
Published as a conference paper at ICLR 2021

TAKING NOTES ON THE FLY HELPS LANGUAGE
PRE-TRAINING

Qiyu Wu1∗, Chen Xing2∗, Yatao Li3, Guolin Ke3, Di He3†, Tie-Yan Liu3

1Peking University
2College of Compute Science, Nankai University
3Microsoft Research
qiyu.wu@pku.edu.cn
xingchen1113@gmail.com
{yatli, guolin.ke, dihe, tyliu}@microsoft.com

ABSTRACT

How to make unsupervised language pre-training more efficient and less resource-
intensive is an important research direction in NLP. In this paper, we focus on
improving the efficiency of language pre-training methods through providing better
data utilization. It is well-known that in language data corpus, words follow a
heavy-tail distribution. A large proportion of words appear only very few times
and the embeddings of rare words are usually poorly optimized. We argue that
such embeddings carry inadequate semantic signals, which could make the data
utilization inefficient and slow down the pre-training of the entire model. To
mitigate this problem, we propose Taking Notes on the Fly (TNF), which takes
notes for rare words on the fly during pre-training to help the model understand
them when they occur next time. Specifically, TNF maintains a note dictionary
and saves a rare word’s contextual information in it as notes when the rare word
occurs in a sentence. When the same rare word occurs again during training, the
note information saved beforehand can be employed to enhance the semantics
of the current sentence. By doing so, TNF provides better data utilization since
cross-sentence information is employed to cover the inadequate semantics caused
by rare words in the sentences. We implement TNF on both BERT and ELECTRA
to check its efficiency and effectiveness. Experimental results show that TNF’s
training time is 60% less than its backbone pre-training models when reaching
the same performance. When trained with the same number of iterations, TNF
outperforms its backbone methods on most of downstream tasks and the average
GLUE score. Source code is attached in the supplementary material.

1 INTRODUCTION

Unsupervised language pre-training, e.g., BERT (Devlin et al., 2018), is shown to be a successful
way to improve the performance of various NLP downstream tasks. However, as the pre-training task
requires no human labeling effort, a massive scale of training corpus from the Web can be used to
train models with billions of parameters (Raffel et al., 2019), making the pre-training computationally
expensive. As an illustration, training a BERT-base model on Wikipedia corpus requires more than
five days on 16 NVIDIA Tesla V100 GPUs. Therefore, how to make language pre-training more
efficient and less resource-intensive, has become an important research direction in the field (Strubell
et al., 2019).

Our work aims at improving the efficiency of language pre-training methods. In particular, we study
how to speed up pre-training through better data utilization. It is well-known that in a natural language
data corpus, words follow a heavy-tail distribution (Larson, 2010). A large proportion of words
appear only very few times and the embeddings of those (rare) words are usually poorly optimized
and noisy (Bahdanau et al., 2017; Gong et al., 2018; Khassanov et al., 2019; Schick & Schütze, 2020).
∗Equal Contribution. Work done during internships at Microsoft Research Asia.
†Correspondence to:dihe@microsoft.com

1



Published as a conference paper at ICLR 2021

COVID-19 has cost thousands of lives .

A note of ‘COVID-19’ taken from a previously 

seen sentence:

The COVID-19 pandemic is an ongoing 

global crisis.

Pandemic;

global crisis

COVID-19 has cost thousands of ______ .

What is COVID-19?

dollars?

donuts?

puppies?

tomatoes?

Without Notes: With Notes:

Figure 1: An illustration of how taking notes of rare words can help language understanding. The left
part of the figure shows that without any understanding of the rare word “COVID-19”, there are too
many grammatically-correct, while semantically-wrong options for us to fill in the blank. In the right
half, we show that a note of “COVID-19” taken from a previously-seen sentence can act as a very
strong signal for us to predict the correct word at the masked position.

Unlike previous works that sought to merely improve the embedding quality of rare words, we argue
that the existence of rare words could also slow down the training process of other model parameters.
Taking BERT as an example, if we imagine the model encounters the following masked sentence
during pre-training:

COVID-19 has cost thousands of lives.

Note that “COVID-19” is a rare word, while also the only key information for the model to rely on to
fill in the blank with the correct answer “lives”. As the embedding of the rare word “COVID-19” is
poorly trained, the Transformer lacks concrete input signal to predict “lives”. Furthermore, with noisy
inputs, the model needs to take longer time to converge and sometimes even cannot generalize well
(Zhang et al., 2016). Empirically, we observe that around 20% of the sentences in the corpus contain
at least one rare word. Moreover, since most pre-training methods concatenate adjacent multiple
sentences to form one input sample, empirically we find that more than 90 % of input samples contain
at least one rare word. The large proportion of such sentences could cause severe data utilization
problem for language pre-training due to the lack of concrete semantics for sentence understanding.
Therefore, learning from the masked language modeling tasks using these noisy embeddings may
make the pre-training inefficient. Moreover, completely removing those sentences with rare words is
not an applicable choice either since it will significantly reduce the size of the training data and hurt
the final model performance.

Our method to solve this problem is inspired by how humans manage information. Note-taking
is a useful skill which can help people recall information that would otherwise be lost, especially
for new concepts during learning (Makany et al., 2009). If people take notes when facing a rare
word that they don’t know, then next time when the rare word appears, they can refer to the notes
to better understand the sentence. For example, we may meet the following sentence somewhere
beforehand: The COVID-19 pandemic is an ongoing global crisis. From the sentence, we can realize
that “COVID-19” is related to “pandemic” and “global crisis” and record the connection in the notes.
When facing “COVID-19” again in the masked-language-modeling task above, we can refer to the
note of “COVID-19”. It is easy to see that once “pandemic” and “global crisis” are connected to
“COVID-19”, we can understand the sentence and predict “lives” more easily, as illustrated in Figure 1.
Mapped back to language pre-training, we believe for rare words, explicitly leveraging cross-sentence
information is helpful to enhance semantics of the rare words in the current sentence to predict the
masked tokens. Through this more efficient data utilization, the Transformer can receive better input
signals which leads to more efficient training of its model parameters.

