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Abstract

Unified vision-language models have made significant progress in multimodal
understanding and generation, yet they largely fall short in producing multimodal
interleaved outputs, which is a crucial capability for tasks like visual storytelling and
step-by-step visual reasoning. In this work, we propose a reinforcement learning-
based post-training strategy to unlock this capability in existing unified models,
without relying on large-scale multimodal interleaved datasets. We begin with a
warm-up stage using a hybrid dataset comprising curated interleaved sequences
and limited data for multimodal understanding and text-to-image generation, which
exposes the model to interleaved generation patterns while preserving its pretrained
capabilities. To further refine interleaved generation, we propose a unified policy
optimization framework that extends Group Relative Policy Optimization (GRPO)
to the multimodal setting. Our approach jointly models text and image genera-
tion within a single decoding trajectory and optimizes it with our novel hybrid
rewards covering textual relevance, visual-text alignment, and structural fidelity.
Additionally, we incorporate process-level rewards to provide step-wise guidance,
enhancing training efficiency in complex multimodal tasks. Experiments on MMIE
and InterleavedBench demonstrate that our approach significantly enhances the
quality and coherence of multimodal interleaved generation.

1 Introduction

In recent years, rapid progress in visual understanding and generation has driven a growing trend
towards unifying these capabilities within a single multimodal framework. Unified vision-language
models aim to perform both understanding tasks (e.g., visual question answering) and generation tasks
(e.g., text-to-image generation) within one model, representing a pivotal direction in the evolution of
vision-language models. This paradigm has seen significant advancement, enabled by the availability
of large-scale image-text paired datasets and the scaling of multimodal model architectures. Recent
models such as Show-O, VILA-U, and ILLUME [34, 32, 28] demonstrate strong generalization
across diverse benchmarks, underscoring the potential of unified frameworks as general-purpose AI
systems for integrated vision-language reasoning and content creation.

Despite their impressive performance, most unified models still struggle to generate multimodal
interleaved contents, which is a critical capability for enabling fine-grained reasoning, step-by-step
explanation, and context-aware multimodal synthesis. During inference, these models typically
produce either text-only or image-only outputs, constrained by explicit or implicit modality control
mechanisms. This limitation arises primarily from the lack of fine-grained supervision and training
data to guide dynamic modality transitions. Consequently, current models often default to generating
single-modality outputs, failing on tasks that require tightly coupled multimodal sequences, such
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as visual dialogue or sequential storytelling. Addressing this gap is essential for realizing the full
potential of unified models in seamless multimodal reasoning and generation.

To this end, we propose a post-training strategy that unlocks multimodal interleaved generation
without requiring large-scale high-quality interleaved data. We hypothesize that unified models
inherently possess fundamental multimodal generation capabilities acquired during pre-training and
supervised fine-tuning (SFT), and that minimal interleaved supervision is sufficient to activate them.
Based on this hypothesis, we first construct a hybrid dataset comprising a small amount of interleaved
text-image sequences to expose the model to multimodal generation patterns, while incorporating
limited SFT data to retain its pretrained strengths in multimodal understanding and conventional
text-to-image generation. After this warm-up stage, the unified model is capable of generating basic
multimodal interleaved contents conditioned on instructions. However, the outputs often suffer from
weak cross-modal alignment, reflecting limited consistency and coherence between text and image.

To further improve multimodal interleaved generation, we propose a reinforcement learning algorithm
that formulates generation as a sequential decision-making process and extends Group Relative Policy
Optimization [21] (GRPO) to the multimodal setting. While GRPO has been widely explored for
text-only modalities, it struggles with multimodal outputs due to challenges like modality switching
and hybrid reward attribution. To address this, we propose a unified policy optimization framework
that jointly models text and image generation under a single decoding trajectory. This approach
enables modality-aware decisions and leverages a shared training objective, preserving GRPO’s
advantages while adapting to multimodal structures. Specifically, we define a hybrid group-wise
reward signal consisting of three key components: (i) a textual reward that evaluates the quality and
relevance of the generated text conditioned on the input prompt; (ii) a visual and multimodal reward
that jointly assesses image quality and image-text consistency; and (iii) a format reward that promotes
structural fidelity by penalizing violations in the expected interleaved output format. In addition,
we incorporate process-level reward modeling by assigning intermediate rewards at the interleaved
generation steps. This design provides more granular and timely feedback throughout the generation
process, which significantly improves the efficiency and effectiveness of policy learning. Such
fine-grained supervision is particularly advantageous in complex multimodal generation tasks, where
step-wise feedback helps the model perform autoregressive interleaved generation more effectively
than relying solely on outcome rewards. We evaluate our approach on two dedicated multimodal
interleaved generation benchmarks, namely MMIE [33] and InterleavedBench [14], and demonstrate
its effectiveness in enabling unified models to generate coherent, high-quality interleaved outputs.

