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Abstract

Human traveling trajectories play a central role001
in characterizing each travelogue, and auto-002
matic trajectory extraction from travelogues003
is highly desired for tourism services, such004
as travel planning and recommendation. This005
work addresses the extraction of human trav-006
eling trajectories from travelogues. Previous007
work treated each trajectory as a sequence of008
visited locations, although locations with dif-009
ferent granularity levels, e.g., “Kyoto City” and010
“Kyoto Station,” should not be lined up in a011
sequence. In this work, we propose to repre-012
sent the trajectory as a graph that can capture013
the hierarchy as well as the visiting order, and014
construct a benchmark dataset for the trajectory015
extraction. The experiments using this dataset016
show that even naive baseline systems can accu-017
rately predict visited locations and the visiting018
order between them, while it is more challeng-019
ing to predict the hierarchical relations.020

1 Introduction021

The advancement of Web technologies facilitates022

people to share their travel experiences on the023

Web in the form of textual travelogues (Hao et al.,024

2010). Travelogues are vital sources for analyz-025

ing human traveling behavior in tourism informat-026

ics, geographic information science, and digital027

humanities, because of their rich geographical and028

thematic content, which gives people, e.g., a simu-029

lated experience of trip (Haris and Gan, 2021). In030

particular, human traveling trajectories play a cen-031

tral role in characterizing each travelogue, and thus,032

automatic trajectory extraction from travelogues is033

highly desired for tourism services, such as travel034

planning and recommendation (Pang et al., 2011).035

Some studies have addressed automatic trajec-036

tory extraction from text (Ishino et al., 2012; Wag-037

ner et al., 2023; Kori et al., 2006). However,038

these studies suffer from two issues: (i) inadequate039

trajectory representation and (ii) the scarcity of040

That day, I headed to Nara City via Kyoto City . I saw Kyoto Tower 

from Kyoto Station , but maybe next time. I got off at Nara Station

and walked a bit to Todaiji Temple from there . 

The Great Buddha Hall was majestic!
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Figure 1: Illustration of our proposed tasks: visit status
prediction (VSP) and visiting order prediction (VOP).
VSP assigns visit status labels to mentions for mention
level (top) and to entities for entity level (middle). VOP
outputs a visiting order graph by assigning inclusion
and transition relations to entity pairs (bottom).

benchmark datasets. First, the previous studies 041

treated each trajectory as a sequence of visited lo- 042

cations (Ishino et al., 2012; Wagner et al., 2023; 043

Kori et al., 2006), but a sequence is inadequate as 044

a representation of trajectories. This is because a 045

pair of locations where one geographically includes 046

the other cannot be lined up in a single sequence, 047

for example, “Kyoto City” and “Kyoto Station.” 048

This necessitates more appropriate trajectory rep- 049

resentations other than sequences, as we discuss 050

in detail in §4.1. Second, the previous studies con- 051

structed and used their in-house datasets for eval- 052

uating their systems, and no public text datasets 053

annotated with trajectory information have been 054

released. However, shared benchmark datasets 055
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are necessary for facilitating fair comparisons with056

other studies and accelerating the accumulation of057

research findings (Ohsuga and Oyama, 2021).058

For the first issue, we propose a visiting order059

graph illustrated at the bottom of Figure 1. This060

graph has nodes of locations or geo-entities and061

edges of relations between geo-entities. It can rep-062

resent not only temporal transition relations but063

also geographical inclusion relations between vis-064

ited locations. For enabling automatic construc-065

tion of the graph for each travelogue, we introduce066

trajectory extraction subtasks: Visit Status Predic-067

tion (VSP) and Visiting Order Prediction (VOP),068

as shown in Figure 1. VSP requires to assign visit069

status labels to mentions and entities. Then, VOP070

requires to identify inclusion and transition rela-071

tions between nodes of the “visited” entities.072

For the second issue, we have constructed a073

dataset for training and evaluating trajectory ex-074

traction systems: Arukikata Travelogue Dataset075

with Visit Status and Visiting Order Annotation076

(ATD-VSO).1 Our dataset comprises 100 travel-077

ogue documents annotated with the corresponding078

visiting order graphs, totally including 3,354 geo-079

entities (nodes) and 3,369 relations (edges).080

Using this dataset, we have trained and evalu-081

ated baseline systems. Notable findings through082

the experiments are (i) that the systems can achieve083

relatively high accuracy for predicting visit status084

labels and transition relations, and (ii) that the sys-085

tems failed to accurately predict inclusion relations.086

The latter implies an important future issue, i.e.,087

how to inject the knowledge of geographic hierar-088

chical structure into the systems.089

Contributions For the purpose of building a090

foundation for future studies, we have made two091

main contributions: (i) the proposal of visiting or-092

der graph and (ii) the construction of a benchmark093

dataset for the trajectory extraction.2 We will re-094

lease our code and dataset for research purposes.095

We expect that our dataset will foster continued096

growth in the trajectory extraction research.097

2 Preliminaries for Data Construction098

Our dataset, ATD-VSO, has been constructed on099

the basis of Arukikata Travelogue Dataset with ge-100

1We will release our dataset at ANNONYMIZED_URL.
2Our contributions are in the data resource direction, not

the technical one such as algorithm and model sophistication.
On top of the resource, we will make technical contributions
in the future.