Motivated by the discussion above, we propose a new learning approach called “Taking Notes on the
Fly”(TNF) to improve data utilization for language pre-training. Specifically, we maintain a note
dictionary, where the keys are rare words and the values are historical contextual representations of
them. In the forward pass, when a rare word w appears in a sentence, we query the value of w in the
note dictionary and use it as a part of the input. In this way, the semantic information of w saved in
the note can be encoded together with other words through the model. Besides updating the model
parameters, we also update the note dictionary. In particular, we define the note of w in the current

2



Published as a conference paper at ICLR 2021

sentence as the mean pooling over the contextual representations of the words nearby w. Then we
update w’s value in the note dictionary by a weighted linear combination of w’s previous value and
w’s note in the current sentence. TNF introduces little computational overhead at pre-training since
the note dictionary is updated on the fly during the forward pass. Furthermore, different from the
memory-augmented neural networks (Santoro et al., 2016; Guu et al., 2020), the note dictionary
is only used to improve the training efficiency of the model parameters, while not served as a part
of the model. When the pre-training is finished, we discard the note dictionary and use the trained
Transformer encoder during the fine-tuning of downstream tasks, same as all previous works.

We conduct experiments using BERT and ELECTRA (Clark et al., 2019) as TNF’s backbone
methods. Results show that TNF significantly expedites BERT and ELECTRA, and improves their
performances on downstream tasks. BERT-TNF and ELECTRA-TNF’s training times are both 60%
less than their corresponding backbone models when reaching the same performance. When trained
with the same number of iterations, BERT-TNF and ELECTRA-TNF outperform the backbone
methods on both the average GLUE score and the majority of individual tasks. We also observe that
even in the downstream tasks where rare words only take a neglectable proportion of the data (i.e.
0.47%), TNF also outperforms baseline methods with a large margin. It indicates that TNF improves
the pre-training of the entire model.

2 RELATED WORK

Efficient BERT pre-training. The massive energy cost of language pre-training (Strubell et al.,
2019) has become an obstacle to its further developments. There are several works aiming at reducing
the energy cost of pre-training. Gong et al. (2019) observes that parameters in different layers have
similar attention distribution, and propose a parameter distillation method from shallow layers to
deep layers. Another notable work is ELECTRA (Clark et al., 2019), which develops a new task
using one discriminator and one generator. The generator corrupts the sentence, and the discriminator
is trained to predict whether each word in the corrupted sentence is replaced or not. Orthogonal to
them, we focus on improving pre-training efficiency by finding ways to utilize the data corpus better.
Therefore, it can be applied to all of the methods above to further boost their performances.

Representation of rare words. It is widely acknowledged that the quality of rare words’ embed-
dings is significantly worse than that of popular words. Gao et al. (2019) provides a theoretical
understanding of this problem, which illustrates that the problem lies in the sparse (and inaccurate)
stochastic optimization of neural networks. Several works attempt to improve the representation of
rare words using linguistic priors (Luong et al., 2013; El-Kishky et al., 2019; Kim et al., 2016; Santos
& Zadrozny, 2014). But the improved embedding quality is still far behind that of popular words
(Gong et al., 2018). Sennrich et al. (2015) develops a novel way to split each word into sub-word
units. However, the embeddings of low-frequency sub-word units are still difficult to train (Ott et al.,
2018). Due to the poor quality of rare word representations, the pre-training model built on top of
it suffers from noisy input semantic signals which lead to inefficient training. We try to bypass the
problem of poor rare word representations by leveraging cross-sentence information to enhance input
semantic signals of the current sentence for better model training.

Memory-augmented BERT. Another line of work close to ours uses memory-augmented neural
networks in language-related tasks. Févry et al. (2020) and Guu et al. (2020) define the memory
buffer as an external knowledge base of entities for better open domain question answering tasks.
Khandelwal et al. (2019) constructs the memory for every test context at inference, to hold extra
token candidates for better language modeling. Similar to other memory-augmented neural networks,
the memory buffer in these works is a model component that will be used during inference. Although
sharing general methodological concepts with these works, the goal and details of our method are
different from them. Especially, our note dictionary is only maintained in pre-training for efficient
data utilization. At fine-tuning, we ditch the note dictionary, hence adding no extra time or space
complexity to the backbone models.

3 TAKING NOTES ON THE FLY

3.1 PRELIMINARY

In this section, we use the BERT model as an example to introduce the basics of the model architecture
and training objective of language pre-training. BERT (Bidirectional Encoder Representation from

3



Published as a conference paper at ICLR 2021

Transformers) is developed on a multi-layer bidirectional Transformer encoder, which takes a
sequence of word semantic information (token embeddings) and order information (positional
embeddings) as input, and outputs the contextual representations of words.

