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ABSTRACT

Large Language Models have been shown to contain extensive world knowledge
in their parameters, enabling impressive performance on many knowledge inten-
sive tasks. However, when deployed in novel settings, LLMs often encounter
situations where they must integrate parametric knowledge with new or unfamil-
iar information. In this work, we explore whether LLMs can combine knowledge
in-context with their parametric knowledge through the lens of counterfactual rea-
soning. Through synthetic and real experiments in multi-hop reasoning problems,
we show that LLMs generally struggle with counterfactual reasoning, often re-
sorting to exclusively using their parametric knowledge. Moreover, we show that
simple post-hoc finetuning can struggle to instill counterfactual reasoning ability –
often leading to degradation in stored parametric knowledge. Ultimately, our work
reveals important limitations of current LLM’s abilities to re-purpose parametric
knowledge in novel settings.

1 INTRODUCTION

Large Language Models (LLMs) internalize vast amounts of world knowledge during pretraining,
enabling impressive performance on a wide range of knowledge-intensive tasks such as open-domain
question answering, fact retrieval, and knowledge-base completion (Petroni et al., 2019; Liu et al.,
2019; Roberts et al., 2020). Benchmarks like NaturalQuestions and HotpotQA have driven progress
on recall-based and multi-hop reasoning, but they primarily evaluate a model’s ability to regurgitate
stored facts or compose chains of parametric knowledge without new external inputs (Yang et al.,
2018; Kwiatkowski et al., 2019).

In contrast, many real-world scenarios require LLMs to integrate their pretrained knowledge with
novel or hypothetical information provided at inference time. For example, consider a counterfactual
query:

“If Paris were located in Italy, in which country would the Eiffel Tower stand?”

Answering this correctly demands two distinct capabilities: Contextual Override and Selective Re-
trieval. In order to override parametric knowledge using context, the model must temporarily sup-
press its default fact that “Paris is in France” and accept the hypothetical premise. Furthermore, the
model must still retrieve and leverage the association between “Eiffel Tower” and “Paris” stored in
its weights, even though the location of Paris has been altered. Standard QA and multi-hop bench-
marks do not explicitly test this dual requirement.

A growing body of work has examined knowledge conflicts and context-based overrides in LLMs.
Studies on retrieval-augmented generation highlight how external documents can both help and
confuse a model when facts disagree (Lewis et al., 2021). Recent analyses of multi-hop reasoning
in synthetic settings (“grokking” transformers) show that models can learn to chain stored relations
but typically without the capacity to absorb new premises on the fly (Wang et al., 2024a). Yet none
of these works systematically probe counterfactual multi-hop reasoning, where the premise may
conflict with or extend the pretrained knowledge graph.

In this paper, we fill that gap by asking: Can modern LLMs selectively combine parametric knowl-
edge with in-context counterfactual premises to answer multi-hop questions correctly? Our key
contributions are:
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• Counterfactual QA benchmarks. We introduce both synthetic graph-based tasks (extend-
ing “Grokked” reasoning benchmarks) and real-world causal reasoning scenarios to isolate
cases of (i) reinforcing, (ii) adding, (iii) contradicting, and (iv) irrelevant context relative to
the pretrained knowledge graph.

• Empirical analysis. Through experiments on GPT-4o and other state-of-the-art models,
we identify two primary failure modes: (a) context-ignoring (model defaults to stored facts)
and (b) context-overfitting (model blindly follows the prompt). We quantify performance
across standard, chain-of-thought (CoT), and fine-tuned prompting strategies.

• Fine-tuning pitfalls. We demonstrate that simple post-hoc fine-tuning on counterfactual
examples often yields only marginal gains on the target tasks and can degrade performance
on standard factual benchmarks by inducing unintended heuristics.

• Practical implications. We discuss the impact of our findings for interactive systems,
retrieval-augmented pipelines, and safety-critical applications where accurate conditional
reasoning under novel premises is essential.

