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Abstract. We introduce new techniques for matched block design in
multi-arm experiments. In matched block design, units with similar co-
variate values are grouped into blocks, with one unit per treatment in
each block. Existing methods for unit-level block design fail to produce
optimal matches for multi-arm experiments. We present a mixed integer
programming (MIP) formulation that guarantees optimal solutions for
the general multi-arm matched blocking problem using a clique-based
equipartitioning approach. For cases where the MIP is computationally
infeasible, we introduce heuristics that decompose large problems into
tractable subproblems while providing explicit quality-runtime tradeoffs.
We demonstrate that our methods significantly outperform existing tech-
niques on a diverse test suite, achieving consistent improvements in block
balance quality. Additionally, we show how these methods can be adapted
to improve covariate balance across treatment groups. We demonstrate
that matched block design presents an interesting application area for
metaheuristic and exact optimization methods.

Keywords: matched block design, optimization, mixed integer programming,
randomized experiments

1 Introduction

Determining causal effects is fundamental to evidence-based decision making.
Randomized experiments, where subjects are assigned to different treatment
groups, remain the gold standard for establishing causality.

However, in many real-world settings, subject-level treatment assignment is
often impractical or impossible. Instead, subjects must be collected into groups
called units, which then become the level of assignment. In a retail experiment,
individual stores might serve as units rather than employees [18]; in educational
research, schools rather than students [17]; and on digital platforms, geographic
regions rather than individual users.

A key goal in experiment design is to achieve balance in unit covariates across
treatment groups. In randomized experiments, balance is ensured if there are suf-
ficient units. When sample sizes are limited or when greater precision is desired,
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alternative approaches are needed. Block design addresses this challenge by ex-
plicitly considering unit covariates to form matched groups across treatments.
In this approach, units with similar characteristics are grouped into blocks, with
each block containing one unit for each treatment.

Software tools for block design include blocktools [23], mipmatch [32], and
brsmatch [20]. Such implementations account for for balance within and across
blocks, as well as computational runtime. These considerations in turn depend
on factors such as the number of treatments, experimental units, and covariates.

Let n be the number of experimental units, and t be the number of treat-
ments, i.e. block size. Without loss of generality we assume n mod t = 0 and
block count m = n

t . Figure 1 shows the relationship between subjects, units,
blocks, and treatments.

Fig. 1. Subjects, Units, Blocks, and Treatments

Balance can be assessed by comparing unit covariates within and across
blocks. Two types of measures for block design are block balance and treat-
ment balance. By block balance we mean that units in a block are similar, as
determined by a covariate distance metric, e.g. Mahalanobis distance. By treat-
ment balance we mean that the covariate distributions among treatment groups
are similar.

Our primary focus in this work is block balance, as assessed by the sum of all
pairs of distances between matched pairs within blocks. We refer to this problem
as Matched Blocking (MB), and the special case of t = 2 as Pair Blocking (PB).

The primary contribution of this work is a new mixed integer programming
formulation of MB. This formulation can be solved to optimality in many sce-
narios, as demonstrated across a set of test instances from the literature. While



our method produces optimal matches, it is not computationally feasible in all
situations. Therefore a second contribution is a heuristic framework capable of
balancing runtime and block balance considerations, leveraging the strengths of
our MIP formulation. We show that our techniques outperform commonly used
methods over a test suite that includes both previously considered and newly
created instances.

The remainder of this work is organized as follows. We first consider PB,
where efficient methods for optimal matches are well known. We then turn to
MB, where such is not the case. While MB approaches often rely on heuristics
that do not provide guarantees of match quality, we show how an extension of a
mixed integer programming (MIP) formulation for PB can be extended to MB.
This formulation can be solved to optimality across most of the instances in our
test suite. We then consider a heuristic framework that trades optimality for
faster runtime.

While block balance is our primary concern, we address treatment balance
in Section 5. We show that even a simple postprocessing heuristic approach to
treatment balance yields significantly improved covariate balance.

2 Block Design

2.1 Applications

Experimental blocking was introduced in 1935 by Ronald Fisher. The term
“blocking” comes from Chapter 22 of [6] concerning an agricultural experiment
where an “area is divided into eight blocks...and each of these is divided into
five plots”. In Fisher’s setting, blocks were predefined and not “designed”. Sub-
sequently, block design has been applied to a range of domain areas.