Each Transformer layer is formed by a self-attention sub-layer and a position-wise feed-forward
sub-layer, with a residual connection (He et al., 2016) and layer normalization (Ba et al., 2016)
applied after every sub-layer. The self-attention sub-layer is referred to as ”Scaled Dot-Product
Attention” in Vaswani et al. (2017), which produces its output by calculating the scaled dot products
of queries and keys as the coefficients of the values, i.e.,

Attention(Q,K, V ) = Softmax(
QKT

√
d

)V. (1)

Q (Query), K (Key), V (Value) are the hidden representations outputted from the previous layer
and d is the dimension of the hidden representations. Transformer also extends the aforementioned
self-attention layer to a multi-head version in order to jointly attend to information from different
representation subspaces. The multi-head self-attention sub-layer works as follows,

Multi-head(Q,K, V ) =Concat(head1, · · · , headH)WO (2)

headk =Attention(QWQ
k ,KW

K
k , V WV

k ), (3)

where WQ
k ∈ Rd×dK ,WK

k ∈ Rd×dK ,WV
k ∈ Rd×dV are projection matrices. H is the number of

heads. dK and dV are the dimensions of the key and value separately.

Following the self-attention sub-layer, there is a position-wise feed-forward (FFN) sub-layer, which is
a fully connected network applied to every position identically and separately. The FFN sub-layer is
usually a two-layer feed-forward network with a ReLU activation function in between. Given vectors
{h1, . . . , hn}, a position-wise FFN sub-layer transforms each hi as FFN(hi) = σ(hiW1+b1)W2+b2,
where W1,W2, b1 and b2 are parameters.

BERT uses the Transformer model as its backbone neural network architecture and trains the model
parameters with the masked language model task on large text corpora. In the masked language
model task, given a sampled sentence from the corpora, 15% of the positions in the sentence are
randomly selected. The selected positions will be either replaced by special token [MASK], replaced
by randomly picked tokens or remain the same. The objective of BERT pre-training is to predict
words at the masked positions correctly given the masked sentences. As this task requires no human
labeling effort, large scale data corpus is usually used to train the model. Empirically, the trained
model, served as a good initialization, significantly improves the performance of downstream tasks.

3.2 TRAINING BERT BY TAKING NOTES ON THE FLY

As presented in many previous works, the poorly-updated embeddings of rare words usually lack
adequate semantic information. This could cause data utilization problem given the lack of necessary
semantic input for sentence understanding, thus making the pre-training inefficient. In this section,
we propose a method called Taking Notes on the Fly (TNF) to mitigate this problem. For ease of
understanding, we describe TNF on top of the BERT model. While TNF can be easily applied to any
language pre-training methods, such as ELECTRA. The main component of TNF is a note dictionary,
saving historical context representations (notes) of rare words on the fly during pre-training. In the
following of the section, we introduce TNF by illustrating in detail how we construct, maintain and
leverage the note dictionary for pre-training.

The Construction of Note Dictionary. To enrich the semantic information of rare words for a
better understanding of the sentence, we explicitly leverage cross-sentence signals for those words.
We first initialize a note dictionary, NoteDict, from the data corpus, which will maintain a note
representation (value) for each rare word (key) during pre-training. Since we target at rare words, the
words in the dictionary are of low frequency. However, the frequency of the words in the dictionary
should not be extremely low either. It is because if the word appears only once in the corpus, there
will be no “cross-sentence signal” to use. Additionally, the note dictionary also shouldn’t take too
many memories in practice. With all these factors taken into consideration, we define keys as those
words with occurrences between 100 and 500 in the data corpus. The data corpus roughly contains
3.47B words in total and the size of NoteDict’s vocabulary is about 200k.

4



Published as a conference paper at ICLR 2021

𝒘𝟐

Transformer Encoder

1 2 3 4 5 6 7

1 2 3 4 5 6 7

Note Dictionary

…𝑼𝒑𝒅𝒂𝒕𝒆

Masked Language Model Task Loss

𝑮𝒆𝒕 𝒗𝒂𝒍𝒖𝒆

… …

… …

1 2 3 4 5 6 7… …
+ + + + + + +

+

+
……

Note 

Embedding

Word

Embedding

Position 

Embedding

𝒘𝟐 𝒘𝟑𝒘𝟏… …

Transformer 

Output

Contextual Vector𝒘𝒊

..
..

..
..

..
..

..
..+

𝒘𝟐

𝒘𝟐 𝒘𝟐

𝑸𝒖𝒆𝒓𝒚

𝒘𝟐

Figure 2: The training framework of Taking Notes on the FLY (TNF). The left box shows the forward
pass with the help of the note dictionary. In the input word sequence, w2 is a rare word. Then for
tokens 4 and 5 originated from w2, we query the value of w2 in the note dictionary and weighted
average it with token/position embeddings. The right box demonstrates how we maintain the note
dictionary. After the forward pass of the model, we can get the contextual representations of the word
near w2 and use mean pooling over those representations as the note of w2 in the current sentence.
Then, we update w2’s value in the note dictionary by a weighted average of the current note and its
previous value.

Maintaining Note Dictionary. When we meet a rare word in a training sentence, we record the
contextual information of its surrounding words in the sentence as its note. In detail, given a training
sentence, each word will be first pre-processed into sub-word units following standard pre-processing
strategies (Sennrich et al., 2015). Therefore, given a processed sequence of sub-word units (tokens),
a rare word can occupy a contiguous span of tokens. For a rare word w that appears both in the input
token sequence x = {x1, · · · , xi, · · · , xn} and NoteDict, we denote the span boundary of w in x as
(s, t), where s and t are the starting and ending position. We define the note of w for x as

Note(w, x) =
1

2k + t− s

t+k∑
j=s−k

cj , (4)

where each cj ∈ Rd is the output of the Transformer encoder on position j and served as the contextual
representation of xj . k is half of the window size that controls how many surrounding tokens we want
to take as notes and save their semantics . If we refer to the example in the introduction, the contextual
representations of “pandemic” and “global crisis” are summarized in the note of “COVID-19”. Note
that the calculation of Note(w, x) is on the fly as we can obtain Note(w, x) during the forward pass
using the current model. Therefore, there is no additional computational cost.

