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Abstract

Directed evolution has remarkably advanced protein engineering. However, these
experiments are typically seeded with a single sequence, and they are limited
by the amount of sequence space they can explore. Here, we aim to develop a
machine learning method that learns from the natural distribution of sequences to
design diverse seed sequences. We use Botulinum Neurotoxin X (BoNT/X) as a
proof of concept for this approach since there is published data on this evolution
campaign, and there are many therapeutic applications of neuron-specific proteases.
Additionally, BoNT/X is especially promising for this approach since related BoNT
proteases have specific substrate specificity, limiting the utility of simply drawing
from the natural sequences. We hypothesize that our machine learning model can
learn the ‘essence’ of the protein family and generate diverse substrate binding
domains. We built an alignment of 452 sequences around BoNT/X and show that
models trained on this data can separate known beneficial and deleterious mutations.
Next, we will use these models to generate sequences and perform new evolution
experiments. Finally, we will evaluate the impact of starting with a diverse set of
seed sequences versus only one seed sequence. This work will not only create new
proteases that can be used for therapeutic indications, but also puts forth a new
approach for machine-learning-guided evolution experiments.

1 Introduction

Designing novel proteins for any desired function is a long-standing goal of bioengineering. Towards
this end, there have been many advances in both high-throughput assays as well as computational
methods, and there is fruitful grounds for integrating these two research areas.

There are very few examples of using unsupervised machine learning to accelerate protein engineering.
For instance, training unsupervised models on natural sequences has created chorismate mutase
enzymes with enhanced natural functions [1], has deimmunized protein biotherapeutics [2], and has
generated nanobody libraries [3]. And on the other hand, most wetlab experiments do not include
machine learning at all. To build sequences with a desired phenotype, biologists have developed
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numerous high-throughput laboratory assays [4] spanning the gamut from classic directed evolution
[5, 6] to continuous evolution platforms such as Phage Assisted Continuous Evolution (PACE)[7]
and OrthoRep [8]. Some of the most challenging engineering objectives involve changing the
enzyme specificity or functional conditions, such as protease cleavage specificity [9] or increased
thermotolerance for plastic-eating enzymes [10, 11]. However, these experiments are labor-intensive
and as such can only access a limited amount of sequence space. No method exists that can learn
from natural sequence data to design custom, functionally diverse proteins.

Our innovation: Model-guided protein evolution
Here, we aim to learn the distribution of sequences that exist in nature to generate new highly
developable sequences with which to begin continuous evolution experiments. In this way, we will
increase the starting diversity of these experiments and traverse a greater sequence landscape.

Using BoNT/X as a proof of principle
As a proof of principle for this goal, we will diversify the substrate specificity of Botulinum Neuro-
toxin X (BoNT/X) with PACE. PACE is a type of directed evolution that connects phage survival
to a desired phenotype in a protein of interest. Starting with a single seed sequence, hundreds of
generations of phage infecting bacteria can be used to continuously evolve the protein of interest.
BoNT proteases have advantageous biology because their heavy chain naturally trafficks them to
neurons, and they have already shown impact in the clinic as a therapeutic medicine[12]. BoNT/X
is particularly interesting because of its natural substrate flexibility and initial work proving it can
be evolved to target novel substrates [9]. This research follows previously published work where
BoNT/X was evolved to cleave two novel substrates in a step-wise manner that required 20+ passages
[9].

Can we use machine learning to design and evolve neuron-specific proteases against any target? And,
can these models lead us into sequence space that is impossible to access through PACE alone?

Seeding PACE with sequences drawn from models trained on natural diversity may overcome several
of the system’s inherent limitations. Firstly, these experiments are very time intensive: they can take
6 months to 1 year from identifying the target to having a validated molecule of interest. Secondly,
each evolution campaign only explores a few sequential steps in sequence space around a starting
sequence, often resulting in (a) sequences being trapped in local minima and (b) not fully exploring
epistatic interactions with multiple mutations co-occurring. Thirdly, the task of changing substrate
specificity poses some unique additional challenges. Because changing the enzyme’s specificity is
quite difficult, there are intermediate ‘stepping stone’ substrates that the protease gets evolved to
cleave. In this way, rather than starting with WT and evolving against a new substrate directly, the
WT must go through several sequential cycles of PACE each with increasingly different substrates
[9]. All of these limits together create the perfect proof of principle application of integrating ML
into continuous evolution workflows. By using a range of designed sequences as starting points, we
increase the chances that they will avoid local minima traps and that sequences will accumulate more
potentially epistatic mutations. Theoretical work on sequence evolution demonstrates that less fit
amino acid substitutions can break sequences out of local minima to force more exploration [13]. We
hypothesize the diverse starting library will lead to an expedited evolution and obviate the need for
intermediate substrates.

Using deep evolutionary-informed ML models to design a starting library for continuous evolution
experiments, we will generate sequences from the natural distribution in order to change enzyme
specificity. The natural distribution contains proteases that can cleave a range of targets and the model
will subsequently learn the ‘essence’ of this protein family, agnostic to the specificity. Therefore, we
will use machine learning to create a highly evolvable starting set of sequences. We hypothesize that
more initial diversity will lead to more fit enzymes and that PACE will hone this library into new
candidate proteases.

