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Abstract

Human traveling trajectories play a central role
in characterizing each travelogue, and auto-
matic trajectory extraction from travelogues
is highly desired for tourism services, such
as travel planning and recommendation. This
work addresses the extraction of human trav-
eling trajectories from travelogues. Previous
work treated each trajectory as a sequence of
visited locations, although locations with dif-
ferent granularity levels, e.g., “Kyoto City” and
“Kyoto Station,” should not be lined up in a
sequence. In this work, we propose to repre-
sent the trajectory as a graph that can capture
the hierarchy as well as the visiting order, and
construct a benchmark dataset for the trajectory
extraction. The experiments using this dataset
show that even naive baseline systems can accu-
rately predict visited locations and the visiting
order between them, while it is more challeng-
ing to predict the hierarchical relations.

1 Introduction

The advancement of Web technologies facilitates
people to share their travel experiences on the
Web in the form of textual travelogues (Hao et al.,
2010). Travelogues are vital sources for analyz-
ing human traveling behavior in tourism informat-
ics, geographic information science, and digital
humanities, because of their rich geographical and
thematic content, which gives people, e.g., a simu-
lated experience of trip (Haris and Gan, 2021). In
particular, human traveling trajectories play a cen-
tral role in characterizing each travelogue, and thus,
automatic trajectory extraction from travelogues is
highly desired for tourism services, such as travel
planning and recommendation (Pang et al., 2011).

Some studies have addressed automatic trajec-
tory extraction from text (Ishino et al., 2012; Wag-
ner et al., 2023; Kori et al., 2006). However,
these studies suffer from two issues: (i) inadequate
trajectory representation and (ii) the scarcity of
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Figure 1: Illustration of our proposed tasks: visit status
prediction (VSP) and visiting order prediction (VOP).
VSP assigns visit status labels to mentions for mention
level (top) and to entities for entity level (middle). VOP
outputs a visiting order graph by assigning inclusion
and transition relations to entity pairs (bottom).

benchmark datasets. First, the previous studies
treated each trajectory as a sequence of visited lo-
cations (Ishino et al., 2012; Wagner et al., 2023;
Kori et al., 2006), but a sequence is inadequate as
a representation of trajectories. This is because a
pair of locations where one geographically includes
the other cannot be lined up in a single sequence,
for example, “Kyoto City” and “Kyoto Station.”
This necessitates more appropriate trajectory rep-
resentations other than sequences, as we discuss
in detail in §4.1. Second, the previous studies con-
structed and used their in-house datasets for eval-
uating their systems, and no public text datasets
annotated with trajectory information have been
released. However, shared benchmark datasets



are necessary for facilitating fair comparisons with
other studies and accelerating the accumulation of
research findings (Ohsuga and Oyama, 2021).

For the first issue, we propose a visiting order
graph illustrated at the bottom of Figure 1. This
graph has nodes of locations or geo-entities and
edges of relations between geo-entities. It can rep-
resent not only temporal transition relations but
also geographical inclusion relations between vis-
ited locations. For enabling automatic construc-
tion of the graph for each travelogue, we introduce
trajectory extraction subtasks: Visit Status Predic-
tion (VSP) and Visiting Order Prediction (VOP),
as shown in Figure 1. VSP requires to assign visit
status labels to mentions and entities. Then, VOP
requires to identify inclusion and transition rela-
tions between nodes of the “visited” entities.

For the second issue, we have constructed a
dataset for training and evaluating trajectory ex-
traction systems: Arukikata Travelogue Dataset
with Visit Status and Visiting Order Annotation
(ATD-VSO).! Our dataset comprises 100 travel-
ogue documents annotated with the corresponding
visiting order graphs, totally including 3,354 geo-
entities (nodes) and 3,369 relations (edges).

Using this dataset, we have trained and evalu-
ated baseline systems. Notable findings through
the experiments are (i) that the systems can achieve
relatively high accuracy for predicting visit status
labels and transition relations, and (ii) that the sys-
tems failed to accurately predict inclusion relations.
The latter implies an important future issue, i.e.,
how to inject the knowledge of geographic hierar-
chical structure into the systems.

Contributions For the purpose of building a
foundation for future studies, we have made two
main contributions: (i) the proposal of visiting or-
der graph and (ii) the construction of a benchmark
dataset for the trajectory extraction.” We will re-
lease our code and dataset for research purposes.
We expect that our dataset will foster continued
growth in the trajectory extraction research.

2 Preliminaries for Data Construction

Our dataset, ATD-VSO, has been constructed on
the basis of Arukikata Travelogue Dataset with ge-

'We will release our dataset at ANNONYMIZED_URL.

2Qur contributions are in the data resource direction, not
the technical one such as algorithm and model sophistication.
On top of the resource, we will make technical contributions
in the future.

ographic entity Mention, Coreference, and Link an-
notation (ATD-MCL) (Higashiyama et al., 2024).3
ATD-MCL is a Japanese travelogue dataset an-
notated with three types of geo-entity informa-
tion, namely, mentions, coreference relations, and
links to geo-database entries, to a collection of
the original travelogues, the Arukikata Travelogue
Dataset (ATD) (Arukikata. Co., Ltd., 2022; Ouchi
etal., 2023).%

Annotated mentions in ATD-MCL include
proper nouns (e.g., “Nara station”), general noun
phrases (e.g., “the station”), and deictic expressions
(e.g., “there”) that refer to various types of loca-
tions, such as geographic regions, facilities, and
landmarks. Moreover, a set of mentions that refer
to the same location constitutes a coreference clus-
ter or geo-entity. Given such annotated travelogues,
we focus on annotating the visit status and visiting
order of candidate geo-entities.

3 Visit Status Prediction

We propose a task comprising the two subtasks:
Visit Status Prediction (VSP) and Visiting Order
Prediction (VOP). This section describes the task of
VSP, where a visit status is predicted for each loca-
tion. For example, it can be judged that the traveler
visited the station from the description of the real
experience: “Arrived at Kintetsu Nara Station!” In
contrast, the factual statement, “JR Nara Station is
a little far from Kintetsu Nara Station.” does not
indicate that the traveler visited these locations. In
this task, we aim to distinguish such differences
and identify locations visited by travelers.