ographic entity Mention, Coreference, and Link an- 101

notation (ATD-MCL) (Higashiyama et al., 2024).3 102

ATD-MCL is a Japanese travelogue dataset an- 103

notated with three types of geo-entity informa- 104

tion, namely, mentions, coreference relations, and 105

links to geo-database entries, to a collection of 106

the original travelogues, the Arukikata Travelogue 107

Dataset (ATD) (Arukikata. Co., Ltd., 2022; Ouchi 108

et al., 2023).4 109

Annotated mentions in ATD-MCL include 110

proper nouns (e.g., “Nara station”), general noun 111

phrases (e.g., “the station”), and deictic expressions 112

(e.g., “there”) that refer to various types of loca- 113

tions, such as geographic regions, facilities, and 114

landmarks. Moreover, a set of mentions that refer 115

to the same location constitutes a coreference clus- 116

ter or geo-entity. Given such annotated travelogues, 117

we focus on annotating the visit status and visiting 118

order of candidate geo-entities. 119

3 Visit Status Prediction 120

We propose a task comprising the two subtasks: 121

Visit Status Prediction (VSP) and Visiting Order 122

Prediction (VOP). This section describes the task of 123

VSP, where a visit status is predicted for each loca- 124

tion. For example, it can be judged that the traveler 125

visited the station from the description of the real 126

experience: “Arrived at Kintetsu Nara Station!” In 127

contrast, the factual statement, “JR Nara Station is 128

a little far from Kintetsu Nara Station.” does not 129

indicate that the traveler visited these locations. In 130

this task, we aim to distinguish such differences 131

and identify locations visited by travelers. 132

3.1 Annotation Data Construction 133

We defined two types of visit status labels in Ta- 134

ble 1 for entities and six types of visit status labels 135

in Table 2 for mentions. The mention labels serve 136

to distinguish detailed status of the mentioned loca- 137

tion based on the context, i.e., the sentence where 138

the mention occurs. The entity labels serve to de- 139

termine whether the traveler eventually visited the 140

location, considering the entire document. As an- 141

notation work, native Japanese annotators at a data 142

annotation company assigned visit status labels to 143

each mention and entity in ATD-MCL travelogues 144

according to the label definitions and annotation 145

guideline.5 146

3http://github.com/naist-nlp/atd-mcl
4https://www.nii.ac.jp/dsc/idr/arukikata/
5The annotators used the brat annotation tool (Stenetorp

et al., 2012) (https://github.com/nlplab/brat).
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1 Visit A visit to the location is stated or implied.
2 Other Not 1.

Table 1: Visit status labels for entities.

1 Visit The same as the entity label 1.
2 PlanToVisit It mentions a plan to visit the loca-

tion during this trip (described in
the travelogue).

3 See Not any of 1–2, and that the trav-
eler saw the location can be iden-
tified.

4 Visit-Past Not any of 1–3, and it mentions
having visited the location before
this trip.

5 Visit-Future Not any of 1–3, and it mentions
the intention to visit the location
after this trip.

6 UnkOrNotVisit The visit to the locations cannot be
identified from the descriptions, or
the non-visit can be identified.

Table 2: Visit status labels for mentions.

Inter-Annotator Agreement We requested two147

annotators to independently annotate five docu-148

ments. We then measured the inter-annotator agree-149

ment (IAA) using F1-score and Cohen’s Kappa κ.150

The obtained scores suggest the high agreement:151

F1 score of 0.80 and κ of 0.68 for 180 mentions,152

and F1-score of 0.89 and κ of 0.81 for 124 entities.153

Data Statistics The annotators annotated addi-154

tional 95 documents (one annotator per document);155

the total became 100 documents, including the156

aforementioned five documents, as shown in Ta-157

ble 3 and Table 4.158

3.2 Task Definition159

Entity-level and mention-level VSP are defined as160

follows. Given a set of entities E in an input docu-161

ment, entity-level VSP requires a system to assign162

an appropriate visit status label y ∈ Le for each163

entity eq ∈ E . Similarly, given an entity (or corefer-164

ence cluster) eq = {m(q)
1 , . . . ,m

(q)
|eq |}, which con-165

sists of one or more mentions, mention-level VSP166

requires a system to assign an appropriate visit sta-167

tus label y ∈ Lm for each mention m
(q)
i ∈ eq.168

3.3 Baseline System169

As our baseline system, we employ a two-step170

method that first predicts mention labels and then171

predicts entity labels based on the mention labels.172

Specifically, we calculate the label probability dis-173

tribution P (y|m(q)
i ) for each mention m

(q)
i ∈ eq,174

Set #Doc #Sent #Men #Ent #Inc&Tra

Train 70 4,254 3,782 2,339 2,343
Dev 10 601 505 316 329
Test 20 1,469 1,102 699 697

Total 100 6,324 5,389 3,354 3,369

Table 3: Statistics of the ATD-VSO.

Set Visit Plan See Past Future UN/O

Train 2,577 358 212 10 6 619
Dev 332 48 46 1 4 74
Test 748 121 59 10 4 160

Train 1,942 – – – – 397
Dev 252 – – – – 64
Test 575 – – – – 124

Table 4: Numbers of visit status labels for men-
tion level (top) and entity level (bottom). Plan,
Past, and Future indicate PlanToVisit, Visit-Past,
and Visit-Future, respectively. UN/O indicates
UnkOrNotVisit for mention level and Other for en-
tity level.

and select the most probable label ŷ(q)i : 175

ŷ
(q)
i = arg maxy∈Lm

P (y|m(q)
i ). 176

Then, we select a label for each entity eq according 177

to the following mention label aggregation (MLA) 178

rules. 179

1. If Visit or PlanToVisit has been assigned 180

to at least one mention in eq, then Visit is 181

assigned to eq. 182

2. Otherwise, Other is assigned to eq. 183

As the implementation of a model 184

for mention label prediction, we used 185

LukeForEntityClassification in Hugging 186

Face Transformers6 with the inputs of the sentence 187

containing the mention of interest and the position 188

(character offsets) of the mention. 189

4 Visiting Order Prediction 190

This section describes the task of VOP, where ge- 191

ographical and temporal relations between visited 192

locations are predicted. 193

4.1 Visiting Order Graph 194

We introduce a visiting order graph that can rep- 195

resent non-linear relations of visited locations. In 196

6https://huggingface.co/docs/transformers/
index
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Figure 2: Example of a visiting order graph, the same
example at the bottom of Figure 1.

a graph, nodes correspond to entities, i.e., loca-197

tions, and edges correspond to relations between198

entities, as shown in the example in Figure 2. A199

directed edge (→) of inclusion relation represents200

that the starting node geographically includes the201

ending node. A directed edge (→) of transition re-202

lation indicates that the traveler visited the starting203

node entity and then visited the ending node entity,204

without visiting any other entities in between. We205

describe further details on these relations in the206

following paragraphs.207

Inclusion Relation Consider the example doc-208

ument in Figure 1, which describes that the trav-209

eler visited both “Nara City” and “Todaiji Temple.”210

Based on the geographical fact that the region of211

“Nara City” includes that of “Todaiji Temple,” it212

is reasonable to interpret that the traveler visited213

the temple and thereby also visited the city simul-214

taneously. We introduce inclusion relation ⟨e1, e2⟩,215

where an entity e1 geographically includes another216

e2. From Figure 2, we describe two examples:217

p1 = ⟨Nara City,Todaiji Temple⟩,218

p2 = ⟨Todaiji Temple,Great Buddha Hall⟩.219

Here, p1 represents “Nara City” includes “Todaiji220

Temple”, and p2 represents “Todaiji Temple” in-221

cludes “Great Buddha Hall.” Also, these two rela-222

tions imply a hierarchical relation: “Nara City” is223

a grand parent of “Great Buddha Hall.”224

Transition Relation Given a set of entities for225

a document and inclusion relations among them,226

we assign transition relation to each pair of pre-227

ceding and subsequent visited entities. Notably,228

we restrict an entity pair with transition rela-229

tion to two entities with the same parent en-230

tity. In Figure 2, while “Nara Station” and “To-231

daiji Temple” have the same parent node, “Ky-232

oto Station” and “Nara Station” does not. There-233

fore, the transition relation can be assigned to234

⟨Nara Station,Todaiji Temple⟩, but cannot be as-235

Set Inclusion Transition

Train 1,302 1,041
Dev 186 143
Test 375 322

Table 5: Statistics for visiting order annotation.