2 Methods

Our approach is to build a multiple sequence alignment seeded with the BoNT/X light chain wild-type
sequence (UniProt ID: P0DPK1), train and validate several state-of-the-art machine learning models
for sequence data, use the best model to generate new sequences as launching points for the PACE
campaigns, and run PACE campaigns on a variety of targets.
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Figure 1: Heatmap of sequences in alignment. Orange indicates more diverse, less similar sequences
and purple indicates less diverse, more similar sequences.

2.1 Align

We built an evolutionary alignment from querying both the UniRef100 [14] and MGnify [15] databases
and compiled them into a single file and aligned the sequences using ClustalOmega [16]. In total,
we gathered 452 sequences that included all other BoNT serotypes A-G as well as corresponding
nontoxic-nonhemagglutinin (NTNH) anti-toxin proteins (Figure 1).

2.2 Train

Using the compiled alignment, we trained EVmutation [17], and EVE [18]. EV Mutation is a very
interpretable statistical model that can capture residue dependencies for all pairwise interactions across
the length of the protein. EVE is a deep generative variational autoencoder that learns the underlying
distribution of sequences in order to capture complex, higher-order dependencies. Tranception [19],
on the other hand, does not rely on an alignment, and it is a pre-trained autoregressive transformer
trained on the whole protein universe that has learned general principles of the protein language.

2.3 Validate

To validate each models’ performance, we predicted the fitness of 12 known advantageous mutations
from previously published work and 5 known deleterious mutations (H227, E228, H231, E266, C423)
[20] to either alanine or serine. While most of the beneficial mutations were observed in the context
of multi-mutation variants in experiments, we treated the impact of each mutation as independent to
avoid known issues with depth-dependency of fitness predictions in unsupervised sequence models.

3 Results

To see if our fitness predictions match what is known, we compared our set of variant predictions
with the full distributions of predicted fitness scores for all single amino acid substitutions (Figure
2). Both EVmutation and Tranception show a modest separation between predictions for beneficial
and harmful mutations while EVE shows a larger separation. We can see that some lab-validated
mutations are predicted to be very deleterious when scored as single mutants. As previously stated,
in the experiments, these mutations do not exist on their own. Most of these advantageous mutations
actually occur with other mutations present as well, and it is likely that some of these mutations work
in an epistatic manner that cannot be observed when scoring them as single mutations. We evaluated
significance with Welch’s t-test [21] since the variance of beneficial and deleterious mutations are
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Figure 2: Model Predictions. For all panels, light blue is the distribution of model predictions for all
possible single amino acid substitutions. Purple lines indicate previously published advantageous
mutations and orange lines indicate deleterious mutations. (A) EVmutation predictions. (B) EVE
predictions. (C) Tranception predictions.

Table 1: Summary of model performances

Mean predicted score

Model Advantageous Deleterious Difference P-value

EVmutation -3.1125 -7.4051 -4.2927 0.0000895
EVE -4.7903 -11.0292 -6.2390 0.0001346
Tranception -2.8051 -2.8126 -0.007512 0.0052515

not equal, but each roughly follow a normal distribution. All three differences appear significant.
Currently, EVE performs best with the experimental data and we can see a mostly clear separation of
beneficial and harmful mutations (Figure 2b).

4 Future work

As we add more validation data, either in the form of sequences with full sets of mutations or new
single mutants that are shown to work in the lab, we will continue evaluating model performance.
Then, we will generate new sequences using the best-performing model. If EVE continues to perform
the best, we can sample sequences from the latent space learned by the model [22], with some
biological constraints like not mutation the parts of BoNT/X that interact with the heavy chain. We
will verify biophysical properties of those sequences to ensure that qualities like hydrophobicity and
isoelectric point are indistinguishable from the natural distribution as is done in other protein design
work[3]. Because this protein family and the subsequent alignment is so diverse, we expect that
the generated sequences will form a library of highly diverse sequences. We will aim to generate
sequences that are 10-50 amino acids away from wild-type and that have a high mutation rate in the
substrate-binding residues and in areas previously known to have an impact in substrate specificity.
And importantly, we will enforce that our model does not generate mutations in the sites necessary to
bind the neuron-trafficking heavy domain. These properties will be computationally verified before
experiments begin.

We will design and build 100 novel proteins in the lab. We will run PACE campaigns on each
sequence against five novel protein substrates. In this way, each starting sequence will evolve in
five different directions resulting in 500 PACE experiments. Additionally, we will explore different
experimental approaches and pool all 100 sequences against each substrate to create a library-seeded
PACE experiment. And as a control, we will also evolve the wild-type BoNT/X against each of
the 5 novel substrates. We will take samples at various time points from each of these evolution
experiments and sequence the proteins as they evolve. Each evolved protease will be evaluated, as
previously described[9], for cleavage activity on the novel substrate as well as the canonical wild-type
substrate. These new proteases will be successful if they are able to cleave the new substrates and no
longer cleave the original substrate. Additionally, total diversity and number of unique mutations will
be evaluated in each of these PACE experiments to see if the starting library impacts the evolutionary
trajectory of the populations.
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5 Discussion

The research described in this paper implements machine learning into a new biological field and we
hypothesize it will carve a faster path to designing novel enzymes. By starting PACE at many diverse
seeds, we hope to capture multi-mutational interactions that the experiment would otherwise miss. Not
only will this research create novel proteases that will have impact in therapeutics and biotechnology,
but this new method also demonstrates the power of designing machine-learning-guided starting
points for evolution experiments.
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