With the Note(w, x) calculated with Equation 4 for the current sentence x, we can now update w’s
note saved in NoteDict to include the latest semantics in sentence x. In particular, we updates w’s
value in NoteDict using exponential moving average1. In this way, at any occurrence of w during
pre-training, its contextual information from all previous occurrences can be leveraged and used.

NoteDict(w) = (1− γ) ·NoteDict(w) + γ ·Note(w, x), (5)

where γ ∈ (0, 1) is the discount factor.

Leveraging Note Dictionary for Pre-training. NoteDict explicitly contains surrounding contexts
for rare words. We use such information as a part of the input to the Transformer encoder. For
any masked token sequence x = {x1, · · · , xi, · · · , xn}, we first find all rare words that appears
in both NoteDict and x. Assume there are m rare words satisfying the conditions, denoted as

1All values in NoteDict are randomly initialized using the same way as word/positional embeddings.

5



Published as a conference paper at ICLR 2021

{(wj , sj , tj)}mj=1 where sj and tj are the boundary of wj in x. At the i-th position, the input to the
model is defined as

inputi =

{
(1− λ) · (pos embi + token embi) + λ ·NoteDict(wj) ∃j, s.t. sj < i < tj ,
pos embi +word embi otherwise.

(6)

λ is a hyper-parameter controlling the degree to which TNF relies on historical context representations
(notes) for rare words. We empirically set it as 0.5.

In the standard Transformer model, at position i, the input to the first Transformer layer is the sum
of the positional embedding pos embi and the token embedding token embi. In Equation 6, when
the token xi is originated from a rare word wj in NoteDict, we first query wj in NoteDict and
then weight-averages its value NoteDict(wj) with the token embedding token embi and positional
embedding pos embi. In such a way, the historical contextual information of rare word wj in
NoteDict(wj), can be processed together with other words in the current sentence in the stacked
Transformer layers, which can help the model to better understand the input sequence. Figure 2 gives
a general illustration of TNF in pre-training.

Fine-tuning. Our goal is to make the training of the model (e.g., the parameters in the Transformer
encoder) more efficient. To achieve this, we leverage cross-sentence signals of rare words as notes to
enrich the input signals. To verify whether the Transformer encoder is better trained with TNF, we
purposely remove the NoteDict for fine-tuning and only use the trained encoder in the downstream
tasks. First, in such a setting, our method can be fairly compared with previous works and backbone
models, as the fine-tuning processes of all the methods are exactly the same. Second, by doing so, our
model occupies no additional space in deployment, which is an advantage compared with existing
memory-augmented neural networks (Santoro et al., 2016; Guu et al., 2020). We also conduct an
ablation study on whether to use NoteDict during fine-tuning. Details can be found in Section 4.

4 EXPERIMENTS

To verify the efficiency and effectiveness of TNF, we conduct experiments and evaluate pre-trained
models on fine-tuning downstream tasks. All codes are implemented based on fairseq (Ott et al.,
2019) in PyTorch (Paszke et al., 2017). All models are run on 16 NVIDIA Tesla V100 GPUs with
mixed-precision (Micikevicius et al., 2017).

4.1 EXPERIMENTAL SETUP

To show the wide adaptability of TNF, we use BERT (Devlin et al., 2018) and ELECTRA (Clark
et al., 2019) as the backbone language pre-training methods and implement TNF on top of them. We
fine-tune the pre-trained models on GLUE (General Language Understanding Evaluation) (Wang
et al., 2018) to evaluate the performance of the pre-trained models. We follow previous work to use
eight tasks in GLUE, including CoLA, RTE, MRPC, STS, SST, QNLI, QQP, and MNLI.The detailed
setting of the fine-tuning is illustrated in Appendix A.1.

Data Corpus and Pre-training Tasks. Following BERT (Devlin et al., 2018), we use the English
Wikipedia corpus and BookCorpus (Zhu et al., 2015) for pre-training. By concatenating these two
datasets, we obtain a corpus with roughly 16GB in size, similar to Devlin et al. (2018). We also
follow a couple of consecutive pre-processing steps: segmenting documents into sentences by Spacy2,
normalizing, lower-casing, tokenizing the texts by Moses decoder (Koehn et al., 2007), and finally,
applying byte pair encoding (BPE) (Sennrich et al., 2015) with the vocabulary size set as 32,678. We
use masked language modeling as the objective of BERT pre-training and replaced token detection for
ELECTRA pre-training. We remove the next sentence prediction task and use FULL-SENTENCES
mode to pack sentences as suggested in RoBERTa (Liu et al., 2019). Details of the two pre-training
tasks and TNF’s detailed implementation on ELECTRA can be found in Appendix A.2

2https://spacy.io

6

https://spacy.io


Published as a conference paper at ICLR 2021

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e6

2.
0

2.
2

2.
4

2.
6

2.
8

3.
0

BERT-train
BERT-TNF-train
BERT-valid
BERT-TNF-valid

(a) Loss curves (BERT setting)

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e6

14
15

16
17

18
19

20 ELECTRA-train
ELECTRA-TNF-train
ELECTRA-valid
ELECTRA-TNF-valid

(b) Loss curves (ELECTRA setting)

0.2 0.4 0.6 0.8 1.0
Iterations 1e6

80
81

82
83

84
85

86
87

BERT
BERT-TNF
ELECTRA
ELECTRA-TNF

(c) GLUE evaluation

Figure 3: The curves of pre-training loss, pre-training validation loss and average GLUE score for all
models trained under the BERT setting and ELECTRA setting. All three sub-figures show that TNF
expedites the backbone methods.

