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ABSTRACT

Masked autoencoders (MAEs) have emerged recently as art self-supervised spa-
tiotemporal representation learners. Inheriting from the image counterparts, how-
ever, existing video MAEs still focus largely on static appearance learning whilst
are limited in learning dynamic temporal information hence less effective for
video downstream tasks. To resolve this drawback, in this work we present a
motion-aware variant – MotionMAE. Apart from learning to reconstruct individ-
ual masked patches of video frames, our model is designed to additionally predict
the corresponding motion structure information over time. This motion informa-
tion is available at the temporal difference of nearby frames. As a result, our
model can extract effectively both static appearance and dynamic motion spon-
taneously, leading to superior spatiotemporal representation learning capability.
Extensive experiments show that our MotionMAE outperforms significantly both
supervised learning baseline and state-of-the-art MAE alternatives, under both
domain-specific and domain-generic pretraining-then-finetuning settings. In par-
ticular, when using ViT-B as the backbone our MotionMAE surpasses the prior
art model by a margin of 1.2% on Something-Something V2 and 3.2% on UCF101
in domain-specific pretraining setting. Encouragingly, it also surpasses the com-
peting MAEs by a large margin of over 3% on the challenging video object seg-
mentation task.

1 INTRODUCTION

Masked (denoising) autoencoding (MAE) (Vincent et al., 2010; 2008) has resurged as the state-of-
the-art self-supervised image representation learning approach (He et al., 2022; Atito et al., 2021;
Bao et al., 2021; Wei et al., 2022; Dosovitskiy et al., 2020; Li et al., 2021). This is inspired by the
remarkable success of BERT (Devlin et al., 2018) in natural language processing. The idea of MAE
is masked token/patch recovery within the Transformer framework (Vaswani et al., 2017). Exist-
ing image MAE models focus on visual tokenization Bao et al. (2021); Dong et al. (2021), token
masking strategy (Li et al., 2021; Atito et al., 2021), reconstruction target (Wei et al., 2022), and
architectural efficiency (He et al., 2022). Recently, MAE has been also applied to learn more chal-
lenging spatiotemporal representations from videos (Feichtenhofer et al., 2022; Tong et al., 2022;
Wang et al., 2022). Despite demonstrating strong downstream task performances, we conjugate that
these methods are still suboptimal in learning temporal structure information, since their learning
objective is largely limited to the reconstruction of individual tokens of video frames, resulting in an
over-challenging task of learning dynamic temporal information across frames.

To overcome the aforementioned limitation, in this work a simple yet superior video self-supervised
learning method, dubbed as MotionMAE, is introduced. Our idea is local motion reconstruction –
recovering the motion information corresponding to each masked frame patch. The target motion in-
formation is obtained by simply contrasting two temporally adjacent video frames (i.e., the temporal
difference of video frames). This is an intrinsic temporal ingredient of video data, in addition to the
spatial appearance of frame images. As illustrated in Fig. 1, the frame difference presents detailed
motion information of push-up over time. Specifically, given a training video clip, MotionMAE
randomly masks out a certain percentage (e.g., 90%) of patches per frame, and reconstructs both
masked frame patches for spacial appearance modeling and the corresponding motion structure for
temporal dynamics modeling concurrently. For computational efficiency, we adopt an asymmetric

1



Under review as a conference paper at ICLR 2023

(a)

(b)

(c)

(d)

Figure 1: Illustration of local motion information in video data. Whilst (a, c) every single video
frame provides rich appearance information, (b, d) their temporal difference gives additional dy-
namic motion knowledge over time. Intuitively, appearance and motion both are critical in learning
spatiotemporal representation for video understanding.

MAE architecture (He et al., 2022) based on vanilla Vision Transformers (ViTs) (Dosovitskiy et al.,
2020): The encoder operates only on visible patches and the decoder on all the patches.

In a nutshell, we propose a motion-aware MAE method, MotionMAE, for self-supervised spa-
tiotemporal representation learning from unlabeled videos. For extensive evaluation, we conduct
both domain-generic and domain-specific pretraining-then-finetuning paradigms. The results show
that our MotionMAE outperforms both supervised learning and alternative state-of-the-art MAE
designs on action classification, often by a large margin. In particular, MotionMAE achieves an
accuracy of 75.5% on Something-Something V2, 85.3% on Kinetics-400, and 94.0% on UCF101
under domain-specific pretraining setting. The performance advantage of our model remains on the
challenging Video Object Segmentation task with a margin of 3+% over the competing MAE models
on the DAVIS2017 benchmark.