To summarize, our main contributions are as follows: (i) We introduce a warm-up stage that unlocks
the model’s latent capability for interleaved text-image generation using only a small amount of
curated interleaved data; (ii) We propose a unified policy optimization framework that supports
autoregressive generation across both text and image modalities, enabling seamless modality switch-
ing within a single decoding trajectory; (iii) We design a group of hybrid rewards that supervises
multimodal generation from multiple aspects, and further enhance learning via process-level rewards
that provide step-wise guidance; (iv) We conduct extensive experiments on two challenging bench-
marks, MMIE and InterleavedBench, demonstrating the effectiveness and efficiency of our approach
compared to existing unified models.

2 Related work

2.1 Unified understanding and generation

Recently, an increasing number of studies [34, 40, 26, 27, 32, 4, 31] have focused on unified models
for both multimodal understanding and generation. Show-o [34], TransFusion [40] and Janus-Pro [4]
adopt hybrid diffusion-autoregressive strategies, while Emu2 [26] employs a fully autoregressive
architecture that predicts the next multimodal element via classification for text and regression for
visual embeddings. Chameleon [27], VILA-U [32], and other works [28, 31] tokenize images and
interleave them with text tokens, enabling joint reasoning and autoregressive generation across
modalities. Despite these efforts, current unified models often fail to support fine-grained interleaved
generation of text and images, largely due to the scarcity of high-quality multimodal interleaved
data. This limitation restricts their applicability in tasks that require coherent and context-aware
multimodal dialogue and reasoning.
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2.2 Multimodal interleaved generation

Multimodal learning has rapidly advanced, especially in the integration of text and image modalities.
Early models such as DALL·E [19] and Stable Diffusion [16] demonstrated impressive capabilities in
generating images from text prompts, but they were primarily designed for unidirectional generation,
either text-to-image or image-to-text, without supporting interleaved multimodal outputs. Recently,
large vision-language models (LVLMs) have begun to tackle this limitation by enabling interleaved
generation, where text and images are jointly generated within a single autoregressive sequence.
Approaches such as Chameleon [27], GILL [9], Anole [5] and ARMOR [24], have pushed the bound-
aries of token-level multimodal modeling. These models adopt unified generation frameworks that
allow seamless alternation between modalities, supporting more natural and interactive multimodal
communication. However, a key challenge lies in the scarcity of large-scale, fine-grained multimodal
supervision data, which limits the full potential of interleaved generation. To address this, we propose
a post-training strategy that activates the model’s multimodal generation capability without relying
on extensive high-quality training data.

2.3 Policy optimization in multimodal models

Policy optimization [15, 18, 21, 8, 22, 30] has become a pivotal component in aligning large language
and vision-language models with human intent. Reinforcement learning from human feedback
(RLHF) [15], exemplified by methods such as PPO [20] and DPO [18], has proven effective in
improving text-only generation by leveraging reward signals derived from preference data or learned
reward models. Recently, Group Relative Policy Optimization (GRPO) [21] has demonstrated
promising results in the post-training of large language models, particularly in domains requiring
complex reasoning such as mathematics [8, 22, 30]. Its group-wise comparative reward mechanism
offers improved sample efficiency and stability, making it a compelling foundation for extension
into multimodal interleaved generation. However, extending policy optimization to multimodal
settings remains a substantial challenge. First, existing methods [41, 29, 3] are often limited to
text-only modalities or apply separate optimization procedures for text and image components, which
hinders the development of unified models capable of seamless interleaved generation. Second, most
approaches rely on outcome-oriented, end-of-sequence rewards, which are inherently sparse and fail
to capture the fine-grained, step-wise alignment required for complex multimodal tasks. In this work,
we propose a unified policy optimization algorithm, which treats multimodal generation as a single
coherent decision-making process for enhanced multimodal policy optimization.

3 Methodology

In this section, we first present the preliminary formulation of unified multimodal models in 3.1.
We then introduce a warm-up training scheme to equip the model with the capability of generating
interleaved text-image outputs while preserving its pretrained knowledge in Sec. 3.2. Next, in Sec. 3.3,
we describe our proposed GRPO training framework based on hybrid reward signals tailored for
multimodal generation. Finally, we outline the training details in Sec. 3.4.