Taken together, our results reveal a fundamental limitation of current LLMs: despite their remark-
able capacity to memorize and retrieve facts, they lack robust mechanisms for on-the-fly modification
or extension of their internal knowledge graph in response to conflicting or new information. Ad-
dressing this gap will require new modeling and training paradigms that can dynamically integrate
stored and contextual knowledge without compromising either.

Parametric Knowledge (in weights)

Eiffel Tower

Paris

France

located in

located in

In-Context Counterfactual Premise

Paris

Italy

located in (premise)

If Paris were located in Italy, in which country would the Eiffel Tower stand?

Edges: = stored parametric fact = counterfactual premise

Fuse Inputs

Contextual Override
(Replace certain para-
metric knowledge with
context from prompt)

Selective Retrieval
(Retain relevant para-

metric knowledge)

Multi-hop Reasoner

Answer: Italy

Failure A: Context-ignoring
model defaults to stored facts (answers
“France”)

Failure B: Context-overfitting
follows premise but forgets relevant links (e.g.
Eiffel Tower is in Paris)

Figure 1: Concrete instantiation of the query. The counterfactual premise overrides Paris’s country
to Italy. A correct system performs Contextual Override and Selective Retrieval and answers Italy.
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2 RELATED WORKS

Multi-Hop QA Multi-hop question answering has been examined in a variety of prior works as
a measure of knowledge manipulation ability. (Yang et al., 2018) introduces a benchmark for mea-
suring multi-hop question-answering abilities for context-based question-answering. Allen-Zhu &
Li (2024) examines knowledge manipulation in controlled settings, finding that LLMs can struggle
to solve one-step knowledge manipulation tasks without COT or extensive fine-tuning. Wang et al.
(2024a), on the other hand, shows that transformers can implicitly solve multi-hop queries in the
grokking regime on a synthetic knowledge-graph task. Abramov et al. (2025) extends these findings
to more real settings by augmenting Wikipedia data. Yang et al. (2024b) study the reliability of
latent multi-hop reasoning on real-world knowledge, finding that certain types of relations are more
conducive to multi-hop reasoning than others. Biran et al. (2024) studies the mechanistic implemen-
tation of multi-hop question-answering in LLMs, finding that it tends to arise when intermediate
entities can be resolved in earlier layers of the model. . Unlike prior works, which primarily focus
on multi-hop reasoning involving only parametric knowledge, we study cases in which an LLM may
need to combine parametric and knowledge from its context.

Knowledge Conflicts Large Language Models (LLMs) face challenges with knowledge conflicts,
where external context clashes with internal parametric knowledge. Responses often prioritize
context, parametric stores, or blend them for factual accuracy. Some methods enforce contextual
premises (Yuan et al., 2024) or use attention pruning for context-exclusive outputs (Li et al., 2025).
While useful for overriding facts, these approaches may be ill-suited for counterfactual reasoning,
which requires selective retention and integration of parametric knowledge, not its wholesale dis-
missal. Conversely, closed-book QA relies solely on stored parametric facts (Petroni et al., 2019;
Roberts et al., 2020) but cannot adapt to novel information or reason under hypothetical conditions
deviating from this knowledge.

Hybrid techniques, especially retrieval-augmented generation (RAG), attempt to merge parametric
memory with retrieved information. Methods like REALM (Guu et al., 2020), RAG (Lewis et al.,
2021), Dense Passage Retrieval (DPR) (Karpukhin et al., 2020), and FiD (Izacard & Grave, 2020)
condition generation on external evidence, while advanced strategies such as AdaCAD (Wang et al.,
2024b) and CD2 (Jin et al., 2024) offer finer-grained balancing of these knowledge sources. Goyal
et al. (2025) studies the dynamics of finetuning models for context reliance, finding that instruction
tuning can often worsen context reliance. Although these methods enhance the incorporation of ex-
ternal factual information, they are generally not designed for the distinct challenges of counterfac-
tual reasoning. Specifically, they do not enable LLMs to accept a hypothetical premise contradicting
parametric facts, then selectively retrieve relevant parametric knowledge, and subsequently perform
complex multi-hop reasoning based on this newly integrated understanding.