Greevy et al. described several medical applications and supporting methods
in [8], in particular the efficacy of ACE-inhibitor drugs in pediatric cancer sur-
vivors. Rosenbaum considered cadmium and lead in the blood of smokers in the
matching study described in [26]. The same author in [27] provides a compre-
hensive overview of matching algorithms inside and outside the context of block
design, using the possible impact of antidepressent medication on bone density
as a motivating example.

There are an array of social science applications of matched block design.
Bruhn and McKenzie [4] survey several applications. First, Sri Lankan microen-
terprises from [5] are used to simulate a program boosting firm profits. Second,
a sub-sample of the Mexican ENE survey in [14] focuses on heads of household
receiving training or nutrition intervention to raise income. Third, the Indone-
sian Family Life Survey (IFLS) [30] examines children at risk of dropping out
of school and households facing increases in expenditure per capita. Finally,
the LEAPS data in Pakistan [1] considers youth education and nutrition. The
microenterprise dataset is described in [31].

Keele et al. applied match block design to assess the effectiveness of a
computer-aided instruction program for improving reading comprehension in



[17]. Moore described several political science applications in [24]. Panagopoulos
and Green applied MB to a campaign finance analysis in [25].

2.2 Solution Approaches

Various algorithmic approaches for block design have been proposed.
Rosenbaum et al. [28] considered greedy and regression-based techniques for

matched block design, with the aim of reducing covariate imbalance. Greevy et
al provided a more formal treatment of such techniques, using Mahalanobis dis-
tance and bipartite matching for the t = 2 case [8]. In 2009, Bruhn and McKenzie
[4] established that matched pair design yielded more balanced covariates than
randomized methods, as measured on four panel data sets. This work roughly
coincides with the introduction of the blocktools package in 2008, see [23].

Imai, King et al. advocate for the use of PB with block randomized exper-
iments in [11], noting: “Since matching prior to random treatment assignment
can greatly improve the efficiency of causal effect estimation ([3]; [8]), and match-
ing in pairs can be substantially more efficient than matching in larger blocks,
matched-pair, cluster-randomization (PB) would appear to be an attractive de-
sign for field experiments [13].” Matched pair design methodologies were em-
ployed and enhanced by in a universal health insurance experiment in Mexico,
see [11]. In [12] the authors extended their analysis, considering the impact of
the choice of distance metric in matched block design.

Mixed integer programming (MIP) was first applied to matched block design
by Zubizarreta in [32], who considered “the total sum of distances and a weighted
sum of specific measures of covariate imbalance.” The method described in [32]
differs from our scenario because it considers a) PB only, b) modeling covariate
imbalance directly, c) linearized objectives only. The author’s mipmatch package
is the only previous matched block design implementation to use MIP of which
we are aware. Zubizarreta and Keele further considered both block and treatment
balance in multilevel matching, again with t = 2 [33].

In 2016, Higgins et al [10] proposed a heuristic approach to the full t ≥ 2 m
atched block design problem, with a guaranteed bound of no worse than 4x from
optimal match quality. Further, this approach scales to large problem sizes. This
approach could be a useful alternative to those presented here, but we are not
aware of a library implementing the described approach.

There is also literature on closely related problems. Balanced risk set match-
ing is the problem of matching treated subjects with one or more control subjects.
This may occur across multiple groups, but the key difference from block design
is that pairs across groups are matched, rather than forming strata (blocks). Li
et al provided the brsmatch package as outlined in [20]. Lu and Rosenbaum in
[22] gave a globally optimal risk set matching algorithm for three experimental
groups, which does not carry over to MB since it involves pairwise matching.

Lu, Greevy et al consider the related problem of optimally assigning blocked
units to treatments in [21]. Their results can be applied once blocks have been
determined, i.e. as a postprocessing step to block design, as we discuss in Section
5.



3 Pair Blocking

Assume a set of units u1, . . . , un. Let f ∈ Rn×v represent unit covariates with
fiα the value of covariate α for unit ui. Let c ∈ Rn×n with cij representing
the distance between units i and j, with distances not necessarily satisfying
the triangle inequality. Since a unit cannot be matched with itself, cii = ∞.
It is common to use the Mahalanobis distance, but we do not depend on this
assumption in our analysis.