Model architecture and hyper-parameters. We conduct experiments on BERT (110M param-
eters) (Devlin et al., 2018) and ELECTRA (110M parameters) (Clark et al., 2019) (i.e., the base
setting). A 12-layer Transformer is used for BERT. For each layer, the hidden size is set to 768 and
the number of attention head (H) is set to 12. ELECTRA composes of a discriminator and a generator.
The discriminator is the same as BERT and the generator is 1/3-width BERT model, suggested by the
original paper (Clark et al., 2019). We also conduct experiments on large models (335M parameters),
details are at Appendix A.5. We use the same pre-training hyper-parameters for all experiments. All
models are pre-trained for 1000k steps with batch size 256 and maximum sequence length 512. All
hyper-parameter configurations are reported in Appendix A.3.

4.2 RESULTS AND ANALYSIS

Params Avg. GLUE
GPT-2 117 M 78.8
BERT 110 M 82.2
SpanBERT 110 M 83.9
ELECTRA 110 M 85.1
BERT (Ours) 110 M 83.1
BERT-TNF 110 M 83.9
ELECTRA (Ours) 110 M 86.0
ELECTRA-TNF 110 M 86.7

Table 1: Average GLUE score of all methods on
the dev set when the pre-training finished, i.e.,
at 1e6 iterations. Results of GPT, BERT and
ELECTRA are from Clark et al. (2019). The re-
sult of SpanBERT is obtained by fine-tuning the
released checkpoint from Joshi et al. (2019). We
also reproduce BERT and ELECTRA in our sys-
tem for fair comparison. We report their results
as BERT(ours) and ELECTRA(ours).

TNF improves pre-training efficiency. Fig-
ure 3 shows for all pre-training methods, how the
pre-training loss, pre-training validation loss and
average GLUE score change as pre-training pro-
ceeds. From Figure 3(a) and (b), we can see that as
the training proceeds, TNF’s pre-training loss and
validation loss is constantly lower than its corre-
sponding backbone methods. It indicates that TNF
has accelerated its backbone model through the en-
tire pre-training process. We can also notice from
Figure 3(a) and (b) that the gap between the losses
of the backbone model and TNF keeps increasing
during pre-training. A possible explanation of this
phenomenon is that the qualities of notes would
improve with pre-training. Therefore, the notes
that TNF takes for rare words could contain better
semantic information to help the encoder as the
training goes.

From Figure 3(c), we can see that the average
GLUE score of TNF is also larger than the baseline
through most of the pre-training. TNF’s GLUE
scores at 400k iteration are competitive to those
of the corresponding backbone models at 1000k
iteration in both BERT and ELECTRA settings. It means that to reach the same performance, TNF can
save 60% of pre-training time. If models are trained on 16 NVIDIA Tesla V100 GPUs, BERT-TNF
can reach BERT’s final performance within 2 days while it takes BERT 5.7 days.

7



Published as a conference paper at ICLR 2021

MNLI QNLI QQP SST CoLA MRPC RTE STS Avg.
BERT (Ours) 85.0 91.5 91.2 93.3 58.3 88.3 69.0 88.5 83.1
BERT-TNF 85.0 91.0 91.2 93.2 59.5 89.3 73.2 88.5 83.9
BERT-TNF-F 85.1 90.8 91.1 93.3 59.8 88.8 72.1 88.5 83.7
BERT-TNF-U 85.0 90.9 91.1 93.4 60.2 88.7 71.4 88.4 83.6
ELECTRA(Ours) 86.8 92.7 91.7 93.2 66.2 90.2 76.4 90.5 86.0
ELECTRA-TNF 87.0 92.7 91.8 93.6 67.0 90.1 81.2 90.1 86.7
ELECTRA-TNF-F 86.9 92.6 91.8 93.7 65.9 89.7 81.4 89.8 86.5
ELECTRA-TNF-U 86.9 92.7 91.7 93.6 66.3 89.8 81.0 89.8 86.5

Table 2: Performance of different models on downstream tasks. Results show that TNF outperforms
backbone methods on the majority of individual tasks. We also list the performance of two variants
of TNF. Both of them leverage the node dictionary during fine-tuning. Specifically, TNF-F uses fixed
note dictionary and TNF-U updates the note dictionary as in pre-training. Both models outperforms
the baseline model while perform slightly worse than TNF.

Beyond the base-sized models (110 M parameters), we also apply TNF on large models to check the
effectiveness of our method. Details are reported at Appendix A.5.

TNF improves its backbone model’s performance. BERT models are severely under-trained (Liu
et al., 2019). Therefore, training faster usually indicates better final performance given the same
amount of pre-training time. In Table 1, we present the average GLUE score of all methods when
the pre-training finished, i.e., at 1M updates. We can see from the table that in both BERT and
ELECTRA settings, TNF outperforms its backbone methods on the average GLUE score with a
large margin. Among them, ELECTRA-TNF’s performance outperforms all state-of-the-art baseline
methods with a similar model size. In Table 2, we present the performance of TNF and its backbone
methods on GLUE sub-tasks. TNF outperforms its backbone models on the majority of sub-tasks.
TNF’s performance improvement against the baseline is most prominent on sub-tasks with smaller
datasets. Among all 8 sub-tasks, RTE has the smallest training set which contains 2.5k training
samples in total (Wang et al., 2018). On RTE, TNF obtains the biggest performance improvement
(4.2 and 4.8 points for BERT and ELECTRA, respectively) compared with the baseline. On another
small-data sub-tasks CoLA, TNF also outperforms the baseline with considerable margins (1.2 and
0.8 points for BERT and ELECTRA respectively). This indicates that TNF pre-training can indeed
provide a better initialization point for fine-tuning, especially on downstream tasks with smaller data
sizes.

