
Networked Communication for Mean-Field Games with Function
Approximation and Empirical Mean-Field Estimation

Patrick Benjamin

University of Oxford

Oxford, United Kingdom

patrick.benjamin@cs.ox.ac.uk

Alessandro Abate

University of Oxford

Oxford, United Kingdom

alessandro.abate@cs.ox.ac.uk

ABSTRACT
Recent algorithms allow decentralised agents, possibly connected

via a communication network, to learn equilibria in mean-field

games from a non-episodic run of the empirical system. However,

these algorithms are for tabular settings: this computationally lim-

its the size of agents’ observation space, meaning the algorithms

cannot handle anything but small state spaces, nor generalise be-

yond policies depending only on the agent’s local state to so-called

‘population-dependent’ policies. We address this limitation by in-

troducing function approximation to the existing setting, drawing

on the Munchausen Online Mirror Descent method that has previ-

ously been employed only in finite-horizon, episodic, centralised

settings. While this permits us to include the mean field in the

observation for players’ policies, it is unrealistic to assume decen-

tralised agents have access to this global information: we therefore

also provide new algorithms allowing agents to locally estimate

the global empirical distribution, and to improve this estimate via

inter-agent communication. We prove theoretically that exchang-

ing policy information helps networked agents outperform both

independent and even centralised agents in function-approximation

settings. Our experiments demonstrate this happening empirically,

and show that the communication network allows decentralised

agents to estimate the mean field for population-dependent policies.

KEYWORDS
mean-field games, deep reinforcement learning, decentralised learn-

ing, networked communication, coordination

ACM Reference Format:
Patrick Benjamin and Alessandro Abate. 2025. Networked Communication

for Mean-Field Games with Function Approximation and Empirical Mean-

Field Estimation. In Proc. of the Adaptive and Learning Agents Workshop

(ALA 2025), Detroit, Michigan, USA, ala-workshop.github.io, May 19 – 20,

2025, IFAAMAS, 15 pages.

1 INTRODUCTION
The mean-field game (MFG) framework [17, 18] can be used to

circumvent the difficulty faced by multi-agent reinforcement learn-

ing (MARL) regarding computational scalability as the number

of agents grows [39, 42]. It models a representative agent as in-

teracting not with other individual agents in the population on

a per-agent basis, but instead with a distribution over the other

agents, called the mean field. The MFG framework analyses the

limiting case when the population consists of an infinite number

of symmetric and anonymous agents, that is, they have identical

Proc. of the Adaptive and Learning Agents Workshop (ALA 2025), Avalos, Aydeniz,

Müller, Mohammedalamen (eds.), May 19 – 20, 2025, Detroit, Michigan, USA, ala-

workshop.github.io. 2025.

reward and transition functions which depend on the mean-field

distribution rather than on the actions of specific other players. The

solution to this game is the mean-field Nash equilibrium (MFNE),

which can be used as an approximation for the Nash equilibrium

(NE) in a finite-agent game (which is harder to solve in itself), with

the error in the solution reducing as the number of agents N tends

to infinity [2, 6, 16, 28, 32, 38]. MFGs have thus been applied to a

wide variety of real-world problems: see [20] for examples.

Recent works argue that classical algorithms for solving MFGs

rely on assumptions and methods that are likely to be undesir-

able in real-world applications (e.g. swarm robotics or autonomous

vehicles), emphasising that desirable qualities for practical MFG

algorithms include: learning from the empirical distribution of 𝑁

agents (i.e. this distribution is generated only by the policies of

the agents, rather than being updated by the algorithm itself or

an external oracle/simulator); learning online from a single, non-

episodic system run (i.e. similar to above, the population cannot

be arbitrarily reset by an external controller); model-free learning;

decentralisation; and fast practical convergence [3, 37]. While these

works address these desiderata, they do so only in settings in which

the state and action spaces are small enough that the Q-function

can be represented by a table, limiting their approaches’ scalability.

Moreover, in those works, as in many others on MFGs, agents

only observe their local state as input to their Q-function (which

defines their policy). This is sufficient when the solved MFG is

expected to have a stationary distribution (‘stationary MFGs’) [2,

3, 20, 35, 37, 41]. However, in reality there are numerous reasons

why agents may benefit from being able to respond to the current

distribution. Recent work has thus increasingly focused on these

more general settings where it is necessary for agents to have so-

called ‘master policies’ (a.k.a. population-dependent policies) which

depend on both the mean-field distribution and their local state

[4, 5, 20, 21, 25, 34].

The distribution is a large, high-dimensional observation object,

taking a continuum of values. Therefore a population-dependent

Q-function cannot be represented exactly in a table and must be

approximated. To address these limitations while maintaining the

desiderata for real-world applications given in recent works, we in-

troduce function approximation to the MFG setting of decentralised

agents learning online from a single, non-episodic run of the empir-

ical system, allowing this setting to handle larger state spaces and

to accept the mean-field distribution as an observation input. To

overcome the difficulties of training non-linear approximators in

this context, we use the so-called ‘Munchausen’ trick, introduced

by [33] for single-agent RL, and extended to MFGs by [21], and to

MFGs with population-dependent policies by [34].

We particularly explore this in the context of networked com-

munication between decentralised agents [3]. We demonstrate that

communication brings two specific benefits over the purely inde-

pendent setting (while also removing the undesirable assumption

of a centralised learner, which in the real world may be unrealis-

tic, a computational bottleneck and a vulnerable single point of

failure). Firstly, when the Q-function is approximated rather than

exact, some updates lead to better performing policies than others.

Allowing networked agents to propagate better performing policies

through the population leads to faster learning than in the purely

independent case and often even than in the centralised case, as we

show both theoretically and empirically (this method is reminiscent

of the use of fitness functions in distributed evolutionary algorithms

[10, 15]). Secondly, we argue that in the real world it is unrealis-

tic to assume that decentralised agents, endowed with local state

observations and limited (if any) communication radius, would be

able to observe the global mean-field distribution and use it as input

to their Q-functions / policy. We therefore further contribute two

setting-dependent algorithms by which decentralised agents can

estimate the global distribution from local observations, and further

improve their estimates by communication with neighbours.

We focus on ‘coordination’ games, where agents can increase

their individual rewards by following the same strategy as others

and therefore have an incentive to communicate policies, even if

the MFG setting itself is technically non-cooperative. Thus our

work can be applied to real-world problems in e.g. traffic signal

control, formation control in swarm robotics, and consensus and

synchronisation e.g. for sensor networks [29].
1
In summary, our

contributions are:

• We introduce, for the first time, function approximation to

MFG settings with decentralised agents. To do this:

– We use Munchausen RL for the first time in an infinite-

horizon MFG context (for finite-horizon see [21, 34]).

– This constitutes the first use of function approximation

for solving MFGs from a single, non-episodic run of the

empirical system (for tabular settings see [3, 37]).

• Function approximation allows us to explore larger state

spaces, and also settings where agents’ policies depend on

the mean-field distribution as well as their local state.

• Rather than assuming that agents have access to this global

knowledge as in prior works, we present two additional novel

algorithms allowing decentralised agents to locally estimate

the empirical distribution and to improve these estimates by

inter-agent communication.

• We prove theoretically that networked agents may learn

faster than both centralised and independent agents in the

function-approximation setting.

• We support this with extensive experiments, where our re-

sults showcase the two benefits of the decentralised commu-

nication scheme, which significantly outperforms both the

independent and centralised settings.

1
We further preempt concerns about the appropriateness of communication in compet-

itive settings by wondering whether self-interested agents would be any more likely

to want to obey a central learner as has usually been assumed. Moreover we show

that self-interested communicating agents can obtain higher returns than independent

agents even in non-coordination games (Fig. 7), indicating that they do have incentive

to communicate.

The paper is structured as follows. Related work is given in

Sec. 2. We give preliminaries in Sec. 3 and our core learning and

policy-improvement algorithm in Sec. 4. We present our mean-field

estimation and communication algorithms in Sec. 5, theoretical

results in Sec. 6 and experiments in Sec. 7.

2 RELATEDWORK
MFGs are a quickly growing research area, so we only discuss

the works most closely related to this present work, and instead

refer the reader to [3] for detailed discussion around the setting

of networked communication for MFGs, and to [20] for a broader

survey of MFGs. Our work is most closely related to [3], which

introduced networked communication to the infinite-horizon MFG

setting. However, this work focuses only on tabular settings rather

than using function approximation as in ours, and only addresses

population-independent policies.

[21] uses Munchausen Online Mirror Descent (MOMD), similar

to our method for learning with neural networks, but there are

numerous differences to our setting: most relevantly, they study a

finite-horizon episodic setting, where the mean-field distribution

is updated in an exact way and an oracle supplies a centralised

learner with rewards and transitions for it to learn a population-

independent policy. [34] usesMOMD to learn population-dependent

policies, albeit also with a centralised method that exactly updates

the mean-field distribution in a finite-horizon episodic setting. [25]

learns population-dependent policies with function approximation

in infinite-horizon settings like our own, but does so in a centralised,

two-timescale manner without using the empirical mean-field distri-

bution. [43] also uses function approximation along a non-episodic

path, but involves a generic central agent learning an estimate

of the mean field rather than using an empirical population. Ap-

proaches that directly update an estimate of the mean field must

be able to generate rewards from this arbitrary mean field, even if

they otherwise claim to be oracle-free. They are thus inherently

centralised algorithms and rely on strong assumptions that may

not apply in real-world problems. Conversely, we are interested

in practical convergence in online, deployed settings, where the

reward is computed from the empirical finite population.

[40] addresses decentralised learning from a continuous, non-

episodic run of the empirical system using either full or compressed

information about the mean field, but agents are assumed to receive

this information directly, rather than estimating it locally as in the

algorithm we now present. They also do not consider function

approximation or inter-agent communication in their algorithms.

In the closely related but distinct area of mean-field RL, [12] does

estimate the empirical mean-field distribution from the local neigh-

bourhood, however agents are seeking to estimate the mean action

rather than the mean-field distribution over states as in our MFG

setting. Their agents also do not have access to a communication

network by which they can improve their estimates.

3 PRELIMINARIES
3.1 Mean-Field Games
We use the following notation. 𝑁 is the number of agents in a

population, withS andA representing the finite state and common

action spaces, respectively. The set of probability measures on a

finite set X is denoted ΔX , and e𝑥 ∈ ΔX for 𝑥 ∈ X is a one-hot

vector with only the entry corresponding to 𝑥 set to 1, and all others

set to 0. For time 𝑡 ≥ 0, 𝜇𝑡 =
1

𝑁

∑𝑁
𝑖=1

∑
𝑠∈S 1𝑠𝑖𝑡=𝑠e𝑠 ∈ ΔS is a vector

of length |S| denoting the empirical categorical state distribution

of the 𝑁 agents at time 𝑡 . For agent 𝑖 ∈ 1 . . . 𝑁 , 𝑖’s policy at time

𝑡 depends on its observation 𝑜𝑖𝑡 . We explore three different forms

that this observation object can take:

• In the conventional setting, the observation is simply 𝑖’s

current local state 𝑠𝑖𝑡 , such that 𝜋𝑖 (𝑎 |𝑜𝑖𝑡) = 𝜋𝑖 (𝑎 |𝑠𝑖𝑡).
• When the policy is population-dependent, if we assume per-

fect observability of the global mean-field distribution then

we have 𝑜𝑖𝑡 = (𝑠𝑖𝑡 , 𝜇𝑡).
• It is unrealistic to assume that decentralised agents with

a possibly limited communication radius can observe the

global mean field, so we allow agents to form a local esti-

mate
˜𝜇𝑖𝑡 which can be improved by communication with

neighbours. Here we have 𝑜𝑖𝑡 = (𝑠𝑖𝑡 , ˜𝜇𝑖𝑡).
In the following definitionswe focus on the population-dependent

case when 𝑜𝑖𝑡 = (𝑠𝑖𝑡 , 𝜇𝑡), and clarify afterwards the connection to

the other observation cases. Thus the set of policies is Π = {𝜋 :

S × ΔS → ΔA }, and the set of Q-functions is denoted Q = {𝑞 :

S × ΔS × A → R}.
Definition 1 (N -player symmetric anonymous games). An N-

player stochastic game with symmetric, anonymous agents is given by

the tuple ⟨𝑁 , S,A, 𝑃 , 𝑅, 𝛾⟩, whereA is the action space, identical for

each agent; S is the identical state space of each agent, such that their

initial states are {𝑠𝑖
0
}
𝑁
𝑖=1
∈ S𝑁 and their policies are {𝜋𝑖 }𝑁

𝑖=1
∈ Π𝑁 . 𝑃 :

S × A × ΔS → ΔS is the transition function and 𝑅 : S × A × ΔS
→ [0,1] is the reward function, which map each agent’s local state

and action and the population’s empirical distribution to transition

probabilities and bounded rewards, respectively, i.e. ∀𝑖 = 1, . . . , 𝑁 :

𝑠𝑖𝑡+1 ∼ 𝑃 (·|𝑠
𝑖
𝑡 , 𝑎

𝑖
𝑡 , 𝜇𝑡), 𝑟 𝑖𝑡 = 𝑅(𝑠𝑖𝑡 , 𝑎𝑖𝑡 , 𝜇𝑡) .