signed to ⟨Kyoto Station,Nara Station⟩. This re- 236

striction enables determining the order of visits 237

for any entity pairs by traversing transition and 238

inclusion relations, even if entity pairs are not di- 239

rectly related to each other. For example, although 240

“Kyoto Station” does not have transition relation 241

to “Nara City,” you can interpret “Kyoto Station” 242

was visited before “Nara City” because the parent 243

“Kyoto City” has transition relation to “Nara City.”7 244

4.2 Annotation Data Construction 245

After the annotation step of visit status, we left 246

only the entities with the Visit or VisitPossibly 247

label as the nodes of a visiting order graph. In the 248

annotation step of the relations, annotators assigned 249

the visiting relations between the entities.8 250

Inter-Annotator Agreement We requested two 251

annotators to independently annotate the same five 252

documents as those used for visit status annotation. 253

We then measured the IAA using F1-score. The 254

obtained F1 scores suggest the moderate or high 255

agreement: 0.94 for inclusion, 0.74 for transition, 256

and 0.85 for both. 257

Data Statistics The 95 documents assigned visit 258

status were divided among multiple annotators, and 259

each annotator annotated each document. The total 260

became 100 documents with 1,856 inclusion rela- 261

tions and 1,494 transition relations, including the 262

five aforementioned documents (Table 5). 263

4.3 Task Definition 264

The task of VOP can be divided into two subtasks: 265

Inclusion Relation Prediction (IRP) and Transition 266

Relation Prediction (TRP). 267

Inclusion Relation Prediction Given a set of 268

entities E in a document, IRP requires a system to 269

determine the parent entity for each entity eq ∈ E 270

7The two relations cover most of trajectories in the dataset,
but not all. We introduce a few other criteria described in
Appendix A.1.

8As the annotation tool for entity relations, we adopted
the online whiteboard service, Miro (https://miro.com/),
and the annotators drew arrows representing relation edges
between boxes representing entity nodes using the graphical
interface.
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from the set of candidate entities P(q)
cand = E \271

{eq} ∪ {ROOT}. In other words, if e ∈ P(q)
cand is272

predicted as the parent entity for eq, it represents273

that e includes eq. The pseudo parent node ROOT274

should be predicted when the entity of interest has275

no parent entities.276

Transition Relation Prediction Given a set of277

entities E in a document, TRP requires a system to278

determine the entity subsequently visited for each279

entity eq ∈ E from the candidate set S(q)
cand with the280

same parent as eq:281

S(q)
cand = {ek ∈ E |Par(ek) = Par(eq)} ∪ {EOS}.282

Here, Par(e) represents the parent entity of e, and283

the pseudo subsequent node EOS represents that the284

entity of interest has no subsequent entities.285

4.4 Baseline System286

The baseline systems adopt similar methods for the287

two subtasks. Specifically, for IRP and TRP, we se-288

lect the most probable entity as the parent entity êp289

or the subsequent entity ês from the corresponding290

candidate set based on score function scorepar or291

scoresub, respectively:292

êp = arg max
e′∈P(q)

cand

scorepar(eq, e
′), (1)293

ês = arg max
e′∈S(q)

cand

scoresub(eq, e
′). (2)294

As the implementation of models along with295

the score functions for both IRP and TRP,296

we used LukeForEntityPairClassification in297

Hugging Face Transformers with the input text and298

the positions (character offsets) of two mentions.299

The input text is the concatenation of the two sen-300

tences containing representative mentions for the301

entity of interest and a candidate entity, and the302

all sentences that occur between them, in the order303

of their occurrence.9 Representative mentions are304

selected as follows. For IRP, proper noun mentions305

are prioritized over other mentions. For TRP, men-306

tions with visit status label of higher confidence307

(Visit> See> other labels) are prioritized.308

9For example, when奈良市 ‘Nara City’ and東大寺 ‘To-
daiji Temple’ in Japanese translation of the first three sen-
tences in Figure 1 are entities of interest, the input text is as
follows: “<s>その日は、京都市を素通りして、<ent>奈
良市<ent>に向かいました。</s><s>. . .</s><s>奈良駅
で降りた後、駅から<ent2>東大寺<ent2>まで少し歩き
ました。</s>”.

Sequence Sorting Decoding In TRP, all nodes 309

under the same parent node (i.e., in the same hi- 310

erarchy) should be arranged in a single sequence. 311

However, Equation 2 does not always generate a 312

single sequence. To address this issue, we propose 313

a sequence sorting decoding, which has the con- 314

straint that all nodes in the same hierarchy result 315

in a single sequence. We describe the details in 316

Appendix B.1. 317

5 Experiments 318

We evaluated the performance of the classification- 319

based baseline systems, as well as generation-based 320

Causal Language Model (CLM) and rule-based 321

systems, for the visit status prediction (VSP) task 322

(in §3.3) and the visiting order prediction (VOP) 323

subtasks: inclusion relation prediction (IRP) and 324

transition relation prediction (TRP) (in §4.4). 325

5.1 Experimental settings 326

Data Split As shown in Table 3, we split the 327

100 documents in ATD-VSO into training, devel- 328

opment, and test sets at a ratio of 7:1:2. 329

Task Settings We adopted the settings where 330

gold standard labels of preceding tasks were given, 331

and evaluated systems for each task independently. 332

That is, systems take as input gold entities for VSP 333

and IRP, and gold visited entities (that have Visit 334

or VisitPossibly labels) and gold inclusion rela- 335

tions for TRP. 336

Evaluation Metrics For VSP, we measured the 337

accuracy of predicted labels for input entities. For 338

IRP, we measured the F1 score for extracting in- 339

clusion entity pairs from input entities. For TRP, 340

we measured the F1 score for extracting transition 341

entity pairs, excluding pairs where the subsequent 342

entity is EOS, from input entities. 343

Model Training We constructed our baseline sys- 344

tem by fine-tuning a pretrained model with the 345

training set for each task. Specifically, we used 346

a pretrained multilingual LUKE (Ri et al., 2022) 347

model10 for VSP and the same pretrained Japanese 348

LUKE (Yamada et al., 2020) model11 for the VOP 349

subtasks (IRP and TRP). We trained the models 350

for up to 10 epochs for all tasks. Unless otherwise 351

specified, we report the mean accuracy or F1 score 352

10https://huggingface.co/studio-ousia/
mluke-large-lite

11https://huggingface.co/studio-ousia/
luke-japanese-base
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Method Mention Acc. Entity Acc.