Causal Reasoning and Counterfactuals in NLP Counterfactual reasoning is increasingly vital
in Natural Language Processing (NLP), especially with Large Language Models (LLMs), whose
causal reasoning capabilities are an active research area (Liu et al., 2024b). While some propose
LLMs as a new frontier for textual causal discovery (Kiciman et al., 2024), critical views suggest
they might be "causal parrots" merely echoing training data (Zečević et al., 2023). Benchmarking
efforts consistently reveal LLM limitations: CLadder assesses formal causal reasoning (Jin et al.,
2023), QRData highlights struggles with data-based causal tasks (Liu et al., 2024a), and Counter-
Bench shows poor performance on formal counterfactual inference (Chen et al., 2025). Studies like
Yamin et al. (2024) further detail these issues, identifying LLM failure modes such as over-reliance
on parametric knowledge or narrative shortcuts. Despite these struggles, research actively explores
using LLMs for specific NLP counterfactual tasks, like generating faithful explanations (Gat et al.,
2024) or alternative textual outputs via counterfactual token generation (Chatzi et al., 2024). These
endeavors underscore a critical gap: a deep understanding of how and why LLMs falter when inte-
grating their vast parametric knowledge with novel, in-context counterfactual premises, particularly
in multi-hop reasoning.
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3 EXPERIMENTS ON REAL-WORLD LLMS

3.1 PROBLEM FORMULATION FOR A CAUSAL CASE

We start off by testing the LLM’s capacity to reason about a very simple type of relationship between
events – basic causality. In this example, we task the LLM with the binary question of determining
if one event causes another event. Let’s assume we have in the LLM’s parametric (pre-training)
knowledge that X0 → X1 → Xn where Xi, .., Xn are events that occur in the real world such
as "rain falling" or "plants growing." We use the → notation to indicate direct causation. Simply
asking the LLM if X0 is a cause of X1 would constitute a one-hop query, and asking the LLM if X0

causes X2 constitutes a two-hop query. We note that state of the art LLMs like GPT 4o generally
succeed at these kinds of tasks. (Yang et al., 2024a) (All code and prompts for entire paper are in
Appendix/Supplementary Materials).

Now suppose that we further introduce contextual information at test-time. For example, what if
the LLM is told that instead of X0 → X1, we have that X0 → Y1 such that the LLM knows in its
parametric knowledge that Y1 → Y2. Can the LLM deduce that X0 is now a cause of Y2? Now we
have to deal with a more complex counterfactual multi-hop scenario. In the main body of the paper,
we include results from GPT-4o, Open AI’s SOTA reasoning model GPT-5 (Thinking), a fine-tuned
version of GPT-4o (GPT-5 is not fine-tuneable) and include results from LLama 3.1 in the Appendix.
We categorize the contextual information introduced to the LLM into 4 partitions, as follows:

1. Scenario 1 (Reinforcing Prior Knowledge): Prompting the LLM with a relationship al-
ready present in its prior knowledge graph, thereby reinforcing an existing edge. Example:
Given excessive rain causes flooding, query whether excessive rain causes infrastructure
damage.

2. Scenario 2 (Adding New Information): Prompting the LLM with scenario-specific in-
formation necessary to answer the query, but absent from its parametric knowledge graph,
akin to adding an edge. Example: Informing the LLM that excessive rain causes Timmy to
eat vegetables, and querying whether excessive rain improves Timmy’s health.

3. Scenario 3 (Contradicting Prior Knowledge): Prompting the LLM with information that
strongly contradicts its existing parametric knowledge, equivalent to replacing an edge in
its prior knowledge graph. Example: Informing the LLM that excessive rain causes desert
expansion and querying whether excessive rain promotes cactus growth.

4. Scenario 4 (Irrelevant Information): Prompting the LLM with unrelated information,
akin to providing an edge from a disconnected knowledge graph. Example: Informing the
LLM that fatty food consumption causes heart attacks, and querying whether excessive rain
leads to flooding.