At the limit as 𝑁 → ∞, the infinite population of agents can

be characterised as a limit distribution 𝜇 ∈ ΔS ; the infinite-agent
game is termed an MFG. The so-called ‘mean-field flow’ 𝝁 is given

by the infinite sequence of mean-field distributions s.t. 𝝁 =(𝜇𝑡)𝑡≥0.

Definition 2 (Induced mean-field flow). We denote by 𝐼 (𝜋)
the mean-field flow 𝝁 induced when all the agents follow 𝜋 , where

this is generated from 𝜋 as follows:

𝜇𝑡+1 (𝑠′) =
∑︁
𝑠,𝑎

𝜇𝑡 (𝑠)𝜋 (𝑎 |𝑠, 𝜇𝑡)𝑃 (𝑠′ |𝑠, 𝑎, 𝜇𝑡) .

When the mean-field flow is stationary such that the distribution

is the same for all 𝑡 , i.e. 𝜇𝑡 = 𝜇𝑡+1 ∀𝑡 ≥ 0, the policy 𝜋𝑖 (𝑎 |𝑠𝑖𝑡 , 𝜇𝑡) need
not depend on the distribution, such that 𝜋𝑖 (𝑎 |𝑠𝑖𝑡 , 𝜇𝑡) = 𝜋𝑖 (𝑎 |𝑠𝑖𝑡), i.e.
we recover the classical population-independent policy. However,

for such a population-independent policy the initial distribution 𝜇0

must be known and fixed in advance, whereas otherwise it need

not be. We also give the following definitions.

Definition 3 (Mean-field discounted return). In a MFG

where all agents follow policy 𝜋 giving a mean-field flow 𝝁 =(𝜇𝑡)𝑡≥0,

the expected discounted return of the representative agent is given by

𝑉 (𝜋, 𝝁) = E

[∞∑︁
𝑡=0

𝛾𝑡 (𝑅(𝑠𝑡 , 𝑎𝑡 , 𝜇𝑡))
���� 𝑠0∼𝜇0

𝑎𝑡∼𝜋 (· |𝑠𝑡 ,𝜇𝑡)
𝑠𝑡+1∼𝑃 (· |𝑠𝑡 ,𝑎𝑡 ,𝜇𝑡)

]
.

Definition 4 (Best-response (BR) policy). A policy 𝜋∗ is a
best response (BR) against the mean-field flow 𝝁 if it maximises the

discounted return 𝑉 (·, 𝝁); the set of these policies is denoted 𝐵𝑅(𝝁):

𝜋∗ ∈ 𝐵𝑅(𝝁) := arg max

𝜋
𝑉 (𝜋, 𝝁) .

Definition 5 (Mean-field Nash eqilibrium (MFNE)). A pair

(𝜋∗, 𝝁∗) is a mean-field Nash equilibrium (MFNE) if the following

two conditions hold:

• 𝜋∗ is a best response to 𝝁∗, i.e. 𝜋∗ ∈ 𝐵𝑅(𝝁∗);
• 𝝁∗ is induced by 𝜋∗, i.e. 𝝁∗ = 𝐼 (𝜋∗).

𝜋∗ is thus a fixed point of the map 𝐵𝑅 ◦ 𝐼 , i.e. 𝜋∗ ∈ 𝐵𝑅(𝐼 (𝜋∗)).
If a population-dependent policy is a MFNE policy for any initial

distribution 𝜇0, it is a ‘master policy’.

Previous works have shown that, in tabular settings, it is possible

for a finite population of decentralised agents (each of which is

permitted to have a distinct population-independent policy 𝜋𝑖) to

learn theMFNE using only the empirical distribution 𝜇𝑡 , rather than

the exactly calculated infinite flow 𝝁 [3, 37]. This MFNE may be the

goal in itself, or it can in turn serve as an approximate NE for the

harder-to-solve game involving the finite population. In this work

we provide algorithms to perform this process in non-tabular and

population-dependent settings, and demonstrate them empirically.

3.2 (Munchausen) Online Mirror Descent
Instead of finding a 𝐵𝑅 at each iteration, which is computation-

ally expensive, we can use a form of policy iteration for MFGs

called Online Mirror Descent (OMD). This begins with an initial

policy 𝜋0, and then at each iteration 𝑘 , evaluating the current pol-

icy 𝜋𝑘 with respect to its induced mean-field flow 𝝁 = 𝐼 (𝜋𝑘) to
compute its Q-function 𝑄𝑘+1. To stabilise the learning process, we

then use a weighted sum over this and past Q-functions, and set

𝜋𝑘+1 to be the softmax over this weighted sum, i.e. 𝜋𝑘+1 (·|𝑠, 𝜇) =
𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥

(
1

𝜏𝑞

∑𝑘
𝜅=0

𝑄𝜅 (𝑠, 𝜇, ·)
)
. 𝜏𝑞 is a temperature parameter that

scales the entropy in Munchausen RL [33]; note that this is a dif-

ferent temperature to the one agents use when selecting which

communicated parameters to adopt, denoted 𝜏𝑐𝑜𝑚𝑚
𝑘

(Sec. 4.2).

If the Q-function is approximated non-linearly using neural net-

works, it is difficult to compute this weighted sum. The so-called

‘Munchausen trick’ addresses this by computing a single Q-function

that mimics the weighted sum using implicit regularisation based

on the Kullback-Leibler (KL) divergence between 𝜋𝑘 and 𝜋𝑘+1 [33].

Using this reparametrisation gives Munchausen OMD (MOMD),

detailed further in Sec. 4.1 [21, 34]. MOMD does not bias the MFNE,

and has the same convergence guarantees as OMD [14, 23, 34].

3.3 Networks
We conceive of the finite population as exhibiting two time-varying

networks. The basic definition of such a network is:

Definition 6 (Time-varying network). The time-varying net-

work {G𝑡 }𝑡≥0 is given by G𝑡 = (N , E𝑡), where N is the set of vertices

each representing an agent 𝑖 = 1, . . . , 𝑁 , and the edge set E𝑡 ⊆ {(i,j) :

i,j ∈ N } is the set of undirected links present at time t. A network’s

diameter 𝑑G𝑡 is the maximum of the shortest path length between

any pair of nodes.

One of these networks G𝑐𝑜𝑚𝑚𝑡 defines which agents can com-

municate information to each other at time 𝑡 . The second network

G𝑜𝑏𝑠𝑡 is a graph defining which agents can observe each other’s

states, which we use in general settings for estimating the mean-

field distribution from local information. The structure of the two

networks may be identical (e.g. if embodied agents can both observe

the position (state) of, and exchange information with, other agents

within a certain physical distance from themselves), or different

(e.g. if agents can observe the positions of nearby agents, but only

exchange information with agents by which they are linked via

satellite, which may connect agents over long distances).

We also define an alternative version of the observation graph

that is useful in a specific subclass of environments, which can

most intuitively be thought of as those where agents’ states are

positions in physical space. When this is the case, we usually think

of agents’ ability to observe each other as dependingmore abstractly

on whether states are visible to each other. We define this visibility

graph as follows:

Definition 7 (Time-varying state-visibility graph). The time-

varying state visibility graph {G𝑣𝑖𝑠𝑡 }𝑡≥0 is given by G𝑣𝑖𝑠𝑡 = (S′, E𝑣𝑖𝑠𝑡),

where S′ is the set of vertices representing the environment states S,
and the edge set E𝑣𝑖𝑠𝑡 ⊆ {(m,n) : m,n ∈ S′} is the set of undirected links
present at time t, indicating which states are visible to each other.

We view an agent in 𝑠 as able to obtain a count of the number of

agents in 𝑠′ if 𝑠′ is visible to 𝑠 . The benefit of this graph G𝑣𝑖𝑠𝑡 over

G𝑜𝑏𝑠𝑡 is that there is mutual exclusivity: either an agent in state 𝑠

is able to obtain a total count of all of the agents in state 𝑠′ (if 𝑠′ is
visible to 𝑠), or it cannot obtain information about any agent in state

𝑠′ (if those states are not visible to each other). Additionally, this

graph permits an agent in state 𝑠 to observe that there are no agents

in state 𝑠′ as long as 𝑠′ is visible to 𝑠 . These benefits are not available
if the observability graph is defined strictly between agents as in

G𝑜𝑏𝑠𝑡 , such that using G𝑣𝑖𝑠𝑡 facilitates more efficient estimation of

the global mean-field distribution from local information in settings

where G𝑣𝑖𝑠𝑡 is applicable (see Sec. 5).

4 LEARNING AND POLICY IMPROVEMENT
4.1 Q-Network and Update
Lines 1-14 of our novel Alg. 1 contain the core Q-function/policy

update method. Agent 𝑖 has a neural network parametrised by 𝜃𝑖
𝑘
to

approximate its Q-function: �̌�𝜃𝑖
𝑘
(𝑜, ·). The agent’s policy is given by

𝜋𝜃𝑖
𝑘
(𝑎 |𝑜) = softmax

(
1

𝜏𝑞
�̌�𝜃𝑖

𝑘
(𝑜, ·)

)
(𝑎). We denote the policy 𝜋𝑖

𝑘
(𝑎 |𝑜)

for simplicity when appropriate. Each agent maintains a buffer (of

size𝑀) of collected transitions of the form

(
𝑜𝑖𝑡 , 𝑎

𝑖
𝑡 , 𝑟

𝑖
𝑡 , 𝑜

𝑖
𝑡+1

)
. At each

iteration 𝑘 , they empty their buffer (Line 3) before collecting𝑀 new

transitions (Lines 4-7); each decentralised agent 𝑖 then trains its

Q-network �̌�𝜃𝑖
𝑘
via 𝐿 training updates as follows (Lines 8-12). For

training purposes, 𝑖 also maintains a target network �̌�
𝜃
𝑖,′
𝑘,𝑙

with the

same architecture but parameters 𝜃
𝑖,′

𝑘,𝑙
copied from 𝜃𝑖

𝑘,𝑙
less regularly

than𝜃𝑖
𝑘,𝑙

themselves are updated, i.e. only every𝜈 learning iterations

(Line 11). At each iteration 𝑙 , the agent samples a random batch

𝐵𝑖
𝑘,𝑙

of |𝐵 | transitions from its buffer (Line 9), and trains its neural

Algorithm 1 Networked learning with non-linear function approx-

imation

Require: loop parameters 𝐾,𝑀, 𝐿, 𝐸,𝐶𝑝 , learning parameters

𝛾, 𝜏𝑞, |𝐵 |, 𝑐𝑙, 𝜈 , {𝜏𝑐𝑜𝑚𝑚𝑘
}𝑘∈{0,...,𝐾−1}

Require: initial states {𝑠𝑖
0
}
𝑁
𝑖=1

; 𝑡 ← 0

1: ∀𝑖 : Randomly initialise parameters 𝜃𝑖
0
of Q-networks �̌�𝜃𝑖

0

(𝑜, ·),

and set 𝜋𝑖
0
(𝑎 |𝑜) = softmax

(
1

𝜏𝑞
�̌�𝜃𝑖

0

(𝑜, ·)
)
(𝑎)