Majority Label 0.629 0.790
LUKE 0.750 –
LUKE + MLA – 0.838
Llama3-ELYZA 0.582 0.761
Llama3-Swallow 0.563 0.779

Table 6: System performance for visit status prediction
(left: mention-level, right: entity-level).

Label Mention Entity
P R F1 P R F1

Visit .785 .924 .849 .869 .950 .908
Plan .706 .688 .696 – – –
See .655 .661 .657 – – –
Past 0 0 0 – – –
Future 0 0 0 – – –
UN/O .611 .403 .482 .650 .495 .561

Table 7: Precision (P), recall (R), and F1 scores of
LUKE (mention-level) and LUKE+MLA (entity-level)
for each label of visit status prediction.

on the test set of five runs with different random353

seed values for the baseline system for each task.354

Additionally, we evaluated two CLMs, ELYZA355

(8B) (Hirakawa et al., 2024) and Swallow (8B) (Fu-356

jii et al., 2024; Okazaki et al., 2024), which were357

continually pretrained from Llama-3 (Grattafiori358

et al., 2024). Both CLMs predict a label for a men-359

tion or relation for a mention pair by zero-shot in-360

context learning (ICL). We describe more detailed361

settings in Appendix B.2.362

5.2 Results for Visit Status Prediction363

Systems We evaluated a rule-based system (ML:364

Majority Label), two baseline systems (LUKE and365

LUKE+MLA), and two CLM systems (ELYZA366

and Swallow). The ML rule always outputs the367

most frequent label, Visit, for both mention and368

entity levels. “LUKE” indicates the baseline sys-369

tem and “MLA” indicates the mention label aggre-370

gation rule described in §3.3.371

Main Results Table 6 shows the performance372

of the evaluated systems for mention-level and373

entity-level VSP. The ML rule, which always out-374

puts the Visit label for every mention, seems to375

have achieved good accuracy, 0.629 for the mention376

level and 0.790 for the entity level. This indicates377

the imbalance in label distribution with a majority378

of Visit instances, which aligns with the intuition379

that visited locations are often mentioned in travel-380

ogues. Both CLMs yielded the accuracy below that381

of the ML rule, indicating the performance limi-382

Method All Par=ROOT Par̸=ROOT

Random 0.043 0.057 0.038
Flat 0.244 1 0
LUKE 0.355 0.058 0.425
Llama3-ELYZA 0.115 0.358 0.125
Llama3-Swallow 0.132 0.253 0.142

Table 8: System performance (F1 score) for inclusion
relation prediction. All indicates the performance for
all entities. “Par=ROOT” and “Par ̸=ROOT” indicate the
performance for entities whose gold parent are or are
not ROOT.

tations of ICL for CLMs of this size. The better 383

accuracy and macro F1 scores for the LUKE-based 384

systems, i.e., LUKE and LUKE+MLA, indicate 385

that they were able to predict labels other than 386

Visit. 387

Label-Wise Performance Table 7 shows the per- 388

formance of the LUKE-based systems for each 389

label. The results are summarized as follows. First, 390

the baselines achieved high performance (F1 of 391

0.849–0.908) for Visit for both levels. Second, 392

the baselines resulted in limited performance (F1 393

of 0.482–0.561) for UnkOrNotVisit/Other; this 394

suggests the difficulty of prediction from limited 395

context, which often lacks clear clues indicating 396

visitation or non-visitation by travelers. 397

5.3 Results for Inclusion Relation Prediction 398

Systems We evaluated two rule-based systems 399

(Random and Flat), a baseline system (LUKE de- 400

scribed in §4.4), and two CLM systems (ELYZA 401

and Swallow). Random indicates a method that 402

randomly selects the parent entity from the candi- 403

date set for each entity. Flat indicates a rule-based 404

method that always selects ROOT as the parent entity 405

for an arbitrary entity. 406

Main Results Table 8 shows the performance 407

(F1 score) of the evaluated systems for IRP. Flat, 408

which is a rule always predicting ROOT as a par- 409

ent, exhibited the better performance than Random 410

(F1 of 0.244 vs 0.043), suggesting that predicting 411

ROOT can be a reasonable strategy when systems 412

do not have knowledge for specific entities. CLM 413

systems yielded poor performance (F1 of 0.115– 414

0.132). LUKE achieved the best performance (F1 415

of 0.355). In particular, this baseline achieved 416

much better F1 score, 0.425, than Random for the 417

entities whose gold parents are entities other than 418

ROOT (“Par ̸=ROOT”). 419
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Method All Fwd. Rev.

Random 0.191 0.248 0.064
Occurrence Order 0.737 0.780 0
LUKE 0.748 0.796 0.366
Llama3-ELYZA 0.456 0.538 0.100
Llama3-Swallow 0.388 0.455 0.134

Table 9: System performance (F1 score) for transition
relation prediction. All indicates the performance for
all entities. Fwd. and Rev. indicate the performance for
entities whose gold subsequent entities occurred after or
before the entities of interest in documents, respectively,
regarding their earliest mentions.