Assuming t = 2, let xij ∈ {0, 1} represent whether items i and j are matched,
that is xij = 1 iff item i and item j form a matched pair. Pair Blocking is then
the problem of minimizing total distance between matched pairs, i.e.

min

n∑
i=1

n∑
j=i+1

cijxij .

3.1 Greedy Pair Blocking

Greedy algorithms are an intuitive approach for solving PB. A greedy approach
selects available (i, j) with minimal distance, matches them, and repeats.

Algorithm 1 PB-G(c)

1: let s = ∅, h = heap({((i, j), cij) | i = 1, . . . , n; i < j}) {heap ordered by cij
values}

2: while not empty(h) do
3: (i, j) := pop(h) {extract pair with minimum distance}
4: s := s ∪ {(i, j)}
5: remove(h, {((k, l), ckl) | k ∈ {i, j} or l ∈ {i, j}}) {no longer consider i, j}
6: end while
7: return s

PB-G corresponds to algorithm=optGreedy1 in blocktools. Observe that
PB-G is not guaranteed to yield optimal solutions. Consider:

c =


∞ 1 2 2
1 ∞ 2 2
2 2 ∞ 11
2 2 11 ∞


PB-G yields solution {(1, 2), (3, 4)} with total cost = 12, but {(1, 3), (2, 4)}

has cost 8.

1 Allowing for differences in how ties are broken.



3.2 Optimal Pair Blocking

Defining x as before, we formulate PB as:

min

n∑
i=1

n∑
j=i+1

cijxij

s.t.

n∑
j=1

xij = 1 i = 1, . . . , n,

n∑
i=1

xij = 1 j = 1, . . . , n,

xij ∈ {0, 1}.

(PB-O)

The formulation (PB-O) is equivalent to a linear assignment problem (LAP)
with cost matrix c, equivalent to the well-known minimum cost bipartite match-
ing problem, see [21]. Though x is binary, the integrality condition can be relaxed
due to Birkhoff [2]. LAP is easily solved for problem sizes considered in this work;
the Hungarian method of Kuhn [19] and Jonker-Volgenant approach [16] each
have O(n3) complexity.

In Section 6 we compare the match quality of PB-G and PB-O. Despite the
guaranteed globally optimal solution quality of (PB-O), there may be legitimate
reasons for using a heuristic approach. First, while PB-G and PB-O are both
polynomial time algorithms, PB-G is faster in practice. Second, as noted by [11],
if it is anticipated that items will be added or removed prior to experimentation,
an online algorithm may be more appropriate. In light of such considerations,
blocktools offers the choice between PB-O and PB-G as algorithm options
optGreedy and optimal.

In certain cases, minimizing the sum of distances between matched pairs may
not be the desired objective, see [32]. The formulation (PB-O) can be adapted
for such considerations, but we will not present them here for brevity.

4 Matched Blocking

We now consider extending PB solution methods to the general t ≥ 2 case. A
simple approach for MB, which we refer to as MB-N, is to scan items in order of
index, add the unmatched item of least distance to the current block, and repeat.
MB-N corresponds to corresponds to algorithm=naiveGreedy in blocktools.

PB-G is trivially extended to MB by making t−1 greedy choices per iteration,
which we refer to as MB-G. We omit the details for brevity. Since MB-G also
solves PB, MB-G is not guaranteed to produce optimal solutions as previously
demonstrated.

4.1 Clique Formulation

Let G = (V,E) be a graph with vertices representing items and edges item
distances. MB is equivalent to partitioning G into m = n

t subcliques (blocks) of



size t, referred to in [15] as t-way equipartitioning. We seek the equipartitioning
that minimizes total distance within blocks.

Formulation (PB-O) can be extended to model t-way equipartitioning. Let-
ting binary decision variable xij where xij = 1 iff item i and item j are assigned
to the same block, we have:

min

n∑
i=1

n∑
j=i+1

cijxij

s.t.
∑
j

xij = t− 1 i = 1, . . . , n,

∑
i

xij = t j = 1, . . . , n,

xij = xji i, j = 1, . . . , n,

xij + xjk − xik ≤ 1 ∀i < j < k,

xij − xjk + xik ≤ 1 ∀i < j < k,

− xij + xjk + xik ≤ 1 ∀i < j < k,

xij ∈ {0, 1}.