3.1 Annotation Data Construction

We defined two types of visit status labels in Ta-
ble 1 for entities and six types of visit status labels
in Table 2 for mentions. The mention labels serve
to distinguish detailed status of the mentioned loca-
tion based on the context, i.e., the sentence where
the mention occurs. The entity labels serve to de-
termine whether the traveler eventually visited the
location, considering the entire document. As an-
notation work, native Japanese annotators at a data
annotation company assigned visit status labels to
each mention and entity in ATD-MCL travelogues
according to the label definitions and annotation
guideline.’

Shttp://github.com/naist-nlp/atd-mcl

4ht'cps://www. nii.ac.jp/dsc/idr/arukikata/

The annotators used the brat annotation tool (Stenetorp
etal.,, 2012) (https://github.com/nlplab/brat).
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1 Visit A visit to the location is stated or implied.

2 Other Notl.

Table 1: Visit status labels for entities.

1 Visit The same as the entity label 1.

2  PlanToVisit It mentions a plan to visit the loca-
tion during this trip (described in
the travelogue).

3  See Not any of 1-2, and that the trav-

eler saw the location can be iden-
tified.

Not any of 1-3, and it mentions
having visited the location before
this trip.

Not any of 1-3, and it mentions
the intention to visit the location
after this trip.

The visit to the locations cannot be
identified from the descriptions, or
the non-visit can be identified.

4 Visit-Past

5 Visit-Future

6 UnkOrNotVisit

Table 2: Visit status labels for mentions.

Inter-Annotator Agreement We requested two
annotators to independently annotate five docu-
ments. We then measured the inter-annotator agree-
ment (IAA) using F1-score and Cohen’s Kappa x.
The obtained scores suggest the high agreement:
F1 score of 0.80 and k of 0.68 for 180 mentions,
and F1-score of 0.89 and « of 0.81 for 124 entities.

Data Statistics The annotators annotated addi-
tional 95 documents (one annotator per document);
the total became 100 documents, including the
aforementioned five documents, as shown in Ta-
ble 3 and Table 4.

3.2 Task Definition

Entity-level and mention-level VSP are defined as
follows. Given a set of entities £ in an input docu-
ment, entity-level VSP requires a system to assign
an appropriate visit status label y € L. for each
entity e, € £. Similarly, given an entity (or corefer-
ence cluster) e, = {mgq), ... ,m|(€q)|}, which con-
sists of one or more mentions, mention-level VSP
requires a system to assign an appropriate visit sta-
tus label y € L, for each mention mgq) € ¢eq.

3.3 Baseline System

As our baseline system, we employ a two-step
method that first predicts mention labels and then
predicts entity labels based on the mention labels.

Specifically, we calculate the label probability dis-
(a)

tribution P(y|m.\?) for each mention m'? € e,,

Set #Doc #Sent #Men #Ent  #Inc&Tra
Train 70 4,254 3,782 2,339 2,343
Dev 10 601 505 316 329
Test 20 1,469 1,102 699 697
Total 100 6,324 5389 3,354 3,369

Table 3: Statistics of the ATD-VSO.

Set Visit Plan See Past Future UN/O
Train 2,577 358 212 10 6 619
Dev 332 48 46 1 4 74
Test 748 121 59 10 4 160
Train 1,942 - - - - 397
Dev 252 - - - - 64
Test 575 - - - - 124

Table 4: Numbers of visit status labels for men-
tion level (top) and entity level (bottom). Plan,
Past, and Future indicate PlanToVisit, Visit-Past,
and Visit-Future, respectively. UN/O indicates
UnkOrNotVisit for mention level and Other for en-
tity level.

(@)

and select the most probable label §;

g)Z(Q) = arg maxyeﬁmP(y]mz(q)).

Then, we select a label for each entity e, according

to the following mention label aggregation (MLA)
rules.

1. If Visit or PlanToVisit has been assigned
to at least one mention in e, then Visit is
assigned to e;.

2. Otherwise, Other is assigned to e,.

As the implementation of a model
for mention label prediction, we used
LukeForEntityClassification in Hugging
Face Transformers® with the inputs of the sentence
containing the mention of interest and the position
(character offsets) of the mention.

4 Visiting Order Prediction

This section describes the task of VOP, where ge-
ographical and temporal relations between visited
locations are predicted.

4.1 Visiting Order Graph

We introduce a visiting order graph that can rep-
resent non-linear relations of visited locations. In

6https://huggingface.co/docs/transformers/
index
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Figure 2: Example of a visiting order graph, the same
example at the bottom of Figure 1.

a graph, nodes correspond to entities, i.e., loca-
tions, and edges correspond to relations between
entities, as shown in the example in Figure 2. A
directed edge (—) of inclusion relation represents
that the starting node geographically includes the
ending node. A directed edge (—) of transition re-
lation indicates that the traveler visited the starting
node entity and then visited the ending node entity,
without visiting any other entities in between. We
describe further details on these relations in the
following paragraphs.

Inclusion Relation Consider the example doc-
ument in Figure 1, which describes that the trav-
eler visited both “Nara City” and “Todaiji Temple.”
Based on the geographical fact that the region of
“Nara City” includes that of “Todaiji Temple,” it
is reasonable to interpret that the traveler visited
the temple and thereby also visited the city simul-
taneously. We introduce inclusion relation (e1, e2),
where an entity e; geographically includes another
e2. From Figure 2, we describe two examples:

p1 = (Nara City, Todaiji Temple),
p2 = (Todaiji Temple, Great Buddha Hall).

Here, p; represents “Nara City” includes “Todaiji
Temple”, and p, represents “Todaiji Temple” in-
cludes “Great Buddha Hall.” Also, these two rela-
tions imply a hierarchical relation: “Nara City” is
a grand parent of “Great Buddha Hall.”