3.1 Preliminary

Unified multimodal models seek to integrate vision and language by leveraging a shared architecture
capable of jointly modeling textual and visual modalities in both understanding and generation tasks.
Given a multimodal input sequence X = {x1, x2, . . . , xn}, where each token xi can correspond to
either a textual or visual token, the model learns to autoregressively generate an output sequence
Y = {y1, . . . , ym}, which is also capable of comprising both modalities. The generation process
in unified models is typically modeled as an autoregressive probability distribution over the output
tokens:

p(Y |X) =

m∏
t=1

p(yt|X, y<t; θ), (1)
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Figure 1: Overview of our reinforcement fine-tuning framework. Multimodal tokens are autore-
gressively generated and decoded into completions, with token probabilities used to compute KL
divergence along a single trajectory. Hybrid rewards are assigned to each completion, and token-level
group relative advantages are calculated to guide policy optimization along with KL regularization.

where θ denotes the model parameters, and the conditional generation at each step relies on both the
input sequence X and the previously generated tokens y<t. The unified model is generally optimized
using a standard language modeling objective covering multimodal sequences:

L = −(

T∑
t=1

Itxt(t)logP (yt|x, y<t) +

T∑
t=1

Iimg(t)logP (yt|x, y<t)). (2)

This framework allows for flexible training across various tasks simultaneously, such as captioning,
image generation, and more complex multimodal reasoning. However, due to the lack of high-quality
training data that explicitly supervises interleaved text-image generation, current unified models
often struggle to realize their potential for multimodal generation, leading to limited and inconsistent
performance in such tasks.

3.2 Unlocking interleaved generation

To equip unified models with interleaved generation and multimodal reasoning capabilities, we
propose a warm-up training scheme that activates new functionalities while preserving existing
strengths. Unified models are pretrained on large-scale multimodal data comprising both text and
images, theoretically equipping them for multimodal interleaved generation. However, they often
struggle with smoothly transitioning between modalities and aligning context across text and image.
Direct fine-tuning on novel tasks may substantially impair the model’s pretrained competencies and
induce catastrophic forgetting. To address this, we introduce a hybrid data-based warm-up phase
that bridges pretraining and task-specific fine-tuning. In this stage, we incorporate a large corpus of
high-quality supervised fine-tuning (SFT) data, including either curated human-labeled samples or
distilled outputs from strong multimodal LLMs. We further introduce interleaved text-image data to
expose the model to multimodal generation patterns, while blending in purely textual data to preserve
and reinforce its language understanding and generation capabilities. This strategy helps unlock
interleaved generation abilities without compromising the model’s original strengths.
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3.3 Reinforcement fine-tuning

Once the model is warmed up, we proceed to a GRPO-based optimization phase to further enhance
generation quality and cross-modal alignment. During reinforcement fine-tuning, we apply the GRPO
algorithm guided by a hybrid supervised signal comprising both rule-based metrics and model-based
reward, as shown in Figure 1.

Unified policy for multimodal generation. To enhance interleaved text-image generation and
multimodal reasoning, we adapt Group Relative Policy Optimization (GRPO) [21], an efficient
reinforcement learning algorithm originally proposed for text-only LLMs. GRPO estimates token-
level advantages by conducting intra-group comparisons among generated responses conditioned on
the same query. Given an input instance X , a behavior agent ϕθold samples a batch of G candidate
responses {Yi}Gi=1. However, previous applications of GRPO have been limited to optimizing text-
only policies. To extend it to unified models capable of generating both text and images, we treat
the multimodal generation as a single decision process: Yi = {ytxt1 , . . . , ytxtk , yimg

k+1, . . . , y
img
m }, and

adapt the GRPO framework accordingly. The GRPO optimization objective incorporates a clipped
surrogate loss term augmented with a KL-penalty to ensure stable policy updates, formulated as:

LGRPO(θ) =
1

G

G∑
i=1

1

|Yi|

|Yi|∑
t=1

min[Duni(t)Âi,t, clip(Duni(t), 1− ϵ, 1 + ϵ)Âi,t], (3)

where Duni represents the unified KL divergence computed per token across modalities:

Duni(t) =
πθ(y

txt
i,t |Xi, yi,≤t)

πθold(y
txt
i,t |Xi, yi,≤t)

It≤k(t) +
πθ(y

img
i,t |Xi, yi,≤t)

πθold(y
img
i,t |Xi, yi,≤t)

It>k(t). (4)

The advantage Âi,t for the i-th response at time step t is determined by normalizing the rewards
obtained across the response group, according to:

Âi,t =
r(X,Yi)−mean({r(X,Y1), ..., r(X,YG)})

std({r(X,Y1), ..., r(X,YG)})
. (5)

The hyperparameter ϵ controls the permissible deviation from the reference policy. The clipping
function constrains the policy ratio within a specified interval, preventing overly large updates. This
regularization mechanism enhances training stability and reduces the risk of performance collapse
due to aggressive policy shifts.

Hybrid reward signal. Formally, a group of reward models assign a scalar score to each response,
producing a set of G rewards r = {r1, . . . , rG} corresponding to the G candidates. To guide the
optimization of the unified model, we design a hybrid reward signal that integrates multiple task-
specific objectives. The hybrid reward aims to jointly enhance the quality of both generated text and
images, as well as ensure output format consistency.