Discussion The current LUKE baseline has two420

limitations. First, the absolute overall performance421

(F1 of 0.355) has not reached a practical level.422

Probable reasons are that (1) the pretrained LUKE423

model for general entity analysis tasks did not learn424

geographic relations among specific geo-entities,425

and (2) it was difficult to obtain generalized knowl-426

edge on geographic relations between entities from427

fine-tuning only with text-based features. Possi-428

ble solutions include pretraining with geospatial429

information like GeoLM (Li et al., 2023), and430

fine-tuning a model with geocoding-based features,431

such as predicted coordinates and shapes of enti-432

ties. Second, the performance for entities whose433

parent is ROOT is quite low. This is because the434

current system predicts ROOT as the parent for an435

entity only when it predicts all candidate entities436

as non-parent. This may be improved by a method437

that can directly predict ROOT by assigning a vector438

representation to ROOT based on, for example, a439

fixed dummy sentence.440

5.4 Results for Transition Relation Prediction441

Systems We evaluated two rule-based systems442

(Random and Occurrence Order), a baseline system443

(LUKE described in §4.4), and two CLM systems444

(ELYZA and Swallow). Random is a rule-based445

system that randomly lines up candidate entities446

(for each set of entities with the same parent entity).447

Occurrence Order is the other rule-based one that448

arranges candidate entities in the order of occur-449

rence of each earliest mention in their document.450

Main Results Table 9 shows the performance of451

the evaluated systems for TRP. For all pairs, the452

Occurrence Order rule achieved relatively high per-453

formance (F1 of 0.737). This matches the intuition454

that the order of locations being described in text455

corresponds with the order of locations being vis-456

ited to some extent. CLM systems yielded poor 457

performance (F1 of 0.388–0.456) again. LUKE 458

achieved the best performance (F1 of 0.748). Also, 459

LUKE correctly recognized some portion of re- 460

verse pairs where preceding and subsequent enti- 461

ties occurred in documents in the reverse order of 462

visitation, but the performance (F1 of 0.366) has 463

room to be improved. 464

Discussion The current LUKE baseline has two 465

limitations. First, the vector representation of an 466

entity is constructed from a single mention selected 467

by the heuristic rule (§4.4), which limits the context 468

of the entity. This would be improved by extending 469

the context to include all mentions for two entities 470

of interest, although an effective method may be 471

necessary to grasp complicated relations among 472

many mentions. Second, the current baseline uni- 473

formly treats entity pairs without transition relation 474

as negative instances. However, entity pairs with 475

indirect transition relation, where one is visited 476

before the other via one or more entities, can be 477

exploited as positive instances for an additional 478

auxiliary task, similarly to relative event time pre- 479

diction (Wen and Ji, 2021). 480

6 Qualitative Analysis 481

6.1 Visit Status Prediction 482

As Table 7 shows, the baseline system tends to 483

fail to correctly predict the UnkOrNotVisit/Other 484

label. Our analysis indicates two error tendencies. 485

For the first, consider the following example. 486

Matsue Shinjiko Onsen Station G:UnkOrNotVisit
S:Visit is 487

the final station. 488

The gold label for Matsue Shinjiko Onsen Station is 489

UnkOrNotVisit because this sentence is a factual 490

statement and does not indicate the traveler visited 491

the location, but the system assigned Visit. As 492

this example shows, it is sometimes difficult to dis- 493

tinguish a factual statement from the one indicating 494

traveler’s visitation. For the second, consider the 495

following example. 496

This time, I skipped Matsue G:UnkOrNotVisit
S:Visit and 497

Yonago G:UnkOrNotVisit
S:Visit . 498

This sentence clearly indicates that the traveler did 499

not visit Masue and Yonago by the verb “skipped,” 500

but the system assigned Visit. As this example 501

shows, the system sometimes fails to correctly un- 502

derstand the meaning of some motion verbs, such 503

as “skip” and “pass on.” 504
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6.2 Visiting Order Prediction505

