalize to novel situations that do
not deviate drastically from the training distribution.

2. Waypoint Navigation: While action noise can generate OOD trajectores, they can resemble
training trajectories as the policy potentially covers similar regions of the state space. To have even
lower overlap with the training distribution, we propose propose to sample waypoint sequences, in
our particular instantiation, each with three waypoints. The first two waypoints are sampled randomly
with a fixed distance (1 unit) apart, while the final waypoint is always at the center of the map. We use
an oracle state to derive an oracle action that guides the agent at each step to trace the path between
waypoints. This is necessary, due to the stochasticity of transitions in MordorHike. After reaching
the final waypoint, we let the agent follow its learnt policy. We sample 30 such waypoint sequences
which are fixed across all tasks and algorithms to make the OOD trajectories comparable. We collect
10 episodes per waypoint sequence, which leads to 300 episodes per algorithm and difficulty level.

5.3 Results

In this section, we answer the following three research questions: How do our approaches comprising
of different objectives (model-based vs model-free) and architectures (GRU vs S4) compare in the
three levels of MordorHike (easy/medium/hard) in terms of



1. Final performance and sample efficiency.
2. Estimating the true belief, and if this correlates with task performance.

3. Generalizing to out-of-distribution trajectories.

5.3.1 Task Performance

Table 1: Consolidated average score comparison (IQM across seeds) across in-distribution, action
noise out-of-distribution (OOD), and waypoint OOD conditions, and difficulty levels. The agent is
evaluated at 500 000 steps. Higher values are better.

In-distribution Action noise OOD Waypoint OOD
Algorithm | Easy Medium Hard Easy Medium Hard Easy Medium Hard

-38.68  -65.81 -76.77

Dreamer -15.18 -28.51 -28.32 | -24.96 -52.44 -80.07
R21 -27.97 -73.11 -110.51 | -29.91 -82.22 -116.78 | -40.88 -81.90 -100.61
DRQN -15.18 -29.09 -109.77 | -23.04 -40.61 -118.79 | -35.20 -59.58 -106.11

Easy Medium Hard

Average Score
|
©
(=]

e t——

100k 200k 300k 400k 500k 100k 200k 300k 400k 500k 100k 200k 300k 400k 500k
Steps —e— Dreamer R2I  —— DRQN

Figure 4: In-distribution Performance evaluation of the RL algorithms across difficulty levels.
We evaluate the agent at each 100000 environment step by averaging scores over 300 episode
rollouts. Lines show IQM of the average scores across five seeds, with shaded regions indicating
95%-confidence intervals computed using bootstrap sampling. Higher scores are better.

The results for final performance (Table@ show that model-free (DRQN) and model-based (Dreamer)
approaches perform similarly in settings with simpler partial observability challenges (easy and
medium). However, as the challenge increases in the hard setting, only the non-linear world model
approach (Dreamer) maintains performance while DRQN fails to learn effectively. R2I underperforms
across all settings despite sharing the world modelling objective with Dreamer, suggesting that
architectural choices (linear vs non-linear recurrence) significantly impact performance beyond
learning objectives. In terms of sample efficiency (Figure[), Dreamer is consistently strong within
100 000 steps across all levels and superior to DRQN.

We present an additional metric of interest, specifically the success rate which quantifies the proportion
of instances where the objective is achieved within the specified truncation timeframe. Detailed
outcomes are consistent with the analysis presented here and are provided in Appendix [C.T]

5.3.2 State Estimation Quality

For linear probing, if we look at the results for on-policy trajectories in Table [2] (in-distribution
column) and progress during training in Figure[5] we observe that DRQN performs the best followed
closely by Dreamer in the easy and medium settings, while R2I significantly lags behind. However, in
the hardest setting Dreamer once again significantly outperforms both DRQN and R2I. These results
also point to a clear correlation in the state estimation performance judged by the KL-divergence
and the final performance. While Dreamer’s superior performance in the hard setting aligns with
its significantly better state estimation, interestingly, Dreamer’s state estimation quality in the hard
setting is better than even in the medium setting and merits further investigation.



