
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

D2: IMPROVED TECHNIQUES FOR TRAINING REASON-
ING DIFFUSION LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

While diffusion language models (DLMs) have achieved competitive performance
in text generation, improving their reasoning ability with reinforcement learning
remains an active research area. Here, we introduce d2, a reasoning framework
tailored for masked DLMs. Central to our framework is a new policy gradient
algorithm that relies on properties of masking to accurately estimate the likelihoods
of sampling trajectories. Our estimators trade off computation for approximation
accuracy in an analytically tractable manner, and are particularly effective for
DLMs that support any-order likelihood estimation. We characterize and study
this property in popular DLMs and show that it is key for efficient diffusion-based
reasoning. Empirically, d2 significantly improves over previous diffusion reasoning
frameworks using only RL (without relying on supervised fine-tuning), and sets a
new state-of-the-art performance for DLMs on logical reasoning tasks (Countdown
and Sudoku) and math reasoning benchmarks (GSM8K and MATH500).

1 INTRODUCTION

Diffusion language models (DLMs) (Nie et al., 2025; Ye et al., 2025; Gong et al., 2025; Song et al.,
2025) have recently emerged as a competitive alternative to autoregressive (AR) models for text
generation, featuring attractive properties such as controllability (Nisonoff et al., 2024; Schiff et al.,
2025) and fast parallel generation (Wang et al., 2025a; Khanna et al., 2025). Yet, while reinforcement
learning (RL) has become the de-facto approach for inducing reasoning in AR LLMs, post-training
of DLMs using RL remains an active research area.

Here, we introduce d2, a reasoning framework that improves over previous approaches in the setting
of masked diffusion, a popular type of discrete diffusion. Central to our framework is a new policy
gradient algorithm that relies on properties of masking for the efficient estimation of the likelihood of
sampling trajectories. We complement this algorithm with practical recipes for post-training DLMs
using RL that achieve high performance without relying on supervised fine-tuning, as well as a
theoretical analysis.

Our technical approach starts from a policy gradient formulation in which likelihoods of trajectories
serve as importance weights. We propose two estimators of these likelihoods. The first, d2-StepMerge,
evaluates trajectories only at specific steps, reducing forward passes while controlling the approxi-
mation error; we theoretically study this error via a bound that decreases with the number of steps,

0

20

40

60

80

Ac
cu

ra
cy

11.8
22.1 25.2

91.9
Sudoku

0
10
20
30
40
50

19.9

42.2
51.2

56.6
Countdown

0

20

40

60

80 75.7 82.1 82.3 85.0
GSM8K

0

10

20

30

40 35.4
40.2 39.0 41.6

MATH500

LLaDA d1 wd1 d2 (ours)

Figure 1: Benchmark performance of different RL post-training algorithms applied to LLaDA-8B-
Instruct (Nie et al., 2025). Even without supervised finetuning (SFT), d2 outperforms d1 (Zhao et al.,
2025) with SFT and wd1 (Tang et al., 2025) on all four reasoning benchmarks.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

quantifying a compute-bias tradeoff. The second estimator, d2-AnyOrder, enables unbiased one-shot
trajectory likelihood estimation under an any-order causal decoding property (Hoogeboom et al.,
2021); we characterize this property and show that popular masked diffusion models such as LLaDA
(Nie et al., 2025) do not satisfy it by default, motivating architectures that do. Our analysis provides
evidence that enforcing any-order causality is key for efficient diffusion-based reasoning.

Empirically, d2 improves reasoning without supervised chain-of-thought (Wei et al., 2022) fine-tuning:
applied to LLaDA-8B-Instruct, it surpasses prior diffusion-based RL methods on logical (Countdown,
Sudoku) and mathematical (GSM8K, MATH500) benchmarks, establishing a new state of the art for
DLMs under matched FLOPs. We further demonstrate the one-shot estimator in a red-teaming setup,
where d2-AnyOrder efficiently steers an any-order causal DLM compared to DDPO (Black et al.,
2023).

In summary, our work makes the following contributions: (1) We derive a GRPO-style RL policy
gradient algorithm for DLMs that relies on trajectory likelihood estimates as importance weights.
(2) We introduce and study two estimators computing these likelihoods: d2-StepMerge, which
comes in analytical bounds on its approximation error, and d2-AnyOrder, which enables unbiased
one-pass likelihood estimates under an any-order causal property that we characterize and study.
(3) We complement our algorithm with a practical post-training recipe that achieves state-of-the-art
reasoning results among DLMs on Sudoku, Countdown, GSM8K, and MATH500, without relying on
supervised fine-tuning.