To better model and optimize the interleaved multimodal outputs, we begin with a probabilistic
decomposition of the joint distribution over input prompt X , generated text Ytxt, and generated image
Yimg . We decompose the joint probability as:

p(Ytxt, Yimg|X) = p(Ytxt|X)p(Yimg|X,Ytxt). (6)

From this perspective, we design our hybrid reward to align with the two conditional components:
The textual reward rt evaluates p(Ytxt|X), assessing the relevance and coherence of the generated
text given the prompts. The visual rewards rv targets p(Yimg|X,Ytxt), measuring the image’s quality
and its alignment with the text and prompt context. Furthermore, we incorporate a format reward rf
to regularize the structure of the generated content. Specifically, we leverage special tokens <think>
and <vis> to explicitly separate different modalities in the content sequence, guiding the model to
adhere to a consistent and interpretable format. This formatting strategy is illustrated in Figure 1. The
textual relevance reward rt is assessed by [35] and the visual reward is assessed by ImageReward [36].
To this end, our hybrid reward function is defined as follows:
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MMIE
Method Params

Situational analysis Project-based learning Multi-step reasoning AVG

MiniGPT-5 [39] 7B 47.63 55.12 42.17 50.92

EMU-2 [26] 37B 39.65 46.12 50.75 45.33

GILL [9] 7B 46.72 57.57 39.33 51.58

Anole [5] 7B 48.95 59.05 51.72 55.22

Ours (QLoRA) 7B 53.12 60.34 53.28 57.27

Ours 7B 56.87 62.28 54.31 59.50

Table 1: Comparison with existing methods on MMIE. The proposed method significantly improves
the generation quality of unified models, producing interleaved text–image outputs that are both
coherent and aligned with instructions.

r(X,Yi) = rt(X,Yi) + rv(X,Yi) + rf (X,Yi). (7)

Process-level reward. While outcome supervision provides a single reward at the end of each
output, this sparse feedback may be insufficient and inefficient for complex multimodal gen-
eration tasks. To address this, we additionally incorporate process-level supervision, which
offers intermediate rewards at the end of each modality step. Formally, given a set of sam-
pled outputs {Yi}Gi=1, a process reward model assigns a sequence of rewards to each output:
R = {{rindex(1)1 , ..., r

index(K1)
1 }, ..., {rindex(1)G , ..., r

index(KG)
G }}, where index(j) denotes the end

token index of the j-th step, and Ki is the total number of modality steps in the i-th output. Each
step reward is then normalized using the overall mean and standard deviation across all samples. To
compute token-level advantages, we accumulate the normalized rewards from all subsequent steps:
Âi,t =

∑
index(j)≥t r̂

index(j)
i . The final policy is then optimized by maximizing the GRPO objective

using these token-level advantages.

3.4 Training details

We implement VILA-U [32] as our foundation unified model. Thanks to its unified pretraining
paradigm, which jointly learns multimodal comprehension and text-to-image generation, the model
inherently possesses the potential for multimodal output. Our approach builds on this capability and
unlocks interleaved generation with only minimal additional data. During the warm-up stage, we col-
lect 0.3M text-image paired samples with interleaved outputs from ActivityNet [1], GenHowTo [23]
and OpenStory++ [37]. To preserve the model’s original multimodal understanding and generation
abilities, we further incorporate 1M multimodal understanding samples from EMOVA [2] and 1M
text-to-image generation samples from JourneyDB [25]. For the GRPO stage, we curate a dataset of
0.1M samples (from the same sources as in the warm-up stage) focusing on visual storytelling and
multimodal interleaved reasoning to facilitate effective policy optimization.

4 Experiment

4.1 Experimental setup

Data preparation. During the warm-up stage, we collect 0.3M interleaved text-image samples from
ActivityNet [1], GenHowTo [23], and OpenStory++ [37]. The data covers diverse multimodal scenar-
ios, including temporally grounded actions, step-by-step state transitions, and narrative storytelling,
providing rich interleaved patterns for training. (i) ActivityNet [1] is a large-scale benchmark for
human activity understanding, covering 203 activity classes with about 137 untrimmed videos per
class and 1.41 activity instances per video (849 hours total). We use its temporal dense captions [10]
to describe fine-grained action segments. For each localized clip, a duration-adaptive number of
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InterleavedBench
Method Params

Text quality Perceptual quality Image coherence TIC Helpfulness AVG

MiniGPT-5 [39] 7B 1.22 2.45 1.62 2.03 1.77 1.82

EMU-2 [26] 37B 1.26 2.28 1.89 1.34 1.64 1.68

GILL [9] 7B 0.75 3.21 2.25 1.53 1.48 1.84

Ours (QLoRA) 7B 2.33 3.39 3.01 2.75 2.85 2.87

Ours 7B 2.86 3.58 3.25 3.02 2.94 3.13

Table 2: Comparison with existing methods on InterleavedBench, where our method demonstrates
superior performance across multiple evaluation metrics.