2: for 𝑘 = 0, . . . , 𝐾 − 1 do
3: ∀𝑖: Empty 𝑖’s buffer

4: for𝑚 = 0, . . . , 𝑀 − 1 do
5: Take step ∀𝑖 : 𝑎𝑖𝑡 ∼ 𝜋𝑖

𝑘
(·|𝑜𝑖𝑡), 𝑟 𝑖𝑡 = 𝑅(𝑠𝑖𝑡 , 𝑎𝑖𝑡 , 𝜇𝑡), 𝑠𝑖𝑡+1 ∼

𝑃 (·|𝑠𝑖𝑡 , 𝑎𝑖𝑡 , 𝜇𝑡); 𝑡 ← 𝑡 + 1

6: ∀𝑖: Add 𝜁 𝑖𝑡 to 𝑖’s buffer
7: end for
8: for 𝑙 = 0, . . . , 𝐿 − 1 do
9: ∀𝑖 : Sample batch 𝐵𝑖

𝑘,𝑙
from 𝑖’s buffer

10: Update 𝜃 to minimise
ˆL(𝜃, 𝜃 ′) as in Def. 8

11: If 𝑙 mod 𝜈 = 0, set 𝜃 ′ ← 𝜃

12: end for
13: �̌�𝜃𝑖

𝑘+1
(𝑜, ·) ← �̌�𝜃𝑖

𝑘,𝐿
(𝑜, ·)

14: ∀𝑖 : 𝜋𝑖
𝑘+1 (𝑎 |𝑜) ← softmax

(
1

𝜏𝑞
�̌�𝜃𝑖

𝑘+1
(𝑜, ·)

)
(𝑎)

15: ∀𝑖 : 𝜎𝑖
𝑘+1 ← 0

16: for 𝑒 = 0, . . . , 𝐸 − 1 evaluation steps do
17: Take step ∀𝑖 : 𝑎𝑖𝑡 ∼ 𝜋𝑖

𝑘
(·|𝑜𝑖𝑡), 𝑟 𝑖𝑡 = 𝑅(𝑠𝑖𝑡 , 𝑎𝑖𝑡 , 𝜇𝑡), 𝑠𝑖𝑡+1 ∼

𝑃 (·|𝑠𝑖𝑡 , 𝑎𝑖𝑡 , 𝜇𝑡)
18: ∀𝑖 : 𝜎𝑖

𝑘+1 = 𝜎𝑖
𝑘+1 + 𝛾

𝑒 · 𝑟 𝑖𝑡
19: 𝑡 ← 𝑡 + 1

20: end for
21: for 𝐶𝑝 rounds do
22: ∀𝑖 : Broadcast 𝜎𝑖

𝑘+1, 𝜋
𝑖
𝑘+1

23: ∀𝑖 : 𝐽 𝑖𝑡 ← { 𝑗 ∈ N : (𝑖, 𝑗) ∈ E𝑐𝑜𝑚𝑚𝑡 }

24: ∀𝑖 : Select adopted
𝑖 ∼ Pr

(
adopted

𝑖 = 𝑗

)
=

exp (𝜎 𝑗

𝑘+1/𝜏
𝑐𝑜𝑚𝑚
𝑘

)∑
𝑥 ∈ 𝐽 𝑖𝑡

exp (𝜎𝑥
𝑘+1/𝜏

𝑐𝑜𝑚𝑚
𝑘

) ∀𝑗 ∈ 𝐽
𝑖
𝑡

25: ∀𝑖 : 𝜎𝑖
𝑘+1 ← 𝜎

adopted
𝑖

𝑘+1 , 𝜋𝑖
𝑘+1 ← 𝜋

adopted
𝑖

𝑘+1
26: Take step ∀𝑖 : 𝑎𝑖𝑡 ∼ 𝜋𝑖

𝑘
(·|𝑜𝑖𝑡), 𝑟 𝑖𝑡 = 𝑅(𝑠𝑖𝑡 , 𝑎𝑖𝑡 , 𝜇𝑡), 𝑠𝑖𝑡+1 ∼

𝑃 (·|𝑠𝑖𝑡 , 𝑎𝑖𝑡 , 𝜇𝑡); 𝑡 ← 𝑡 + 1

27: end for
28: end for
29: return policies {𝜋𝑖

𝐾
}
𝑁
𝑖=1

network via stochastic gradient descent to minimise the empirical

loss (Def. 8, Line 10). For 𝑐𝑙 < 0, [·]0
𝑐𝑙

is a clipping function used to

prevent numerical issues if the policy is too close to deterministic,

as the log-policy term is otherwise unbounded [33, 34]:

Definition 8 (Empirical loss for Q-network). This is:

ˆL(𝜃, 𝜃 ′) = 1

|𝐵 |
∑︁

𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛∈𝐵𝑖
𝑘,𝑙

����̌�𝜃𝑖
𝑘,𝑙
(𝑜𝑡 , 𝑎𝑡) −𝑇

���2 ,

where the target 𝑇 is

𝑇 = 𝑟𝑡 + [𝜏𝑞 ln𝜋
𝜃
𝑖,′
𝑘,𝑙

(𝑎𝑡 |𝑜𝑡)]0𝑐𝑙

+ 𝛾
∑︁
𝑎∈A

𝜋
𝜃
𝑖,′
𝑘,𝑙

(𝑎 |𝑜𝑡+1)
(
�̌�
𝜃
𝑖,′
𝑘,𝑙

(𝑜𝑡+1, 𝑎) − 𝜏𝑞 ln𝜋
𝜃
𝑖,′
𝑘,𝑙

(𝑎 |𝑜𝑡+1)
)
.

4.2 Communication and Adoption of
Parameters

We use the communication network G𝑐𝑜𝑚𝑚𝑡 to share two types of

information at different points in Alg 1. One is used to improve local

estimates of themean field (Sec. 5). The other, described here, is used

to privilege the spread of better performing policy updates through

the population, allowing faster convergence in this networked case

than in the independent and even centralised cases.

We adapt the work in [3] for the function-approximation case,

where in our work agents broadcast the parameters of the Q-

network that defines their policy, rather than the Q-function table.

At each iteration 𝑘 , after independently updating their Q-network

and policy (Lines 3-14), agents approximate the infinite discounted

return (Def. 3) of their new policies by collecting rewards for 𝐸

steps, and assign the finite-step discounted sum to 𝜎𝑖
𝑘+1 (Lines 15-

20). They then broadcast their Q-network parameters along with

𝜎𝑖
𝑘+1 (Line 22). Receiving these from neighbours on the network,

agents select which set of parameters to adopt by taking a softmax

over their own and the received estimate values 𝜎
𝑗

𝑘+1 (Lines 23-25).

They repeat the process for 𝐶𝑝 rounds. This allows decentralised

agents to adopt policy parameters estimated to perform better than

their own, accelerating learning as shown in Sec. 6.

5 MEAN-FIELD ESTIMATION AND
COMMUNICATION

We first describe the most general version of our algorithm for

decentralised estimation of the empirical categorical mean-field

distribution, assuming the more general setting where G𝑜𝑏𝑠𝑡 ap-

plies (see discussion in Sec. 3.3). We subsequently detail how the

algorithm can be made more efficient in environments where the

more abstract visibility graph G𝑣𝑖𝑠𝑡 applies, as in our experimental

settings. In both cases, the algorithm runs to generate the observa-

tion object when a step is taken in the main Alg. 1, i.e. to produce

𝑜𝑖𝑡 = (𝑠𝑖𝑡 , ˜𝜇𝑖𝑡) for the steps 𝑎𝑖𝑡 ∼ 𝜋𝑖𝑘 (·|𝑜
𝑖
𝑡) in Lines 5, 17 and 26. Both

versions of the algorithm are subject to implicit assumptions, which

we highlight and discuss methods for addressing in Sup. Mat. C.

5.1 Algorithm for the General Setting
In this setting, our method (Alg. 2) assumes each agent is associated

with a unique ID to avoid the same agents being counted multiple

times. Each agent maintains a ‘count’ vector 𝜐𝑖𝑡 of length |S| i.e. of
the same shape as the vector denoting the true empirical categorical

distribution of agents. Each state position in the vector can hold a

list of IDs. Before any actions are taken at each time step 𝑡 , each

agent’s count vector 𝜐𝑖𝑡 is initialised as full of ∅ (‘no count’) markers

for each state (Line 1). Then, for each agent 𝑗 with which agent 𝑖 is

connected via the observation graph, 𝑖 places 𝑗 ’s unique ID in its

count vector in the correct state position (Line 2). Next, for 𝐶𝑒 ≥ 0

communication rounds, agents exchange their local counts with

Algorithm 2Mean-field estimation and communication in general

settings

Require: Time-dependent observation graph G𝑜𝑏𝑠𝑡 , time-

dependent communication graph G𝑐𝑜𝑚𝑚𝑡 , states {𝑠𝑖𝑡 }𝑁𝑖=1
,

number of communication rounds 𝐶𝑒
1: ∀𝑖, 𝑠 : Initialise count vector 𝜐𝑖𝑡 [𝑠] with ∅
2: ∀𝑖 : 𝜐𝑖𝑡 [𝑠

𝑗
𝑡] ← {𝐼𝐷 𝑗 } 𝑗∈N:(𝑖, 𝑗) ∈E𝑜𝑏𝑠𝑡

3: for 𝑐𝑒 in 1, . . . ,𝐶𝑒 do
4: ∀𝑖 : Broadcast 𝜐𝑖𝑡,𝑐𝑒
5: ∀𝑖 : 𝐽 𝑖𝑡 ← { 𝑗 ∈ N : (𝑖, 𝑗) ∈ E𝑐𝑜𝑚𝑚𝑡 }
6: ∀𝑖, 𝑠 : 𝜐𝑖

𝑡,(𝑐𝑒+1) [𝑠] ← 𝜐𝑖𝑡,𝑐𝑒
[𝑠] ∪ {𝜐 𝑗𝑡,𝑐𝑒 [𝑠]} 𝑗∈ 𝐽 𝑖𝑡

7: end for
8: ∀𝑖 : 𝑐𝑜𝑢𝑛𝑡𝑒𝑑_𝑎𝑔𝑒𝑛𝑡𝑠𝑖𝑡 ←

∑
𝑠∈S:𝜐𝑖𝑡 [𝑠]≠∅ |𝜐

𝑖
𝑡 [𝑠] |

9: ∀𝑖 : 𝑢𝑛𝑐𝑜𝑢𝑛𝑡𝑒𝑑_𝑎𝑔𝑒𝑛𝑡𝑠𝑖𝑡 ← 𝑁 − 𝑐𝑜𝑢𝑛𝑡𝑒𝑑_𝑎𝑔𝑒𝑛𝑡𝑠𝑖𝑡
10: ∀𝑖, 𝑠 : ˜𝜇𝑖𝑡 [𝑠] ←

𝑢𝑛𝑐𝑜𝑢𝑛𝑡𝑒𝑑_𝑎𝑔𝑒𝑛𝑡𝑠𝑖𝑡
𝑁×|S |

11: ∀𝑖, 𝑠 where 𝜐𝑖𝑡 [𝑠] is not ∅ : ˜𝜇𝑖𝑡 [𝑠] ← ˜𝜇𝑖𝑡 [𝑠] +
|𝜐𝑖𝑡 [𝑠] |
𝑁

12: return mean-field estimates { ˜𝜇𝑖𝑡 }𝑁𝑖=1

neighbours on the communication network (Line 4), and merge

these counts with their own count vector, filtering out the unique

IDs of those that have already been counted (Line 6). If𝐶𝑒 = 0 then

the local count will remain purely independent. By exchanging

these partially filled vectors, agents are able to improve their local

counts by adding the states of agents that they have not been able

to observe directly themselves.