3.2 PROMPTING METHODS

We compare three strategies: Standard—direct causal query; CoT—chain-of-thought prompting;
FT—fine-tuning on counterfactual examples with CoT explanations (160 examples, hyperparame-
ters in Appendix). Models are queried over either 1 or 2 counterfactual hops for simplicity.

3.3 RESULTS

We ask a binary cause/non-cause question (random baseline 50%). Figure 2 reports GPT-4o and
GPT-5 accuracy across the 4 scenarios.

3.3.1 SUCCESS WHEN CONTEXT DOES NOT OPPOSE PRIOR

We see that in Scenario 1 where we reinforce prior knowledge, Figure 2a shows that standard
prompting on GPT-4o with and without CoT, GPT-5(Thinking) and GPT-4o FT, the models perform
very well with results ranging between 90% accuracy and perfect. These results together demon-
strate that when contextual information reinforces existing knowledge, modern LLMs like GPT-4o
and GPT-5 can reliably utilize their parametric knowledge without being misled by the prompt. Such
robustness provides a useful baseline against which to compare the more challenging counterfactual
scenarios in Scenarios 2 and 3.
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3.3.2 FAILURE WHEN CONTEXT ADDS NEW INFORMATION OR CONTRADICTS PRIOR

In the adding-information scenario 2 plotted in Figure 2b, the non fine-tuned models show perfor-
mance rating between 60 and 75% accuracy while FT improves this to ≈90% by reinforcing task-
specific patterns. Under conflicting premises plotted in Figure 2c, performance collapses to near the
50% baseline with responses oscillating between stored and contextual facts with fine-tuning only
marginally improving accuracy. As significant errors persist even with finetuning, this highlights the
difficulty of overriding strong parametric priors. As such, it becomes clear that the greatest hurdle
we encounter is information that conflicts with our prior. In a sense, scenario 2 , the second worst
performance, where we add new information can be viewed as a weaker version of prior conflicting
information. For example, if we look back at the previous example where we inform the LLM that
excessive rain causes Timmy to eat vegetables, the LLM likely has a weak prior that rain does not
cause kids to eat vegetables in general.

3.3.3 MIXED RESULTS FOR IRRELEVANT INFORMATION

In the irrelevant-information scenario 4 plotted in Figure 2d, we see strong performance across the
board with finetuning on GPT 4o increasing the accuracy over standard and CoT GPT 4o prompting,
while the reasoning model GPT-5 achieves near perfect accuracy. It should be noted that LLama 3.1
8B results (appendix) show finetuning reduces performance. As such, we see mixed signals in this
regime, possibly owing to the large difference in parameter sizes in these models.

Legend
GPT4o CoT -FT GPT 4o GPT4o - CoT GPT5 - CoT
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Figure 2: Causal Counterfactual (CF) Plots comparing standard GPT-4o, GPT-4o CoT, GPT-4o Fine
tuned and GPT-5(Thinking) results. (a) Counterfactual Reinforces Prior, (b) Counterfactual Adds
new Information, (c) Counterfactual Conflicts with Prior, (d) Counterfactual is Irrelevant to Prior
and Query. 95 % CI is shown.

3.4 ALIGNMENT

Modern production LLMs are typically subjected to additional factuality and safety alignment
stages—e.g., instruction tuning and reinforcement learning from human (or AI) feedback—which

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

explicitly reward consistency with memorized facts and discourage speculative deviations (Ouyang
et al., 2022; Stiennon et al., 2020; Bai et al., 2022a;b; Glaese et al., 2022). This post-training pressure
biases models toward relying on their pretrained parametric knowledge even when prompts present
plausible counterfactual premises, making contextual overrides harder to enact reliably. This align-
ment likely plays a part in the results we see. To disentangle this alignment from our results, we
now train our own model in the coming section.

4 CONCEPTUAL EXPERIMENTS IN TOY SETTING

In the previous section, we demonstrated that state-of-the-art LLMs can struggle to perform coun-
terfactual reasoning tasks and that simple fine-tuning can be insufficient to overcome this. In this
section, we perform experiments in a synthetic setup to better understand the mechanisms behind
this difficulty. Our experiments take place on small transformers that we train from scratch, allow-
ing us to study counterfactual reasoning capabilities independently of potential confounders arising
from the factuality or alignment post-training of production LLMs.