Table 2: Consolidated KL divergence comparison (IQM across seeds) for in-distribution, Action
noise OOD, and Waypoint OOD evaluations across difficulty levels. The agent is evaluated at 500 000
steps. Lower values indicate better state estimation.

In-distribution Action noise OOD Waypoint OOD

Algorithm | Easy Medium Hard | Easy Medium Hard | Easy Medium Hard
Dreamer 0.410 0.904 0.689 | 0.732 1.537 2.173 | 1.124 2.159 2.390
R21I 0.685 1.838 2.955 | 1.000 2.521 3.074 | 1.304 2.757 3.351
DRQN 0.370 0.838 2.528 | 0.641 1.270 2.853 | 0.925 1.979 2.864
Easy Medium Hard

g3

g
§1 >:>-¢=\¢_<‘ \.—_ﬁ\‘

z

100k 200k 300k 400k 500k 100k 200k 300k 400k 500k 100k 200k 300k 400k 500k
Steps —e— Dreamer R2I —=— DRQN

Figure 5: In-distribution KL divergence between predicted and true belief distributions across
difficulty levels. At each 100 000 environment step, we evaluate the agent by averaging per-step KL
divergence within each episode, then averaging these episodic means across 300 episodes. Lines
show IQM of the average scores across five seeds, with shaded regions indicating 95%-confidence
intervals computed using bootstrap sampling. Lower values are better.

5.3.3 Generalization

We report the generalization of the policy Table [I] and state estimation Table [2] to the two OOD
settings. While we focus on the final agent’s numbers in the table here, we report the scores and state
estimation quality throughout training with learning curve plots in Appendices [C.2]and [C.3]

All algorithms show performance degradation in the OOD settings. As for the state estimation in the
previous sub-section, DRQN generalizes best in the easy and medium settings with Dreamer close
behind and R2I lagging behind. However, once again, Dreamer shows its advantages in the hard
setting outperforming the others by a significant margin — this despite also suffering a large drop in
performance in this setting.

The KL-divergence values follow similar patterns, with all approaches showing substantial increases
in OOD settings. DRQN maintains the lowest KL divergence in easy and medium settings, while
Dreamer maintains an advantage in the hard setting despite its substantial degradation.

These results reveal an important trade-off: DRQN exhibits better relative generalization in simpler
environments with smaller performance drops from in-distribution to OOD settings. However, despite
experiencing more significant absolute performance drops in the hard setting (from -28 to -80),
Dreamer still maintains significantly better absolute performance than its competitors.

The important takeaways from these experiments are the following:

Correlation with belief quality: Lower KL divergence consistently correlates with better absolute
performance across all settings and algorithms.

All approaches struggle with distribution shift: Every approach shows substantial degradation
when faced with OOD trajectories, highlighting the challenging nature of generalization in POMDP
environments.

Relative vs. absolute generalization: DRQN shows better relative generalization (smaller per-
formance drops) in easy/medium settings. At the same time, Dreamer maintains better absolute
performance in the most complex setting despite more significant drops.



These findings suggest that no approach has fully solved the generalization challenge in complex
POMDPs, with all algorithms struggling to maintain consistent performance across different trajectory
distributions.

5.4 Discussion

Our empirical findings revealed some unexpected patterns that warrant a more extensive examination.
Notably, DRQN demonstrated superior generalizability in less complex scenarios when juxtaposed
with MBRL methods. Additionally, there was a considerable disparity in the performance levels of
R2I across all tested conditions.

The Impact of Exploration Strategies on Generalization We posit that the superior relative
generalization ability of the DRQN in easy and medium settings may be attributed to its application
of epsilon-greedy exploration during the training phase. This exploration strategy inherently subjects
the agent to a more diverse set of trajectories, thereby potentially enhancing its resilience to action
noise and waypoint navigation challenges. Conversely, Dreamer’s entropy-regularized policy might
lack sufficient exploration capability, resulting in a more fragile state estimation.

We further propose that, in the most challenging setting, where the agent is required to manage
its orientation as well, the epsilon-greedy exploration may induce excessive erratic trajectories.
Consequently, the DRQN agent may struggle to meaningfully learn from the exploration patterns in
this setting, complicating the estimation of the belief state.