2 BACKGROUND

2.1 MASKED DIFFUSION LANGUAGE MODELS

Diffusion language models (DLMs) are characterized by two processes. The first is a pre-defined
corruption (also know as forward) process q. This process adds noise to a ‘clean’ token x drawn
from the data distribution to produce progressively noisy latents xt, for t ∈ [0, 1], with noise levels
increasing in t, and terminates at the fully corrupted latent x1 drawn from a simple prior. The second
process is the learned denoising (backward) process pθ, which is trained to undo the corruptions
from the forward trajectory. Recent discrete diffusion models have focused on forward processes
that interpolate between signal and noise (Austin et al., 2021), and in particular they rely on a
specific corruption process known as absorbing state / masked diffusion (referred to as MDLMs
henceforth) (Sahoo et al., 2024; Shi et al., 2024; Ou et al., 2024). The marginals of this process
reflect probability mass iteratively moving away from the data and towards a special mask token
m: q(xt | x) = αtx + (1 − αt)m, where αt is a noise schedule monotonically decreasing in t.
Importantly, both the forward and backward processes are assumed to apply independently along the
dimensions of the data, i.e., the tokens in a sequence.

Hoogeboom et al. (2021) and Ou et al. (2024) demonstrate that the MDLM training objective can be
transferred into an any-order autoregressive variant, thus enabling the model to generate sequences
autoregressively but not necessarily in a left-to-right dependency. Unlike vanilla MDLMs, which
conduct fully bidirectional attention, when performing any-order decoding, DLMs output their token
probability predictions only conditioned on the tokens that are decoded no later than themselves.

2.2 REINFORCEMENT LEARNING WITH VERIFIABLE REWARDS

Policy gradient methods (Williams, 1992; Sutton et al., 1999) have become a central paradigm for
improving the reasoning ability of large language models during post-training (Ouyang et al., 2022;
Ahmadian et al., 2024; Bai et al., 2022; Li et al., 2023). Starting from a pre-trained model πref,
reinforcement learning-based reasoning algorithms optimize a new policy network πθ by ascending
the gradient of the expected reward r for completions generated from πθ conditioned on an input
question q:

∇θEx1:L∼πθ(x1:L|q)
[
r(x1:L,q)

]
, (1)

where x1:L denotes a model-generated answer consisting of L tokens. A widely used approach in
this context is Group Relative Policy Optimization (GRPO) (Shao et al., 2024), which provides a
computationally efficient and low-variance estimator for policy updates. For each query q, GRPO

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

samples a group of G candidate answers {x1:L(1)

(1) ,x
1:L(2)

(2) , . . . ,x
1:L(G)

(G) } from a stale policy πold. Each

answer is then assigned an advantage value defined as A(i) =
r(x

1:L(i)

(i)
,q)−mean{r(x

1:L(j)

(j)
)}1≤j≤G

std{r(x
1:L(j)

(j)
)}1≤j≤G

.

GRPO employs the following clipped objective to optimize AR language models:

−Ex1:L∼πold(·|q)
[1
L

L∑
l=1

min
{
ρlAl, clip(ρl, 1−ϵ, 1+ϵ)Al

}
+βDKL

(
πθ(x

1:L | q) ∥πref(x
1:L | q)

)]
, (2)

where ρl = πθ(x
l|x<l,q)

πold(xl|x<l,q)
denotes the per-token importance ratio, and the same advantage value is

assigned to each token in a sequence. The clipping parameter ϵ constrains policy updates within
a trust region, and the KL regularization term penalizes divergence from the reference policy πref.
Importantly, due to the causal structure of autoregressive attention masks, the summation over L
tokens can be efficiently computed in a single model forward pass.

3 METHOD

3.1 REINFORCEMENT LEARNING OBJECTIVE FOR DLMS

In contrast to autoregressive (AR) models, whose likelihood accurately factorizes across token
positions, the exact likelihood of diffusion language models (DLMs) is computationally intractable.
This structural difference renders it theoretically unjustified to directly apply the AR policy gradient
formula to DLMs, and makes the derivation of a policy gradient for DLMs a nontrivial problem.