Inclusion Relation Prediction The results506

shown in Table 8 (§5.3) have indicated that IRP507

is a challenging task. Our analysis reveals that508

LUKE learned the tendency that prefectures and509

cities often become parents of some entities, but510

LUKE also sometimes made incorrect predictions,511

such as a prefecture/city being the parent of another512

prefecture/city. Consider the following example.513

I planned to stay one night in Nagoya G:Plan
P:Plan , so I514

left Ise G:Vis
P:Vis even though it was still early.515

LUKE predicted “Nagoya” as the parent of “Ise,”516

although both are cities. This suggests that the517

model lacks geographic commonsense.518

Transition Relation Prediction The results519

shown in Table 9 (§5.4) have indicated difficulty in520

predicting reverse-order entity pairs. Consider the521

following example.522

Here is Daiouji Temple G:Vis
P:Vis with its mausoleum.523

I took a taxi because it was far from524

the station G:Vis
P:Vis .525

While “Daiouji Temple” precedes “the station,”526

these sentences describe that the traveler moved527

from the station to the temple. Although LUKE528

tended to predict the correct order of reverse pairs529

when there were some clues, such as temporal530

expressions like “before” and “after,” the system531

made incorrect predictions for reverse pairs without532

salient clues, including the above example.533

7 Related Work534

7.1 Visit Status Prediction535

“Visiting” is one type of human actions or move-536

ments, thus our Visiting Status Prediction falls into537

the category of the NLP research that analyzes ac-538

tions or movements in text. One major stream of539

such research is the predicate-centric approach (de-540

scribed in detail in Appendix D). Here, we focus541

on another stream: the location-centric approach.542

Li and Sun (2014) and Matsuda et al. (2018)543

specified visit status of location-referring expres-544

sions in each tweet. In a similar manner, Peter-545

son et al. (2021) specified it in clinical documents.546

While they focused on the “mention-level” predic-547

tion, we focus on the “entity-level” prediction as548

well. In travelogues, multiple expressions referring549

to the same location (belonging to the same geo-550

entity) appear in a document. Some of the mentions551

referring to the same location could appear with 552

the contexts that indicate the writer actually visited, 553

and the others not. By aggregating such various 554

visit status of the different mentions, you can con- 555

clude the visit status of the location (geo-entity). 556

7.2 Visiting Order Prediction 557

Many studies have addressed the extraction of 558

location-referring expressions, such as toponyms 559

and place names, and the grounding of them onto a 560

map (Lieberman et al., 2010; Matsuda et al., 2017; 561

Kamalloo and Rafiei, 2018; Wallgrün et al., 2018; 562

Weissenbacher et al., 2019; Gritta et al., 2020; Hi- 563

gashiyama et al., 2024). However, very few stud- 564

ies have focused on geographic trajectories, i.e., a 565

temporal-ordered sequence of multiple locations. 566

There are three exceptional studies on trajectory 567

extraction from text. Ishino et al. (2012) proposed 568

a task to extract the origin, destination and its trans- 569

portation method, from each disaster-related tweet. 570

Wagner et al. (2023) proposed a task to extract a 571

trajectory from each transcribed testimony. Each 572

one-minute speech was transcribed and categorized 573

into one of the coarse-grained location categories, 574

e.g., “cities in Austria” and “ghettos in 575

Hungary.” Their trajectory is not a detailed move- 576

ment trajectory of specific locations. Kori et al. 577

(2006) proposed to extract visiters’ representative 578

trajectories from blogs. Each trajectory is defined 579

as a sequence of location-referring mentions. The 580

visiting order is defined as the one in which the 581

mentions appear in the text. Beyond the mention- 582

appearing order, we have adopted the faithful visit- 583

ing order, which aligns with written intentions. 584

The crucial difference between the three studies 585

and ours is the trajectory representation; while the 586

four studies assumed trajectories as sequences, we 587

define them as graphs. As discussed in §4.1, be- 588

cause trajectories often cannot be represented as 589

sequences, we adopt graphs to appropriately repre- 590

sent geographic hierarchical relations. 591

8 Conclusion 592

In this study, we define tasks about visit status and 593

visiting order, construct a dataset, and train and 594

evaluate a baseline model for trajectory analysis. 595

In the future, we will work on the construction of a 596

system for trajectory analysis, which predicts the 597

trajectory to the visiting order from a source docu- 598

ment as an input, and for grounding and visualizing 599

the trajectory on a map. 600
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Limitations601

Language Our ATD-VSO dataset was con-602

structed from the original ATD, which consists of603

travelogues written in Japanese. Thus, the language604

used in our experiments is limited to Japanese. We605

plan to extend our dataset to a multilingual dataset606

by manual translation.607

Geographical Coverage Our ATD-VSO dataset608

includes locations from all prefectures in Japan, as609

it was created using travelogues of domestic travels610

within Japan. We plan to extend our dataset to611

include locations from various countries and areas612

around the world by using travelogues of overseas613

travels in the original ATD.614

Causal Language Models There are three lim-615

itations for CLMs: (i) prompt engineering, (ii)616

learning method, and (iii) model size. First, we617

used only one prompt for each task. The compre-618

hensive investigation of performance differences619

among possible prompts is left for future work.620

Second, we investigate the performance of mod-621

els with zero-shot in-context learning (ICL). In the622

future, we will investigate the performance of mod-623

els with few-shot ICL and fine-tuning in each task.624

Third, we used LMs with eight billion parameters625

due to resource limitation. Using larger LMs has626

potential to achieve better performance.627

Optimization of System Performance We per-628

formed minimum hyperparameter search for the629

models due to time and resource limitations. Thus,630

performing optimized experiments has potential for631

further performance improvement in these models.632

Ethical Considerations633

License of Used Resources As for our annotated634

dataset ATD-VSO, its intended use is for academic635

research purposes related to information science,636

similarly to that of the original ATD. The text in our637

dataset is a subset of the original ATD, and the orig-638

inal data does not contain any information about639

the travelogue authors. The Arukikata Travelogue640

Dataset is available via the Informatics Research641

Data Repository, National Institute of Informat-642

ics under specific terms of use.12 The pretrained643

mLUKE model is available under the Apache Li-644

cense 2.0. The pretrained Japanese BERT model is645

available under CC BY-SA 4.0. Llama3-ELYZA646

12https://www.nii.ac.jp/dsc/idr/arukikata/
documents/arukikata-policy.html (in Japanese)

and Llama3-Swallow are both available under Meta 647

Llama 3 Community License 13. 648

Human annotation cost The annotation work 649

was performed by annotators at a professional data 650

annotation company. The payment amount to the 651

company was based on the estimate submitted by 652

the company. The actual annotators and the pay- 653

ment amount to each annotator were determined 654

by the company. The annotation work was per- 655

formed by three annotators. They are all native 656

Japanese speakers. Before the annotation work, 657

we explained to the annotators that we or other re- 658

searchers would use the annotated data for future 659

research related to NLP. 660

Predicted results used for real-world applica- 661

tions As a potential risk associated with our 662

dataset, models trained on our dataset may predict 663

inaccurate visit status and order. Based on such 664

inaccurate results, the trajectories constructed from 665

the predictions will also be inaccurate. Therefore, 666

if users integrate the models trained on our dataset 667

into real-world applications, they should be careful 668

of such inaccurate predictions. 669
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A Details on Annotation Dataset1031

A.1 Other Criteria of Visiting Order Graphs1032

Visiting order graphs defined by the above two1033

types of relations can represent many trajectories,1034

but not all. We further introduce the following1035

criteria.1036

• Multiple Visits: There may be cases where an1037

entity is revisited after passing through other1038

entities. In such cases, the entity should be1039

split into sub-entities that include the corre-1040

sponding mentions for each visit, and sub-1041

entities are regarded as nodes in the visited1042

order graph instead of the original entity.1043

• UnknownTime: There may be cases where the1044

timing of the visit to an entity is not specified.1045

In such cases, the entity should be assigned the1046

UnknownTime label, and it is excluded from1047

nodes in the visited order graph.1048

• Overlap: There may be cases where two en-1049

tities are geographically overlapping, but one1050

does not include the other, e.g., “Tokyo Pre-1051

fecture” and “Honshu” (the main island of1052

Japan). In such cases, the two entities should1053

be assigned the Overlap relation, and either1054

entity can be selected as a representative node1055

to be assigned Inclusion and Transition1056

relations between it and other entities.1057

A.2 Detailed Dataset Statistics1058

Detailed statistics for visiting order annotation are1059

shown in Table 10.1060

B Details on Evaluated Systems1061

B.1 Sequence Sorting Decoding for the1062

Baseline System1063

In TRP, all nodes under the same parent node (i.e.,1064

in the same hierarchy) should be arranged in a1065

single sequence. However, Equation 2 does not1066

always generate a single sequence. To address this1067

issue, we propose a sequence sorting decoding,1068

which has the constraint that all nodes in the same1069

hierarchy result in a single sequence, as follows.1070

1. P is a set of all possible pairs whose nodes1071

are in the same hierarchy.1072

2. The highest scoring pair ⟨ea, eb⟩ is selected1073

from P .1074

3. From P , we exclude the pairs applicable to1075

any of the followings: (i) the order-swapped1076

pair ⟨eb, ea⟩, (ii) the pair ⟨∗, eb⟩, which con-1077

sists of an arbitrary preceding node and the1078

Set Inc Trans Overlap UnkTime MV

Train 1,302 1,041 38 35 95
Dev 186 143 8 8 16
Test 375 322 5 10 32

Table 10: Detailed statistics for visiting order annotation.
Inc (Inclusion), Trans (Transition), and Overlap
indicate the numbers of entity pairs with each relation
type. UnkTime (UnknownTime) indicates the number of
entities with the label. MV indicates the number of
entities with multiple visits.