After the 𝐶𝑒 communication rounds, each state position 𝜐𝑖𝑡 [𝑠]
either still maintains the ∅ marker if no agents have been counted

in this state, or contains 𝑥𝑠 > 0 unique IDs. The local mean-field

estimate
˜𝜇𝑖𝑡 is then obtained from 𝜐𝑖𝑡 as follows. All states that

have a count 𝑥𝑠 have this count converted into the categorical

probability 𝑥𝑠/𝑁 (we assume that agents know the total number of

agents in the finite population, even if they cannot observe them

all at each 𝑡) (Line 11). The total number of agents counted in 𝜐𝑖𝑡 is

given by 𝑐𝑜𝑢𝑛𝑡𝑒𝑑_𝑎𝑔𝑒𝑛𝑡𝑠 =
∑
𝑠∈S 𝑥𝑠 , and the agents that have not

been observed are 𝑢𝑛𝑐𝑜𝑢𝑛𝑡𝑒𝑑_𝑎𝑔𝑒𝑛𝑡𝑠 = 𝑁 - 𝑐𝑜𝑢𝑛𝑡𝑒𝑑_𝑎𝑔𝑒𝑛𝑡𝑠 . In this

general setting, the unobserved agents are assumed to be uniformly

distributed across all the states, so 𝑢𝑛𝑐𝑜𝑢𝑛𝑡𝑒𝑑_𝑎𝑔𝑒𝑛𝑡𝑠/(𝑁 × |S|) is
added to all the values in

˜𝜇𝑖𝑡 , replacing the ∅ marker for states for

which no agents have been observed (Line 10).

5.2 Algorithm for Visibility-Based
Environments

We give now the differences in our estimation algorithm (Alg. 3)

for the subclass of environments where G𝑣𝑖𝑠𝑡 applies in place of

G𝑜𝑏𝑠𝑡 , i.e. the mutual observability of agents depends in turn on

the mutual visibility of states. The benefit of G𝑣𝑖𝑠𝑡 over G𝑜𝑏𝑠𝑡 is that

the former allows an agent in state 𝑠 to obtain a correct, complete

count 𝑥𝑠′ ≥ 0 of all the agents in state 𝑠′, for any state 𝑠′ that is
visible to 𝑠 (note the count may be zero). Unique IDs are thus not

required as there is no risk of counting the same agent twice when

receiving communicated counts: either all agents in 𝑠′ have been

Algorithm 3Mean-field estimation and communication for envi-

ronments with G𝑣𝑖𝑠𝑡
Require: Time-dependent visibility graph G𝑣𝑖𝑠𝑡 , time-dependent

communication graph G𝑐𝑜𝑚𝑚𝑡 , states {𝑠𝑖𝑡 }𝑁𝑖=1
, number of com-

munication rounds 𝐶𝑒
1: ∀𝑖, 𝑠 : Initialise count vector 𝜐𝑖𝑡 [𝑠] with ∅
2: ∀𝑖 and ∀𝑠′ ∈ S′ : (𝑠𝑖𝑡 , 𝑠′) ∈ E𝑣𝑖𝑠𝑡 : 𝜐𝑖𝑡 [𝑠′] ←

∑
𝑗∈1,...,𝑁 :𝑠

𝑗
𝑡 =𝑠

′ 1

3: for 𝑐𝑒 in 1, . . . ,𝐶𝑒 do
4: ∀𝑖 : Broadcast 𝜐𝑖𝑡,𝑐𝑒
5: ∀𝑖 : 𝐽 𝑖𝑡 = 𝑖 ∪ { 𝑗 ∈ N : (𝑖, 𝑗) ∈ E𝑐𝑜𝑚𝑚𝑡 }
6: ∀𝑖, 𝑠 and ∀𝑗 ∈ 𝐽 𝑖𝑡 : 𝜐𝑖

𝑡,(𝑐𝑒+1) [𝑠] ← 𝜐
𝑗
𝑡,𝑐𝑒
[𝑠] if 𝜐 𝑗𝑡,𝑐𝑒 [𝑠] ≠ ∅

7: end for
8: ∀𝑖 : 𝑐𝑜𝑢𝑛𝑡𝑒𝑑_𝑎𝑔𝑒𝑛𝑡𝑠𝑖𝑡 ←

∑
𝑠∈S:𝜐𝑖𝑡 [𝑠]≠∅ 𝜐

𝑖
𝑡 [𝑠]

9: ∀𝑖 : 𝑢𝑛𝑐𝑜𝑢𝑛𝑡𝑒𝑑_𝑎𝑔𝑒𝑛𝑡𝑠𝑖𝑡 ← 𝑁 − 𝑐𝑜𝑢𝑛𝑡𝑒𝑑_𝑎𝑔𝑒𝑛𝑡𝑠𝑖𝑡
10: ∀𝑖 : 𝑢𝑛𝑠𝑒𝑒𝑛_𝑠𝑡𝑎𝑡𝑒𝑠𝑖𝑡 ←

∑
𝑠∈S:𝜐𝑖𝑡 [𝑠]=∅ 1

11: ∀𝑖, 𝑠 where 𝜐𝑖𝑡 [𝑠] is not ∅ : ˜𝜇𝑖𝑡 [𝑠] ←
𝜐𝑖𝑡 [𝑠]
𝑁

12: ∀𝑖, 𝑠 where 𝜐𝑖𝑡 [𝑠] is ∅ : ˜𝜇𝑖𝑡 [𝑠] ←
𝑢𝑛𝑐𝑜𝑢𝑛𝑡𝑒𝑑_𝑎𝑔𝑒𝑛𝑡𝑠𝑖𝑡

𝑁×𝑢𝑛𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑_𝑠𝑡𝑎𝑡𝑒𝑠𝑖𝑡
13: return mean-field estimates { ˜𝜇𝑖𝑡 }𝑁𝑖=1

counted, or no count has yet been obtained for 𝑠′. This simplifies

the algorithm and helps preserve agent anonymity and privacy.

Secondly, uncounted agents cannot be in states for which a count

has already been obtained, since the count is complete and correct,

even if the count is 𝑥𝑠′ = 0. Therefore after the 𝐶𝑒 communication

rounds, the 𝑢𝑛𝑐𝑜𝑢𝑛𝑡𝑒𝑑_𝑎𝑔𝑒𝑛𝑡𝑠 proportion needs to be uniformly

distributed only across the positions in the vector that still have

the ∅ marker (Line 12), and not across all states as in the general

setting. This makes the estimation more accurate in this special

setting.

6 THEORETICAL RESULTS
To demonstrate the benefits of the networked architecture by com-

parison, we also consider (theoretically here and experimentally

in Sec. 7) the results of modified versions of our algorithm for

centralised and independent learners. In the centralised setting,

the Q-network updates of arbitrary agent 𝑖 = 1 are automatically

pushed to all other agents, and the true global mean-field distri-

bution is always used in place of the local estimate i.e.
˜𝜇𝑖𝑡 = 𝜇𝑡 .

In the independent case, there are no links in G𝑐𝑜𝑚𝑚𝑡 or G𝑣𝑖𝑠𝑡 , i.e.

E𝑐𝑜𝑚𝑚𝑡 = E𝑣𝑖𝑠𝑡 = ∅.
Networked agents often learn faster than centralised ones in our

experiments; we justify theoretically this possibly counterintuitive

result here. We first make two strong assumptions that give con-

ditions under which networked agents do outperform centralised

ones. The fact that these strong assumptions do not always hold in

reality explains why networked agents may not always outperform

centralised ones.

Recall that at each iteration 𝑘 of Alg. 1, after independently

updating their policies in Line 14, the population has the poli-

cies {𝜋𝑖
𝑘+1}

𝑁
𝑖=1

. There is randomness in these independent policy

updates, stemming from the random sampling of each agent’s inde-

pendently collected buffer. In Lines 15-20, agents approximate the

infinite discounted returns {𝑉 (𝜋𝑖
𝑘+1, 𝐼 (𝜋

𝑖
𝑘+1))}

𝑁
𝑖=1

(Def. 3) of their

updated policies by computing {𝜎𝑖
𝑘+1}

𝑁
𝑖=1

: the 𝐸-step discounted re-

turn with respect to the empirical mean field generated when agents

follow policies {𝜋𝑖
𝑘+1}

𝑁
𝑖=1

(i.e. they do not at this stage all follow a

single identical policy). We can characterise the approximation as

{𝜎𝑖
𝑘+1}

𝑁
𝑖=1

= {𝑉 (𝜋𝑖
𝑘+1, 𝐼 (𝜋

𝑖
𝑘+1))}

𝑁
𝑖=1

. We now assume the following:

Assumption 1. Assume that {𝜎𝑖
𝑘+1}

𝑁
𝑖=1

are sufficiently good ap-

proximations so as to respect the ordering of the true values

{𝑉 (𝜋𝑖
𝑘+1, 𝐼 (𝜋

𝑖
𝑘+1))}

𝑁
𝑖=1

, i.e. ∀𝑖, 𝑗 ∈ {1, . . . , 𝑁 }:

𝜎𝑖
𝑘+1 > 𝜎

𝑗

𝑘+1 ⇐⇒ 𝑉 (𝜋𝑖
𝑘+1, 𝐼 (𝜋

𝑖
𝑘+1)) > 𝑉 (𝜋

𝑗

𝑘+1, 𝐼 (𝜋
𝑗

𝑘+1)) .

Assumption 2. Assume that after the 𝐶𝑝 rounds in Lines 21-27

in which agents exchange and adopt policies from neighbours, the

population is left with a single policy such that ∀𝑖, 𝑗 ∈ {1, . . . , 𝑁 }
𝜋𝑖
𝑘+1 = 𝜋

𝑗

𝑘+1.
2

Call the network consensus policy𝜋net

𝑘+1, and its associated finitely
approximated return 𝜎net

𝑘+1. Recall that the centralised case is where

the Q-network update of arbitrary agent 𝑖 = 1 is automatically

pushed to all the others instead of the policy evaluation and ex-

change in Lines 15-27; this is equivalent to a networked case where

policy consensus is reached on a random one of the policies {𝜋𝑖
𝑘+1}

𝑁
𝑖=1

.

Call this policy arbitrarily given to the whole population 𝜋cent

𝑘+1 , and
its associated finitely approximated return 𝜎cent

𝑘+1 . Now we can say:

Theorem 6.1. Given Assumptions 1 and 2,

E[𝑉 (𝜋net

𝑘+1, 𝐼 (𝜋
net

𝑘+1))] > E[𝑉 (𝜋cent

𝑘+1 , 𝐼 (𝜋
cent

𝑘+1))] .
Thus in expectation networked agents will increase their returns faster

than centralised ones.