(MB-O)

This formulation closely resembles that provided by in [9] in the context of
a generic clustering framework. Note formulation (MB-O) has n2 variables and
O(n3) constraints. The large number of constraints in this model, necessary to
ensure assigned items are in cliques, can make (MB-O) computationally infeasi-
ble for large n, as shown in Section 6. Alternatively (MB-O) can be reformulated
as a bilinear model, but such a reformulation is less amenable to efficient solution
by standard solvers.

4.2 Divide and Conquer

We now turn to approaches that offer explicit tradeoffs between block balance
and computational time. Unlike (MB-O), these approaches do not guarantee op-
timal solutions to MB, however they do leverage the strengths of the formulation
presented in Section 3.2.

Our divide-and-conquer metaheuristic separates the n items into subparti-
tions, solves each subpartition (a smaller MB), and returns the union of results.
Suppose s ≤ n is the desired upper bound on subpartition size. Then clearly
q = s− (s mod t) is the largest subpartition size with equally sized subcliques,

and p =
⌈
n
q

⌉
is the subpartition count. The size of each subpartition is si = q

for i = 1 . . . p− 1 and sp = q − (s mod t).

Let MB-S be any solution method for MB. Let partition be a function that
separates cluster indexes into disjoint gi, i ∈ 1 . . . p. Finally, let c[gi, gi] denote
the submatrix with row and column indexes gi. The resulting metaheuristic is
given in Algorithm 2.



Algorithm 2 MB-DC(c, t, s)

1: q = s− (s mod t), p =
⌈

n
q

⌉
2: si = q for i = 1 . . . p− 1, sp = q − (s mod t)
3: g = partition(c, s)
4: for i = 1 . . . p do
5: xi = MB-S(c[gi, gi])
6: end for
7: return

⋃r
i xi

The resulting block balance yielded by MB-DC depends on the choice of
partition, the choice of MB-S, and maximum partition size s. We now present
two MB-DC variants with different quality-runtime tradeoffs. Observe that MB-
DC reduces to MB-G when s = t and to MB-O when s = n.

Greedy Partitioning A simple choice for partition is to use MB-G and
let gi = {j | j ∈

∑p−1
k=1 sk · · ·

∑i
k=1 sk}, that is, segment the results of the

greedy algorithm along block boundaries. If these partitions are then solved using
MB-S = MB-O, the solution of each partition is guaranteed to be no worse
than the results yielded by MB-G. Therefore the divide-and-conquer solution
is guaranteed to be no worse than MB-G. We refer to MB-DC with greedy
partitioning as MB-DC-GP.

Assignment Partitioning MB-DC-GP improves on MB-G only to the extent
that items within subpartitions gi are rearranged. Intuitively, it therefore makes
sense to assign blocks to partitions that are close to each other, rather than
simply partition in the order provided by MB-G. The idea behind assignment
partitioning is to assign blocks to partitions in such a way that minimizes total
distance between the centroids of assigned blocks.

As previously noted there are m = n
t blocks in a solution to MB. Consider

the m centroids of the items within each block in an MB solution. Let d ∈ Rm×m

be the centroid-centroid distances. Let zij = 1 iff block i is assigned to partition
j. We solve the partitioning assignment problem (PAP):

min

m∑
i=1

m∑
j=1

dijzij

s.t.

m∑
j=1

zij = 1 i = 1, . . . ,m,

m∑
i=1

zij = b j = 1, . . . ,m,

zij ≥ 0.

(PAP)



The resulting LAP formulation of (PAP) is easily solved, as was demon-
strated in Section 3.2. The desired partitions are given by gj = {i | zij = 1}. We
refer to this variant as MB-DC-PAP.

Extensions Finally, note that if MB-DC is recursive, that is,MB-S = MB-DC,
the resulting algorithm is analogous to nested dissection approaches for sparse
matrix factorization, see [7]. We do not explore this connection further here.