2 RELATED WORK

Self-supervised learning of video representation Self-supervised learning (SSL) of visual rep-
resentation (He et al., 2020; Grill et al., 2020; Chen et al., 2020b; Caron et al., 2020) have ad-
vanced massive recently and demonstrated superior performance over previously dominant super-
vised learning (e.g., on ImageNet with exhaustive manual labeling). This opens up a door to achieve
ever stronger representations due to the availability of much larger volume of (even infinite) un-
labeled visual data from diverse sources. This inspires SSL for video data with extra temporal
dimension as compared to static images. In the literature, the previous waive of video SSL methods
rely on carefully designing time-related pretext tasks in three lines: (1) Predicting specific trans-
formations (e.g., rotation angle (Jing et al., 2018), playback speed (Benaim et al., 2020), temporal
order (Misra et al., 2016; Lee et al., 2017; Xu et al., 2019) and motion statistics (Wang et al., 2019));
(2) Predicting future frame (Han et al., 2019; 2020a); (3) Instance discrimination (Qian et al., 2021;
Wang et al., 2020; Chen et al., 2021). Usually, top-performing methods need to conduct strong and
diverse data augmentations, which brings about the notorious scalability bottleneck and learning
complexity. Also, the model performance is conditioned on a good number of tricks (e.g., feature
bank, data augmentation design).

Masked autoencoders With the increasingly wide adoption of Transformers (Vaswani et al.,
2017) in computer vision, masked autoencoders (MAEs) have recently emerged as a general SSL
framework (He et al., 2022; Bao et al., 2021; Radford et al., 2018). This is mostly inspired by the
success of BERT (Devlin et al., 2018) in a wide range of NLP downstream tasks. In general, it can
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be also regarded as a special pretext task. However, compared to most previous alternatives, MAEs
are not only simpler in design, but also stronger in representation learning.

Specifically, image MAE variants learn the representation by predicting the masked/unknown re-
gions from visible parts. For example, iGPT (Chen et al., 2020a) operates on sequences of pixels
and predicts unknown pixels. ViT (Dosovitskiy et al., 2020) predicts the mean colors of masked
patches. BEiT (Bao et al., 2021) further improves MAEs performance with masked visual token
prediction. PeCo (Dong et al., 2021) suggests to inject perceptual similarity during visual code-
book learning. Interestingly, MAE (He et al., 2022) demonstrates the strength of the straightforward
idea of image patch reconstruction, in addition to improving the pretraining efficiency by adopt-
ing high masking ratios and encoding only unmasked patches. Alternatively, MaskFeat (Wei et al.,
2022) leverages HOG (Dalal & Triggs, 2005) feature as the prediction target to yield strong visual
representation.

Very recently, MAE has been similarly applied for learning more challenging spatiotemporal repre-
sentations from videos. For example, by extending the BEiT pretraining paradigm, BEVT (Wang
et al., 2022) decouples masked SSL into spatial representation learning on images and temporal dy-
namics learning on both images and videos in a two-stage process. VideoMAE (Tong et al., 2022)
and MAE (Feichtenhofer et al., 2022) simply reconstruct masked spatiotemporal patches of each
video against even high masking ratios (e.g., 90%) and achieve strong performance on video down-
stream tasks. This result is encouraging and inspiring given their simplicity. However, we consider
that such straight inheriting from image MAEs would be limited in learning temporal structure in-
formation. This is because their learning objective tends to focus on reconstruction of individual
tokens of video frames, since leaving the model itself to derive the underlying implicit spatiotem-
poral representation is drastically challenging. To tackle this problem, we present a motion-aware
MAE that additionally predicts the corresponding motion structure information. The target motion
to be reconstructed is obtained by contrasting two temporally adjacent video frames (i.e., the tempo-
ral difference of video frames). Extensive experiments and analysis validate our proposed method.

3 METHOD

Our proposed MotionMAE adopts the asymmetric Transformer based masked autoencoder archi-
tecture (He et al., 2022), as depicted in Fig. 2. The objective is to pretrain a video representation
model in a self-supervised manner for facilitating downstream tasks such as action classification.
Next, we describe the details of our model architecture and pretraining.