Proof. Recall that before the communication rounds in Line 21

(Alg. 1), the randomly updated policies {𝜋𝑖
𝑘+1}

𝑁
𝑖=1

have associated

approximated returns {𝜎𝑖
𝑘+1}

𝑁
𝑖=1

. Denote the mean and maximum of

this set 𝜎mean

𝑘+1 and 𝜎max

𝑘+1 respectively. Since 𝜋cent

𝑘+1 is chosen arbitrar-

ily from {𝜋𝑖
𝑘+1}

𝑁
𝑖=1

, it will obey E[𝜎cent

𝑘+1] = 𝜎
mean

𝑘+1 ∀𝑘 , though there

will be high variance. Conversely, the softmax adoption probability

(Line 24, Alg. 1) for the networked case means by definition that

policies with higher 𝜎𝑖
𝑘+1 are more likely to be adopted at each com-

munication round. Thus the 𝜋net

𝑘+1 that gets adopted by the whole

networked population will obey E[𝜎net

𝑘+1] > 𝜎
mean

𝑘+1 (if 𝜏𝑐𝑜𝑚𝑚
𝑘+1 → 0, it

will obey E[𝜎net

𝑘+1] = 𝜎
max

𝑘+1 ∀𝑘). As such, E[𝜎
net

𝑘+1] > E[𝜎cent

𝑘+1], which
by Assumption 1 implies the result. □

The adoption scheme in Line 24 biases the spread of policies

towards those estimated to be better, which, given sufficiently good

approximations (Assumption 1), results in higher discounted re-

turns in practice. By choosing updates in a more principled way,

2
Most simply we can think of Assumption 2 holding if 1) 𝜏𝑐𝑜𝑚𝑚

𝑘
→ 0 ∀𝑘 such that

the softmax essentially becomes a max function, and 2) the communication network

G𝑐𝑜𝑚𝑚
𝑡 is static and connected during the𝐶𝑝 communication rounds, where𝐶𝑝 is

larger than the network diameter 𝑑G𝑐𝑜𝑚𝑚
𝑡

. Under these conditions, previous results

on max-consensus algorithms show that all agents in the network will converge on

the highest 𝜎𝑚𝑎𝑥
𝑘+1 value (and hence the unique associated 𝜋𝑚𝑎𝑥

𝑘+1 within a number

of rounds equal to the diameter 𝑑G𝑐𝑜𝑚𝑚
𝑡

[3, 22]. However, policy consensus as in

Assumption 2 might be achieved even outside of these conditions, including if the

network is dynamic and not connected at every step, given appropriate values for𝐶𝑝

and 𝜏𝑐𝑜𝑚𝑚
𝑘+1 ∈ R>0 .

networked agents learn faster than the centralised case that adopts

updates regardless of quality. This intuition applies even if we

loosen Assumption 2 that the networked population converges on

a single consensus policy within the 𝐶𝑝 communication rounds.

Similar logic can also be applied to understand why networked

agents outperform entirely independent ones, combined with the

fact that divergence between policies in the independent case wors-

ens sample complexity over the networked and centralised cases

by biasing approximations of the Q-function [3, 37].

Significantly, the communication scheme not only allows us to

avoid the undesirable assumption of a central learner, but even to

outperform it. Moreover, the benefit of networked communication

over centralised learning is even greater in our function approxima-

tion setting than in the tabular case of [3], perhaps due to greater

variance in the quality of Q-function estimates in our case.

7 EXPERIMENTS
We provide two sets of experiments. The first set showcases that

our function-approximation algorithm (Alg. 1) can scale to large

state spaces for population-independent policies, and that in such

settings networked, communicating agents can outperform purely-

independent and even centralised agents. The second set demon-

strates that Alg. 1 can handle population-dependent policies, as

well as the ability of Alg. 3 to practically estimate the mean-field

distribution locally.

For the types of game used in our experiments we follow the

gold standard in prior MFG works, i.e. grid-world environments

where agents can move in the four cardinal directions or remain

in place [1, 3, 7, 19, 21, 34, 41]. We present results from four tasks

defined by the agents’ reward/transition functions, all of which are

coordination tasks - see Sup. Mat. A.1 for a full technical description,

as well as for a fifth, non-coordination task. The first two tasks are

those used with population-independent policies in [3], but while

they show results for an 8x8 and a ‘larger’ 16x16 grid, our results

are for 100x100 and 50x50 grids:

• Cluster. Agents are rewarded for gathering but given no

indication where to do so, agreeing it over time.

• Target agreement. Agents are rewarded for visiting any of

a given number of targets, but the reward is proportional to

the number of other agents co-located at the target. Agents

must coordinate on which single target they will all meet at

to maximise their individual rewards.

We also showcase the ability of our algorithms to handle two

more complex tasks, using population-dependent policies and esti-

mated mean-field observations:

• Evade shark in shoal. At each 𝑡 , a ‘shark’ in the environ-

ment takes a step towards the grid point containing the most

agents according to the empirical mean-field distribution.

The shark’s position forms part of agents’ local states in

addition to their own position. Agents are rewarded more

for being further from the shark, and also for clustering with

other agents. As well as featuring a non-stationary distribu-

tion, we add ‘common noise’ to the environment, with the

shark taking a random step with probability 0.01. Such noise

that affects the local states of all agents in the same way,

Figure 1: ‘Target agreement’, pop.-independent, 100x100 grid.

Figure 2: ‘Cluster’, pop.-independent, 100x100 grid.

making the evolution of the distribution stochastic, makes

population-independent policies sub-optimal [20].

• Push object to edge. Agents are rewarded for how close

they are to an ‘object’ in the environment, and for how close

this object is to the grid’s edge. The object’s position forms

part of agents’ local states in addition to their own position.

The object moves in a direction with a probability propor-

tional to the number of agents on its opposite side, i.e. agents

must coordinate on which side of the object from which to

‘push’ it, to ensure it moves toward the edge of the grid.

In these spatial environments, both the communication network

G𝑐𝑜𝑚𝑚𝑡 and the visibility graph G𝑣𝑖𝑠𝑡 are determined by the physical

distance from agent 𝑖; we show plots for various radii, expressed

as fractions of the maximum possible distance (the grid’s diagonal

length). We discuss hyperparameters in Sup. Mat. A.3.

We evaluate our experiments via two metrics. Exploitability is

the most common metric in works on MFGs, and is a measure of

proximity to the MFNE. It quantifies how much a best-responding

agent can benefit by deviating from the set of policies that generate

the current mean-field distribution, with a decreasing exploitability

meaning the population is closer to the MFNE. However, there are

several issues with this metric in our setting, particularly for our

coordination tasks where competitive agents benefit from aligning

behaviours, such that it may give limited or noisy information

(discussed further in Sup. Mat. A.2.1). We thus also give a second

metric, as in [3]: the population’s average discounted return. This

allows us to compare how quickly agents are learning to increase

their returns, even when ‘exploitability’ gives us limited ability

to distinguish between the desirability of the MFNEs to which

populations converge.

7.1 Results and Discussion
7.1.1 Population-Independent Policies in Large State-Spaces. Figs.
1 and 2 illustrate that introducing function approximation to algo-

rithms in this setting allows them to converge within a practical

number of iterations (𝑘 ≪ 100), even for large state spaces (100x100

grids). By contrast, the tabular algorithms in [3] appear only just to

converge by 𝑘 = 200 for the same tasks for the larger of their two

grids, which is only 16x16.

In Figs. 1 and 2, networked agents all significantly outperform

both centralised and independent agents in term of average return,

despite the centralised agents appearing to have similar exploitabil-

ity, and the independent agents having similar or slightly lower

exploitability. This is because independent agents (and also the

centralised ones in Fig. 1) hardly improve their policies at all, such

that there is little a deviating agent can do to increase its return

in these coordination games, meaning exploitability appears low,

despite this being an undesirable equilibrium (see Sup. Mat. A.2 for

further discussion on the limited information provided by the ex-

ploitation metric). The fact that the networked agents nevertheless

significantly outperform the other architectures in terms of average

return indicates that communication helps agents to find substan-

tially ‘preferable’ equilibria. Moreover, the margin by which the

networked agents can outperform the centralised agents is much

greater than in [3], showing that the benefits of the communication

scheme are even greater in non-tabular settings. See Sup. Mat. A.4

for further experiments with large state spaces.

7.1.2 Population-Dependent Policies in Complex Environments. Figs.
3 and 4, where agents estimate the mean-field distribution via Alg.

3, differ minimally from Figs. 8 and 9 in Sup. Mat. A, where agents

directly receive the global mean-field distribution. This shows that

our estimation algorithm allows agents to appropriately estimate

the distribution, even with only one round of communication for

agents to help each other improve their local counts. Only in the

‘push object’ task in Fig. 3, and there only with the smaller broad-

cast radii, do agents slightly underperform the returns of agents in

the global observability case in Fig. 8, as is reasonable.

For the reasons given in Sup. Mat. A.2.1, the exploitability metric

gives limited information in the ‘push object’ task in Fig. 3. In

the ‘evade’ task in Fig. 4, exploitability suggests that centralised

learners outperform the other cases. However, all of the networked

cases significantly outperform the independent learners in terms

of the average return to which they converge in both tasks. In the

‘push object’ task networked learners also significantly outperform

Figure 3: ‘Push object’ task, population-dependent policies
with estimated mean-field distribution, 10x10 grid.

Figure 4: ‘Evade’ task, population-dependent policies with
estimated mean-field distribution, 10x10 grid.

centralised learners in all but the case with the smallest broad

communication radius, while in the ‘evade’ task all networked

cases perform similarly to the centralised case. Recall though that

in the real world a centralised architecture is a strong assumption,

a computational bottleneck and single point of failure.

8 CONCLUSION
We novelly contributed function approximation to the online-lear-

ning setting for empirical MFGs, and also contributed two novel al-

gorithms for locally estimating the empirical mean field for populat-

ion-dependent policies. We have justified theoretically why our

networked communication algorithm is able to learn faster than

both centralised and independent agents in this function approx-

imation setting, and demonstrated empirically the ability of our

algorithms to handle large state spaces and estimate the mean field.

Limitations and ways to extend our algorithms are in Sup. Mat. C.

REFERENCES
[1] Talal Algumaei, Ruben Solozabal, Reda Alami, Hakim Hacid, Merouane Debbah,

and Martin Takáč. 2023. Regularization of the policy updates for stabilizing Mean

Field Games. In Pacific-Asia Conference on Knowledge Discovery and Data Mining.

Springer, 361–372.

[2] Berkay Anahtarci, Can Deha Kariksiz, and Naci Saldi. 2023. Q-learning in regu-

larized mean-field games. Dynamic Games and Applications 13, 1 (2023), 89–117.

[3] Patrick Benjamin and Alessandro Abate. 2023. Networked communication for

decentralised agents in mean-field games. arXiv preprint arXiv:2306.02766 (2023).

[4] Pierre Cardaliaguet, François Delarue, Jean-Michel Lasry, and Pierre-Louis Lions.

2015. The master equation and the convergence problem in mean field games.

arXiv:1509.02505 [math.AP] https://arxiv.org/abs/1509.02505

[5] René Carmona, François Delarue, and Daniel Lacker. 2016. Mean Field Games

with Common Noise. The Annals of Probability 44, 6 (2016), 3740–3803. http:

//www.jstor.org/stable/44072057

[6] Yufan Chen, Lan Wu, Renyuan Xu, and Ruixun Zhang. 2024. Periodic Trading

Activities in Financial Markets: Mean-field Liquidation Game with Major-Minor

Players. arXiv preprint arXiv:2408.09505 (2024).

[7] Kai Cui, Christian Fabian, and Heinz Koeppl. 2023. Multi-Agent Reinforcement

Learning via Mean Field Control: Common Noise, Major Agents and Approxima-

tion Properties. arXiv preprint arXiv:2303.10665 (2023).

[8] Kai Cui and Heinz Koeppl. 2021. Approximately Solving Mean Field Games via

Entropy-Regularized Deep Reinforcement Learning. In International Conference

on Artificial Intelligence and Statistics. PMLR, 1909–1917.

[9] Breno Cunha Queiroz and Daniel MacRae. 2024. Occlusion-based object trans-

portation around obstacles with a swarm of miniature robots. Swarm Intelligence

(2024), 1–29.