Empirical analysis on whether to keep notes during fine-tuning. As mentioned in Section 3,
when fine-tuning the pre-trained models on downstream tasks, TNF doesn’t use the note dictionary.
One may wonder what the downstream task performance would be like if we keep the note dictionary
in fine-tuning. To check this, we test two TNF’s variations for comparison. The first variation
is denoted as TNF-F, in which we fix the noted dictionary and use it in the forward pass during
fine-tuning as described in Equation 6. The second variation is denoted as TNF-U. In TNF-U, we not
only use the note dictionary, but also add the note dictionary into the computation graph and update
the note representations by back-propagation. The results are listed in Table 2. The results show
that both TNF-F and TNF-U outperform the backbone model. This indicates that no matter if we
keep the notes at fine-tuning or not, TNF can boost its backbone pre-training method’s performance.
Moreover, we also observe that their performances are both slightly worse than TNF. We hypothesize
the reason behind can be the distribution discrepancy of the pre-training and fine-tuning data. More
detailed analysis can be found in Appendix A.4.

To see how pre-training with notes affects the model performance, we further study the validation loss
at the pre-training stage in different settings. We firstly study the validation MLM loss on sentences
without rare words on both BERT and BERT-TNF. We find that at iteration 200k, BERT’s MLM loss
on sentences without rare words is 3.896. While BERT-TNF’s MLM loss on sentences without rare
words is 3.869, less than that of BERT. This indicates that with TNF, the model is in general better
trained to preserve semantics related to common context. Then we calculate the validation loss on
sentences with rare words for three model settings, a pre-trained TNF model with/without using the
notes and a standard pre-trained BERT. We find that the loss order is TNF with notes < BERT <

8



Published as a conference paper at ICLR 2021

TNF without notes. This indicates that information related to rare words are contained in the TNF
notes but not memorized in the Transformer parameters.

Furthermore, we conduct sensitivity analysis of the newly-added hyper-parameters of TNF. Details
and complete results can be found at Appendix A.4.

5 CONCLUSION

In this paper, we focus on improving the data utilization for more efficient language pre-training
through the lens of the word frequency. We argue the large proportion of rare words and their
poorly-updated word embeddings could slow down the entire pre-training process. Towards this end,
we propose Taking Notes on the Fly (TNF). TNF alleviates the heavy-tail word distribution problem
by taking temporary notes for rare words during pre-training. In TNF, we maintain a note dictionary
to save historical contextual information for rare words when we meet them in training sentences. In
this way, when rare words appear again, we can leverage the cross-sentence signals saved in their
notes to enhance semantics to help pre-training. TNF saves 60% of training time for its backbone
methods when reaching the same performance. If trained with the same number of updates, TNF
outperforms backbone pre-training methods by a large margin in downstream tasks.

REFERENCES

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Dzmitry Bahdanau, Tom Bosc, Stanislaw Jastrzebski, Edward Grefenstette, Pascal Vincent, and
Yoshua Bengio. Learning to compute word embeddings on the fly. arXiv preprint arXiv:1706.00286,
2017.

Kevin Clark, Minh-Thang Luong, Quoc V Le, and Christopher D Manning. Electra: Pre-training
text encoders as discriminators rather than generators. In International Conference on Learning
Representations, 2019.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Ahmed El-Kishky, Frank Xu, Aston Zhang, and Jiawei Han. Parsimonious morpheme segmentation
with an application to enriching word embeddings. In 2019 IEEE International Conference on Big
Data (Big Data), pp. 64–73. IEEE, 2019.

Thibault Févry, Livio Baldini Soares, Nicholas FitzGerald, Eunsol Choi, and Tom Kwiatkowski. En-
tities as experts: Sparse memory access with entity supervision. arXiv preprint arXiv:2004.07202,
2020.

Jun Gao, Di He, Xu Tan, Tao Qin, Liwei Wang, and Tie-Yan Liu. Representation degeneration
problem in training natural language generation models. arXiv preprint arXiv:1907.12009, 2019.

Chengyue Gong, Di He, Xu Tan, Tao Qin, Liwei Wang, and Tie-Yan Liu. Frage: Frequency-agnostic
word representation. In Advances in neural information processing systems, pp. 1334–1345, 2018.

Linyuan Gong, Di He, Zhuohan Li, Tao Qin, Liwei Wang, and Tieyan Liu. Efficient training of bert
by progressively stacking. In International Conference on Machine Learning, pp. 2337–2346,
2019.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Ming-Wei Chang. Realm: Retrieval-
augmented language model pre-training. arXiv preprint arXiv:2002.08909, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S. Weld, Luke Zettlemoyer, and Omer Levy.
SpanBERT: Improving pre-training by representing and predicting spans. arXiv preprint
arXiv:1907.10529, 2019.

9



Published as a conference paper at ICLR 2021

Urvashi Khandelwal, Omer Levy, Dan Jurafsky, Luke Zettlemoyer, and Mike Lewis. Generalization
through memorization: Nearest neighbor language models. arXiv preprint arXiv:1911.00172,
2019.

Yerbolat Khassanov, Zhiping Zeng, Van Tung Pham, Haihua Xu, and Eng Siong Chng. Enriching
rare word representations in neural language models by embedding matrix augmentation. arXiv
preprint arXiv:1904.03799, 2019.

Yoon Kim, Yacine Jernite, David Sontag, and Alexander M Rush. Character-aware neural language
models. In Thirtieth AAAI conference on artificial intelligence, 2016.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR,
abs/1412.6980, 2014. URL http://arxiv.org/abs/1412.6980.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Federico, Nicola
Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, Richard Zens, Chris Dyer, Ondrej Bojar,
Alexandra Constantin, and Evan Herbst. Moses: Open source toolkit for statistical machine
translation. In ACL, 2007.