Patch embedding We divide evenly an input video into a regular grid of non-overlapping space-
time patches (i.e., cubes) and perform cube embedding (Bertasius et al., 2021; Arnab et al., 2021).
This reduces the temporal resolution of video to suppress the redundancy degree over time. Learn-
able positional embeddings are applied via elementwise addition.

Patch masking We randomly mask the patches at each time point of a video clip at a fixed ratio.
Common masking strategies include random, space-only (i.e., tube), and time-only (masking the
whole frames selected). As video data present more redundancy than both text and image, setting a
higher masking ratio (e.g., 90%) is helpful.

Autoencoding We adopt a vanilla ViT (Dosovitskiy et al., 2020) as the encoder with space-time
joint attention. Following (He et al., 2022; Feichtenhofer et al., 2022), the encoder is applied only on
unmasked patches. This greatly reduces the time and memory complexity, leading to a more efficient
solution. The encoder can capture high-level spatiotemporal semantic information by interacting
patches of all frames.

Our decoder is another vanilla ViT deployed on the union of the encoded patch set and a set of mask
tokens (He et al., 2022). It consists of two heads in parallel: a space head to predict masked frame
patches, and a time head to predict the corresponding local motion structure. The motion target is
obtained by computing L1 difference of pixel values between two temporally nearby frames, which
encodes the short-term temporal dynamics information underlying across frames. This dynamics
information underlies along the time dimension which is complementary to the appearance informa-
tion of individual video frames. Our motivation is that by decomposing the two types of information
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Figure 2: Illustration of the proposed MotionMAE. (a) We randomly mask the patches of each
frame of a given video clip at a fixed ration. In pretraining, (b) an encoder operates on the set
of visible patches. (c) A time head and (d) a space head then processes the full set of encoded
patches and mask tokens to reconstruct (e) the masked frame patches and (f) the corresponding local
motion, concurrently. After pretraining, we discard the time head and space head then evaluate the
pretraining quality of the encoder on downstream task.

underlying the video data, self-supervised learning of spatiotemporal representation could be facil-
itated. This could be considered as introduction of prior knowledge which otherwise needs to be
discovered from the learning process itself. For each decoder head, specific positional embeddings
are applied following MAE (He et al., 2022). Since video data is high-dimensional, the decoder
is designed to be more lightweight than the encoder, consuming less computational cost despite
processing the full patch set with two heads.

Objective loss function For model pretraining, for each head we minimize the L2 reconstruction
loss between the prediction and the target (i.e., the frame image patches for the space head and frame
difference patches for the time head) over the masked patches. The final objective is to minimize
their summation.

4 IMPLEMENTATION

Downstream tasks We focus on two significant downstream tasks: action recognition, and video
object segmentation. For action recognition, we evaluate three datasets: UCF101 (Soomro et al.,
2012), Kinetics-400 (Kay et al., 2017), and Something-Something V2 (Goyal et al., 2017). Specif-
ically, Kinetics-400 contains around 240k training videos and 20k validation videos at the length of
10 seconds from 400 action classes. Something-Something V2 offers around 169k videos for training
and 20k videos for validation. In contrast to Kinetics-400, this dataset contains 174 motion-centric
action classes. These two large-scale video datasets focus on different visual cues for action recog-
nition. UCF101 is a small video dataset with around 9.5k/3.5k train/val videos. This allows for
testing with limited training data. All the three datasets together provide a cohort with varying-sized
benchmarks for extensive evaluation.

For video object segmentation, we test the DAVIS-2017 (Pont-Tuset et al., 2017) dataset with 30
videos for validation and 59 object classes. The task is to segment the salient moving objects in the
scene.
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Data pre-processing For MotionMAE pretraining, by default the input is a clip of 16 frames at a
resolution of 224×224 pixels (except otherwise stated). A training clip is sampled from a raw video.
We set the temporal stride of 2, 4, and 4 for Something-Something V2, Kinetics-400, and UCF101,
respectively, with the starting frame randomly chosen. For the spatial dimensions, we perform
random resized cropping at a scale range of [0:5; 1]. During both pretraining and finetuning, we
apply flip augmentation on Kinetics-400 and UCF101, but not on Something-Something V2 as this
dataset involves order-sensitive action classes. We do not apply any other data augmentations.