Transition Relation Given a set of entities for
a document and inclusion relations among them,
we assign transition relation to each pair of pre-
ceding and subsequent visited entities. Notably,
we restrict an entity pair with transition rela-
tion to two entities with the same parent en-
tity. In Figure 2, while “Nara Station” and “To-
daiji Temple” have the same parent node, “Ky-
oto Station” and “Nara Station” does not. There-
fore, the transition relation can be assigned to
(Nara Station, Todaiji Temple), but cannot be as-

Set Inclusion Transition
Train 1,302 1,041
Dev 186 143
Test 375 322

Table 5: Statistics for visiting order annotation.

signed to (Kyoto Station, Nara Station). This re-
striction enables determining the order of visits
for any entity pairs by traversing transition and
inclusion relations, even if entity pairs are not di-
rectly related to each other. For example, although
“Kyoto Station” does not have transition relation
to “Nara City,” you can interpret “Kyoto Station’
was visited before “Nara City” because the parent
“Kyoto City” has transition relation to “Nara City.”’

)

4.2 Annotation Data Construction

After the annotation step of visit status, we left
only the entities with the Visit or VisitPossibly
label as the nodes of a visiting order graph. In the
annotation step of the relations, annotators assigned
the visiting relations between the entities.?

Inter-Annotator Agreement We requested two
annotators to independently annotate the same five
documents as those used for visit status annotation.
We then measured the IAA using Fl-score. The
obtained F1 scores suggest the moderate or high
agreement: 0.94 for inclusion, 0.74 for transition,
and 0.85 for both.

Data Statistics The 95 documents assigned visit
status were divided among multiple annotators, and
each annotator annotated each document. The total
became 100 documents with 1,856 inclusion rela-
tions and 1,494 transition relations, including the
five aforementioned documents (Table 5).

4.3 Task Definition

The task of VOP can be divided into two subtasks:
Inclusion Relation Prediction (IRP) and Transition
Relation Prediction (TRP).

Inclusion Relation Prediction Given a set of
entities £ in a document, IRP requires a system to
determine the parent entity for each entity e, € £

"The two relations cover most of trajectories in the dataset,
but not all. We introduce a few other criteria described in
Appendix A.1.

8As the annotation tool for entity relations, we adopted
the online whiteboard service, Miro (https://miro.com/),
and the annotators drew arrows representing relation edges
between boxes representing entity nodes using the graphical
interface.
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from the set of candidate entities P\, = & \

cand

{eq} U {ROOT}. In other words, if e € Pézzld is
predicted as the parent entity for ey, it represents
that e includes e,. The pseudo parent node ROOT
should be predicted when the entity of interest has

no parent entities.

Transition Relation Prediction Given a set of
entities £ in a document, TRP requires a system to
determine the entity subsequently visited for each
entity e, € £ from the candidate set S égzld with the
same parent as e,

89 = {e}, € £|Par(ey,) = Par(ey)} U {E0S}.
Here, Par(e) represents the parent entity of e, and
the pseudo subsequent node EOS represents that the
entity of interest has no subsequent entities.

4.4 Baseline System

The baseline systems adopt similar methods for the
two subtasks. Specifically, for IRP and TRP, we se-
lect the most probable entity as the parent entity €,
or the subsequent entity €, from the corresponding
candidate set based on score function scorep,, or
scoregyp, respectively:

a /
€p = arg maxe,epézidscorepar(eq, e, (1)

~ /
€s = argmax , _ (o) scoresub(eq, e'). 2)
cand

As the implementation of models along with
the score functions for both IRP and TRP,
we used LukeForEntityPairClassificationin
Hugging Face Transformers with the input text and
the positions (character offsets) of two mentions.
The input text is the concatenation of the two sen-
tences containing representative mentions for the
entity of interest and a candidate entity, and the
all sentences that occur between them, in the order
of their occurrence.” Representative mentions are
selected as follows. For IRP, proper noun mentions
are prioritized over other mentions. For TRP, men-
tions with visit status label of higher confidence
(Visit > See > other labels) are prioritized.

°For example, when %317 ‘Nara City’ and B K3 “To-
daiji Temple’ in Japanese translation of the first three sen-
tences in Figure 1 are entities of interest, the input text is as
follows: “<s>Z D H &, HEHZFKMH LT, <ent>F
BEii<ent>IZE MW E LTz, </s><s>. . .</s><s>48 F R
T 7215, D S<ent2>BH Kfi<ent2>F T LA E
F U7, </s>7.

Sequence Sorting Decoding In TRP, all nodes
under the same parent node (i.e., in the same hi-
erarchy) should be arranged in a single sequence.
However, Equation 2 does not always generate a
single sequence. To address this issue, we propose
a sequence sorting decoding, which has the con-
straint that all nodes in the same hierarchy result
in a single sequence. We describe the details in
Appendix B.1.

S Experiments

We evaluated the performance of the classification-
based baseline systems, as well as generation-based
Causal Language Model (CLM) and rule-based
systems, for the visit status prediction (VSP) task
(in §3.3) and the visiting order prediction (VOP)
subtasks: inclusion relation prediction (IRP) and
transition relation prediction (TRP) (in §4.4).

5.1 Experimental settings

Data Split As shown in Table 3, we split the
100 documents in ATD-VSO into training, devel-
opment, and test sets at a ratio of 7:1:2.

Task Settings We adopted the settings where
gold standard labels of preceding tasks were given,
and evaluated systems for each task independently.
That is, systems take as input gold entities for VSP
and IRP, and gold visited entities (that have Visit
or VisitPossibly labels) and gold inclusion rela-
tions for TRP.

Evaluation Metrics For VSP, we measured the
accuracy of predicted labels for input entities. For
IRP, we measured the F1 score for extracting in-
clusion entity pairs from input entities. For TRP,
we measured the F1 score for extracting transition
entity pairs, excluding pairs where the subsequent
entity is EOS, from input entities.