5 Treatment Balance

As noted in Section 2, certain block design techniques attempt to balance co-
variate values across treatment groups directly. In [32] the authors consider a
weighted sum of covariate imbalance measures as an objective function. These
measures include balancing means of treatment groups, multivariate moments,
and Kolmogorov-Smirnov statistics.

Block distance is invariant with respect to item swaps within blocks. There-
fore we can apply swap-based treatment balance techniques as a postprocessing
step to any of the block balance approaches previously described. Let us con-
sider treatment balance using a standard measure, standardized mean difference
(SMD). First, let us define yilk = 1 if and only if unit i is assigned to block l
and treatment k. Letting

Fkα(y) =

n∑
i=1

m∑
l=1

fiαyilk,

the standardized mean difference between treatments k and l for covariate α is

SMD(k, l, α; f, y) =
Fkα(y)− Flα(y)√∑n

i=1 f
2
iα

.

Taking the mean across all pairs, we define the following block design covariate
balance metric:

b(f, y) =

v∑
α=1

1(
t
2

) t∑
k=1

t∑
l=k+1

SMD(k, l, α; f, y).

We then consider the nonlinear assignment problem

min b(f, y)

s.t.

n∑
i=1

yilk = 1 l = 1, . . . ,m; k = 1, . . . , t,

m∑
l=1

yilk = 1 i = 1, . . . , n; k = 1, . . . , t

t∑
k=1

yilk = 1 k = 1, . . . , t; l = 1, . . . ,m

yilk ∈ {0, 1}.

(COV-OPT)



A local improvement approach for (COV-OPT) is to sort blocks l by SMD and
then repeatedly look for swaps within blocks that reduce b(f, y). This approach
is employed in the results that follow. While we do not consider optimal solutions
for (COV-OPT) here, we regard this an area for future research.

6 Computational Results

6.1 Test Problems

We have assembled a test suite of matched block design problems, summarized
in Table 1. In Table 1, n is the number of items and v is the number of covariates.
In certain matched block design scenarios, “grouping” attributes are specified.
In such cases the dataset is divided into g independent subproblems; see the
blocktools documentation [23] for more details.

The sources of the test suite instances are as follows. The Sri Lankan mi-
croenterprises, Mexican BNE survey, IFLS, and LEAPS examples from [5] are
included. The x100 test problem is a simple synthetic problem included with
blocktools. A publicly available dataset provided by Ian Silver is also included,
see [29]. Finally, we also include an anonymized dataset from Airbnb called
states. In this data set, there are three treatment groups and 51 units (the fifty
US states and DC).

Name n v g Description

x100 100 2 3 test problem included with blocktools

states 51 12 1 anonymized Airbnb experiment data
silver 492 4 1 a publicly available dataset provided by Ian Silver
ifls expend 30 7 1 a subset of the Indonesian Family Live Survey (IFLS) dataset
ifls school 30 7 1 a subset of the IFLS dataset
leaps height 30 7 1 child and household data from the LEAPS project
leaps test 30 7 1 child and household data from the LEAPS project
mexico ene 30 7 1 a subset of the Mexican employment survey
sri lanka 30 7 1 a subset of the Sri Lankan microenterprise dataset

Table 1. Test Problems

6.2 Algorithm Performance

In Table 2 we compare the match quality of blocktools, MB-G, MB-DC-G,
MB-DC-PAP, and MB-O. The blocktools results are produced by taking the
minimum score using the naiveGreedy, optGreedy, and optimal algorithm op-
tions. respectively. The newly presented methods MB-G, MB-DC-G, MB-DC-
PAP, and MB-O are implemented in Python. Instances of (MB-O) and (PAP)
such as those arising in MB-DC-G, MB-DC-PAP, MB-O are solved using the
Gurobi 14.1 solver.