In this section, we introduce our derivation from the policy gradient formula to a modern GRPO-style
RL objective for masked DLMs. To begin, we define DLMs’ policy gradient objective with respect to
the final denoised tokens x1:L

0 :

∇θJ (θ) = ∇θEx1:L
0 ∼πθ(x1:L

0 |q)
[
r(x1:L

0 ,q)
]
. (3)

Inspired by Black et al. (2023), we marginalize the likelihood over time latents. Moreover, we
introduce importance sampling (Kakade & Langford, 2002) to allow reusing of trajectories generated
by a stale policy πold, which is widely adopted given the computational cost of on-policy sampling.
Based on these tricks, we state the following theorem to further simplify ∇θJ (θ) (see detailed proof
in Appendix 3.1).
Theorem 3.1. At θ = θold, ∇θJ (θ) admits the following decomposition over latent diffusion steps:

∇θ Ex1:L
0:T∼πold(x1:L

0:T |q)

[
r(x1:L

0 ,q)

T−1∑
t=0

L∑
l=1

1{xl
t+1=m,xl

t ̸=m}
πθ(x

l
t | x1:L

t+1,q)

πold(xl
t | x1:L

t+1,q)

]
. (4)

Remark 3.2. In practice, sequences are sampled once from πold and reused for multiple gradient
updates. After the first gradient update, the equivalence in Theorem 3.1 is no longer valid and is just
an approximation of the true policy gradient. However, this approximation is justified as long as θ
remains close to θold, which is typically enforced by restricting the size of each policy update.

To stabilize training, we adapt Eq. (4) by replacing rewards with advantages (Williams, 1992; Sutton
et al., 1999), introducing a clipped trust region (Schulman et al., 2015), and adding a regularization
term penalizing divergence from a reference policy (Schulman et al., 2017). Following Zhao et al.
(2025), we remove the standard deviation denominator in the advantage computation. In addition,
similar to how GRPO averages over sequence lengths, we add a 1

L regularization term to cancel out
the impact of different sequence lengths within a group. Overall, these operations lead to the GRPO
objective for diffusion language models.
Corollary 3.3. The GRPO objective for MDLMs is given by

− Ex1:L
0:T∼πold(x1:L

0:T |q)

[
T−1∑
t=0

1

L

L∑
l=1

1{xl
t+1=m,xl

t ̸=m} min{
πθ(x

l
t | x1:L

t+1,q)

πold(xl
t | x1:L

t+1,q)
Al,

clip(
πθ(x

l
t | x1:L

t+1,q)

πold(xl
t | x1:L

t+1,q)
, 1− ϵ, 1 + ϵ)Al}+ βDKL

(
πθ(x

1:L
0:T | q) ∥πref(x

1:L
0:T | q)

)]
. (5)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

q MASK MASK MASK MASK

q MASK MASK MASK

q MASK
diffu
sion

MASK

q MASK like
diffu
sion

q like
diffu
sion

LLMs

diffu
sion

like

LLMs

I

X4

X3

X2

X1

X0

tim
e

𝜋𝜽(x3|x4,q)

𝜋𝜽(x2|x3,q)

𝜋𝜽(x1|x2,q)

𝜋𝜽(x0|x1,q)

Full Trajectory

❌ Expensive

q MASK MASK MASK MASK

q MASK
diffu
sion

MASK

q like
diffu
sion

LLMs

like

I

X4

X2

X0

tim
e

𝜋𝜽(x2|x4,q)

𝜋𝜽(x0|x2,q)

StepMerge Trajectory

✅ Cheap ✅ Accurate

q MASK MASK MASK MASK

q like
diffu
sion

LLMsI

X4

X0

tim
e 𝜋𝜽(x0|x4,q)

Sparse Trajectory

❌ Inaccurate

Figure 2: Illustration of our proposed StepMerge strategy. In d2-StepMerge, we cut the trajectory
evenly into N time segments and evaluate the likelihood for each segment together. Newly decoded
tokens on which we compute the likelihood at the corresponding model forward pass are highlighted.

3.2 ESTIMATING THE POLICY GRADIENT FOR DLMS

Unlike AR, DLMs do not employ a left-to-right causal attention mask. Consequently, evaluating the
summation over the T diffusion steps in Eq. (5) with a single forward pass is not trivial. For a fully
bidirectional DLM, because each step in time is a full sequence xt, we have to run a full forward pass
on L tokens at each time t, significantly increasing the cost for computing π(xt|xt+1). To address
this computational bottleneck, we introduce two novel policy gradient estimators tailored for DLMs.

Our first estimator, d2-StepMerge, partitions a trajectory into contiguous time segments and evaluates
likelihood at specific individual steps. As shown in Section 5.1, the resulting method achieves high
performance with a significantly reduced compute budget compared to a full likelihood estimate.