Ray R Larson. Introduction to information retrieval. Journal of the American Society for Information
Science and Technology, 61(4):852–853, 2010.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Minh-Thang Luong, Richard Socher, and Christopher D Manning. Better word representations with
recursive neural networks for morphology. In Proceedings of the Seventeenth Conference on
Computational Natural Language Learning, pp. 104–113, 2013.

Tamas Makany, Jonathan Kemp, and Itiel E Dror. Optimising the use of note-taking as an external
cognitive aid for increasing learning. British Journal of Educational Technology, 40(4):619–635,
2009.

Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich Elsen, David Garcia,
Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, et al. Mixed precision
training. arXiv preprint arXiv:1710.03740, 2017.

Myle Ott, Michael Auli, David Grangier, and Marc’Aurelio Ranzato. Analyzing uncertainty in neural
machine translation. arXiv preprint arXiv:1803.00047, 2018.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier,
and Michael Auli. fairseq: A fast, extensible toolkit for sequence modeling. arXiv preprint
arXiv:1904.01038, 2019.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. 2017.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. arXiv preprint arXiv:1910.10683, 2019.

Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra, and Timothy Lillicrap. Meta-
learning with memory-augmented neural networks. In International conference on machine
learning, pp. 1842–1850, 2016.

Cicero D Santos and Bianca Zadrozny. Learning character-level representations for part-of-speech
tagging. In Proceedings of the 31st international conference on machine learning (ICML-14), pp.
1818–1826, 2014.

Timo Schick and Hinrich Schütze. Rare words: A major problem for contextualized embeddings and
how to fix it by attentive mimicking. In AAAI, pp. 8766–8774, 2020.

10

http://arxiv.org/abs/1412.6980


Published as a conference paper at ICLR 2021

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words
with subword units. CoRR, abs/1508.07909, 2015. URL http://arxiv.org/abs/1508.
07909.

Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and policy considerations for deep
learning in nlp. arXiv preprint arXiv:1906.02243, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman.
GLUE: A multi-task benchmark and analysis platform for natural language understanding. CoRR,
abs/1804.07461, 2018. URL http://arxiv.org/abs/1804.07461.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning requires rethinking generalization. arXiv preprint arXiv:1611.03530, 2016.

Yukun Zhu, Ryan Kiros, Richard Zemel, Ruslan Salakhutdinov, Raquel Urtasun, Antonio Torralba,
and Sanja Fidler. Aligning books and movies: Towards story-like visual explanations by watching
movies and reading books. In arXiv preprint arXiv:1506.06724, 2015.

11

http://arxiv.org/abs/1508.07909
http://arxiv.org/abs/1508.07909
http://arxiv.org/abs/1804.07461


Published as a conference paper at ICLR 2021

A APPENDIX

A.1 GLUE FINE-TUNING.

We fine-tune the pre-trained models on GLUE (General Language Understanding Evaluation) (Wang
et al., 2018) to evaluate the performance of the pre-trained models. We follow previous work to
use eight tasks in GLUE, including CoLA, RTE, MRPC, STS, SST, QNLI, QQP, and MNLI. For
evaluation metrics, we report Matthews correlation for CoLA, Pearson correlation for STS-B, and
accuracy for other tasks. We use the same optimizer (Adam) with the same hyper-parameters as
in pre-training. Following previous work, we search the learning rates during the fine-tuning for
each downstream task. The details are listed in Table 3. For fair comparison, we do not apply any
published tricks for fine-tuning. Each configuration is run five times with different random seeds, and
the average of these five results on the validation set is calculated as the final performance of one
configuration. We report the best number over all configurations for each task.

A.2 PRE-TRAINING TASKS.

We use masked language modeling as the objective of BERT-based pre-training and replaced token
detection for ELECTRA-based pre-training. We remove the next sentence prediction task and use
FULL-SENTENCES mode to pack sentences as suggested in RoBERTa (Liu et al., 2019).

Masked Language Modeling of BERT. The masked probability is set to 0.15 with whole word
masking. As mentioned above, our datasets are processed as sub-word tokens after BPE. Whole word
masking here means when a sub-word is masked, we also mask all surrounding tokens that originate
from the same word. After masking, we replace 80% of the masked positions with [MASK], 10% by
randomly sampled words, and keep the remaining 10% unchanged.

Replaced Token Detection of ELECTRA. We use the output of the generator of ELECTRA to
calculate note representations and update the note dictionary. Then we only apply the notes on the
input of the discriminator (i.e., adding the note representations of rare words together with the token
embeddings as the input of the discriminator), not on the input of the generator. The reason is that as
shown in BERT-TNF’s experiments, the notes can enhance the training of the generator. However,
an overly strong generator may pose an unnecessarily challenging task for the discriminator (Clark
et al., 2019), leading to unsatisfactory pre-training of the discriminator. The masked probability of
the generator is set to 0.15 with whole word masking and all masked positions are replaced with
[MASK].

A.3 HYPER-PARAMETERS

We conduct experiments on BERT-Base (110M parameters), BERT-Large (335M parameters) (Devlin
et al., 2018) and ELECTRA (Clark et al., 2019). BERT consists of 12 and 24 Transformer layers for
the base and large model, respectively. For each layer, the hidden size is set to 768 and 1024 and the
number of attention head (H) is set to 12 and 16 for the base and large model. The architecture of
the discriminator of ELECTRA is the same as BERT-Base. The size of the generator is 1/3 of the
discriminator. We use the same pre-training hyper-parameters for all experiments. All models are
pre-trained for 1000k steps with batch size 256 and maximum sequence length 512. We use Adam
(Kingma & Ba, 2014) as the optimizer, and set its hyperparameter ε to 1e-6 and (β1, β2) to (0.9,
0.98). The peak learning rate is set to 1e-4 with a 10k-step warm-up stage. After the warm-up stage,
the learning rate decays linearly to zero. We set the dropout probability to 0.1 and weight decay to
0.01. There are three additional hyper-parameters for TNF, half window size k, discount factor λ
and weight γ. We set k as 16, λ as 0.5, γ as 0.1 for the main experiment, except for ELECTRA k is
empirically set as 32. All hyper-parameter configurations are reported in Table 3.