Understanding R2I’s Underperformance Dreamer and R21I show striking performance differences
despite a shared world modelling objective, which is surprising given R2I’s success in environments
from POPGym/MemoryMaze [[Samsami et al., 2024]. We speculate two reasons for this disparity:
1. Non-recurrent posterior R2I’s posterior depends only on the current observation to allow for
parallelization. While this might work for memory tasks, our task which needs recursive Bayes-like
updates, may require a recursive posterior dependent on prior belief. This could be crucial for
real-world noisy sensor applications.

2. Limitations of Linear RNNs Merrill et al.|[2024] show limitations of linear RNNs (like S4) without
sequence non-linearity in state-tracking tasks, where S4 fails to generalize beyond the training length.
We speculate that state estimation under stochasticity without supervision may demand similar
generalization, which S4 (even trained sequentially) might fail to provide. Our findings might be
initial evidence that parallelizable architectures like S4, despite computational benefits, may fail in
certain kinds of POMDPs.

6 Conclusions and Future Work

We introduced MordorHike, a benchmark that provides ground-truth estimates for rigorous POMDP
state estimation evaluation, comparing model-based (Dreamer, R2I) and model-free (DRQN) RL.
Overall, Dreamer showed superior sample efficiency and performance in complex state estimation
while R2I’s underperformance suggests its linear recurrent architecture may be a bottleneck. We
also showed links between belief representation quality (via linear probing) and task performance.
MordorHike emphasizes state estimation capabilities whereas other existing benchmarks are memory-
focused. Finally, our out-of-distribution generalization analysis revealed performance gaps, though
Dreamer maintained the best absolute performance under the most significant distributional shifts.

Future work includes: (1) Developing robust architectures and advanced variational inference for
better estimation and generalization (e.g., modern sequence models, structured particle filtering).
(2) Taxonomizing POMDP challenges (belief filtering vs. memory retention) to guide algorithm
development. (3) Creating better POMDP exploration mechanisms for robust state estimators. Our
work advances understanding of state estimation in complex POMDPs, highlights limits, and offers
MordorHike as a tool for progress.

10



Acknowledgments

The authors acknowledge funding through the research network “Responsive and Scalable Learning
for Robots Assisting Humans” (ReScal.e) of the University of Freiburg. The ReScale project is
funded by the Carl Zeiss Foundation. Sai Prasanna also acknowledges funding by the Konrad Zuse
School of Excellence in Learning and Intelligent Systems (ELIZA) scholarship.

References

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron Courville, and Marc G Bellemare.
Deep reinforcement learning at the edge of the statistical precipice. Advances in Neural Information
Processing Systems, 2021.

Karl Johan Astrém. Optimal control of markov processes with incomplete state information i. Journal
of mathematical analysis and applications, 10:174-205, 1965.

Kyunghyun Cho, B. V. Merrienboer, Caglar Giilgehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-decoder for

statistical machine translation. Conference on Empirical Methods in Natural Language Processing,
2014. doi: 10.3115/v1/D14-1179.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces. In The International Conference on Learning Representations (ICLR), 2022.

F. Gustafsson. Particle filters. Encyclopedia of Systems and Control, 2013. doi: 10.3150/12-BEJSPO7.

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains
through world models. arXiv preprint arXiv: 2301.04104, 2023.

Matthew J. Hausknecht and P. Stone. Deep recurrent g-learning for partially observable mdps. AAAI
Fall Symposia, 2015.

Maximilian Igl, Luisa Zintgraf, Tuan Anh Le, Frank Wood, and Shimon Whiteson. Deep variational
reinforcement learning for POMDPs. In Jennifer Dy and Andreas Krause, editors, Proceedings of
the 35th International Conference on Machine Learning, volume 80 of Proceedings of Machine
Learning Research, pages 2117-2126. PMLR, 10-15 Jul 2018.

Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. Planning and acting in
partially observable stochastic domains. Artif. Intell., 101:99-134, 1998.

Rudolph Emil Kalman and Others. A new approach to linear filtering and prediction problems.
Journal of basic Engineering, 82(1):35-45, 1960.

Gaspard Lambrechts, Adrien Bolland, and D. Ernst. Recurrent networks, hidden states and beliefs
in partially observable environments. Transactions on Machine Learning Research, 2022. doi:
10.48550/arXiv.2208.03520.