Architecture We adopt the vanilla ViT architecture (Dosovitskiy et al., 2020) as the encoder and
decoder, namely the ViT-B and ViT-L variants. For a patch, we use a temporal size of 2 and a spatial
size of 16 ×16, denoted as 2 ×16 ×16. Given a 16 ×224 ×224 input, the corresponding patch
size is 8 ×14 ×14 tokens. We do not use the [CLS] token in the ViT models, yielding a small
improvement in running-time without performance loss. We use a Transformer decoder consisting
of 4 layers with 384 and 512 embedding dimensions for ViT-B and ViT-L, respectively. The decoder
outputs both frame patches and motion patches at two heads. We use sinusoidal positional encoding
in both the encoder and the decoder.

Masking During pretraining, similar as prior works (Tong et al., 2022; Feichtenhofer et al., 2022),
we apply a masking ratio of 90% for large datasets (e.g., Kinetics-400 and Something-Something
V2) and 75% for small ones (e.g., UCF101). We find the masking ratio is partly conditioned on the
dataset scale. For the masking strategy, we find the best option for UCF101, Something-Something
V2 and Kinetics400 to be random, random and space-only (i.e., tube), respectively. In general,
space-only and random can yield similar performance, whist time-only performs the worst. We
ablate the masking hyper-parameters and strategies in the appendix.

Setting For fair comparison, we follow the pretraining configuration of (Tong et al., 2022). Specif-
ically, we use the AdamW optimizer with a batch size of 1024. We evaluate the pretraining quality
by end-to-end fine-tuning. In model inference, we adopt the common multi-view practice: (1) Tak-
ing K temporal clips (K = 2, 5, 10 for Something-Something V2, Kinetics-400 and UCF101) to
cover the whole video length, and (2) for each clip, taking 3 spatial views to cover the longer spatial
axis, resulting in a total of 3K views. The final prediction is obtained by averaging all the views.
More implementation details and hyper-parameters are given in the appendix.

5 EXPERIMENTS

5.1 ACTION RECOGNITION

We contrast the proposed MotionMAE with two categories of state-of-the-art video representa-
tion learning methods: (1) Supervised video learning methods including SlowFast (Feichten-
hofer et al., 2019), TDN (Wang et al., 2021), Timesformer (Bertasius et al., 2021), ViViT (Arnab
et al., 2021), MViT (Fan et al., 2021; Li et al., 2022), Video Swin (Liu et al., 2022) and Motion-
Former (Patrick et al., 2021). (2) Self-supervised video learning methods including OPN (Lee
et al., 2017), VCOP (Xu et al., 2019), CoCLR (Han et al., 2020b), SpeedNet (Benaim et al., 2020),
Pace (Wang et al., 2020), RSPNet (Chen et al., 2021), ASCNet (Huang et al., 2021), MMV (Alayrac
et al., 2020), XDC (Alwassel et al., 2020), GDT (Patrick et al., 2020), BEVT (Wang et al., 2022),
Maskfeat (Wei et al., 2022), VideoMAE (Tong et al., 2022) and MAE (Feichtenhofer et al., 2022).

For more extensive comparison, we consider both domain-generic (i.e., training and test on different
datasets) and domain-specific (i.e., training and test on the same dataset) pretraining-then-finetuning
settings.

Something-Something-V2 On this temporal structure sensitive dataset, from Table 1 we draw
several observations. (1) In terms of learning strategy, self-supervised learning is generally supe-
rior over the conventional supervised-learning. For example, MViTV2 (Li et al., 2022) is clearly
outnumbered by MaskFeat (Wei et al., 2022) despite using extra data (IN21K). (2) Domain-specific
pretraining is often more performing than the domain-generic counterpart as reflected in the contrast
of VideoMAE (Tong et al., 2022) and MAE (Feichtenhofer et al., 2022). (3) In either setting, our
MotionMAE exceeds all the alternative solutions by a descent margin. Specifically, our method out-
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Method Extra data Backbone Frames Top-1 (%) GFLOPs Param(M)
SlowFast K400 SlowFast 8+32 63.1 106×1×3 63.1
TDN IN1K ResNet101 8+16 69.6 198×3×1 88
TimeSformer K400+IN21K ViT-L 64 62.4 5549×1×3 430
ViViT K400+IN21K ViT-L 32 65.9 995×4×3 N/A
MViTv1 K400 MViT-B 64 67.7 455×3×1 37
MotionFormer K400+IN21K ViT-L 32 68.1 1185×1×3 382
Video Swin K400+IN21K Swin-B 32 69.6 321×1×3 88
MViTv2 K400 + IN21K MViTv2-L 40 73.3 2828×1×3 213
BEVT K400 + IN1K Swin-B 32 71.4 321×1×3 88
MaskFeat K400 MViTv2-L 40 74.4 2828×1×3 218
MAE K400 ViT-L 16 72.1 598×1×3 304
MAE K400 ViT-H 16 74.1 1193×1×3 632
VideoMAE - ViT-B 16 70.6 180×2×3 87
VideoMAE - ViT-L 16 74.2 598×2×3 305
VideoMAE - ViT-L 32 75.3 1436×2×3 305
MotionMAE K400 ViT-L 16 74.3 598×2×3 305
MotionMAE - ViT-B 16 71.8 180×2×3 87
MotionMAE - ViT-L 16 74.6 598×2×3 305
MotionMAE - ViT-L 32 75.5 598×2×3 305