A.4 ABLATION STUDY AND PARAMETER SENSITIVITY

Empirical analysis on whether to keep notes during fine-tuning. We test two TNF’s variations
for comparison. The first variation is denoted as TNF-F, in which we fix the note dictionary and use
it in the forward pass during fine-tuning as described in Equation 6. The second variation is denoted

12



Published as a conference paper at ICLR 2021

Pre-training Fine-tuning
Max Steps 1M -
Max Epochs - 5 or 10
Learning Rate 1e-4 {1e-5, 2e-5, 3e-5, 4e-5, 5e-5}
Batch Size 256 32
Warm-up Ratio 0.01 0.06
Sequence Length 512 512
Learning Rate Decay Linear Linear
Adam ε 1e-6 1e-6
Adam (β1, β2) (0.9, 0.98) (0.9, 0.98)
Dropout 0.1 0.1
Weight Decay 0.01 0.01
k of BERT-TNF 16 -
λ of BERT-TNF 0.5 -
γ of BERT-TNF 0.1 -
k of ELECTRA-TNF 32 -
λ of ELECTRA-TNF 0.5 -
γ of ELECTRA-TNF 0.1 -

Table 3: Hyper-parameters for the pre-training and fine-tuning on all language pre-training methods,
include both backbone methods and TNFs.

Effect of varying k Effect of varying λ
Run # R1 R2 R3 R4 R5 R6 R7 R8 R9
k 4 8 16 32 16 16 16 16 16
λ 0.5 0.5 0.5 0.5 0.1 0.3 0.5 0.7 0.9
γ 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Model Size base base base base base base base base base
Avg. GLUE 82.5 83.3 83.9 83.5 83.3 83.9 83.9 82.8 83.8

Effect of model size Effect of varying γ
Run # R10 R11 R12 R13 R14 R15 R16 R17 R18
k - 16 - 16 16 16 16 16 16
λ - 0.5 - 0.5 0.5 0.5 0.5 0.5 0.5
γ - 0.1 - 0.1 0.1 0.3 0.5 0.7 0.9
Model Size base base large large base base base base base
Avg. GLUE 83.1 83.9 84.4 85.6 83.9 83.1 82.9 83.5 83.0

Table 4: Experimental results on the sensitivity of BERT-TNF’s hyper-parameter k, λ and γ.

as TNF-U. In TNF-U, we not only use the note dictionary, but also add the note dictionary into the
computation graph and update the note representations by back-propagation. As shown in Table
2, both TNF-F and TNF-U outperform the backbone models. This indicates that no matter if we
keep the notes at fine-tuning or not, TNF can boost its backbone pre-training method’s performance.
Moreover, we also observe that their performances are both slightly worse than TNF. We hypothesize
the reason behind can lie in the discrepancy of the pre-training and fine-tuning data. We notice that
the proportion of rare words in downstream tasks are too small (from 0.47% to 2.31%). When the
data distribution of the pre-training data set is very different from the downstream data sets, notes of
rare words in pre-training might be not very effective in fine-tuning.

Sensitivity of hyper-parameters. We also conduct experiments on the BERT model to check if
TNF’s performance is sensitive to the newly introduced hyper-parameters. Results are shown in
Table 4. Overall, in most settings (R1-R9 and R14-R18) of varying k, λ and γ, TNF outperforms
the BERT-Base (R10), which indicates that TNF is generally robust to the new hyper-parameters.
The experimental results using different k (R1-R4) show that a larger k usually leads to better
performances. The reason may be that the note representation of rare words can contain more
sufficient contextual information when a relatively large k is applied. We also tried fixing k and

13



Published as a conference paper at ICLR 2021

tuning λ (R5-R9) and γ (R14-R18). We empirically find that with λ = 0.5 and γ = 0.1, BERT-TNF
produces the best performance. We speculate that small λ and γ can make the training more stable.

A.5 LARGE MODELS

0.2 0.4 0.6 0.8 1.0
Iterations 1e6

81
82

83
84

85
86

BERT-Large
BERT-Large-TNF

Figure 4: GLUE score of large models

In addition to the experiments on base models, we also
train large models to check the effectiveness of TNF. A 24-
layer Transformer is used for BERT-large. The hidden size
is set to 1024 and the number of attention head is set to 16.
Other settings are same as base models. Although it can
be seen from the experiments of the previous works (Clark
et al., 2019) that improving a larger model’s performance
on downstream tasks is usually more challenging, TNF
can still save at least 40% training time on BERT-Large
as shown in Figure 4. In Table 4 (R10-R13), we compare
TNF’s performance on BERT-Base and BERT-Large. TNF
gives a larger improvement on the BERT-large (1.2 point)
than BERT-base (0.7 point) when the pre-training is fin-
ished. It indicates that TNF is not only robust to the model
size, but also more effective at improving the final performance when the model gets bigger.

14


	Introduction
	Related Work
	Taking Notes on the Fly
	Preliminary
	Training BERT by Taking Notes on the FLY

	Experiments
	Experimental Setup
	Results and Analysis

	Conclusion
	Appendix
	GLUE Fine-tuning.
	Pre-training Tasks.
	Hyper-parameters
	Ablation study and Parameter sensitivity
	Large Models