subsequent node eb, and (iii) the pair ⟨ea, ∗⟩, 1079

which consists of a preceding node ea and an 1080

arbitrary subsequent node. 1081

4. If transition relations among all the nodes have 1082

been determined, terminate the decoding. Oth- 1083

erwise, return to the procedure 2. above. 1084

B.2 Detailed Settings for CLM Systems 1085

We used two pretrained CLMs, Llama-3-ELYZA- 1086

JP-8B (ELYZA)14 and Llama-3-Swallow-8B-v0.1 1087

(Swallow),15 with zero-shot prompting. We ran 1088

these models on a single GPU server of NVIDIA 1089

A100 80GB. It took less than two hours to complete 1090

each task. 1091

Table 17 shows the prompts used for the CLM 1092

systems in each task. In inclusion relation pre- 1093

diction, we gave the pair of child and parent 1094

the score “1” if the system answers “Yes", oth- 1095

erwise “0.” Based on the scores, we generated 1096

the tree with the highest score as the final re- 1097

sult by using the Maximum Spanning Tree algo- 1098

rithm (Stanojević and Cohen, 2021)16. In transition 1099

relation prediction, we gave the pair of entity and 1100

candidate_entity the score “1” if the system an- 1101

swers “Yes", otherwise “0.” Based on the scores, 1102

we greedily determined the order from first to last. 1103

B.3 Hyperparameters 1104

Table 11 shows the hyperparameter values used in 1105

the experiments using LUKE. We specifically se- 1106

lected batch size for each task, but we followed Ya- 1107

mada et al. (2020) and Ri et al. (2022) for the other 1108

hyperparameters. We saved the models at the train- 1109

ing epoch when the models achieved the best scores 1110

on the development sets. The sizes of the models 1111

14https://huggingface.co/elyza/
Llama-3-ELYZA-JP-8B

15https://huggingface.co/tokyotech-llm/
Llama-3-Swallow-8B-v0.1

16https://github.com/stanojevic/
Fast-MST-Algorithm
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Task Name Value

VSP
Learning rate 5e-6
Batch size 16
Training epochs 10

IRP
Learning rate 5e-6
Batch size 4
Training epochs 10

TRP
Learning rate 5e-6
Batch size 4
Training epochs 10

Table 11: Hyperparameter values for the LUKE models.

Name Value

Max new tokens 10
Batch size 1
Decoding Multinomial Sampling
Temperature 0.6
Top_p 0.9

Table 12: Hyperparameter values for Llama3-ELYZA
and Llama3-Swallow.

for visit status prediction (VSP), inclusion relation1112

prediction (IRP) and transition relation prediction1113

(TRP) are 253M, 561M and 561M, respectively. Ta-1114

ble 12 shows the hyperparameter values used in the1115

experiments using Llama3-ELYZA and Llama3-1116

Swallow.1117

C Additional Experimental Results1118

C.1 Inclusion Relation Prediction1119

Table 13 shows the performance of the systems for1120

each depth on the development set.1121

C.2 Transition Relation Prediction1122

Table 14 shows the performance of the systems for1123

each size of candidate entity sets.1124

C.3 Analysis on Visit Status Prediction1125

Influence of Surface Text To investigate the in-1126

fluence of surface text on learning and prediction of1127

the baseline model for mention-level VSP, we eval-1128

uated two additional variants of the LUKE baseline1129

trained with edited input text. That is, (1) mention1130

masking model trained with input text where men-1131

tion tokens are replaced by [MASK] tokens, and (2)1132

mention only model trained with input text where1133

context tokens other than mention tokens are re-1134

moved. Table 15 shows the performance of the1135

model variants on the development set. Compared1136

to the original baseline, the mention masking model1137

remained slightly lower in accuracy (-0.012?), and1138

Depth #Ent F1
Rand. Flat LUKE

1 114 0.057 1 0.058
2 194 0.040 0 0.432
3 111 0.035 0 0.438
4 42 0.034 0 0.305
5 7 0.034 0 0.743

Table 13: Performance for inclusion relation prediction
for each depth (distance to the ROOT node) of entities.

Size # F1
Rand. Occ. LUKE-R LUKE-S

2 34 0.498 0.971 0.782 0.919
3 36 0.332 0.778 0.744 0.845
4 21 0.245 0.667 0.685 0.732
5 24 0.196 0.833 0.754 0.808
6 35 0.165 0.800 0.765 0.847
7 12 0.138 0.500 0.435 0.517
8 35 0.126 0.771 0.549 0.566
9 32 0.108 0.750 0.718 0.800

≥10 93 0.069 0.624 0.627 0.681

Table 14: System performance for transition relation
prediction for each size of candidate entity sets.

the mention only model, while even lower in ac- 1139

curacy (-0.116?), was still able to predict correct 1140

labels to some extent. This suggests that the model 1141

mainly relied on context information and also used 1142

mention information together. 1143

C.4 Pipeline Prediction 1144

We performed pipeline prediction on documents 1145

in the development set using the current baseline 1146

systems: LUKE+MLA for VSP, LUKE for IRP, 1147

and LUKE with sequence sorting decoding for TRP 1148

(we simply refer to these systems as “LUKE” in 1149

this section). Figure 3 shows gold and predicted 1150

visiting order graphs for a document (ID: 00019). 1151

For VSP, LUKE correctly assigned Visit or 1152

Other to 10 out of 13 entities, but misclassified 1153

three entities with the gold label Visit as predicted 1154

label Other. These misclassified entities resulted 1155

from predictions for three mentions in sentence 009 1156

in Table 16; the MLA rule determined the entity 1157

label Other according to LUKE’s prediction of the 1158

mention label See for the three mentions. This 1159

suggests that the trained model did not grasp the 1160

nuanced context, which describes a photo of the 1161

facilities (“five-storied pagoda” and “kofukuji Tem- 1162

ple”) taken by the traveler and the nearby location 1163

(“Sarusawaike Pond”). 1164

For IRP, LUKE predicted correct parents for four 1165

out of seven entities with the predicted label Visit 1166
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Figure 3: Gold and predicted visiting order graphs for an actual document. The nodes with dashed frames and edges
with dashed arrows represent prediction errors.