Joonho Lee, Marko Bjelonic, Alexander Reske, Lorenz Wellhausen, Takahiro Miki, and Marco
Hutter. Learning robust autonomous navigation and locomotion for wheeled-legged robots. Science
Robotics, 9(84), 2024.

Neeratyoy Mallik, Eddie Bergman, Carl Hvarfner, Danny Stoll, Maciej Janowski, Marius Lindauer,
Luigi Nardi, and Frank Hutter. Priorband: Practical hyperparameter optimization in the age of deep

learning. In Thirty-seventh Conference on Neural Information Processing Systems (NeurIPS’23),
2023.

William Merrill, Jackson Petty, and Ashish Sabharwal. The illusion of state in state-space models.
International Conference on Machine Learning, 2024. doi: 10.48550/arXiv.2404.08819.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan

Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv: 1312.5602, 2013.

11



George E. Monahan. A survey of Partially Observable Markov Decision Processes: Theory, models,
and algorithms. Management Science, 28(1):1-16, January 1982.

Steven D. Morad, Ryan Kortvelesy, Matteo Bettini, Stephan Liwicki, and Amanda Prorok. Popgym:
Benchmarking partially observable reinforcement learning. In The Eleventh International Confer-
ence on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net,
2023.

Tianwei Ni, Benjamin Eysenbach, and R. Salakhutdinov. Recurrent model-free rl can be a strong
baseline for many pomdps. International Conference on Machine Learning, 2021.

Jurgis Pasukonis, Timothy Lillicrap, and Danijar Hafner. Evaluating long-term memory in 3d mazes.
In International Conference on Learning Representations, 2022. doi: 10.48550/arXiv.2210.13383.

Yvan R. Petillot, Gianluca Antonelli, Giuseppe Casalino, and Fausto Ferreira. Underwater robots:
From remotely operated vehicles to intervention-autonomous underwater vehicles. IEEE Robotics
& Automation Magazine, 26(2):94-101, 2019. doi: 10.1109/MRA.2019.2908063.

Mohammad Reza Samsami, Artem Zholus, Janarthanan Rajendran, and Sarath Chandar. Master-
ing memory tasks with world models. In The Twelfth International Conference on Learning
Representations, 2024.

Edward J. Sondik. The optimal control of partially observable markov processes over the infinite
horizon: Discounted costs. Oper. Res., 26(2):282-304, 1978. doi: 10.1287/OPRE.26.2.282.

Miguel Suau, Matthijs T. J. Spaan, and Frans A. Oliehoek. Bad habits: Policy confounding and
out-of-trajectory generalization in RL. RLJ, 4:1711-1732, 2024.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. A Bradford
Book, Cambridge, MA, USA, 2018. ISBN 0262039249.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaél Mathieu, Andrew Dudzik, Junyoung
Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster level in
starcraft ii using multi-agent reinforcement learning. nature, 575(7782):350-354, 2019.

Pengfei Zhu, Xin Li, Pascal Poupart, and Guanghui Miao. On improving deep reinforcement learning
for pomdps. arXiv preprint arXiv: 1804.06309, 2018.

A Particle Filters

The belief state can be computed in closed form only in cases where the dynamics and observation
models belong to certain families of distributions, for example, Kalman filter [Kalman and Others,
1960] assumes that the transition and the observation distributions are gaussian. When this is not the
case, we must use approximate methods such as sequential Monte Carlo sampling or particle filters
[Gustafsson, [2013]].

Particle filters approximate the belief state b;(s) using a set of weighted particles {(s},w})} Y,
where s} represents the state of particle ¢ and wyj its normalized weight (3, w; = 1). The belief is
approximated as follows:

N
be(s) =~ szﬁ(s —sh) (A.D)
i=1

where § is the Dirac delta function. At each timestep, particles are propagated through the transition
model and reweighted based on the observation likelihood:

wi o< wi_,0(04]s%) (A2)

A resampling step is performed regularly to prevent particle degeneracy, where most particles end up
with near-zero weights. During resampling, particles with low weights are eliminated while particles
with high weights are duplicated, maintaining a fixed number of particles /V. This process creates an
unweighted particle set that better represents the high-probability regions of the belief state.