Table 1: Comparison with the state-of-the-art methods on Something-Something V2. Due to vary-
ing dataset sizes, we pretrain our MotionMAE by 1600 epochs on Kinetics-400 (K400) and by 2400
epochs on Something-Something V2. IN21K: ImageNet-21K; IN1K: ImageNet-1K. GFLOPs for-
mat: A single view’s × temporal views × spatial views. N/A: Not Available. Grayed: Supervised
learning methods.

Method Extra data Backbone Frames Top-1 (%) GFLOPs Param(M)
SlowFast IN1K SlowFast 16+64 79.8 234×10×3 60
TDN IN1K ResNet101 8+16 79.4 198×10×3 88
TimeSformer IN21K ViT-L 96 80.7 8353×1×3 430
ViViT IN21K ViT-L 128 81.7 3980×3×1 N/A
MViT - MViT-B 64 81.2 455×3×3 37
MotionFormer IN21K ViT-L 32 80.2 1185×10×3 382
Video Swin IN21K Swin-L 32 83.1 604×1×3 197
MViTv2 IN21K MViTv2-B 32 82.9 255×1×3 213
BEVT IN1K Swin-B 32 81.1 282×4×3 88
MaskFeat - MViTv2-L 40 84.3 377×10×1 218
VideoMAE - ViT-B 16 81.5 180×5×3 87
VideoMAE - ViT-L 16 85.1 598×5×3 305
MAE - ViT-L 16 84.8 598×7×3 304
MAE - ViT-H 16 85.1 1193×7×3 632
MotionMAE - ViT-B 16 81.7 180×5×3 87
MotionMAE - ViT-L 16 85.3 598×5×3 305

Table 2: Comparison with the state-of-the-art methods on Kinetics-400 (K400). We pretrain our
MotionMAE by 1600 epochs on Kinetics-400 (K400). IN21K: ImageNet-21K; IN1K: ImageNet-
1K. GFLOPs format: A single view’s × temporal views × spatial views. N/A: Not Available.
Grayed: Supervised learning methods.

performs VideoMAE by a range of [0.2%, 1.2%] in the domain-specific setting and MAE by 2.2%
in domain-generic setting. Besides, ViT-L based MotionMAE achieves the unprecedented top-1 ac-
curacy of 75.5 %. This validates the advantage of our pretraining method in learning spatiotemporal
representation from unlabeled video data.

Kinetics-400 Unlike Something-Something V2, appearance information plays a more dominant
role in Kinetics-400. However, from Table 2 we can still see similar observations. For example,
(1) MotionMAE remains the best pretraining method among all the competitors. This suggests that
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Method Extra data Architecture Frames Top-1 (%) Modality Param(M)
OPN - VGG N/A 59.6 V N/A
VCOP - R(2+1)D N/A 72.4 V N/A
CoCLR - S3D-G 32 81.4 V 9
SpeedNet K400 S3D-G 64 81.1 V 9
Pace K400 R(2+1)D 16 77.1 V 16
RSPNet K400 S3D-G 64 93.7 V 9M
ASCNet K400 S3D-G 64 90.8 V 9M
MMV AS+HTM S3D-G 32 92.5 V+A+T 9
XDC IG65M R(2+1)D 32 94.2 V+A 15
GDT IG65M R(2+1)D 32 95.2 V+A 15
VideoMAE - ViT-B 16 90.8 V 305
VideoMAE K400 ViT-B 16 96.1 V 305
MotionMAE - ViT-B 16 94.0 V 87
MotionMAE K400 ViT-B 16 96.3 V 305

Table 3: Comparison with the state-of-the-art methods on UCF101. Due to varying dataset sizes,
we pretrain MotionMAE by 2400 epochs on UCF101 and by 1600 epochs on Kinetics-400 (K400).
AS: Audio-Set (Gemmeke et al., 2017); HTM: HowTo100M (Miech et al., 2019); IG65M: Instagram-
65M (Ghadiyaram et al., 2019). V: Visual; A: Audio; T: Text or narration; N/A: Not Available.
Grayed: Multimodal methods.