keyframes is extracted to capture visual details, and these keyframes with their captions form in-
terleaved training samples. (ii) GenHowTo is a large-scale dataset automatically constructed with
200K image triplets and corresponding textual descriptions. Each triplet contains temporally ordered
frames depicting an object’s initial state, the modifying action, and the resulting new state, effectively
modeling cause-and-effect visual transitions. These structured triplets naturally support interleaved
text-image training for step-by-step visual reasoning. We leverage both the provided action and state
prompts, along with their aligned images, to construct coherent interleaved text-image samples for
visual reasoning tasks. (iii) OpenStory++ [37] is a comprehensive dataset emphasizing narrative
continuity with instance-level visual segmentation. It extracts keyframes from videos, filters them by
aesthetic quality, and generates refined captions via an LLM-based annotator to ensure coherence.
The resulting keyframe–caption pairs form interleaved text-image sequences for visual storytelling.
More detailed data construction process and illustration are provided in the appendix.

Implementation details. As described previously, we adopt VILA-U [32] as our foundation unified
model. The language model, vision encoder, and visual decoder are all implemented following
VILA-U’s original architecture and configuration. All images are resized to a fixed resolution of 256
× 256 before being fed into the model. For image generation, we employ classifier-free guidance
with a guidance scale of 3 to improve output fidelity. In GRPO stage, the number of generation G
is set to 4 and we train the model for 3k steps. All full-scale experiments are conducted using 32
NVIDIA A100 GPUs. To further demonstrate the compatibility and efficiency of our method, we also
implement a lightweight version using QLoRA, achieving competitive performance with significantly
lower memory and compute requirements.

Evaluation. We evaluate the model’s capability for interleaved multimodal generation on two
dedicated benchmarks: MMIE[33] and InterleavedBench[14]. MMIE consists of 20K carefully
curated multimodal queries, covering 3 main categories, 12 domains, and 102 subfields, including
mathematics, coding, physics, literature, health, and the arts. It introduces a robust automated
evaluation protocol using a scoring model fine-tuned on human-annotated data with systematic
criteria, aiming to reduce bias and enhance evaluation reliability. InterleavedBench comprises 815
instances across 10 real-world use cases. It defines five key evaluation dimensions: text quality,
perceptual quality, image coherence, text-image coherence, and overall helpfulness, offering a
comprehensive and fine-grained assessment of interleaved generation performance. By encompassing
detailed evaluation criteria, InterleavedBench provides a robust framework for measuring a model’s
ability to generate coherent, visually aligned, and contextually meaningful interleaved outputs.

4.2 Main results

We compare our approach against existing unified models on these challenging benchmarks to
evaluate its effectiveness in interleaved multimodal generation. As shown in Table 1, our approach
significantly improves the ability of unified models to produce coherent and instruction-aligned
text-image outputs. These improvements demonstrate that our method not only strengthens the
generation quality under limited supervision, but also pushes the performance upper bound of current
unified models on interleaved multimodal generation benchmarks (59.5% on MMIE). In particular,
our method demonstrates a clear advantage on the situational analysis task, which evaluates a model’s
ability to perform visual storytelling based on given textual and visual prompts. Our model achieves
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Warm-up GRPO MMIE InterleavedBench

✗ ✗ - 0.51

✓ ✗ 53.31 1.97

✓ ✓ 59.50 3.13

Table 3: Effects of warm-up stage and GRPO. The warm-up stage enables to generate interleaved
multimodal outputs. Building on the warm-up initialization, the proposed GRPO-based policy
optimization substantially improves the quality of interleaved generations.

Hybrid rewards

rf rt rv
Process reward MMIE InterleavedBench

✓ ✗ ✗ ✗ 53.56 2.05

✓ ✓ ✗ ✗ 54.62 2.30

✓ ✓ ✓ ✗ 57.83 2.79

✓ ✓ ✓ ✓ 59.50 3.13

Table 4: Hybrid reward components ablation. Beginning with the format reward rf , we gradually
integrate the textual, visual and process-level rewards. The results demonstrate that the inclusion of
complementary reward signals progressively enhances interleaved generation quality.

a score of 56.87%, outperforming Anole by over 10%. This advanced performance highlights the
effectiveness of our interleaved generation strategy in handling complex, context-rich multimodal
reasoning scenarios. We also report our results on InterleavedBench, as shown in Table 2. Our
method outperforms existing unified models, achieving superior performance with a gain of 1.29 over
GILL, demonstrating the robustness and generalization ability of our approach.