4.1 SETUP

We perform controlled experiments in a synthetic knowledge graph setting, as used in prior studies
of knowledge-based reasoning Wang et al. (2024a). To summarize, we randomly generate a directed
graph G, where each vertex represents an entity e ∈ E from a set of entities E where entities are
linked by relations r ∈ R. For simplicity, each entity and relation is identified by a unique token in
the synthetic language that we study. The graph structure induces two forms of knowledge: atomic
facts and inferred facts.

Atomic facts describe a single edge in the knowledge graph and can be expressed as a triple of
(ei, rj , ek). These represent basic relationships between entities that must be memorized by the
model.

Inferred Facts are those that can be deduced by a two-hop composition of the atomic facts. Inferred
facts can be denoted as (ei, rj , rk, el), where there exists eb such that (ei, rj , eb), (eb, rk, el) ∈ G.
In the inferred fact setting, we refer to the first entity, ei, as the head entity and the final entity,
el, as the tail. The intermediate entity, eb, is referred to as the “bridge" entity. We refer to the
atomic fact (ei, rj , eb) as the first hop and (eb, rk, el) as the second hop. Intuitively, all atomic facts
must be explicitly seen in order to specify the knowledge graph. On the other hand, a model with
compositional capabilities can potentially generalize to predicting unseen inferred facts.

Knowledge Graph Pretraining We follow the training setup proposed in Wang et al. (2024a)
to train a model that is capable of deducing unseen inferred facts by composition. Concretely, the
model is presented with all atomic facts and a subset of the inferred facts. The remainder of inferred
facts are reserved for the test set. We perform the pretraining for many epochs, until the model
is capable of deducing the unseen inferred facts. Full knowledge pretraining hyperparameters are
provided in the Appendix and largely mirror the settings reported in Wang et al. (2024a).

Counterfactual Reasoning Task Our primary interest in this work is the ability of LLMs to per-
form counterfactual reasoning over their internalized knowledge. To study this, we propose the
following counterfactual reasoning task which requires the model to selectively contextually over-
ride its parametric knowledge with respect to certain entities, while selectively retrieving parametric
knowledge relative to other entities.

We consider the setting in which the model must incorporate a new relation from the context and
combine this contextual knowledge with existing parametric knowledge. Concretely, we study a set-
ting where a modified relation, which we term as the counterfactual premise is input in the context,
along with an inferred fact query. The LLM must then answer the inferred fact as if the contextually
provided relation was in the knowledge graph. As inferred facts require composing two relations,
successfully performing the counterfactual reasoning task requires the LLM to simultaneously over-
ride its parameteric knowledge (to incorporate the counterfactual premise) while also making use
of its parametric knowledge for the remaining relation. We additionally consider cases where the
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eh eb etr1 r2

r̃1

(a) Hop-1 relevant. CF premise r̃1 overrides r1;
model should retrieve r2 from stored knowledge.

eh eb etr1 r2

r̃2

(b) Hop-2 relevant. Retrieve r1 from stored knowl-
edge; CF premise r̃2 overrides r2

eh eb etr1 r2

ex eyr̃

(c) Irrelevant premise. CF r̃ is unrelated; model
should ignore it and use stored r1, r2.

eh eb etr1 r2

(d) Control (factual). No counterfactual; require ex-
plicit two-hop trace using stored relations.

Legend
stored counterfactual Query: eh

r1−→ eb
r2−→ et

Figure 3: Conceptual visualization of toy Counterfactual (CF) tasks with shortened segments. Solid
arrows are stored (parametric) edges; dashed arrows are counterfactual premises. Panels (a)–(c) are
the three evaluation splits; panel (d) is the factual CoT control.

counterfactual premise is irrelevant to the inferred fact query (i.e. does not involve either the head
or the bridge entity).