We report the relative gap in total distance for our new solution methods,
using the best results from blocktools as a baseline. We do not report MB-O



results for the silver instances because they are too large to be solved optimally
within two hours. For MB-DC-G and MB-DC-PAP, we choose maximum sub-
problem size s = 8t. Note that for t = 2, blocktools provides optimal results
in all cases.

blocktools MB-G MB-DC-G MB-DC-PAP MB-O
Name t Value Gap Value Value Gap Value Gap Value Gap

ifls expend 2 31.5 32.8 4.0% 32.8 4.0% 32.8 4.0% 31.5 0.0%
ifls expend 3 73.9 73.9 0.0% 73.9 0.0% 73.9 0.0% 72.2 -2.3%
ifls expend 4 106.3 106.3 0.0% 101.1 -4.9% 106.3 0.0% 99.6 -6.3%
ifls school 2 29.3 30.8 5.1% 30.8 5.0% 30.8 5.1% 29.3 0.0%
ifls school 3 74.7 74.7 0.0% 74.7 0.0% 73.0 -2.2% 69.4 -7.0%
ifls school 4 115.7 115.7 0.0% 111.5 -3.6% 112.5 -2.8% 104.4 -9.8%
leaps height 2 31.3 33.0 5.5% 33.0 5.5% 33.0 5.5% 31.3 -0.0%
leaps height 3 76.4 76.4 -0.0% 73.4 -4.0% 75.8 -0.9% 68.3 -10.7%
leaps height 4 108.1 108.1 -0.0% 102.2 -5.4% 107.2 -0.9% 101.3 -6.3%
leaps test 2 33.5 36.2 8.2% 36.2 8.2% 35.7 6.6% 33.5 0.0%
leaps test 3 80.3 80.3 0.0% 79.4 -1.2% 76.7 -4.5% 72.3 -10.0%
leaps test 4 116.8 116.8 0.0% 112.7 -3.4% 116.2 -0.5% 106.8 -8.6%
mexico ene 2 27.3 27.8 2.0% 27.8 2.0% 27.6 1.4% 27.3 0.0%
mexico ene 3 69.0 69.0 0.0% 67.1 -2.8% 69.0 0.0% 63.4 -8.1%
mexico ene 4 97.4 97.4 0.0% 91.3 -6.3% 96.5 -0.8% 90.5 -7.1%
silver 2 27.7 29.7 7.2% 29.7 7.2% 29.7 7.2% 27.7 0.0%
silver 3 73.1 72.8 -0.4% 72.1 -1.4% 72.1 -1.4% * *
silver 4 132.2 139.5 5.5% 139.5 5.5% 137.6 4.1% * *
sri lanka 2 30.6 31.0 1.2% 31.0 1.2% 31.0 1.2% 30.6 0.0%
sri lanka 3 74.1 74.1 0.0% 73.6 -0.7% 74.0 -0.1% 68.6 -7.4%
sri lanka 4 114.6 114.6 0.0% 110.7 -3.4% 112.5 -1.9% 99.0 -13.6%
states 2 93.9 99.2 5.6% 99.2 5.6% 99.2 5.6% 93.9 0.0%
states 3 241.4 241.4 0.0% 241.4 0.0% 240.4 -0.4% 217.1 -10.0%
states 4 348.4 348.4 0.0% 348.4 0.0% 345.5 -0.8% 329.4 -5.5%
x100 2 18.9 21.3 12.7% 21.3 12.7% 20.9 10.6% 18.9 0.0%
x100 3 55.9 55.9 0.0% 55.9 0.0% 53.2 -4.8% 49.6 -11.3%
x100 4 116.7 116.7 0.0% 116.2 -0.4% 111.1 -4.8% 89.8 -23.1%

Table 2. Block algorithm performance relative to greedy approach

Table 2 shows that MB-O matches or exceeds blocktools block balance
quality in all test instances, except the two silver cases where the method is too
computationally expensive. For t ≥ 3 instances we frequently see improvement
of 10% or more. The computationally more efficient MB-DC-G and MB-DC-
PAP approaches frequently outperform blocktools. We noted in Section 4.2
that the block balance of MB-DC-G and MB-DC-PAP is no worse than that
provided by MB-G. However, the results for blocktools are sometimes better
than MB-DC-G and MB-DC-PAP for two reasons. First, for t = 2, blocktools



produces optimal results when algorithm=optimal. Second, the blocktools

implementation of MB-G randomly breaks minimum-distance ties, see [23].

In Table 3 we compare the runtime of these approaches for selected test in-
stances. We see that for problems of modest size (everything other than silver),
(MB-O) is solved in well under ten seconds, well within reason for offline use
cases.