Model Training We constructed our baseline sys-
tem by fine-tuning a pretrained model with the
training set for each task. Specifically, we used
a pretrained multilingual LUKE (Ri et al., 2022)
model'? for VSP and the same pretrained Japanese
LUKE (Yamada et al., 2020) model!! for the VOP
subtasks (IRP and TRP). We trained the models
for up to 10 epochs for all tasks. Unless otherwise
specified, we report the mean accuracy or F1 score

lOhttps://huggingf”ace.co/studio—ousia/
mluke-large-lite

11https://huggingface.co/studio—ousia/
luke-japanese-base
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Method Mention Acc.  Entity Acc.
Majority Label 0.629 0.790
LUKE 0.750 -
LUKE + MLA - 0.838
Llama3-ELYZA 0.582 0.761
Llama3-Swallow 0.563 0.779

Table 6: System performance for visit status prediction
(left: mention-level, right: entity-level).

Mention Entity
P R F1 P R F1

Visit J85 924 849 869 950 .908
Plan 706 688 .696 - - -

Label

See 655 661 657 - - -
Past 0 0 0 - _ _
Future O 0 0 - _ _

UN/O 611 403 482 650 495 .561

Table 7: Precision (P), recall (R), and F1 scores of
LUKE (mention-level) and LUKE+MLA (entity-level)
for each label of visit status prediction.

on the test set of five runs with different random
seed values for the baseline system for each task.
Additionally, we evaluated two CLMs, ELYZA
(8B) (Hirakawa et al., 2024) and Swallow (8B) (Fu-
jii et al., 2024; Okazaki et al., 2024), which were
continually pretrained from Llama-3 (Grattafiori
et al., 2024). Both CLMs predict a label for a men-
tion or relation for a mention pair by zero-shot in-
context learning (ICL). We describe more detailed
settings in Appendix B.2.

5.2 Results for Visit Status Prediction

Systems We evaluated a rule-based system (ML:
Majority Label), two baseline systems (LUKE and
LUKE+MLA), and two CLM systems (ELYZA
and Swallow). The ML rule always outputs the
most frequent label, Visit, for both mention and
entity levels. “LUKE” indicates the baseline sys-
tem and “MLA” indicates the mention label aggre-
gation rule described in §3.3.

Main Results Table 6 shows the performance
of the evaluated systems for mention-level and
entity-level VSP. The ML rule, which always out-
puts the Visit label for every mention, seems to
have achieved good accuracy, 0.629 for the mention
level and 0.790 for the entity level. This indicates
the imbalance in label distribution with a majority
of Visit instances, which aligns with the intuition
that visited locations are often mentioned in travel-
ogues. Both CLMs yielded the accuracy below that
of the ML rule, indicating the performance limi-

Method All Par=ROOT  ParzROOT
Random 0.043  0.057 0.038
Flat 0244 1 0

LUKE 0.355 0.058 0.425
Llama3-ELYZA  0.115 0.358 0.125
Llama3-Swallow 0.132  0.253 0.142

Table 8: System performance (F1 score) for inclusion
relation prediction. All indicates the performance for
all entities. “Par=R00T” and “Par#R0O0T” indicate the
performance for entities whose gold parent are or are
not ROOT.

tations of ICL for CLMs of this size. The better
accuracy and macro F1 scores for the LUKE-based
systems, i.e., LUKE and LUKE+MLA, indicate
that they were able to predict labels other than
Visit.

Label-Wise Performance Table 7 shows the per-
formance of the LUKE-based systems for each
label. The results are summarized as follows. First,
the baselines achieved high performance (F1 of
0.849-0.908) for Visit for both levels. Second,
the baselines resulted in limited performance (F1
of 0.482-0.561) for UnkOrNotVisit/Other; this
suggests the difficulty of prediction from limited
context, which often lacks clear clues indicating
visitation or non-visitation by travelers.

5.3 Results for Inclusion Relation Prediction

Systems We evaluated two rule-based systems
(Random and Flat), a baseline system (LUKE de-
scribed in §4.4), and two CLM systems (ELYZA
and Swallow). Random indicates a method that
randomly selects the parent entity from the candi-
date set for each entity. Flat indicates a rule-based
method that always selects ROOT as the parent entity
for an arbitrary entity.

Main Results Table 8 shows the performance
(F1 score) of the evaluated systems for IRP. Flat,
which is a rule always predicting ROOT as a par-
ent, exhibited the better performance than Random
(F1 of 0.244 vs 0.043), suggesting that predicting
ROOT can be a reasonable strategy when systems
do not have knowledge for specific entities. CLM
systems yielded poor performance (F1 of 0.115-
0.132). LUKE achieved the best performance (F1
of 0.355). In particular, this baseline achieved
much better F1 score, 0.425, than Random for the
entities whose gold parents are entities other than
ROOT (“Par#R0O0T”).



Method All Fwd. Rev.
Random 0.191 0.248 0.064
Occurrence Order 0.737 0.780 O
LUKE 0.748 0.796 0.366
Llama3-ELYZA 0.456 0.538 0.100
Llama3-Swallow  0.388 0.455 0.134

Table 9: System performance (F1 score) for transition
relation prediction. All indicates the performance for
all entities. Fwd. and Rev. indicate the performance for
entities whose gold subsequent entities occurred after or
before the entities of interest in documents, respectively,
regarding their earliest mentions.

Discussion The current LUKE baseline has two
limitations. First, the absolute overall performance
(F1 of 0.355) has not reached a practical level.
Probable reasons are that (1) the pretrained LUKE
model for general entity analysis tasks did not learn
geographic relations among specific geo-entities,
and (2) it was difficult to obtain generalized knowl-
edge on geographic relations between entities from
fine-tuning only with text-based features. Possi-
ble solutions include pretraining with geospatial
information like GeoLM (Li et al., 2023), and
fine-tuning a model with geocoding-based features,
such as predicted coordinates and shapes of enti-
ties. Second, the performance for entities whose
parent is ROOT is quite low. This is because the
current system predicts ROOT as the parent for an
entity only when it predicts all candidate entities
as non-parent. This may be improved by a method
that can directly predict ROOT by assigning a vector
representation to ROOT based on, for example, a
fixed dummy sentence.