4.3 Ablation study

Effects of warm-up stage and GRPO. We first investigate the impact of GRPO as well as warm-up
stage in Table 3. Empirical results demonstrate that the warm-up stage effectively unlocks the
unified model’s capability to generate interleaved multimodal outputs (53.31% on MMIE and 1.97
on InterleavedBench). Prior to this stage, existing unified models were unable to produce such
interleaved generations, and thus failed to yield valid results on benchmarks like MMIE. Notably,
InterleavedBench includes a subset of tasks that do not require multimodal outputs, which allows
baseline models to achieve a marginal score (0.51). Building upon the warm-up initialization,
our proposed GRPO-based policy optimization significantly enhances the quality of interleaved
outputs, leading to consistent improvements across both benchmarks (+6.19% and +1.16). This
two-stage strategy proves essential for enabling instruction-following, coherent, and structurally
aligned text-image sequences.

Rewards components ablation. We then take a further step to investigating the components of
rewards in the GRPO training paradigm. Starting from the format reward rf , we progressively
incorporate the textual reward rt, visual reward rv, and finally the process-level reward. As shown
in Table 4, the format reward alone does not lead to significant performance gains compared to the
warm-up stage. However, it plays an essential role in providing explicit supervision for modality
switching, which is crucial for stable interleaved generation. Adding the textual reward yields a steady
improvement of 1.06% on MMIE and 0.25 on InterleavedBench, while the visual reward further
boosts performance by 3.01% and 0.49, respectively. Finally, integrating the process-level reward
results in the best performance, raising the scores to 59.50% on MMIE and 3.13 on InterleavedBench.
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Understanding Generation
Method ILO-Uni. Params

MME-P [13] MMvet [38] SEEDBench-img [11] POPE [12] #Train images Image res. Score

VILA-U [32] ✗ 7B 1401.8 33.5 59.0 85.8 15M 384 0.42

SEED-X [6] ✗ 17B 1435.7 - - 84.2 158M - 0.49

TokenFlow-XL [17] ✗ 13B 1545.9 40.7 68.7 86.8 60M 384 0.55

Janus-Pro [4] ✗ 7B 1516.7 45.1 70.1 78.9 72M 384 0.80

Chameleon [27] ✓ 7B 153.1 8.3 30.5 19.4 1.4B 512 0.39

ARMOR [24] ✓ 8B 1619.4 53.1 74.8 87.7 5M 256 0.37

Ours ✓ 7B 1425.2 32.8 59.2 85.1 16M 256 0.46

Table 5: Comparison with existing methods on visual understanding and generation benchmarks.
ILO-Uni. denotes “Unified models with interleaved text-image output”. Our approach maintains
comparable performance to baseline models.

KL G rv MMIE InterleavedBench

✗ 2 ImageReward [36] 53.04 1.72

✓ 2 ImageReward 55.14 2.27

✓ 4 ImageReward 59.50 3.13

✓ 4 CLIP-score 56.94 2.58

Table 6: Aspects of GRPO hyper-parameter implementation. We first analyze the effect of the
KL-penalty term by duplicating its application during training. Results show that maintaining a KL
constraint stabilizes optimization and mitigates policy drift from the initialization, underscoring its
critical role. We then ablate the number of generations G to evaluate its impact on learning dynamics,
and finally, we compare different formulations of the visual reward function.

These results demonstrate the effectiveness of each component and highlight the importance of
fine-grained, multi-dimensional reward signals in training high-quality interleaved generation models.

Unified understanding and generation. Additionally, we evaluate our model’s performance on
standard multimodal understanding and generation tasks (GenEval [7]) to ensure that our method
does not lead to performance degradation or catastrophic forgetting of existing unified capabilities.
As shown in Table 5, our approach achieves comparable results to the baseline model across these
tasks, indicating that both the warm-up stage and our GRPO-based training strategy are effective
in preserving the model’s original strengths. Furthermore, we compare our method with existing
unified models that are capable of generating multimodal interleaved outputs. Results show that our
approach achieves competitive performance, highlighting its advantage in enabling high-quality and
instruction-aligned interleaved generation without sacrificing general multimodal capabilities.

Aspects of GRPO hyper-parameter implementation. We conduct a series of ablation studies to
examine the impact of key hyper-parameter choices in our GRPO framework, as shown in Table 6.
We begin by analyzing the role of the KL-penalty term, where we duplicate its application during
training. Results show that enforcing KL divergence stabilizes training and prevents the model from
drifting too far from the initial policy, confirming its importance.

We further ablate the number of generations G for each prompt during training. Increasing the
number of sampled generations from 2 to 4 results in a notable performance improvement (+4.36%
and +0.86), indicating that generating a more diverse set of candidates facilitates more accurate
group-wise reward estimation and provides richer learning signals. However, due to computational
limitations, we are unable to explore larger generation numbers. It is worth noting that GRPO is
particularly resource-intensive in the multimodal setting, as it requires generating both textual and
visual outputs during each rollout. This underscores the importance of developing more efficient and
scalable post-training strategies for multimodal models in future research.
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Input: In this task, you are given the 
first part of an event with both text 
and an image, and you need to 
complete the subsequent parts of the 
event by generating text and images 
that are natural continuation of the 
given first part. The input interleaved 
content is: 
<BEGIN> A person in pink does tai chi. 