Method Pretrain data Architecture J&F-Mean J-Mean F-Mean
MAE IN1K ViT-B 50.9 49.3 52.6
MAE K400 ViT-B 53.5 52.6 54.4
VideoMAE K400 ViT-B 53.8 53.2 54.4
MotionMAE K400 ViT-B 56.8 55.8 57.8

Table 4: Video object segmentation results on DAVIS 2017. The pretrained models are frozen
without task-specific finetuning. Metrics: mean region similarity J-Mean and mean contour-
based accuracy F-Mean. IN1K: ImageNet-1K; K400: Kinetics-400.

dedicated motion recovery from the masking as we introduce is also beneficial. (2) By achieving the
top-1 accuracy of 85.3%, ViT-L based MotionMAE even surpasses ViT-H based MAE (85.1%),
while enjoying high efficiency in GFLOPs. These results indicate the generic performance superi-
ority of our method over diverse action genres.

UCF101 Following the two large action datasets as above, we further evaluate on the small
UCF101 dataset. As dataset size is a critical dimension in self-supervised learning. As shown
in Table 3, it is encouraging that our MotionMAE can surpass all the alternative methods in
both domain-specific and domain-generic settings. For instance, when pretrained on Kinetics-400
(K400), our method reaches the best ever classification accuracy of 96.3%, higher than the prior
art self-suerpvised learning method VideoMAE (Tong et al., 2022) and multimodal learning method
GDT (Patrick et al., 2020) (despite using much more videos from IG65M, more video frames, and
extra audio modality). This highlights the crucial significance of motion information which, once
learned properly as in our proposed pretraining method, would demonstrate stronger representational
power than other techniques (e.g., multimodal alignment). Another highlight is that in the domain-
specific setting characterized by much lower training cost in this congtext, our MotionMAE is fa-
vored over the most similar competitor VideoMAE by as large as 3.2%. These observations further
verify the rich advantages of our method over existing alternatives.

5.2 VIDEO OBJECT SEGMENTATION

In addition to action recognition evaluation, next we evaluate the usefulness of our method in a task
of segmenting salient objects in videos. This presents a different testing perspective as it is highly
object-centered. To that end, we compare MotionMAE with two prior art self-supervised video
learners (MAE (Feichtenhofer et al., 2022) and VideoMAE (Tong et al., 2022)). We freeze the pre-
trained models to purely evaluate their expressiveness of video objects over space and time, without
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Target top-1 (%)
Frame 67.8
Motion 67.6

Frame+Motion 68.4
(a) Reconstruction target.

Ratio top-1 (%)
1:2 68.2
1:1 68.4
2:1 68.3

(b) Weight ratio: frame to motion.

MG top-1 (%)
1 68.4
2 67.8
3 67.4

(c) Motion granularity (MG).

Decoder width top-1 (%)
128 67.5
384 68.4
512 68.3

(d) Decoder width.

Decoder depth top-1 (%)
1 67.4
4 68.4
8 68.2

(e) Decoder depth.

Loss function top-1 (%)
L1 67.6

MSE 68.4
Smooth L1 67.5

(f) Reconstruction loss.

Table 5: Ablation experiments on Something-Something V2 under the domain-specific pretraining
setting. Pretraining length of our MotionMAE: 400 epochs. Model: ViT-B with the input video
clip at a resolution of 16×224×224.

any finetuning. We adopt the same experimental protocol as in (Jabri et al., 2020) by segmenting the
scenes with a nearest-neighbor between consecutive frames. We draw a couple of observations from
Table 4: (1) Pretraining data makes difference as exampled by MAE, and video data is generally
more effective as expected. This suggests the importance of learning spatiotemporal representa-
tion to this task. (2) When the same video dataset is used, our method surpasses both competing
MAEs by a margin of 3.0% or more. This again validates the superiority of our video representation
learning method in the object-focused scenario, thanks to the proposed masked motion information
modeling in addition to static appearance information reconstruction.