[10] A. E. Eiben and J. E. Smith. 2015. What Is an Evolutionary Algorithm? Springer

Berlin Heidelberg, Berlin, Heidelberg, 25–48. https://doi.org/10.1007/978-3-662-

44874-8_3

[11] Sriram Ganapathi Subramanian, Pascal Poupart, Matthew E Taylor, and Nidhi

Hegde. 2020. Multi Type Mean Field Reinforcement Learning. In Proceedings of

the 19th International Conference on Autonomous Agents and MultiAgent Systems.

411–419.

[12] Sriram Ganapathi Subramanian, Matthew E Taylor, Mark Crowley, and Pas-

cal Poupart. 2021. Partially Observable Mean Field Reinforcement Learning.

In Proceedings of the 20th International Conference on Autonomous Agents and

MultiAgent Systems. 537–545.

[13] Xin Guo, Anran Hu, Renyuan Xu, and Junzi Zhang. 2023. A General Framework

for Learning Mean-Field Games. Mathematics of Operations Research 48, 2 (2023),

656–686.

[14] Saeed Hadikhanloo. 2017. Learning in anonymous nonatomic games with appli-

cations to first-order mean field games. arXiv preprint arXiv:1704.00378 (2017).

[15] Emma Hart, Andreas Steyven, and Ben Paechter. 2015. Improving Survivability

in Environment-Driven Distributed Evolutionary Algorithms through Explicit

Relative Fitness and Fitness Proportionate Communication. In Proceedings of

the 2015 Annual Conference on Genetic and Evolutionary Computation (Madrid,

Spain) (GECCO ’15). Association for Computing Machinery, New York, NY, USA,

169–176. https://doi.org/10.1145/2739480.2754688

[16] Anran Hu and Junzi Zhang. 2024. MF-OML: Online Mean-Field Reinforcement

Learning with Occupation Measures for Large Population Games. arXiv preprint

arXiv:2405.00282 (2024). https://arxiv.org/abs/2405.00282

[17] Minyi Huang, Roland P. Malhamé, and Peter E. Caines. 2006. Large population

stochastic dynamic games: closed-loop McKean-Vlasov systems and the Nash

certainty equivalence principle. Communications in Information & Systems 6, 3

(2006), 221 – 252.

[18] Jean-Michel Lasry and Pierre-Louis Lions. 2007. Mean Field Games. Japanese

Journal of Mathematics 2, 1 (2007), 229–260.

[19] Mathieu Laurière. 2021. Numerical Methods for Mean Field Games and Mean

Field Type Control. Mean field games 78, 221-282 (2021).

[20] Mathieu Laurière, Sarah Perrin, Matthieu Geist, and Olivier Pietquin. 2022. Learn-

ing Mean Field Games: A Survey. arXiv preprint arXiv:2205.12944 (2022).

[21] Mathieu Laurière, Sarah Perrin, Sertan Girgin, Paul Muller, Ayush Jain, Theophile

Cabannes, Georgios Piliouras, Julien Perolat, Romuald Elie, Olivier Pietquin, and

Matthieu Geist. 2022. Scalable Deep Reinforcement Learning Algorithms for

Mean Field Games. In Proceedings of the 39th International Conference on Machine

Learning (Proceedings of Machine Learning Research, Vol. 162), Kamalika Chaud-

huri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato

(Eds.). PMLR, 12078–12095. https://proceedings.mlr.press/v162/lauriere22a.html

[22] BehrangMonajemi Nejad, Sid AhmedAttia, and Jorg Raisch. 2009. Max-consensus

in a max-plus algebraic setting: The case of fixed communication topologies. In

2009 XXII International Symposium on Information, Communication and Automa-

tion Technologies. 1–7. https://doi.org/10.1109/ICAT.2009.5348437

[23] Julien Perolat, Sarah Perrin, Romuald Elie, Mathieu Laurière, Georgios Piliouras,

Matthieu Geist, Karl Tuyls, and Olivier Pietquin. 2021. Scaling up Mean Field

Games with Online Mirror Descent. arXiv preprint arXiv:2103.00623 (2021).

[24] Julien Pérolat, Sarah Perrin, Romuald Elie, Mathieu Laurière, Georgios Piliouras,

Matthieu Geist, Karl Tuyls, and Olivier Pietquin. 2022. Scaling Mean Field Games

by Online Mirror Descent. In Proceedings of the 21st International Conference

on Autonomous Agents and Multiagent Systems (Virtual Event, New Zealand)

(AAMAS ’22). International Foundation for Autonomous Agents and Multiagent

Systems, Richland, SC, 1028–1037.

[25] Sarah Perrin, Mathieu Laurière, Julien Pérolat, Romuald Élie, Matthieu Geist, and

Olivier Pietquin. 2022. Generalization in mean field games by learning master

policies. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 36.

9413–9421.

[26] Sarah Perrin, Mathieu Laurière, Julien Pérolat, Matthieu Geist, Romuald Élie, and

Olivier Pietquin. 2021. Mean Field Games Flock! The Reinforcement Learning

Way. In IJCAI.

[27] Sarah Perrin, Julien Pérolat, Mathieu Laurière, Matthieu Geist, Romuald Elie, and

Olivier Pietquin. 2020. Fictitious Play for Mean Field Games: Continuous Time

Analysis and Applications. In Proceedings of the 34th International Conference on

Neural Information Processing Systems (Vancouver, BC, Canada) (NIPS’20). Curran

Associates Inc., Red Hook, NY, USA, Article 1107, 15 pages.

[28] Naci Saldi, Tamer Başar, and Maxim Raginsky. 2018. Markov–Nash Equilib-

ria in Mean-Field Games with Discounted Cost. SIAM Journal on Control

and Optimization 56, 6 (2018), 4256–4287. https://doi.org/10.1137/17M1112583

arXiv:https://doi.org/10.1137/17M1112583

[29] Javad Soleimani, Reza Farhangi, and Gunes Karabulut Kurt. 2024. Distributed

Critic-Based Neuro-Fuzzy Learning in Swarm Autonomous Vehicles. In 2024 IEEE

100th Vehicular Technology Conference (VTC2024-Fall). 1–6. https://doi.org/10.

1109/VTC2024-Fall63153.2024.10757965

[30] Jayakumar Subramanian and Aditya Mahajan. 2019. Reinforcement Learning in

Stationary Mean-Field Games. In Proceedings of the 18th International Conference

on Autonomous Agents and MultiAgent Systems (Montreal QC, Canada) (AAMAS

’19). International Foundation for Autonomous Agents and Multiagent Systems,

Richland, SC, 251–259.

[31] Sriram Ganapathi Subramanian, Matthew E Taylor, Mark Crowley, and Pascal

Poupart. 2022. Decentralized Mean Field Games. In Proceedings of the AAAI

Conference on Artificial Intelligence, Vol. 36. 9439–9447.

[32] Noureddine Toumi, Roland Malhame, and Jerome Le Ny. 2024. A mean field game

approach for a class of linear quadratic discrete choice problems with congestion

avoidance. Automatica 160 (2024), 111420. https://doi.org/10.1016/j.automatica.

2023.111420

[33] Nino Vieillard, Olivier Pietquin, and Matthieu Geist. 2020. Munchausen Re-

inforcement Learning. In Advances in Neural Information Processing Systems,

H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (Eds.), Vol. 33.

Curran Associates, Inc., 4235–4246. https://proceedings.neurips.cc/paper_files/

paper/2020/file/2c6a0bae0f071cbbf0bb3d5b11d90a82-Paper.pdf

[34] Zida Wu, Mathieu Laurière, Samuel Jia Cong Chua, Matthieu Geist, Olivier

Pietquin, and Ankur Mehta. 2024. Population-aware Online Mirror Descent

for Mean-Field Games by Deep Reinforcement Learning. arXiv preprint

arXiv:2403.03552 (2024).

[35] Qiaomin Xie, Zhuoran Yang, Zhaoran Wang, and Andreea Minca. 2021. Learning

While Playing in Mean-Field Games: Convergence and Optimality. In Proceedings

of the 38th International Conference on Machine Learning (Proceedings of Machine

Learning Research, Vol. 139), Marina Meila and Tong Zhang (Eds.). PMLR, 11436–

11447. https://proceedings.mlr.press/v139/xie21g.html

[36] Yaodong Yang, Rui Luo, Minne Li, Ming Zhou, Weinan Zhang, and Jun Wang.

2018. Mean Field Multi-Agent Reinforcement Learning. In Proceedings of the 35th

International Conference on Machine Learning (Proceedings of Machine Learning

Research, Vol. 80), Jennifer Dy and Andreas Krause (Eds.). PMLR, 5571–5580.

https://proceedings.mlr.press/v80/yang18d.html

[37] Batuhan Yardim, Semih Cayci, Matthieu Geist, and Niao He. 2023. Policy Mir-

ror Ascent for Efficient and Independent Learning in Mean Field Games. In

International Conference on Machine Learning. PMLR, 39722–39754.

[38] Batuhan Yardim, Artur Goldman, and Niao He. 2024. When is Mean-Field Re-

inforcement Learning Tractable and Relevant? arXiv preprint arXiv:2402.05757

(2024).

[39] Batuhan Yardim and Niao He. 2024. Exploiting Approximate Symmetry for

Efficient Multi-Agent Reinforcement Learning. arXiv preprint arXiv:2408.15173

(2024).

[40] Bora Yongacoglu, Gürdal Arslan, and Serdar Yüksel. 2022. Independent Learning

in Mean-Field Games: Satisficing Paths and Convergence to Subjective Equilibria.

arXiv preprint arXiv:2209.05703 (2022).

[41] Muhammad Aneeq Uz Zaman, Alec Koppel, Sujay Bhatt, and Tamer Basar. 2023.

Oracle-free Reinforcement Learning in Mean-Field Games along a Single Sample

Path. In International Conference on Artificial Intelligence and Statistics. PMLR,

10178–10206.

[42] Sihan Zeng, Sujay Bhatt, Alec Koppel, and Sumitra Ganesh. 2024. A Single-

Loop Finite-Time Convergent Policy Optimization Algorithm for Mean Field

Games (and Average-Reward Markov Decision Processes). arXiv e-prints (2024),

arXiv–2408.

https://arxiv.org/abs/1509.02505
https://arxiv.org/abs/1509.02505
http://www.jstor.org/stable/44072057
http://www.jstor.org/stable/44072057
https://doi.org/10.1007/978-3-662-44874-8_3
https://doi.org/10.1007/978-3-662-44874-8_3
https://doi.org/10.1145/2739480.2754688
https://arxiv.org/abs/2405.00282
https://proceedings.mlr.press/v162/lauriere22a.html
https://doi.org/10.1109/ICAT.2009.5348437
https://doi.org/10.1137/17M1112583
https://arxiv.org/abs/https://doi.org/10.1137/17M1112583
https://doi.org/10.1109/VTC2024-Fall63153.2024.10757965
https://doi.org/10.1109/VTC2024-Fall63153.2024.10757965
https://doi.org/10.1016/j.automatica.2023.111420
https://doi.org/10.1016/j.automatica.2023.111420
https://proceedings.neurips.cc/paper_files/paper/2020/file/2c6a0bae0f071cbbf0bb3d5b11d90a82-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/2c6a0bae0f071cbbf0bb3d5b11d90a82-Paper.pdf
https://proceedings.mlr.press/v139/xie21g.html
https://proceedings.mlr.press/v80/yang18d.html

[43] Chenyu Zhang, Xu Chen, and Xuan Di. 2024. Stochastic Semi-Gradient Descent

for Learning Mean Field Games with Population-Aware Function Approximation.

arXiv preprint arXiv:2408.08192 (2024).