Output: <think>The person gracefully 
shifts their weight onto the back leg, 
drawing both arms inward in a smooth, 
circular motion. </think> 
<vis> <image> </vis>
<think>After completing the final 
movement, she stands quietly. </think> 
<vis> <image> </vis>

Input: I will give you the beginning of 
a story. Continue the story with 
detailed description / with text and 
images.
Question: The team huddled to 
prepare for the game.

Output: <think> As the referee's 
whistle blew, the players broke from 
the huddle with focused 
determination. </think> 
<vis> <image> </vis>
<think>They sprinted into position, 
eyes scanning the field and voices 
calling out plays. </think>
<vis> <image> </vis>
<think> The ball was kicked off, and 
the team launched into action with 
coordinated intensity. </think>
<vis> <image> </vis>

Input: In this task, you are given a 
high-level goal … You need to predict 
the subsequent 2 steps to help the 
user to finish the task. The previous 
steps are: <BEGIN>  Rest for a few 
moments to observe a moment of pure 
peace at the Lorikeet Glen. 

Output: <think>Head over to Jack 
Hanna’s Wild Reserve to learn about 
animal conservation efforts and meet 
majestic animals like wolves and bald 
eagles. </think> 
<vis> <image> </vis>
<think> Join one of the keeper talks or 
animal encounters to get an up-close 
experience and deepen your 
understanding of wildlife care.</think> 
<vis> <image> </vis>

Input: I will give you the beginning of 
a story. Continue the story with 
detailed description / with text and 
images.
Question: Amy never thought that she 
would get married. 

Output: <think>But when she met Jack, 
something changed within her, and she 
began to imagine a future together. 
</think> 
<vis> <image> </vis>
<think>They spent countless hours 
talking, laughing, and sharing their 
dreams.</think>
<vis> <image> </vis>
<think>One day, Jack surprised her 
with a proposal, and without hesitation, 
Amy said yes.</think>
<vis> <image> </vis>

Figure 2: Visualizations of multimodal interleaved generation. Qualitative examples illustrate the
model’s capacity to produce coherent interleaved outputs, smoothly transitioning between text and
image modalities within a unified generation process.

Lastly, we compare different choices of visual reward functions rv. Specifically, we find that using
ImageReward provides more accurate and consistent supervision signals for image quality than
CLIP-score, reinforcing the value of tailored reward models in multimodal training.

Visualizations. Figure 2 showcases qualitative examples of interleaved generation, illustrating the
model’s ability to seamlessly alternate between text and image modalities. Notably, the visual outputs
align well with the surrounding textual content, reflecting the effectiveness of our policy optimization
strategy in producing fine-grained, semantically consistent interleaved content. More visualizations
and failure case studies are included in the appendix.

5 Conclusion and discussions

Conclusion. We propose an effective training strategy to enable unified vision-language models to
perform high-quality interleaved multimodal generation. Through a warm-up stage with limited data,
we unlock the model’s latent multimodal generation capabilities. We further introduce a unified policy
optimization framework based on GRPO with hybrid and process-level rewards, which formulates
the multimodal generation process as a single trajectory from a reinforcement learning perspective.
Experiments on MMIE and InterleavedBench demonstrate superior performance over existing unified
models while preserving general multimodal capabilities, paving the way for more versatile and
controllable multimodal generation systems.

Discussion on limitations. Despite the significant performance gains on multimodal interleaved
benchmarks, we observe that our method does not bring notable improvements on generalized
multimodal understanding and text-to-image generation tasks. We attribute this to the underlying
base model, which largely determines performance limits, with GRPO mainly serving to better align
text and image content rather than enhancing general capabilities. Future work may benefit from
stronger unified architectures and broader reward designs to further enhance model capability.
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We make the main claims clearly in the abstract and introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitation of this paper in Section 5.
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
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and how they scale with dataset size.
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will be specifically instructed to not penalize honesty concerning limitations.
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We discuss the experimental setup in Section 4.
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: Code would be released after submission and review.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Details of training and testing are specified in Section 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Experiments in this paper are conducted in multiple iterations, yielding stable
results. We reported the average of these results for consistency and reliability.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The computational cost and resources are specified in Section 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in this paper conforms in every respect with the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The Broader Impacts are discussed in the appendix.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [No]
Justification: We follow the safeguards of base unified model VILA-U.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All models and datasets used in this paper have been properly credited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: LLM is an original component of the core methods in this research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Data preparation

During the warm-up stage, we collect 0.3M text-image paired samples with interleaved outputs from
ActivityNet [1], GenHowTo [23] and OpenStory++ [37]. The data comprises diverse multimodal
scenarios, including temporally grounded action descriptions, step-by-step action-state pairs, and
narrative visual storytelling. These samples are organized into interleaved text-image sequences to
expose the model to rich multimodal generation patterns during training.