5.3 ABLATION STUDY

We perform ablation study on Something-Something V2 in the most-performing domain-specific
pretraining setting. We use ViT-B as the backbone under the inference setting of 2 clips × 3 crops.

Reconstruction target In this study, we conjugate that a key ingredient with MAE is re-
construction target. To evaluate this, we swap the reconstruction target among the choices of
{frame, motion (temporal difference), frame+motion)}, whilst keeping all the
others. We summarize a few key observations: (1) As shown in Table 5a, the frame and motion
targets are similarly effective, which is somewhat out of expectation. (2) When they are combined,
a clear performance gain can be obtained, suggesting their good complementing effect. Further, as
shown in Table 5a, their combining weight is only slightly sensitive to the performance. (3) Regard-
ing the motion temporal granularity, the results in Table 5c verify that the most fine-grained motion
(i.e., obtained by contrasting the directly adjacent frames) is most useful, as expected. A plausible
reason is that predicting large-time-gap motion is over challenging due to more complex dynamic
variations over time.

Decoder design Another key component in MAE is the design of decoder. To test this, we vary
the capacity of our decoder in terms of width and depth. As shown in Table 5d and Table 5e, it is
important that both the width (e.g., 384 dimensions) and depth (e.g., 4 blocks) need to be sufficiently
large but not too many.

Reconstruction loss function Lastly, we evaluate the effect of reconstruction loss function. We
consider three options: L1, Smooth L1, and Mean Squared Error (MSE). As shown in Table 5f,
MSE yields the best result among these.

5.4 MODEL BEHAVIOR VISUALIZATION

To examine the model pretraining behavior, we visualize the reconstruction output. As shown in
Figure 3, under 90% masking, our MotionMAEmodel can well generalize the reconstruction ability
to new video samples for both individual video frames and dynamic inter-frame motion. When
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(a) Something-something V2

(b) UCF101 (c) Kinetics-400
Figure 3: Example reconstruction of our MotionMAE on the validation set of (a) Something-
Something v2, (b) UCF101, and (c) Kinetics-400. For each dataset, the first row shows the original
video clip, and two masking ratios are visualized: 90% (solid box) and 95% (dashed box). Best
viewed with zooming-in.

increasing the masking ratio to 95%, the reconstruction results still preserve the most information
about both appearance and motion although less fine-grained. This verifies that our model can
recover well the masked data to support proper self-supervised learning of video representation.

6 CONCLUSION

In this paper, we have presented motion-aware Masked Autoencoders, namely MotionMAE, for
self-supervised video representation learning. Apart from learning to reconstruct individual masked
patches of video clips, our model is designed particularly to concurrently predict the corresponding
motion structure information over time. Compared to prior art MAEs, our model can better per-
ceive both static appearance and dynamic motion spontaneously, yielding superior spatiotemporal
representation learning. Empirical results on standard action recognition benchmarks demonstrate
that our MotionMAE outperforms significantly both supervised learning baseline and state-of-the-
art MAE alternatives, under both domain-specific and domain-generic pretraining-then-finetuning
settings. The generalization and transferability of our pretrained models have been also evaluated
on another challenging motion-centric task, video object segmentation.
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A ADDITIONAL IMPLEMENTATION DETAILS

config Something-
Something V2

Kinetics400 UCF101

optimizer AdamW (Loshchilov & Hutter, 2017)
base learning rate 1.5e-4
weight decay 0.05
optimizer momentum β1, β2=0.9, 0.95 (Chen et al., 2020a)
learning rate schedule cosine decay (Loshchilov & Hutter, 2016)
warmup epochs 40
epochs 2400 1600 3200
flip augmentation no yes yes
batch size 1024(B)512(L) 1024(B)512(L) 128(B)
augmentation MultiScaleCrop
patch norm no yes yes
masking ratio 90% 90% 75%
masking type random tube random