Supplementary material to ‘Networked Communication
for Mean-Field Games with Function Approximation and
Empirical Mean-Field Estimation’

A EXPERIMENTS
Experiments were conducted on a Linux-based machine with 2

x Intel Xeon Gold 6248 CPUs (40 physical cores, 80 threads total,

55 MiB L3 cache). We use the JAX framework to accelerate and

vectorise our code. Random seeds are set in our code in a fixed

way dependent on the trial number to allow easy replication of

experiments.

A.1 Games
We conduct numerical tests with five games. All are defined by

the agents’ reward/transition functions, and chosen for being par-

ticularly amenable to intuitive and visualisable understanding of

whether the agents are learning behaviours that are appropriate

and explainable for the respective objective functions. In all cases,

rewards are normalised in [0,1] after they are computed.

Cluster. This is the inverse of the ‘exploration’ game in [21],

where in our case agents are encouraged to gather together by the

reward function 𝑅(𝑠𝑖𝑡 , 𝑎𝑖𝑡 , 𝜇𝑡) = log(𝜇𝑡 (𝑠𝑖𝑡)). That is, agent 𝑖 receives
a reward that is logarithmically proportional to the fraction of

the population that is co-located with it at time 𝑡 . We give the

population no indication where they should cluster, agreeing this

themselves over time.

Agree on a single target. Unlike in the above ‘cluster’ game, the

agents are given options of locations at which to gather, and they

must reach consensus among themselves. If the agents are co-

located with one of a number of specified targets 𝜙 ∈ Φ (in our

experiments we place one target in each of the four corners of the

grid), and other agents are also at that target, they get a reward

proportional to the fraction of the population found there; other-

wise they receive a penalty of -1. In other words, the agents must

coordinate on which of a number of mutually beneficial points

will be their single gathering place. Define the magnitude of the

distances between 𝑥,𝑦 at 𝑡 as 𝑑𝑖𝑠𝑡𝑡 (𝑥,𝑦). The reward function is

given by 𝑅(𝑠𝑖𝑡 , 𝑎𝑖𝑡 , 𝜇𝑡) = 𝑟𝑡𝑎𝑟𝑔 (𝑟𝑐𝑜𝑙𝑙𝑎𝑏 (𝜇𝑡 (𝑠𝑖𝑡))), where

𝑟𝑡𝑎𝑟𝑔 (𝑥) =
{
𝑥 if∃𝜙 ∈ Φ s.t. dist𝑡 (𝑠𝑖𝑡 , 𝜙) = 0

−1 otherwise,

𝑟𝑐𝑜𝑙𝑙𝑎𝑏 (𝑥) =
{
𝑥 if 𝜇𝑡 (𝑠𝑖𝑡) > 1/𝑁
−1 otherwise.

Evade shark in shoal. Define the magnitude of the horizontal and

vertical distances between 𝑥,𝑦 at 𝑡 as 𝑑𝑖𝑠𝑡ℎ𝑡 (𝑥,𝑦) and 𝑑𝑖𝑠𝑡𝑣𝑡 (𝑥,𝑦)
respectively. The state 𝑠𝑖𝑡 now consists of agent 𝑖’s position 𝑥𝑖𝑡 and a

‘shark’s’ position 𝜙𝑡 . At each time step, the shark steps towards the

most populated grid point according to the empirical mean-field

distribution i.e. 𝑥∗𝑡 = arg max𝑥∈S 𝜇𝑡 (𝑥). A horizontal step is taken

if 𝑑𝑖𝑠𝑡ℎ𝑡 (𝜙𝑡 , 𝑥∗𝑡) ≥ 𝑑𝑖𝑠𝑡𝑣𝑡 (𝜙𝑡 , 𝑥∗𝑡), otherwise a vertical step is taken.

As well as featuring a non-stationary distribution, we add ‘common

noise’ to the environment, with the shark in a random direction

with probability 0.01. Such noise that affects the local states of all

agents in the same way, making the evolution of the distribution

stochastic, makes population-independent policies sub-optimal [20].

Agents are rewarded more for being further from the shark, and

also for clustering with other agents. The reward function is given

by

𝑅(𝑠𝑖𝑡 , 𝑎𝑖𝑡 , 𝜇𝑡) = 𝑑𝑖𝑠𝑡ℎ𝑡 (𝜙𝑡 , 𝑥𝑖𝑡)+
𝑑𝑖𝑠𝑡𝑣𝑡 (𝜙𝑡 , 𝑥𝑖𝑡) + norm𝑑𝑖𝑠𝑡 (log(𝜇𝑡 (𝑥𝑖𝑡))),

where norm𝑑𝑖𝑠𝑡 (·) indicates that the final term is normalised to

have the samemaximum andminimum values as the total combined

vertical and horizontal distance.

Push object to edge. This is similar to the task presented in [9].

As before, define the magnitude of the horizontal and vertical dis-

tances between 𝑥,𝑦 at 𝑡 as 𝑑𝑖𝑠𝑡ℎ𝑡 (𝑥,𝑦) and 𝑑𝑖𝑠𝑡𝑣𝑡 (𝑥,𝑦) respectively.
The state 𝑠𝑖𝑡 consists of agent 𝑖’s position 𝑥

𝑖
𝑡 and the object’s po-

sition 𝜙𝑡 . The number of agents in the positions surrounding the

object at time 𝑡 generates a probability field around the object, such

that the object is most likely to move in the direction away from

the side with the most agents. As such, if agents are equally dis-

tributed around the object, it will be equally likely to move in any

direction, but if they coordinate on choosing the same side, they

can ‘push’ it in a certain direction. If Edges = {edge
1, . . . ,edge4} are

the grid edges, the closest edge to the object at time 𝑡 is given by

edge
∗
𝑡 = arg min

edge∈Edges
(
min(𝑑𝑖𝑠𝑡ℎ𝑡 (𝜙𝑡 , edge), 𝑑𝑖𝑠𝑡ℎ𝑡 (𝜙𝑡 , edge)

)
.

Agents are rewarded for how close they are to the object, and for

how close the object is to the edge of the grid, i.e. they must coordi-

nate on which side of the object from which to ‘push’ it, to ensure

it moves to the grid’s edge. The reward function is given by

𝑅(𝑠𝑖𝑡 , 𝑎𝑖𝑡 , 𝜇𝑡) = 𝑑𝑖𝑠𝑡ℎ𝑡 (𝜙𝑡 , 𝑥𝑖𝑡) + 𝑑𝑖𝑠𝑡𝑣𝑡 (𝜙𝑡 , 𝑥𝑖𝑡)+

𝑑𝑖𝑠𝑡ℎ𝑡 (𝜙𝑡 , edge∗𝑡) + 𝑑𝑖𝑠𝑡𝑣𝑡 (𝜙𝑡 , edge∗𝑡) .

Disperse. This is similar to the ‘exploration’ tasks in [21], [34]

and other MFG works. In our version agents are rewarded for

being located in more sparsely populated areas but only if they

are stationary. The reward function is given by 𝑅(𝑠𝑖𝑡 , 𝑎𝑖𝑡 , 𝜇𝑡) =

𝑟𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦 (−𝜇𝑡 (𝑠𝑖𝑡)), where

𝑟𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦 (𝑥) =
{
𝑥 if𝑎𝑖𝑡 is ‘remain stationary’

−1 otherwise.

A.2 Experimental Metrics
To give as informative results as possible about both performance

and proximity to the MFNE, we provide two metrics for each exper-

iment. Both metrics are plotted with mean and standard deviation,

computed over the ten trials (each with a random seed) of the

system evolution in each setting.

A.2.1 Exploitability. Works on MFGs most commonly use the ex-

ploitability metric to evaluate how close a given policy 𝜋 is to a

NE policy 𝜋∗ [1, 3, 20, 21, 24, 27, 34]. The metric usually assumes

that all agents are following the same policy 𝜋 , and quantifies how

much an agent can benefit by deviating from 𝜋 by measuring the

difference between the return given by 𝜋 and that of a 𝐵𝑅 policy

with respect to the distribution generated by 𝜋 :

Definition 9 (Exploitability of 𝜋). The exploitability 𝐸𝑥 of

policy 𝜋 is given by:

𝐸𝑥 (𝜋) = 𝑉 (𝐵𝑅(𝐼 (𝜋)), 𝐼 (𝜋)) −𝑉 (𝜋, 𝐼 (𝜋)) .
If 𝜋 has a large exploitability then an agent can significantly im-

prove its return by deviating from 𝜋 , meaning that 𝜋 is far from 𝜋∗,
whereas an exploitability of 0 implies that 𝜋 = 𝜋∗. Prior works con-
ducting empirical testing have generally focused on the centralised

setting, so this classical definition, as well as most evaluations,

only consider exploitability when all agents are following a single

policy 𝜋𝑘 . However, [3] notes that purely independent agents, as

well as networked agents, may have divergent policies 𝜋𝑖
𝑘
≠ 𝜋

𝑗

𝑘
∀𝑖, 𝑘 ∈ 1, . . . , 𝑁 , as in our own setting.We therefore are interested in

the ‘exploitability’ of the population’s joint policy 𝝅 := (𝜋1, . . . , 𝜋𝑁)

∈ Π𝑁 .
Since we do not have access to the exact 𝐵𝑅 policy as in some

related works [21, 34], we must instead approximate the exploitabil-

ity, similarly to [3, 26]. We freeze the policy of all agents apart

from a deviating agent, for which we store its current policy and

then conduct 50 𝑘 loops of policy improvement. To approximate

the expectations in Def. 9, we take the best return of the deviating

agent across 10 additional 𝑘 loops, as well as the mean of all the

other agents’ returns across these same 10 loops. (While the poli-

cies of all non-deviating agents is 𝜋𝑘 in the centralised case, if the

non-deviating agents do not share a single policy, then this method

is in fact approximating the exploitability of their joint policy 𝝅−𝑑
𝑘

,

where 𝑑 is the deviating agent.) We then revert the agent back to

its stored policy, before learning continues for all agents as per the

main algorithm. Due to the expensive computations required for

this metric, we evaluate it every second 𝑘 iteration of the main

algorithm for Figs. 1, 2, 5, 6 and 7, and every fourth iteration for

the population-dependent experiments.

The exploitability metric has a number of limitations in our

setting. Our approximation takes place via MOMD policy improve-

ment steps (as in the main algorithm) for an independent, deviating

agent while the policies of the rest of the population are frozen. As

such, the quality of our approximation is limited by the number of

policy improvement/expectation rounds, which must be restricted

for the sake of running speed of the experiments. Moreover, since

one of the findings of our paper is that networked agents can im-

prove their policies faster than independent or centralised agents,

especially when non-linear function approximation is used, it is

arguably unsurprising that approximating the 𝐵𝑅 by an indepen-

dently deviating agent sometimes gives an unclear and noisy metric.

This includes the exploitability going below zero, which should not

be possible if the policies and distributions are computed exactly.

Moreover, in coordination games (the setting for all tasks apart

from the ‘disperse’ game), agents benefit by following the same

behaviour as others, and so a deviating agent generally stands to

gain less from a 𝐵𝑅 policy than it might in the non-coordination

games on which many other works focus. For example, the return

of a best-responding agent in the ‘push object’ game still depends

on the extent to which other agents coordinate on which direction

in which to push the box, meaning it cannot significantly increase

its return by deviating. This means that the downward trajectory of

the exploitability metric is less clear in our plots than in other works.

This is likely why the approximated exploitability gets lower in the

Figure 5: ‘Target agreement’ task, population-independent
policies, 50x50 grid.

non-coordination ‘disperse’ task in Fig. 7 than in the other tasks.

Given the limitations presented by approximating exploitability, we

also provide the second metric to indicate the progress of learning.