5.4 Results for Transition Relation Prediction

Systems We evaluated two rule-based systems
(Random and Occurrence Order), a baseline system
(LUKE described in §4.4), and two CLM systems
(ELYZA and Swallow). Random is a rule-based
system that randomly lines up candidate entities
(for each set of entities with the same parent entity).
Occurrence Order is the other rule-based one that
arranges candidate entities in the order of occur-
rence of each earliest mention in their document.

Main Results Table 9 shows the performance of
the evaluated systems for TRP. For all pairs, the
Occurrence Order rule achieved relatively high per-
formance (F1 of 0.737). This matches the intuition
that the order of locations being described in text
corresponds with the order of locations being vis-

ited to some extent. CLM systems yielded poor
performance (F1 of 0.388-0.456) again. LUKE
achieved the best performance (F1 of 0.748). Also,
LUKE correctly recognized some portion of re-
verse pairs where preceding and subsequent enti-
ties occurred in documents in the reverse order of
visitation, but the performance (F1 of 0.366) has
room to be improved.

Discussion The current LUKE baseline has two
limitations. First, the vector representation of an
entity is constructed from a single mention selected
by the heuristic rule (§4.4), which limits the context
of the entity. This would be improved by extending
the context to include all mentions for two entities
of interest, although an effective method may be
necessary to grasp complicated relations among
many mentions. Second, the current baseline uni-
formly treats entity pairs without transition relation
as negative instances. However, entity pairs with
indirect transition relation, where one is visited
before the other via one or more entities, can be
exploited as positive instances for an additional
auxiliary task, similarly to relative event time pre-
diction (Wen and Ji, 2021).

6 Qualitative Analysis
6.1 Visit Status Prediction

As Table 7 shows, the baseline system tends to
fail to correctly predict the UnkOrNotVisit/Other
label. Our analysis indicates two error tendencies.
For the first, consider the following example.

Matsue Shinjiko Onsen Station §in<orNetVisit g
the final station.

The gold label for Matsue Shinjiko Onsen Station is
UnkOrNotVisit because this sentence is a factual
statement and does not indicate the traveler visited
the location, but the system assigned Visit. As
this example shows, it is sometimes difficult to dis-
tinguish a factual statement from the one indicating
traveler’s visitation. For the second, consider the
following example.

] [ | G:UnkOrNotVisit
This time, I skipped Matsue §\"r and
G:UnkOrNotVisit
Yonago it :

This sentence clearly indicates that the traveler did
not visit Masue and Yonago by the verb “skipped,’
but the system assigned Visit. As this example
shows, the system sometimes fails to correctly un-
derstand the meaning of some motion verbs, such
as “skip” and “pass on.”



6.2 Visiting Order Prediction

Inclusion Relation Prediction The results
shown in Table 8 (§5.3) have indicated that IRP
is a challenging task. Our analysis reveals that
LUKE learned the tendency that prefectures and
cities often become parents of some entities, but
LUKE also sometimes made incorrect predictions,
such as a prefecture/city being the parent of another
prefecture/city. Consider the following example.

; ; G:P1
I planned to stay one night in Nagoya §itlan, so I

left Ise Gi/is even though it was still early.

B

LUKE predicted “Nagoya” as the parent of “Ise,
although both are cities. This suggests that the
model lacks geographic commonsense.

Transition Relation Prediction The results
shown in Table 9 (§5.4) have indicated difficulty in
predicting reverse-order entity pairs. Consider the
following example.

Here is Daiouji Temple §Vis with its mausoleum.
I took a taxi because it was far from

; G:Vis
the station §is .

B

While “Daiouji Temple” precedes “the station,
these sentences describe that the traveler moved
from the station to the temple. Although LUKE
tended to predict the correct order of reverse pairs
when there were some clues, such as temporal
expressions like “before” and “after,” the system
made incorrect predictions for reverse pairs without
salient clues, including the above example.

7 Related Work
7.1 Visit Status Prediction

“Visiting” is one type of human actions or move-
ments, thus our Visiting Status Prediction falls into
the category of the NLP research that analyzes ac-
tions or movements in text. One major stream of
such research is the predicate-centric approach (de-
scribed in detail in Appendix D). Here, we focus
on another stream: the location-centric approach.
Li and Sun (2014) and Matsuda et al. (2018)
specified visit status of location-referring expres-
sions in each tweet. In a similar manner, Peter-
son et al. (2021) specified it in clinical documents.
While they focused on the “mention-level” predic-
tion, we focus on the “entity-level” prediction as
well. In travelogues, multiple expressions referring
to the same location (belonging to the same geo-
entity) appear in a document. Some of the mentions

referring to the same location could appear with
the contexts that indicate the writer actually visited,
and the others not. By aggregating such various
visit status of the different mentions, you can con-
clude the visit status of the location (geo-entity).

7.2 Visiting Order Prediction

Many studies have addressed the extraction of
location-referring expressions, such as toponyms
and place names, and the grounding of them onto a
map (Lieberman et al., 2010; Matsuda et al., 2017;
Kamalloo and Rafiei, 2018; Wallgriin et al., 2018;
Weissenbacher et al., 2019; Gritta et al., 2020; Hi-
gashiyama et al., 2024). However, very few stud-
ies have focused on geographic trajectories, i.e., a
temporal-ordered sequence of multiple locations.