Our second estimator, d2-AnyOrder, enables an unbiased likelihood evaluation of a trajectory with
a single model forward pass, contingent on the model maintaining an any-order decoding property.
Our finding highlights the theoretical and practical significance of any-order causality in advancing
diffusion-based reasoning models.

In summary, d2-StepMerge is broadly applicable to MDLMs and offers computational savings with
minimal loss of fidelity, whereas d2-AnyOrder is more accurate and efficient, but requires the any-
order causality property. In Section 5.2, we provide empirical evidence illustrating the trade-off
between these two estimators.

3.2.1 ESTIMATOR 1: D2-STEPMERGE

We now present d2-StepMerge. As illustrated in Figure 1, we cut the sampling trajectory of T tokens
evenly into N time segments, and optimize the diffusion policy with the following objective:

−Ex1:L
0:T∼πold(x1:L

0:T |q)

[
N−1∑
n=0

1

L

L∑
l=1

1{xl

(n+1) L
N

=m,xl

n L
N

̸=m} min{
πθ(x

l
n L

N

| x1:L
(n+1) L

N

,q)

πold(xl
n L

N

| x1:L
(n+1) L

N

,q)
Al,

clip(
πθ(x

l
n L

N

| x1:L
(n+1) L

N

,q)

πold(xl
n L

N

| x1:L
(n+1) L

N

,q)
, 1− ϵ, 1 + ϵ)Al}+ βDKL

(
πθ(x

1:L
0:T | q) ∥πref(x

1:L
0:T | q)

)]
. (6)

Understanding the role of N . With d2-StepMerge, we reduce the number of model passes from T
to N . A natural question to ask is what is the effect of N on the accuracy of the policy gradient? Since
the importance weight is the quotient of two trajectory likelihood evaluations, we further narrow this
down to studying the discrepancy between the complete likelihood decomposition of the trajectory
and that yielded by our StepMerge strategy. Formally, we define the KL divergence between the
complete and StepMerge decompositions by a masked DLM policy πθ as DN :

DN (πθ) = DKL(

T−1∏
t=0

∏
l s.t.

xl
t+1=m,xl

t ̸=m

πθ(x
l
t | x1:L

t+1,q)∥
N−1∏
n=0

∏
l s.t.

xl

(n+1) L
N

=m,xl

n L
N

̸=m

πθ(x
l
n L

N
| x1:L

(n+1) L
N
,q)).

(7)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

20 21 22 23 24 25

N
0.0

0.5

1.0

1.5

2.0

2.5

3.0

D
N

Sudoku
Countdown
GSM8K
MATH500

Figure 3: DN (πLLaDA) for varying N .

We compute DN for LLaDA-8B-Instruct (Nie et al., 2025)
on the test sets of four datasets (introduced in Section 5.1).
As shown in Figure 3, DN decreases monotonically with
increasing N , indicating that d2-StepMerge trades com-
pute for likelihood estimation precision.

Remark 3.4. diffu-GRPO (Zhao et al., 2025) is a special
case of d2-StepMerge where N = 1. As noted above,
N = 1 produces an inaccurate likelihood estimation and
may thus harm the performance of RL. This is consistent
with our experimental results shown in Section 5.1.

3.2.2 ESTIMATOR 2: D2-ANYORDER

In this section, we present d2-AnyOrder, our second policy gradient estimator that can obtain
likelihood estimation of a trajectory losslessly and with one model pass. Importantly, d2-AnyOrder
is contingent on an any-order decoding property of MDLMs. Therefore, we first briefly recap any-
order decoding, based on which we propose our one-shot likelihood evaluation. We then formally
introduce the d2-AnyOrder objective. Moreover, we examine the application scope of d2-AnyOrder
and discover that although previous works (Hoogeboom et al., 2021; Ou et al., 2024) have implied
an equivalence between fully bidirectional MDLMs and any-order MDLMs, applying any-order
decoding to the former type of models is nontrivial in practice. This observation encourages us to
provide a more detailed investigation of the any-order causality feature of MDLMs (see Section 4.2).

MASK MASK MASK

MASK MASKfor

Step 1

MASK MASK

MASKfor

Step 2

for

d2

MASK

for

Step 3

for

d2

d2

RL

pos1 pos2 pos3 pos1 pos2 pos3 pos1 pos2 pos3

(a) Fully bidirectional MDLM decoding.