12



B Hyperparameters

We performed hyperparameter tuning using random search with a budget of 50 configurations
for all approaches (DRQN, Dreamer, R2I) on the medium-difficulty environment. Due to limited
computational resources, we used the best hyperparameters found for the medium environment across
all difficulty levels (easy, medium, and hard). This hyperparameter tuning process led to significant
performance improvements, particularly for DRQN in the medium environment.

The following subsections detail the final hyperparameters used for each algorithm and the linear
probe.

B.1 DRQN

We choose all the default hyperparameters from Samsami et al.|[2024] and modify the following.

Name Value
Batch size 126
Train interval 35 (environment steps)
Target Network Update interval 280 (environment steps)
Updates per Train step 8
€ exploration factor 0.249
GRU Hidden Units 54
GRU Layers 2
Gradient Steps 23
Learning rate 1.79 %1074

Table 3: DRQN hyperparameters. The same values are used across all experiments.

B.2 Dreamer

We choose the small variant of DreamerV3 with all hyperparameters taken from [Hafner et al.|[2023]]
and modify the following hyperparameters.

Name Value
General

Train ratio 262
Batch size 8
World Model

Deterministic State model (GRU) units 256
Hidden Size

MLP units 165
Number of latents 32
Classes per latent 11
Learning rate 2.3%10~%
Actor Critic

MLP units 165
Discount horizon 100
Learning rate 2.38 x 1074

Table 4: DreamerV3 tuned hyperparameters. The same values are used across all experiments.

B.3 R2I

We choose all the default hyperparameters from Samsami et al.|[2024] and modify the following.

13



Name Value

General

Train ratio 457
Batch size 4
World Model

Deterministic State model (S4) units 1024
Hidden Size 512
S4 Layers 4
MLP Layers 1
MLP units 165
Number of latents 32
Classes per latent 32
Learning rate 1.79 %1074
Actor Critic

MLP units 165
MLP Layers 1
Discount horizon 100
Learning rate 2.34 % 10~*

Table 5: R2I tuned hyperparameters. The same values are used across all experiments.

14



B.4 Linear Probe

The linear probe uses a single linear layer that maps the belief representation from different environ-
ments to the discretized belief state distribution with the output size of 1600 = (20 * 20 x 4). We save
the checkpoint with the best validation loss and use that to calculate the KL divergence on the test set.

Name Value
General

Epochs 300
Adam Learning Rate 3 x 1074
Batch Size 64

Table 6: Linear Probe Parameters

C Additional Results

C.1 Success Rate

In-distribution Action noise OOD Waypoint OOD
Algorithm | Easy Medium Hard Easy Medium Hard | Easy Medium Hard

90.4%  19.7%  92.2%

Dreamer 1000%  99.2%  100.0% | 97.3% 85.9%  71.7%
R21 54.3% 41.7% 5.8% 55.4% 39.8% 4.7% | 39.7% 36.4% 14.9%
DRQN 100.0%  98.7% 16.7% | 99.7%  97.9% 119% | 971%  83.3% 16.6%

Table 7: Final average success rate comparison (IQM across seeds) across different evaluation
conditions and difficulty levels. The agent is evaluated at the 500k steps. Higher values are better.

Easy Medium Hard
7

100k 200k 300k 400k 500k 100k 200k 300k 400k 500k 100k 200k 300k 400k 500k
Steps —e— Dreamer R2I  —— DRQN

Success Rate
I o o g
B (=2 (= o

e
N

—_—

o
o

Figure 6: In-Distribution Policy: Success Rate evaluation of the RL algorithms across difficulty
levels. We evaluate the agent at each 100k environment step by averaging scores over 300 episode
rollouts. Lines show IQM of the average scores across five seeds, with shaded regions indicating 95%
confidence intervals computed using bootstrap sampling. Higher scores are better.