There are three exceptional studies on trajectory
extraction from text. Ishino et al. (2012) proposed
a task to extract the origin, destination and its trans-
portation method, from each disaster-related tweet.
Wagner et al. (2023) proposed a task to extract a
trajectory from each transcribed testimony. Each
one-minute speech was transcribed and categorized
into one of the coarse-grained location categories,
e.g., “cities in Austria” and “ghettos in
Hungary.” Their trajectory is not a detailed move-
ment trajectory of specific locations. Kori et al.
(2006) proposed to extract visiters’ representative
trajectories from blogs. Each trajectory is defined
as a sequence of location-referring mentions. The
visiting order is defined as the one in which the
mentions appear in the text. Beyond the mention-
appearing order, we have adopted the faithful visit-
ing order, which aligns with written intentions.

The crucial difference between the three studies
and ours is the trajectory representation; while the
four studies assumed trajectories as sequences, we
define them as graphs. As discussed in §4.1, be-
cause trajectories often cannot be represented as
sequences, we adopt graphs to appropriately repre-
sent geographic hierarchical relations.

8 Conclusion

In this study, we define tasks about visit status and
visiting order, construct a dataset, and train and
evaluate a baseline model for trajectory analysis.
In the future, we will work on the construction of a
system for trajectory analysis, which predicts the
trajectory to the visiting order from a source docu-
ment as an input, and for grounding and visualizing
the trajectory on a map.



Limitations

Language Our ATD-VSO dataset was con-
structed from the original ATD, which consists of
travelogues written in Japanese. Thus, the language
used in our experiments is limited to Japanese. We
plan to extend our dataset to a multilingual dataset
by manual translation.

Geographical Coverage Our ATD-VSO dataset
includes locations from all prefectures in Japan, as
it was created using travelogues of domestic travels
within Japan. We plan to extend our dataset to
include locations from various countries and areas
around the world by using travelogues of overseas
travels in the original ATD.

Causal Language Models There are three lim-
itations for CLMs: (i) prompt engineering, (ii)
learning method, and (iii) model size. First, we
used only one prompt for each task. The compre-
hensive investigation of performance differences
among possible prompts is left for future work.
Second, we investigate the performance of mod-
els with zero-shot in-context learning (ICL). In the
future, we will investigate the performance of mod-
els with few-shot ICL and fine-tuning in each task.
Third, we used LMs with eight billion parameters
due to resource limitation. Using larger LMs has
potential to achieve better performance.

Optimization of System Performance We per-
formed minimum hyperparameter search for the
models due to time and resource limitations. Thus,
performing optimized experiments has potential for
further performance improvement in these models.

Ethical Considerations

License of Used Resources As for our annotated
dataset ATD-VSO, its intended use is for academic
research purposes related to information science,
similarly to that of the original ATD. The text in our
dataset is a subset of the original ATD, and the orig-
inal data does not contain any information about
the travelogue authors. The Arukikata Travelogue
Dataset is available via the Informatics Research
Data Repository, National Institute of Informat-
ics under specific terms of use.!? The pretrained
mLUKE model is available under the Apache Li-
cense 2.0. The pretrained Japanese BERT model is
available under CC BY-SA 4.0. Llama3-ELYZA

12https ://www.nii.ac. jp/dsc/idr/arukikata/
documents/arukikata-policy.html (in Japanese)

and Llama3-Swallow are both available under Meta
Llama 3 Community License 3.

Human annotation cost The annotation work
was performed by annotators at a professional data
annotation company. The payment amount to the
company was based on the estimate submitted by
the company. The actual annotators and the pay-
ment amount to each annotator were determined
by the company. The annotation work was per-
formed by three annotators. They are all native
Japanese speakers. Before the annotation work,
we explained to the annotators that we or other re-
searchers would use the annotated data for future
research related to NLP.

Predicted results used for real-world applica-
tions As a potential risk associated with our
dataset, models trained on our dataset may predict
inaccurate visit status and order. Based on such
inaccurate results, the trajectories constructed from
the predictions will also be inaccurate. Therefore,
if users integrate the models trained on our dataset
into real-world applications, they should be careful
of such inaccurate predictions.
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A Details on Annotation Dataset

A.1 Other Criteria of Visiting Order Graphs

Visiting order graphs defined by the above two
types of relations can represent many trajectories,
but not all. We further introduce the following
criteria.

* Multiple Visits: There may be cases where an
entity is revisited after passing through other
entities. In such cases, the entity should be
split into sub-entities that include the corre-
sponding mentions for each visit, and sub-
entities are regarded as nodes in the visited
order graph instead of the original entity.

* UnknownTime: There may be cases where the
timing of the visit to an entity is not specified.
In such cases, the entity should be assigned the
UnknownTime label, and it is excluded from
nodes in the visited order graph.

* Overlap: There may be cases where two en-
tities are geographically overlapping, but one
does not include the other, e.g., “Tokyo Pre-
fecture” and “Honshu” (the main island of
Japan). In such cases, the two entities should
be assigned the Overlap relation, and either
entity can be selected as a representative node
to be assigned Inclusion and Transition
relations between it and other entities.

A.2 Detailed Dataset Statistics

Detailed statistics for visiting order annotation are
shown in Table 10.

B Details on Evaluated Systems

B.1 Sequence Sorting Decoding for the
Baseline System

In TRP, all nodes under the same parent node (i.e.,
in the same hierarchy) should be arranged in a
single sequence. However, Equation 2 does not
always generate a single sequence. To address this
issue, we propose a sequence sorting decoding,
which has the constraint that all nodes in the same
hierarchy result in a single sequence, as follows.

1. P is a set of all possible pairs whose nodes
are in the same hierarchy.

2. The highest scoring pair (e, ep) is selected
from P.

3. From P, we exclude the pairs applicable to
any of the followings: (i) the order-swapped
pair (ep, €4), (ii) the pair (*, ep), which con-
sists of an arbitrary preceding node and the

Set Inc Trans Overlap UnkTime MV
Train 1,302 1,041 38 35 95
Dev 186 143 8 8 16
Test 375 322 5 10 32

Table 10: Detailed statistics for visiting order annotation.
Inc (Inclusion), Trans (Transition), and Overlap
indicate the numbers of entity pairs with each relation
type. UnkTime (UnknownTime) indicates the number of
entities with the label. MV indicates the number of
entities with multiple visits.

subsequent node ey, and (iii) the pair (e, *),
which consists of a preceding node e, and an
arbitrary subsequent node.

