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Abstract

The segment anything model (SAM) was released as a foundation model for image segmen-
tation. The promptable segmentation model was trained by over 1 billion masks on 11M
licensed and privacy-respecting images. The model supports zero-shot image segmentation
with various segmentation prompts (e.g., points, boxes, masks). It makes the SAM attrac-
tive for medical image analysis, especially for digital pathology where the training data are
rare. In this study, we evaluate the zero-shot segmentation performance of SAM model
on representative segmentation tasks on whole slide imaging (WSI), including (1) tumor
segmentation, (2) non-tumor tissue segmentation, (3) cell nuclei segmentation. Core Re-
sults: The results suggest that the zero-shot SAM model achieves remarkable segmentation
performance for large connected objects. However, it does not consistently achieve satisfying
performance for dense instance object segmentation, even with 20 prompts (clicks/boxes)
on each image. We also summarized the identified limitations for digital pathology: (1) im-
age resolution, (2) multiple scales, (3) prompt selection, and (4) model fine-tuning. In the
future, the few-shot fine-tuning with images from downstream pathological segmentation
tasks might help the model to achieve better performance in dense object segmentation.
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1. Introduction

Large language models (e.g., ChatGPT (Brown et al., 2020) and GPT-4 (OpenAI, 2023)),
are leading a paradigm shift in natural language processing with strong zero-shot and few-
shot generalization capabilities. Segmenting objects (e.g., tumor, tissue, cell nuclei) for
whole slide imaging (WSI) data is an essential task for digital pathology (Huo et al., 2021).
The ”Segment Anything Model” (SAM) (Kirillov et al., 2023) was proposed as a founda-
tion model for image segmentation. The model has been trained on over 1 billion masks
on 11 million licensed and privacy-respecting images. Furthermore, the model supports
zero-shot image segmentation with various segmentation prompts (e.g., points, boxes, and
masks). This feature makes it particularly attractive for pathological image analysis where
the labeled training data are rare and expensive.

In this study, we assess the zero-shot segmentation performance of the SAM model
on representative segmentation tasks, including (1) tumor segmentation (Liu et al., 2021),
(2) tissue segmentation (Deng et al., 2023), and (3) cell nuclei segmentation (Li et al.,
2021). Our study reveals that the SAM model has some limitations and performance gaps
compared to state-of-the-art (SOTA) domain-specific models.

2. Experiments and Performance

We obtained the source code and the trained model from https://segment-anything.

com. To ensure scalable assessments, all experiments were performed directly using Python,
rather than relying on the Demo website. The results are presented in Figure 1 and Table
1.

Tumor Segmentation. We employed SimTriplet (Liu et al., 2021) approach as the
SOTA method, with the same testing cohort to make a fair comparison. In order to be
compatible with the SAM segmentation model, the WSI inputs were scaled down 80 times
from a resolution of 40×, resulting in an average size of 860×1279 pixels. Tissue Seg-
mentation. We employed Omni-Seg (Deng et al., 2023) approach as the SOTA method,
with the same testing cohort to make a fair comparison.. The tissue types consist of the
glomerular unit (CAP), glomerular tuft (TUFT), distal tubular (DT), proximal tubular
(PT), arteries (VES), and peritubular capillaries (PTC). Cell nuclei Segmentation. The
MoNuSeg dataset (Kumar et al., 2019) includes 30 images for training and 14 for testing.
We evaluated the performance of SAM models against the BEDs model (Li et al., 2021), a
competitive nuclei segmentation model trained on the MoNuSeg training data.

3. Limitations on Digital Pathology

The SAM models achieve remarkable performance under zero-shot learning scenarios. How-
ever, we identified several limitations during our assessment.

Image resolution. The average training image resolution of SAM is 3300×4950 pix-
els (Kirillov et al., 2023), which is significantly smaller than Giga-pixel WSI data (> 109

pixels). Multiple scales. Multi-scale is a significant feature in digital pathology. Different
tissue types have their optimal image resolution (as shown in Table 1). Prompt selection.
To achieve decent segmentation performance in zero-shot learning scenarios, a considerable
number of prompts are still necessary. Model fune-tuning. A reasonable online/offline
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Figure 1: Qualitative segmentation results. The SOTA methods are compared with
SAM method with different prompt strategies.

Table 1: Compare SAM with state-of-the-art (SOTA) methods. (Unit: Dice score)

Method Prompts
Tumor Tissue Cell

0.5× 5× 10× 40× 40×

Tumor CAP TUFT DT PT VES PTC Nuclei

SOTA no prompt 71.98 96.50 96.59 81.01 89.80 85.05 77.23 81.77
SAM 1 point 58.71 78.08 80.11 58.93 49.72 65.26 67.03 1.95
SAM 20 points 74.98 80.12 79.92 60.35 66.57 68.51 64.63 41.65
SAM total points n/a 88.10 89.65 70.21 73.19 67.04 67.61 69.50
SAM total boxes n/a 95.23 96.49 89.97 86.77 87.44 87.18 88.30

total points/boxes: we place points/boxes on every single instance object (based on the
known ground truth) as a theoretical upper bound of SAM. Note that it is impractical in

real applications.

fine-tuning strategy is necessary to propagate the knowledge obtained from manual prompts
to larger-scale automatic segmentation on Giga-pixel WSI data.
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