Finetuning Stage In our synthetic setup, the language model is only exposed to knowledge graph-
consistent relations during pretraining. Mirroring our experiments on frontier model, we finetune
these knowledge graph-pretrained models from the previous stage on the counterfactual reasoning
task which relies partially on the pretrained parametric knowledge. As finetuning often occurs on a
much narrower distribution than model pretraining, we restrict the head entities used in finetuning
to come from a 20% subset of the total entities in the knowledge graph. We also balance the training
and test sets equally between the following classes of examples:

1. Hop 1 Relevant Counterfactual: Here, the counterfactual premise modifies the first hop
of the inferred fact. As an example, consider the query “If Paris was in Spain, what lan-
guage would be spoken in Paris?". Here, it is discernible directly from the prompt that the
counterfactual premise should is relevant to the query.

2. Hop 2 Relevant Counterfactual: Here the counterfactual premise modifies the link be-
tween the bridge entity and the final answer. As an example consider the query “if Paris
were located in Italy, in which country would the Eiffel Tower stand?". This represents a
more challenging instance of counterfactual reasoning as the model must perform the first
hop before determining that the counterfactual query is relevant to the query.

3. Irrelevant Counterfactual: Finally, there may be cases in which the counterfactual
premise is entirely irrelevant to the multi-hop query. As an example, consider the multi-
hop query “If New York were located in Canada, in which country would the Eiffel Tower
stand?" Here, the presence of the counterfactual premise should logically not impact the
final answer.

Incorporating Counterfactual Reasoning during Pretraining We also examine a setting where
counterfactual queries are mixed in during the pretraining stage. Concretely, we mixed in the training
counterfactual prompt originally used for finetuning during the first stage of training (when atomic
and memorized facts are being learned). We considered two settings: Augmented in which the

7
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(a) Hop 1, Relevant (b) Hop 2, Relevant

(c) Irrelevant Counterfactual (d) Control Setting: Factual CoT

Figure 4: Breakdown of Performance in a Conceptual Setting (a-c) We plot the test accuracy
across stages of finetuning of the three types of counterfactual reasoning queries introduced in Sec-
tion 4.1. Our findings reveal that while finetuning can enable the transformer to incorporate the
contextual knowledge, it is ineffective at inducing selective usage of contextual knowledge. As a
result, performance on the irrelevant counterfactual split is low. (d) We show the performance of
a factual CoT task which does not introduce any conflict with parametric knowledge. We find that
fine-tuning is capable of incorporating this novel task into the model.

counterfactual examples are added in without modification and Marked-Augmented in which the
counterfactual examples are tagged with a special token before and added in the pretraining stage.

4.2 FINDINGS

Counterfactual Finetuning Induces Shortcuts In Figure 4a,4b and 4c we show the performance
of the model across the three splits throughout the finetuning process. Broadly, our results highlight
that finetuning on the counterfactual reasoning task is highly susceptible to learning various short-
cuts and, as a result, fails to perform uniformly well across the three splits of the evaluation dataset.
Concretely, in the first stage of training, the model quickly learns to simply repeat the entity shown
in the counterfactual premise. This leads to high accuracy in the Hop 2-Relevant split (Figure 4b)
(where the final answer is always the entity present in the counterfactual premise in the query). As
training continues, on the other hand, the model’s performance worsens on the Hop 2-Relevant split
, and the model transitions from performing badly to performing well on the Hop 1-Relevant split
(Figure 4a). Notably, the model never achieves strong performance on the Irrelevant counterfactual
split, despite this split being equally represented in the finetuning training set (Figure 4c). Our find-
ings suggest a key difficulty on this task lies in learning the selective override mechanism: the model
is capable of combining contextual and parametric knowledge, but is unable to learn to distinguish
when the counterfactual premise is relevant.