(a) Pretraining

config Something-
Something V2

Kinetics400 UCF101

optimizer AdamW (Loshchilov & Hutter, 2017)
base learning rate 5e-4 5e-4(B)2e-3(L) 1e-3
weight decay 0.05
optimizer momentum β1, β2=0.9, 0.999
layer-wise lr decay 0.75 (Bao et al., 2021)
learning rate schedule cosine decay (Loshchilov & Hutter, 2016)
warmup epochs 5
repeated sampling 2 2 1
epochs 30(B)20(B) 75(B)35(L) 100(B)
flip augmentation no yes yes
batch size 512(B)256(L) 384(B)64(L) 256(B)
RandAug (9, 0.5) (Cubuk et al., 2020)
label smoothing 0.1 (Asano et al., 2020)
mixup 0.8 (Zhang et al., 2017)
cutmix 1.0 (Yun et al., 2019)
drop path 0.1(B),0.2(L)

(b) Finetuning

Table 6: Settings for model pretraining and finetuning. Note: lr = base lr×batchsize / 256 per the
linear lr scaling rule.

We pretrain MotionMAE on Something-Something V2, Kinetics-400 and UCF101 using the hyper-
parameters as summarized in Table 6a. The dataset specific hyper-parameters are given in the in-
dividual columns, with the others shared across datasets. These settings apply to ViT-B and ViT-L,
unless specified otherwise. We use the same hyper-parameters for pretraining. Table 6b summarizes
our fine-tuning settings.

We conduct the experiments with 32 A100 GPUs for both pretraining and finetuning on Something-
Something V2 and Kinetics-400 datasets. The experiments on smaller UCF101 are trained on 8
V100 GPUs.

B ADDITIONAL EXPERIMENTAL RESULTS

Training schedule In Figure 4 we show the effect of training schedule on Something-Something
(large) and UCF101 (small). It is clear that longer training schedule brings slightly gains on both
datasets. More training might lead to further improvement at extra computation cost. This indicates
high potential of our model.

Local motion extraction: temporal difference vs. optical flow Except temporal difference (TD)
as we have exploited, optical flow is another popular method for local motion estimation. It is
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Figure 4: The effect of training schedules on (a) Something-Something V2 and (b) UCF101.

Target top-1 (%)
Frame 93.1
Frame + OF 93.5
Frame + TD 94.0

Table 7: Motion estimation: temporal differ-
ence (TD) and optical flow (OF) on UCF101.

Masking strategy top-1 (%)
time-only 74.6
random 78.8

space-only 79.0

Table 8: Effect of different masking strate-
gies on Kinetics-400.

Ratio UCF Something-Something V2
75% 94.3 66.0
90% 92.7 68.4

Table 9: Effect of masking ratio.

Arch top-1 (%)
Att. share 68.0

Divide 68.4

Table 10: Effect of decoder architecture on
Something-Something V2.

interesting to see which one is better and why. We conduct this test on UCF101. Specifically, we
pre-extract per-frame optical flow (OF) to replace the TD during model pre-training, whilst keeping
the others the same. As shown in Table 7, we can see that OF is relatively inferior to TD, whilst still
improve over using frames only. This is seemingly out of expectation since OF is often considered
to be more accurate motion estimation at much more computational cost. We consider that the
underlying reason is that the frames used to compute OF is not fully available in the input. Suppose
the t-th frame is sampled to a video clip, the t+1-th frame which is used to compute OF, is however
excluded by our sampling strategy (see data pre-processing in Section 4). This discrepancy
may cause the lower performance by OF. In contrast, our TD has no such problem whilst being more
efficient.

Mask sampling strategy We evaluate three masking strategies (random, time-only, space-only)
on Kinetics400. As shown in Table 8, we find that random and space-only are similarly performing,
whilst time-only is the worst. This is not surprising since reconstructing the whole frames could be
over challenging.

Masking ratio We evaluate the effect of mask ratio on Something-something V2 (large) and
UCF101 (small). We adopt the data-specific pretraining setting. As shown in Table 9, this setting is
considerably dataset (e.g., size) specific. This is not observed in the previous works.

Decoder architecture We evaluate the effect of decoder architecture design. By default, we adopt
a parallel structure with two independent networks: a space head to predict masked frame patches,
and a time head to predict the corresponding local motion structure. An alternative is to share a
network except the last prediction layer. As shown in Table 10, network sharing is less effective,
confirming our design choice.
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(a) Something-something V2

(b) UCF101

Figure 5: More visualizations on Something-something V2 and UCF101 following Figure 3.
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Figure 6: More visualizations on Kinetics-400 following Figure 3.

C ADDITIONAL VISUALIZATION EXAMPLES

Figure 5 and 6 illustrates more examples of reconstruction on Something-something V2, UCF101
and Kinetics-400.
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