4. If transition relations among all the nodes have
been determined, terminate the decoding. Oth-
erwise, return to the procedure 2. above.

B.2 Detailed Settings for CLM Systems

We used two pretrained CLMs, Llama-3-ELYZA-
JP-8B (ELYZA)'* and Llama-3-Swallow-8B-v0.1
(Swallow),!®> with zero-shot prompting. We ran
these models on a single GPU server of NVIDIA
A100 80GB. It took less than two hours to complete
each task.

Table 17 shows the prompts used for the CLM
systems in each task. In inclusion relation pre-
diction, we gave the pair of child and parent
the score “1” if the system answers “Yes", oth-
erwise “0.” Based on the scores, we generated
the tree with the highest score as the final re-
sult by using the Maximum Spanning Tree algo-
rithm (Stanojevi¢ and Cohen, 2021)!¢. In transition
relation prediction, we gave the pair of entity and
candidate_entity the score “1” if the system an-
swers “Yes", otherwise “0.” Based on the scores,
we greedily determined the order from first to last.

B.3 Hyperparameters

Table 11 shows the hyperparameter values used in
the experiments using LUKE. We specifically se-
lected batch size for each task, but we followed Ya-
mada et al. (2020) and Ri et al. (2022) for the other
hyperparameters. We saved the models at the train-
ing epoch when the models achieved the best scores
on the development sets. The sizes of the models

“https://huggingface.co/elyza/
Llama-3-ELYZA-JP-8B

15https://huggingface.co/tokyotech—llm/
Llama-3-Swallow-8B-v@.1

16https://github.com/stanojevic/
Fast-MST-Algorithm
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Task | Name Value
Learning rate Se-6
VSP | Batch size 16
Training epochs 10
Learning rate Se-6
IRP | Batch size 4
Training epochs 10
Learning rate Se-6
TRP | Batch size 4
Training epochs 10

Table 11: Hyperparameter values for the LUKE models.

Name Value

Max new tokens 10

Batch size 1

Decoding Multinomial Sampling
Temperature 0.6

Top_p 0.9

Table 12: Hyperparameter values for Llama3-ELYZA
and Llama3-Swallow.

for visit status prediction (VSP), inclusion relation
prediction (IRP) and transition relation prediction
(TRP) are 253M, 561M and 561M, respectively. Ta-
ble 12 shows the hyperparameter values used in the
experiments using Llama3-ELYZA and Llama3-
Swallow.

C Additional Experimental Results

C.1 Inclusion Relation Prediction

Table 13 shows the performance of the systems for
each depth on the development set.

C.2 Transition Relation Prediction

Table 14 shows the performance of the systems for
each size of candidate entity sets.

C.3 Analysis on Visit Status Prediction

Influence of Surface Text To investigate the in-
fluence of surface text on learning and prediction of
the baseline model for mention-level VSP, we eval-
uated two additional variants of the LUKE baseline
trained with edited input text. That is, (1) mention
masking model trained with input text where men-
tion tokens are replaced by [MASK] tokens, and (2)
mention only model trained with input text where
context tokens other than mention tokens are re-
moved. Table 15 shows the performance of the
model variants on the development set. Compared
to the original baseline, the mention masking model
remained slightly lower in accuracy (-0.012?), and

14

F1

Depth  #Ent  pod. Flat LUKE
1 114 0057 1 0058
2 194 0040 0 0432
3 111 0035 0 0438
4 42 003 0 0305
5 70034 0 0743

Table 13: Performance for inclusion relation prediction
for each depth (distance to the ROOT node) of entities.

Size  # Fl
Rand. Occ. LUKE-R LUKE-S

2 34 0498 0971 0782 0919
3 36 0332 0778 0744  0.845
4 21 0245 0667  0.685 0.732
S 24 0196 0833 0754 0808
6 35 0165 0800  0.765 0.847
7 12 0138 0500 0435 0.517
8 35 0126 0771 0549  0.566
9 32 0108 0750 0718 0.800

>10 93 0069 0624 0627 0.681

Table 14: System performance for transition relation
prediction for each size of candidate entity sets.

the mention only model, while even lower in ac-
curacy (-0.116?), was still able to predict correct
labels to some extent. This suggests that the model
mainly relied on context information and also used
mention information together.

C.4 Pipeline Prediction

We performed pipeline prediction on documents
in the development set using the current baseline
systems: LUKE+MLA for VSP, LUKE for IRP,
and LUKE with sequence sorting decoding for TRP
(we simply refer to these systems as “LUKE” in
this section). Figure 3 shows gold and predicted
visiting order graphs for a document (ID: 00019).

For VSP, LUKE correctly assigned Visit or
Other to 10 out of 13 entities, but misclassified
three entities with the gold label Visit as predicted
label Other. These misclassified entities resulted
from predictions for three mentions in sentence 009
in Table 16; the MLA rule determined the entity
label Other according to LUKE’s prediction of the
mention label See for the three mentions. This
suggests that the trained model did not grasp the
nuanced context, which describes a photo of the
facilities (“five-storied pagoda” and “kofukuji Tem-
ple”) taken by the traveler and the nearby location
(“Sarusawaike Pond”).

For IRP, LUKE predicted correct parents for four
out of seven entities with the predicted label Visit
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Method Acc.  Macro F1
LUKE 0.750 0.383
LUKE (mention masking)  0.738 0.373
LUKE (mention only) 0.634 0.151

Table 15: Performance of LUKE variants for mention-
level visit status prediction (on the development set).

and incorrect parents for the remaining three en-
tities. Two of the failed entities are written with
general noun mentions (“bamboo grove” in sen-
tence 019 and “shop” in sentence 021); it is neces-
sary for correct prediction to understand that the
geographic relations among these and other enti-
ties are not explicitly described, except the context
on the traveler’s trip to Nara. For correct predic-
tion for another failed entity regarding the mention
“Great Buddha” in sentence 005, which refers to
Birushana Buddha at Todaiji Temple, geographic
knowledge that Todaiji Temple is located in Nara
Park is also necessary.