Performance Degradations Not a Result of Format Change One potential explanation for the
observed challenge of incorporating counterfactual reasoning ability during finetuning could arise
from a more generic phenomena of catastrophic forgetting by which the model may forget its pre-
training knowledge as it is further trained. To control for performance degradations induced by
mere fine-tuning, we constructed an additional downstream task which does not require any contex-
tual override of pre-trained knowledge. Concretely, we induce a format change where, rather than
directly output the response to the inferred fact query, the model must generate a chain-of-thought
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Figure 5: Incorporating Counterfactual Data in Pretraining We plot the worst-split accuracy
across pretraining when counterfactual examples are incorporated throughout pretraining both when
counterfactual examples. We observe that the in both cases, the counterfactual reasoning perfor-
mance approaches 100% and that marking counterfactual reasoning prompts accelerates training.

trace of the intermediate relations and entities from the head to the tail entities. As shown in Fig-
ure 4d, fine-tuning is able to quickly adapt the model to this task, as evidenced by the 100% test
accuracy. This suggests that the observed failure of fine-tuning arises not from generic catastrophic
forgetting, but depends on the counterfactual reasoning task. We hypothesize that the training dy-
namics involved in contextual override can exacerbate catastrophic forgetting.

Effect of Incorporating Counterfactual Data in Pretraining We explored adding counterfactual
data to pretraining (augmenting 20% of KG edges, Figure 5). Incorporating counterfactual data
indistinguishably from other pretraining data (Augmented in plot) or marking it with a special token
(Marked-Augmented in plot) in pretraining induce good accuracies across the different groups of
counterfactual points (i.e unrelated and related). Marked-Augmented performances converges faster
than the Augmented case. It is possible that counterfactual tasks introduce interfering gradients
which contribute to the suppression of parametric knowledge.

To summarize, our findings in simulation highlight that it is challenging for LLMs to selectively
override their parametric knowledge during pretraining. In the synthetic setting, counterfactual
finetuning quickly pushes the model towards over-relying on context. Notably, this contrasts with
the behavior we observe in production models, where performance primarily suffers on conflict-
ing knowledge scenarios. We attribute this difference to the fact that production models are likely
to undergo significant factuality training which could bias their behavior towards consistency with
parametric knowledge. Taken together our findings demonstrate that performing counterfactual rea-
soning tasks requires a delicate balance between preserving and overriding parametric knowledge,
which is difficult to instill during finetuning.

5 DISCUSSION

Our work highlights LLM challenges in counterfactual reasoning requiring dynamic integration of
parametric and contextual knowledge. Experiments show LLMs often default to parametric knowl-
edge or fail to balance contextual override with selective retrieval. Simple finetuning is limited,
inducing shortcuts or degrading knowledge. Pretraining with counterfactual data, while improving
such reasoning, can also harm factual task performance. These findings point to a core limitation:
current LLMs lack robust mechanisms for on-the-fly, conditional use of their internal knowledge.
In practice, we observe two recurring failure modes—context-ignoring and context-overfitting—that
persist across prompting strategies and fine-tuning. While our study sheds light on the challenges
LLMs face in integrating parametric knowledge with novel counterfactual premises, it is subject to
several limitations. In the toy setting, counterfactual premises are expressed as single-edge edits to a
static knowledge graph and queries are limited to two-hop chains. Many real-world scenarios often
involve multi-predicate interactions, ambiguous or probabilistic relationships, and noisy or conflict-
ing evidence from multiple sources. What is significant is that we show how models struggle even
under these simpler circumstances. Future work could focus on extending our analysis to deeper
and more noisy multi-hop relations.
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APPENDIX

All code is in supplementary materials

A CAUSAL CASE

A.1 FULL PROMPT LIBRARY

Below are every prompt template employed in our experiments. Placeholders (‘<. . . >‘) were dy-
namically filled in the code with the appropriate event names or lists, as described below.

Placeholder Definitions:

• ‘<Cause>‘: The event assumed to be the cause in the causal-query prompt (e.g., “Rain”).

• ‘<Effect>‘: The event assumed to be the effect in the causal-query prompt (e.g., “Flood-
ing”).

• ‘<Query>‘: The event whose causal relationship is being queried (e.g., “Crop Growth”).

• ‘<Target>‘: The event we are checking if ‘<Query>‘ causes (e.g., “Food Supply Increase”).