15



Easy Medium Hard

-
o

:%

e
o

Success Rate
I
IS

©
N

]

o
=)

100k 200k 300k 400k 500k 100k 200k 300k 400k 500k 100k 200k 300k 400k 500k
Steps —e— Dreamer R2I —— DRQN

Figure 7: Noisy Policy: Success Rate evaluation of the RL algorithms across difficulty levels. We
evaluate the agent at each 100k environment step by averaging scores over 300 episode rollouts. Lines
show IQM of the average scores across five seeds, with shaded regions indicating 95% confidence
intervals computed using bootstrap sampling. Higher scores are better.

Easy Medium Hard

100k 200k 300k 400k 500k 100k 200k 300k 400k 500k 100k 200k 300k 400k 500k
Steps —e— Dreamer R2I  —— DRQN

o o =
o © o

e
IS

Success Rate

|

e
o

Figure 8: Waypoint Policy: Success Rate between predicted and true belief distributions across
difficulty levels. At each 100k environment step, we evaluate the agent by averaging per-step KL
divergence within each episode, then averaging these episodic means across 300 episodes. Lines
show IQM of the average scores across five seeds, with shaded regions indicating 95% confidence
intervals computed using bootstrap sampling. Lower values are better.

C.2 Noisy Actions

Easy Medium Hard
-20
———

o —40
]
S -60
&
@ -80
g
Zz -100

-120 -—

100k 200k 300k 400k 500k 100k 200k 300k 400k 500k 100k 200k 300k 400k 500k
Steps —e— Dreamer R21 —— DRQN

Figure 9: Noisy Policy: Average Score evaluation of the RL algorithms across difficulty levels. We
evaluate the agent at each 100k environment step by averaging scores over 300 episode rollouts. Lines
show IQM of the average scores across five seeds, with shaded regions indicating 95% confidence
intervals computed using bootstrap sampling. Higher scores are better.

C.3 Waypoint Navigation

16



Easy Medium Hard

><<:

w

N

——

Average KL Divergence
[

-—

lae————————— — ]

100k 200k 300k 400k 500k 100k 200k 300k 400k 500k 100k 200k 300k 400k 500k
Steps —e— Dreamer R2I —e— DRQN

Figure 10: Noisy Policy: KL divergence between the predicted and true belief distributions across
difficulty levels. At each 100k environment step, we evaluate the agent by averaging per-step KL
divergence within each episode, then averaging this across the episode and finally averaging the
episodic means across 300 episodes. Lines show IQM of the average scores across five seeds, with
shaded regions indicating 95% confidence intervals computed using bootstrap sampling. Lower
values are better.

Easy Medium Hard
-60 —
—80 0—/_.\0’.—/.

100k 200k 300k 400k 500k 100k 200k 300k 400k 500k 100k 200k 300k 400k 500k
Steps —e— Dreamer R2I  —— DRQN

Average Score

Figure 11: Waypoint Policy: Average Score evaluation of the RL algorithms across difficulty
levels. We evaluate the agent at each 100k environment step by averaging scores over 300 episode
rollouts. Lines show IQM of the average scores across five seeds, with shaded regions indicating 95%
confidence intervals computed using bootstrap sampling. Higher scores are better.

Easy Medium Hard

|

_ . _—

N

&

Average KL Divergence

100k 200k 300k 400k 500k 100k 200k 300k 400k 500k 100k 200k 300k 400k 500k
Steps —e— Dreamer R2I —e— DRQN

Figure 12: Waypoint Policy: KL divergence between predicted and true belief distributions across
difficulty levels. At each 100k environment step, we evaluate the agent by averaging per-step KL
divergence within each episode, then averaging these episodic means across 300 episodes. Lines
show IQM of the average scores across five seeds, with shaded regions indicating 95% confidence
intervals computed using bootstrap sampling. Lower values are better.

17



	Introduction
	Related Work
	Background
	MordorHike Benchmark
	Environment Variations: Difficulty Progression
	Formal POMDP Description
	Oracle Belief States
	The Challenge of MordorHike

	Experiments
	Algorithms and Training Procedures
	Evaluation
	Results
	Task Performance
	State Estimation Quality
	Generalization

	Discussion

	Conclusions and Future Work
	Particle Filters
	Hyperparameters
	DRQN
	Dreamer
	R2I
	Linear Probe

	Additional Results
	Success Rate
	Noisy Actions
	Waypoint Navigation