A.2.2 Average Discounted Return. We record the average discounted

return of the agents’ policies 𝜋𝑖
𝑘
during the𝑀 iterations - this allows

us to observe that settings that converge to similar exploitability

values may not have similar average agent returns, suggesting that

some algorithms are better than others at finding not just NE, but

preferable NE. See for example Figs. 1 and 5, where the networked

agents converge to similar exploitability as the independent and

centralised agents, but receive higher average returns.

A.3 Hyperparameters
See Table 1 for our hyperparameter choices. We can group our

hyperparameters into those controlling the size of the experiment,

those controlling the size of the Q-network, those controlling the

number of iterations of each loop in the algorithms and those af-

fecting the learning/policy updates or policy adoption.

In our experiments we generally want to demonstrate that our

communication-based algorithms outperform the centralised and

independent architectures by allowing policies that are estimated

to be better performing to proliferate through the population, such

that convergence occurs within fewer iterations and computation-

ally faster, even when the Q-function is poorly approximated and/or

the mean-field is poorly estimated, as is likely to be the case in real-

world scenarios. Moreover we want to show that there is a benefit

even to a small amount of communication, so that communication

rounds themselves do not excessively add to time complexity. As

such, we generally select hyperparameters at the lowest end of

those we tested during development, to show that our algorithms

are particularly successful given what might otherwise be consid-

ered ‘undesirable’ hyperparameter choices.

A.4 Additional Experiments
We provide additional experiments on large grids in Figs. 5, 6 and 7.

Figure 6: ‘Cluster’ task, population-independent policies,
50x50 grid.

Figure 7: ‘Disperse’ task, population-independent policies,
100x100 grid.

In the ‘target agreement’ task in Fig. 5, the networked agents

generally have lower exploitability than both centralised and in-

dependent agents, and significantly outperform the other architec-

tures in terms of average return. As before, the margin by which the

networked agents can outperform the centralised agents is much

greater than in [3], showing that the benefits of the communication

scheme are even greater in non-tabular settings.

In the ‘cluster’ task in Fig. 6, the networked agents obtain signifi-

cantly higher return than the independent agents. While centralised

agents have the lowest exploitability, networked agents of almost

all communication radii outperform them in terms of average re-

turn, indicating that the communication scheme helps populations

reach better performing equilibria.

In the ‘disperse’ task in Fig. 7, networked agents significantly

outperform independent and centralised agents in terms of aver-

age return. They also outperform centralised agents in terms of

exploitability, and significantly outperform independent agents

Figure 8: ‘Push object’ task, population-dependent policies
with global observability of mean field, 10x10 grid.

Figure 9: ‘Evade’ task, population-dependent policies with
global observability of mean field, 10x10 grid.

in terms of exploitability. The fact that this happens in this non-

coordination, competitive game shows that agents do have an incen-

tive to communicate with each other even if they are self-interested.

B ADDITIONAL REMARKS ON MEAN-FIELD
ESTIMATION ALGORITHMS

In our Algs. 2 and 3, agents share their local counts with neigh-

bours on the communication network G𝑐𝑜𝑚𝑚𝑡 , and only after the

𝐶𝑒 communication rounds do they complete their estimated dis-

tribution by distributing the uncounted agents along their vectors.

An alternative would be for each agent to immediately form a local

estimate from their local count obtained via G𝑜𝑏𝑠𝑡 or G𝑣𝑖𝑠𝑡 , which

is only then communicated and updated via the communication

network. However, we take the former approach to avoid poor

local estimations spreading through the network and leading to

widespread inaccuracies. Information that is certain (the count) is

spread as widely as possible, before being locally converted into

an estimate of the total mean field. The same would be the case in

our extension proposed in Sec. C for averaging noisy counts, i.e.

only the counts would be averaged, with the estimates completed

by distributing the remaining agents after the 𝐶𝑒 communication

rounds.

C LIMITATIONS AND FUTUREWORK
Our work follows the gold standard in MFGs by presenting experi-

ments on grid world toy environments, albeit we show our algo-

rithms are able to handle much larger and more complex games

than prior work. Nevertheless future work lies in moving from these

environments to real-world settings. In Sec. 6 we give theoretical

results showing that our networked algorithm can outperform a

centralised alternative. We leave more general analysis, such proof

of convergence and sample guarantees in the function approxima-

tion setting, for future work.

Alg. 3 assumes that if a state 𝑠′ is connected to 𝑠 on the visibility

graph G𝑣𝑖𝑠𝑡 , an agent in 𝑠 is able to accurately count all the agents

in 𝑠′, i.e. it either counts the exact total or cannot observe the state
at all. We assume this for simplicity but it is not inherently the

case, since a real-world agent may have only noisy observations

even of others located nearby, due to imperfect sensors. We suggest

two ways to deal with this. Firstly, if agents share unique IDs as

in Alg. 2, then when communicating their vectors of collected IDs

with each other via G𝑐𝑜𝑚𝑚𝑡 , agents would gain the most accurate

picture possible of all the agents that have been observed in a given

state. However, as we note above, there are various reasons why

sharing IDs might be undesirable, including privacy and scalability.

If instead only counts are taken, and if the noise on each agents’

count is assumed to be independent and, for example, subject to

a Gaussian distribution, the algorithm can easily be updated such

that communicating agents compute averages of their local and

received counts to improve their accuracy, rather than simply using

communication to fill in counts for previously unobserved states.

(Note that we can also consider the original case without noise

to involve averaging, since averaging identical values equates to

using the original value). Since the algorithm is intended to aid

in local estimation of the mean-field distribution, which is inher-

ently approximate due to the uniform method for distributing the

uncounted agents, we are not concerned with reaching exact con-

sensus between agents on the communicated counts, so we do not

require repeated averaging to ensure asymptotic convergence.

We may wish to consider more sophisticated methods for dis-

tributing the uncounted agents across states, in place of the current

uniform distribution. Such choices may be domain-specific based

on knowledge of a particular environment. For example, one might

use the counts to perform Bayesian updates on a specific prior,

where this prior may relate to the estimated mean-field distribution

at the previous time step 𝑡 − 1. If agents seek to learn to predict the

evolution of the mean field based on their own policy or by learning

a model, the Bayesian prior may also be based on forward predic-

tion from the estimated mean-field distribution at 𝑡 −1. Future work

lies in conducting experiments in all of these more general settings.

[25] notes that in grid-world settings such as those in our experi-

ments, passing the (estimated or true global) mean-field distribution

as a flat vector to the Q-network ignores the geometric structure of

the problem. They therefore propose to create an embedding of the

distribution by first passing the vector to a convolutional neural net-

work, essentially treating the categorical distribution as an image.

This technique is also followed in [34] (for their additional exper-

iments, but not in the main body of their paper). As future work,

we can test whether such a method improves the performance of

our algorithms.

Table 1: Hyperparameters

Hyperparameter Value Comment

Trials 10 We run 10 trials with different random seeds for each experiment. We plot the mean and

standard deviation for each metric across the trials.

Gridsize 10x10 / 50x50 /

100x100

Experiments with population-dependent policies are run on the 10x10 grid (Figs. 3, 4, 8 and 9),

while experiments on large state spaces are run on 50x50 and 100x100 grids (Figs. 1, 2, 5, 6 and

7).

Population 500 We chose 500 for our demonstrations to show that our algorithm can handle large populations,

indeed often larger than those demonstrated in other mean-field works, especially for grid-

world environments, while also being feasible to simulate wrt. time and computation constraints

[3, 7, 8, 11–13, 30, 31, 34, 36, 40].

Number of neu-

rons in input

layer

cf. comment The agent’s position is represented by two concatenated one-hot vectors indicating the agent’s

row and column. An additional two such vectors are added for the shark’s/object’s position in the

‘evade’ and ’push object’ tasks. For population-dependent policies, the mean-field distribution

is a flattened vector of the same size as the grid. As such, the input size in the ‘evade’ and ’push

object’ tasks is [(4 × dimension) + (dimension
2)]; in the other settings it is [2 × dimension].

Neurons per

hidden layer

cf. comment We draw inspiration from common rules of thumb when selecting the number of neurons in

hidden layers, e.g. it should be between the number of input neurons and output neurons / it

should be 2/3 the size of the input layer plus the size of the output layer / it should be a power

of 2 for computational efficiency. Using these rules of thumb as rough heuristics, we select

the number of neurons per hidden layer by rounding the size of the input layer down to the

nearest power of 2. The layers are all fully connected.

Hidden layers 2 We experimented with 2 and 3 hidden layers in the Q-networks. While 3 hidden layers gave

similar or slighly better performance, we selected 2 for increased computational speed for

conducting our experiments.

Activation func-

tion

ReLU This is a common choice in deep RL.

𝐾 100 𝐾 is chosen to be large enough to see at least one of the metrics converging.

𝑀 50 We tested𝑀 in {50,100} and found that the lower value was sufficient to achieve convergence

while minimising training time. It may be possible to converge with even smaller choices of𝑀 .

𝐿 50 We tested 𝐿 in {50,100} and found that the lower value was sufficient to achieve convergence

while minimising training time. It may be possible to converge with even smaller choices of 𝐿.

𝐸 20 We tested 𝐸 in {20,50,100}, and choose the lowest value to show the benefit to convergence

even from very few evaluation steps. It may be possible to reduce this value further and still

achieve similar results.

𝐶𝑝 1 As in [3], we choose this value to show the convergence benefits brought by even a single

communication round, even in networks that may have limited connectivity; higher choices

are likely to have even better performance.

𝐶𝑒 1 Similar to 𝐶𝑝 , we choose this value to show the ability of our algorithm to appropriately

estimate the mean field even with only a single communication round, even in networks that

may have limited connectivity.

𝛾 0.9 Standard choice across RL literature.

𝜏𝑞 0.03 We tested 𝜏𝑞 in {0.01,0.02,0.03,0.04,0.05}, as well as linearly decreasing 𝜏𝑞 from 0.05→ 0 as 𝑘

increases. However, only 0.03 gave stable increase in return. Note that this is the value also

chosen in [33].

|𝐵 | 32 This is a common choice of batch size that trades off noisy updates and computational efficiency.

𝑐𝑙 -1 We use the same value as in [33].

𝜈 𝐿 − 1 We tested 𝜈 in {1, 4, 20, 𝐿 − 1}. We found that in our setting, updating 𝜃 ′ ← 𝜃 once per 𝑘

iteration s.t. 𝜃 ′
𝑘+1,𝑙 = 𝜃𝑘,𝑙 ∀𝑙 gave sufficient learning that was similar to the other potential

choices of 𝜈 , so we do this for simplicity, rather than arbitrarily choosing a frequency to update

𝜃 ′ during each 𝑘 loop. Setting the target to be the policy from the previous iteration is similar

to the method in [21]. Whilst [34] updates the target within the 𝐿 loops for stability, we do not

find this to be a problem in our experiments.

Optimiser Adam As in [33], we use the Adam optimiser with initial learning rate 0.01.

𝜏𝑐𝑜𝑚𝑚
𝑘

cf. comment 𝜏𝑐𝑜𝑚𝑚
𝑘

increases linearly from 0.001 to 1 across the 𝐾 iterations. This is a simplification of the

annealing scheme used in [3]. Further optimising the annealing process may lead to better

results.

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Mean-Field Games
	3.2 (Munchausen) Online Mirror Descent
	3.3 Networks

	4 Learning and Policy Improvement
	4.1 Q-Network and Update
	4.2 Communication and Adoption of Parameters

	5 Mean-Field Estimation and Communication
	5.1 Algorithm for the General Setting
	5.2 Algorithm for Visibility-Based Environments

	6 Theoretical Results
	7 Experiments
	7.1 Results and Discussion

	8 Conclusion
	References
	A Experiments
	A.1 Games
	A.2 Experimental Metrics
	A.3 Hyperparameters
	A.4 Additional Experiments

	B Additional remarks on mean-field estimation algorithms
	C Limitations and Future Work