• ‘<PrevEvent>‘: The most recently generated event in the chain when expanding synthetic
event sequences.

• ‘<ExistingList>‘: A serialized list of all previously generated events in that chain (as a
Python list string), used to prevent duplicates.

A.2 A. GENERAL CAUSAL-QUERY PROMPTS

1. Standard (Direct) Prompt

Assume that <Cause> causes <Effect>.
Given this statement, does <Query> logically cause <Target>?
Only output your answer as <answer>Yes/No</answer>”
Feel free to extrapolate beyond the given context.

2. Chain-of-Thought (CoT) Prompt

Assume that <Cause> causes <Effect>.
Please think step by step
to decide whether <Query> logically causes <Target>.
Then output your reasoning and your answer: <answer>Yes/No</answer>

> **Fine-Tuned** model runs used these exact templates but pointed at the fine-tuned checkpoint.

A.3 EVENT CHAIN GENERATION PROMPTS

1. Causal Chain Expansion

generate an event that is caused by the event: <PrevEvent>
(if this event is empty pick a random choice, do not simply
ever output the text "if this event is empty pick a random choice"),
for example Cancer -> Death or Obesity -> Bad Heart Health.
Use an arrow between the two events such that <PrevEvent> is
the first item in the chain. Make sure the event you generate
is not already in the list: <ExistingList>. Make sure the
output only includes the two events with an arrow between them.
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Scenario 2: Counterfactual Adds New Information
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Scenario 3: Prior Conflicting Counterfactual
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Scenario 4: Irrelevant Counterfactual

Figure 6: LLama 3.1 8B Causal Counterfactual Plots, Scenario 1 Counterfactual Reinforces Prior,
Scenario 2- Counterfactual Adds new Information, (c) Scenario 3- Counterfactual Conflicts with
Prior, Scenario 4- Counterfactual is Irrelevant to Prior and Query. 95 % CI is shown.

2. Anticausal Chain Expansion

generate an event that is anticausal to <PrevEvent>
(meaning the effect is actually the opposite of what it should be),
for example Cancer -> Longer Life or Obesity -> Weight Loss.
Use an arrow between the two events. Make sure the event you
generate is not already in the list: <ExistingList>. Output
only the two events with an arrow between them.

3. “Irrelevant” Transition Event

generate a random event that is a result of <PrevEvent>
(meaning this is a specific strange scenario), for example
Rain -> Increased Chocolate Eating or Obesity -> Warm Weather.
This event should not typically be a result of <PrevEvent>.
Use an arrow between the two events. Start with <PrevEvent>
and separate the events with an ->.

4. Post-Transition Chain Expansion

generate an event that is caused by the event: <PrevEvent>
(if this event is empty pick a random choice), for example
Cancer -> Death or Obesity -> Bad Heart Health.
Use an arrow between the two events such that <PrevEvent>
is the first item in the chain. Make sure the event you
generate is not already in the list: <ExistingList>.
Output only the two events with an -> between them.

B LLAMA RESULTS

In these results in Figure 6 , we see similar trends to the GPT-4o results except that we see Fine
Tuning producing decreased accuracy for irrelevant counterfactuals. This mirrors what we see in the
toy example.
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C GPT FINETUNING HYPERPARAMETERS

Trained tokens: 38,754 Epochs: 3 Batch size: 1 LR multiplier: 2

D LLAMA 3.1 8B FINETUNING HYPERPARAMETERS

Epochs: 5, LoRA Rank:8,Learning Rate: 0.0001, Max Context Length:8192

E LLM USAGE

Our paper focuses on examining the reasoning abilities of Language Models. We do not use a
language model to assist with writing.

F TOY EXPERIMENT HYPERPARAMETERS

Hyperparameter Values
Learning Rate {10−5, 5× 10−5, 10−4}
Weight Decay {10−1, 10−2, 10−3}

Batch Size 512

G COMPUTE

In our toy experiment, we used 4 gpus per experiment. The GPU used was NVIDIA A6000 and we
had a total of 72 GPU hours.
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