For TRP, LUKE was able to identify no exact
entity pairs with correct transition relation. The
gold transition sequences are those arranged in the
order of occurrence in the document for each hierar-
chy level (except for entities with UnknownTime or
Overlap), and LUKE also arranged entities in the
same manner within the given inclusion hierarchy.
This result indicates that accurate prediction of in-
clusion relation is crucial for accurate prediction of
transition sequences.
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D Supplementary Related Work

Predicate-Centric Approach to Visit Status Pre-
diction A line of work on spatial information in
natural language, such as SPACEBANK, seeks to
develop computational models that can recognize,
generate and reason about spatial information in
natural language, including place names, topologi-
cal relations, and human movement (Pustejovsky
et al., 2012; Pustejovsky and Yocum, 2013; Puste-
jovsky et al., 2015). Basically, they regarded verbs
as the expressions that represent movement and de-
fined MOVELINK for encoding movement informa-
tion, such as the mover, the goal location, and the
goal reachability of the movement. Also, previous
work on event and temporal expressions, such as
TIMEML (Pustejovsky et al., 2003), and event fac-
tuality, such as FACTBANK (Saurf and Pustejovsky,
2009), regarded verbs (predicates) as a trigger of
each event and specified attribution information on
verbs. Instead of predicates, we specify visit status
information on location-referring expressions and
geo-entities because it is not rare that movement is
expressed without verbs. Consider the following
example.

Todaiji Temple. In the main hall, I saw the Great
Buddha of Nara. What a majestic statue!
Next, Nara National Museum. I had lunch in the
restaurant and looked around the exhibits.

Here, the geographic movement from Zodaiji Tem-
ple to Nara National Museum is expressed as scene
transition by changing paragraphs. Because this
kind of example is not rare in travelogues, we spec-



SentID | Text | English Translation

005 KALVISIE=VISItfRIT & 5 TEHERED o2 b~ The Great Buddha was really huge.
009 T OE 3Rl UnkOrNotvisitoSee a5 f B X | I's a photo of the five-storied pagoda at
% HilgR <y Visit—See o J F I Visit—See g Kofukuji Temple visible from Sarusawaike Pond.

017,018 | BHEHZ L LMD Do WVWIFE, LoTHERELAD
b TWwE g, dlfVisit-Visitpdz A% &
THITKRESZE/UBLILNTEET,

019 o pVisit-Visit iz -2 b & H Y £9,

021 W’rﬁ@%%ﬁ“ @ﬁ%@%hsitaﬁsit VC“TO

Table 16: Actual sentences in a document (ID: 00019) and its English translation. Gold mentions are highlighted
with blue underline.

ify necessary information on geographic entities
and mentions, instead of predicates.
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Task | Prompt

| English Translation

faR:

NEHGHRMETT, ROKRITEHEDXE %2

AT, R8N — 2 > T<lbegin_of entityl>] &
l<lend_of _entityl>] (ZPH E N7z - fuik44 1

DVWTOEMIZAIZLTLEI W,

X
{input_text}

B kTt DEFEE T {mentionyZ#innE L=»n?
IROERE N S1DBA T, BRFEOEBESDA%Z

Instruction:

This is a reading comprehension test. Read the
following travelogue and answer the question on
the location/facility name surrounded by “<Ibe-
gin_of_entityl>” and “<lend_of_entityl>.”

Document:
{input_text}

Question:
Did the author of the travelogue visit

VSP &L TLEE W, {mention}?  Select one of the following
options and answer only its option number.
;@f){'ﬂi: Options:
12 i‘i?ﬂl;fﬁ: 72 1 The author visited the place
Wi oo - 2 The author plans to visit the place
3 EOB sk i ﬁ‘i: . 3 The author saw the place
4 [ W Ll ehdd 4 The author had visited the place
5AFSRANZEEA L 720 5 The author will visit the place in the future
6 Z DAt 6 Other
[m]2- Answer:
gk Insﬁrqction: ‘ .
SRRSO FATED T E A 35 A T, "fflﬁs isa rft:adln]g comprzhenswn tt}elst. Ree;d the
BREICEE L T X\, ollowing travelogue and answer the question.
Document:
XE: .
IRP {input_text} {input_text}
. Question:
B [: {child}E{parent}ZdH D T2 7 [TV . . v
I oW ) CHZE LTS 72X o, jls\kf.shlld} in {parent}? Answer “Yes” or
CIE2x Answer:
o Instruction:
AR ) o ) This is a reading comprehension test. Read the
XEFDMEETT, RORITHLOXE % following travelogue and answer the question
AT, Kbk b — 2 ¥ [<begin_of_entityl>] & on the location/facility name surrounded by
[<lend_of entityl>] (ZPHE N 7-Mf - fEZH & “<Ibegin_of_entityl>” and “<lend_of_entityl>"
Fi%k N — 2 > T<lbegin_of candidate_entityl>] & and the location/facility name surrounded
rfIend_of_candidate_entityl>J Iz i‘ih - - by  “<lbegin_of candidate_entityl>”  and
MEER A DWW T OERIZEZE L TS ZEI W, “<lend_of _candidate_entityl>
TRP

XE:

{input_text}

B IRATEC D F A d{entity}Z i 72 B &
IZ{candidate_entity}Z i1V C W E T 0 ? [iX
W] TR ] TRZELTLEI W,

[\ %

Document:
{input_text}

Question:

Did the author of the travelogue visit
{candidate_entity} immediately after
visiting {entity}? Answer “Yes” or “No.”

Answer:

Table 17: Prompts for the CLM systems. “VSP” stands for visit status prediction, “IRP” stands for inclusion relation
prediction, and “TRP” stands for transition relation prediction. The phrases {xxx} are variables.
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