ActivityNet. ActivityNet [1] is a large-scale video benchmark designed for human activity un-
derstanding. It covers a broad spectrum of complex daily activities, featuring 203 activity classes
with an average of 137 untrimmed videos per class and 1.41 activity instances per video, totaling
approximately 849 hours of video content. We utilize the temporal dense captions that describe
fine-grained action segments in each video [10]. For each temporally localized clip, we extract a
set of representative keyframes to capture fine-grained visual details. The number of keyframes is
adaptively determined based on the duration of the action clip. These keyframes, along with their
corresponding dense captions, are subsequently used to construct interleaved training samples.

Query: In this task, you are given the first 
part of an event with both text and an image, 
and you need to complete the subsequent parts 
of the event by generating text and images 
that are natural continuation of the given first 
part. The input interleaved content is: 
<BEGIN> A woman is in a kitchen talking about 
how to make a cake. 

Answer: <think>The person is seen cutting up a 
pumpkin and laying them up in a sink. </think> 
<vis> <image> </vis>
<think>The person then cuts up some more 
ingredients into a bowl and mixes them 
together in the end. </think>
<vis> <image> </vis>

Query: In this task, you are given a multimodal 
question consisting of both text and an image. 
Your goal is to generate an interleaved text-
image answer that demonstrates step-by-step 
multimodal reasoning. The answer should 
include both textual and relevant visual content 
to support your reasoning process.
<BEGIN> How to cook a fish?

Answer: <think> A person cutting a fish on a 
cutting board. </think> 
<vis> <image> </vis>
<think> Two pieces of fish on a wooden cutting 
board. </think>
<vis> <image> </vis>

Query: In this task, you are given the first 
part of an event with both text and an image, 
and you need to complete the subsequent parts 
of the event by generating text and images 
that are natural continuation of the given first 
part. The input interleaved content is: 
<BEGIN> Write a story about a golden 
retriever based on the reference image . 

Answer: <think>There was a gentle golden 
retriever named Sunny, who brought happiness 
to his family.</think> 
<vis> <image> </vis>
<think>Spring brought a new baby to the family, 
and their dog Sunny adapted with ease and 
curiosity. </think>
<vis> <image> </vis>

ActivityNet GenHowTo OpenStory++

Figure 3: Illustration of data preparation process during the warm-up stage.

GenHowTo. GenHowTo is a large-scale dataset automatically constructed with 200K image triplets
and corresponding textual descriptions. Each triplet consists of temporally ordered video frames
depicting (i) the initial state of an object, (ii) the action that modifies the state, and (iii) the resulting
new state of the object. These structured triplets, along with their descriptions, naturally align with
interleaved text-image training for modeling step-by-step visual reasoning. We utilize the provided
action prompts and state prompts, along with their corresponding images, to construct a series of
interleaved text-image samples for visual reasoning tasks, as shown in Figure 3.

OpenStory++. OpenStory++ is a comprehensive dataset designed to emphasize narrative continuity
around key instances, featuring instance-level visual segmentation. It processes video content by
extracting keyframes, evaluating them for aesthetic quality, and generating descriptive captions using
BLIP2. These captions are then refined by a Large Language Model (LLM) to ensure coherence and
maintain narrative flow. The resulting keyframe-caption pairs are used to build interleaved text-image
sequences that support visual storytelling, as shown in Figure 3.

B Failure cases analysis

While our method demonstrates strong performance on interleaved multimodal generation tasks, we
observe several failure cases that highlight current limitations, as demonstrated in Figure 4. First, in
some complex reasoning scenarios, the model may generate hallucinated visual content that does not
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Input: Question: How to Stop Social 
Media from Damaging Your Offline 
Behavior?
Method 1:Balancing Online and Offine 
Social Networks
Step 1: Make offline networking a 
priority

Output: <think>Step 2: Set 
boundaries for social media usage. 
Designate specific times of day to 
check social media so it doesn’t 
interfere with real-life 
interactions.</think> 
<vis> <image> </vis>

Figure 4: Failure cases analysis about hallucinated visual content.

faithfully correspond to the textual context, indicating limitations in cross-modal alignment. Second,
the visual elements produced by the model occasionally fail to match the style or appearance of the
input image, resulting in stylistic inconsistency across modalities. These issues suggest future work
could benefit from improved reward modeling that better captures factual consistency, reasoning
traceability, and structural fidelity in interleaved generation.

C Broader impacts

The proposed work has the potential to greatly enhance the capability of unified models for multimodal
interleaved generation. Therefore it could be beneficial for applications such as multimodal reasoning
and visual storytelling. It could also be used to provide a better experience of multimodal interleaved
interaction between human and AI system. As for the potential negative impacts, there is a risk that
the technology could be misused to generate and spread disinformation.
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