Name t MB-G MB-DC-G MB-DC-PAP MB-O

silver 2 1.44 3.00 3.11 1.44
silver 3 1.61 4.27 5.7 *
silver 4 1.3 6.62 30.29 *
states 2 0.01 0.15 0.15 1.91
states 3 0.01 0.56 0.33 2.43
states 4 0.01 0.45 0.58 7.21
x100 2 0.04 0.32 0.31 1.2
x100 3 0.03 0.58 0.65 3.22
x100 4 0.03 2.85 2.39 4.04

Table 3. Runtime comparison by problem and algorithm

In Table 2 we noted that MB-O cannot solve the full silver instance within
two hours. In Table 4 we solve increasingly large subsets of silver, observ-
ing that solution time increases rapidly with problem size and the number of
treatments.

n t=2 t=3 t=4 t=5 t=6

24 0.17 0.18 0.54 0.54 1.64
48 1.51 1.93 2.22 16.91 46.2
72 3.98 161.44 35.45 150.14 2551.25
96 10.55 1096.32 * * *

Table 4. MB-O runtime of silver by problem and number of treatments

Finally, we consider treatment balance. An example of covariate differences
between algorithms is shown in Figure 2, where the mean SMD µ for each co-
varate is plotted for each algorithm. It is seen that while there are variations
across covariates, overall the mean SMD µ for MB-O is 30% smaller than of
MB-G, µ = 0.09 and µ = 0.129, respectively.

We summarize covariate balance across algorithms and instances in Table 5,
reporting the ratio of the mean SMD of each solution to the best mean SMD
each instance. The mean ratio is for MB-O is 0.47, the best of all reported
methods. While covariate balance for MB-G, MB-DC-G, and MB-DC-PAP varies
by problem, they are similar in the aggregate.



Fig. 2. Mean SMD for states by treatment and algorithm

Name t MB-N MB-G MB-DC-G MB-DC-PAP MB-O

ifls expend 2 1.00 0.73 0.73 0.73 0.29
ifls expend 3 1.00 0.77 0.77 0.77 0.55
ifls expend 4 1.00 0.57 0.36 0.47 0.88
ifls school 2 1.00 0.44 0.47 0.44 0.26
ifls school 3 1.00 0.61 0.61 0.63 0.27
ifls school 4 0.89 0.76 0.68 0.63 1.00
leaps height 2 0.51 1.00 1.00 1.00 0.14
leaps height 3 1.00 0.71 0.30 0.74 0.25
leaps height 4 0.81 0.99 0.72 0.51 1.00
leaps test 2 1.00 0.67 0.67 0.62 0.25
leaps test 3 1.00 0.78 0.66 0.56 0.32
leaps test 4 0.85 0.63 0.65 0.55 1.00
mexico ene 2 1.00 0.49 0.49 0.57 0.28
mexico ene 3 0.96 0.96 1.00 0.96 0.23
mexico ene 4 1.00 0.66 0.65 0.70 0.52
silver 2 1.00 0.50 0.50 0.50 0.34
silver 3 1.00 0.65 0.48 0.68 0.58
silver 4 1.00 0.86 0.86 0.60 0.84
states 2 1.00 0.78 0.78 0.78 0.23
states 3 1.00 0.67 0.67 0.87 0.37
states 4 1.00 0.70 0.70 0.65 0.58
x100 2 1.00 0.18 0.18 0.10 0.01
x100 3 0.78 0.28 0.09 0.19 1.00
x100 4 1.00 0.41 0.37 0.26 0.19

µ 0.95 0.66 0.60 0.60 0.47
Table 5. Relative gap for covariate mean SMD by instance and algorithm



7 Conclusions

We have presented new approaches for matched block design that leverage mixed
integer programming and divide-and-conquer formulations. We have shown that
these approaches can provide improved match quality and covariate balance,
and that they can be employed to account for large problem sizes. We have also
presented a consolidated set of test instances that can be used to evaluate future
approaches.

We believe there are opportunities to further refine the mixed integer formu-
lation given in Section 4.1. We also believe that metaheuristic approaches are
a promising direction for matched block design, especially in conjunction with
the divide-and-conquer approach presented in Section 4.2. Finally, we believe
that there are opportunities to address the covariate balance problem in a more
principled manner than that presented in Section 5, as well as to consider block
and treatment balance in the same modeling framework.
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