Method Acc. Macro F1

LUKE 0.750 0.383
LUKE (mention masking) 0.738 0.373
LUKE (mention only) 0.634 0.151

Table 15: Performance of LUKE variants for mention-
level visit status prediction (on the development set).

and incorrect parents for the remaining three en-1167

tities. Two of the failed entities are written with1168

general noun mentions (“bamboo grove” in sen-1169

tence 019 and “shop” in sentence 021); it is neces-1170

sary for correct prediction to understand that the1171

geographic relations among these and other enti-1172

ties are not explicitly described, except the context1173

on the traveler’s trip to Nara. For correct predic-1174

tion for another failed entity regarding the mention1175

“Great Buddha” in sentence 005, which refers to1176

Birushana Buddha at Todaiji Temple, geographic1177

knowledge that Todaiji Temple is located in Nara1178

Park is also necessary.1179

For TRP, LUKE was able to identify no exact1180

entity pairs with correct transition relation. The1181

gold transition sequences are those arranged in the1182

order of occurrence in the document for each hierar-1183

chy level (except for entities with UnknownTime or1184

Overlap), and LUKE also arranged entities in the1185

same manner within the given inclusion hierarchy.1186

This result indicates that accurate prediction of in-1187

clusion relation is crucial for accurate prediction of1188

transition sequences.1189

D Supplementary Related Work 1190

Predicate-Centric Approach to Visit Status Pre- 1191

diction A line of work on spatial information in 1192

natural language, such as SPACEBANK, seeks to 1193

develop computational models that can recognize, 1194

generate and reason about spatial information in 1195

natural language, including place names, topologi- 1196

cal relations, and human movement (Pustejovsky 1197

et al., 2012; Pustejovsky and Yocum, 2013; Puste- 1198

jovsky et al., 2015). Basically, they regarded verbs 1199

as the expressions that represent movement and de- 1200

fined MOVELINK for encoding movement informa- 1201

tion, such as the mover, the goal location, and the 1202

goal reachability of the movement. Also, previous 1203

work on event and temporal expressions, such as 1204

TIMEML (Pustejovsky et al., 2003), and event fac- 1205

tuality, such as FACTBANK (Saurí and Pustejovsky, 1206

2009), regarded verbs (predicates) as a trigger of 1207

each event and specified attribution information on 1208

verbs. Instead of predicates, we specify visit status 1209

information on location-referring expressions and 1210

geo-entities because it is not rare that movement is 1211

expressed without verbs. Consider the following 1212

example. 1213

Todaiji Temple. In the main hall, I saw the Great 1214

Buddha of Nara. What a majestic statue! 1215

Next, Nara National Museum. I had lunch in the 1216

restaurant and looked around the exhibits. 1217

Here, the geographic movement from Todaiji Tem- 1218

ple to Nara National Museum is expressed as scene 1219

transition by changing paragraphs. Because this 1220

kind of example is not rare in travelogues, we spec- 1221

15



SentID Text English Translation

005 大仏 Visit→Visit様はとっても大きかったなぁ~ The Great Buddha was really huge.

009 写 真 は猿沢池 UnkOrNotVisit→Seeか ら も 見 え

る興福寺 Visit→Seeの五重塔 Visit→Seeです。

It’s a photo of the five-storied pagoda at
Kofukuji Temple visible from Sarusawaike Pond.

017,018 写真だとわかりづらいけど、とっても大きな石が
使われています。古墳 Visit→Visitの中に入ると、

さらに大きさを感じることができます。

019 竹やぶ Visit→Visitの中にひっそりとあります。

021 「柿の葉寿司」で有名なお店 Visit→Visitです。

Table 16: Actual sentences in a document (ID: 00019) and its English translation. Gold mentions are highlighted
with blue underline.

ify necessary information on geographic entities1222

and mentions, instead of predicates.1223
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Task Prompt English Translation

VSP

指示:
文章読解問題です。次の旅行記の文章を読
んで、特殊トークン「<|begin_of_entity|>」と
「<|end_of_entity|>」に囲まれた地名・施設名に
ついての質問に回答してください。

文章:
{input_text}

質問:旅行記の著者は{mention}を訪れましたか？
次の選択肢から1つ選んで、選択肢の番号のみを
回答してください。

選択肢:
1訪問した
2訪問予定だ
3その場所を見た
4前に訪問したことがある
5将来的に訪問したい
6その他

回答:

Instruction:
This is a reading comprehension test. Read the
following travelogue and answer the question on
the location/facility name surrounded by “<|be-
gin_of_entity|>” and “<|end_of_entity|>.”

Document:
{input_text}

Question:
Did the author of the travelogue visit
{mention}? Select one of the following
options and answer only its option number.

Options:
1 The author visited the place
2 The author plans to visit the place
3 The author saw the place
4 The author had visited the place
5 The author will visit the place in the future
6 Other

Answer:

IRP

指示:
文章読解問題です。次の旅行記の文章を読んで、
質問に回答してください。

文章:
{input_text}

質問: {child}は{parent}にありますか？「はい」
か「いいえ」で回答してください。

回答:

Instruction:
This is a reading comprehension test. Read the
following travelogue and answer the question.

Document:
{input_text}

Question:
Is {child} in {parent}? Answer “Yes” or
“No.”

Answer:

TRP

指示:
文章読解問題です。次の旅行記の文章を読
んで、特殊トークン「<|begin_of_entity|>」と
「<|end_of_entity|>」に囲まれた地名・施設名と、
特殊トークン「<|begin_of_candidate_entity|>」と
「<|end_of_candidate_entity|>」に囲まれた地名・
施設名についての質問に回答してください。

文章:
{input_text}

質問: 旅行記の著者は{entity}を訪れた直後
に{candidate_entity}を訪れていますか？「は
い」か「いいえ」で回答してください。

回答:

Instruction:
This is a reading comprehension test. Read the
following travelogue and answer the question
on the location/facility name surrounded by
“<|begin_of_entity|>” and “<|end_of_entity|>”
and the location/facility name surrounded
by “<|begin_of_candidate_entity|>” and
“<|end_of_candidate_entity|>.”

Document:
{input_text}

Question:
Did the author of the travelogue visit
{candidate_entity} immediately after
visiting {entity}? Answer “Yes” or “No.”

Answer:

Table 17: Prompts for the CLM systems. “VSP” stands for visit status prediction, “IRP” stands for inclusion relation
prediction, and “TRP” stands for transition relation prediction. The phrases {xxx} are variables.
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