MASK MASK MASK

MASK MASKfor

Step 1

MASK MASK

MASKfor

Step 2

for

d2

MASK

for

Step 3

for

d2

d2

RL

pos1 pos2 pos3 pos1 pos2 pos3 pos1 pos2 pos3

(b) Any-order decoding.

Figure 4: Illustration of different DLM decoding strategies. We depict attention with query tokens
(one layer up) attending to keys/values (one layer below) via an undirected connected line. The output
at each position is depicted with a directed arrow. “pos” refers to positional encoding index. We use a
three token example where the decoding order is ”for→d2→RL”. At each time step, newly added
attention relations in any-order decoding are highlighted with red line markers.

MASK MASK MASK

pos1 pos2 pos3

RLford2

pos1 pos2 pos3

 𝜋𝜽(d2) 𝜋𝜽(for) 𝜋𝜽(RL)

Figure 5: Illustration of one-
shot trajectory likelihood evalua-
tion. Continuation of the example
from Figure 4.

Notations. Given a token trajectory x1:L
0:T , for each position

l, we use tl to denote the time step when ml is decoded as
xl
0. We define Ωl = {l′ | tl′ > tl}. Intuitively, Ωl includes

all the positions decoded before xl
0 because t goes from T to

0 during sampling. We then denote {xl
0 | l ∈ Ωl} as xΩl

0 .
Token positions decoded at time step t are denoted as Ut and
xUt
0 = {xl

0 | l ∈ Ut}.

Any-order decoding. In the vanila MDLM decoding process
(Figure 4a), all tokens can attend to each other, making the
attention pattern fully bidirectional. Extending Hoogeboom
et al. (2021), we propose a different decoding strategy termed
any-order decoding (Figure 4b). Specifically, a mask token ml

attends to xΩl
0 ∪ {ml} when it is decoded. After it decodes to

xl
0, it attends to xΩl

0 ∪ xUtl (the set of tokens unmasked previously and concurrently to that token),
and this attention pattern stays unchanged for the rest of the sampling process. Note that our decoding
method allows multiple tokens to be decoded every time step (see Appendix B.1 for more details).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

One-shot trajectory likelihood evaluation. Recall that the likelihood of a trajectory x1:L
0:T generated

via any-order decoding is πθ(x
1:L
0:T) =

∏T−1
t=0

∏
l∈Ut

πθ

(
xl
t

∣∣x1:L
t+1

)
. We propose that the above

likelihood can be computed in one forward pass. To efficiently implement this computation, we
construct a 2L-length sequence x1:L

0 ⊕ mL+1:2L, where ⊕ denotes concatenation along the sequence
dimension and mL+1:2L are mask tokens. The positional encodings are assigned as posl = l mod L
for 1 ≤ l ≤ 2L, so that each token–mask pair shares the same position index. We then define the
attention mask so that as a query token, xl attends to xΩl ∪xUtl , and mL+l attends to xΩl ∪{mL+l}
As illustrated in Figure 5, the output logits of the mask token at position L+ l reproduce exactly the
logits of xl

0 as if it had been decoded during sampling. We therefore denote the resulting likelihood
estimate as πAO

θ

(
xl
0

∣∣x1:L
0 ⊕mL+1:2L

)
. More details are provided in Appendix B.3.

d2-AnyOrder. We hereby introduce d2-AnyOrder. For a DLM that applies to any-order decoding,
we propose to train the policy network with the following d2-AnyOrder objective:

− Ex1:L
0:T∼πold(x1:L

0:T |q)

[
1

L

L∑
l=1

min{π
AO
θ (xl

0 | x1:L
0 ⊕mL+1:2L,q)

πAO
old (x

l
0 | x1:L

0 ⊕mL+1:2L,q)
Al,

clip(
πAO
θ (xl

0 | x1:L
0 ⊕mL+1:2L,q)

πAO
old (x

l
0 | x1:L

0 ⊕mL+1:2L,q)
, 1− ϵ, 1 + ϵ)Al}+ β DKL

(
πθ(x

1:L
0:T | q) ∥πref(x

1:L
0:T | q)

)]
.

(8)
Application Scope of d2-AnyOrder. Since d2-AnyOrder relies on any-order decoding, which is
not the default sampler for many DLMs, it is necessary to explore the types of DLMs to which
d2-AnyOrder applies. Previous works (Hoogeboom et al., 2021; Sahoo et al., 2025b) have proposed
special training algorithms for any-order DLMs. Thus, d2-AnyOrder naturally applies to DLMs
trained with these algorithms. Although Hoogeboom et al. (2021); Ou et al. (2024) have shown that
the training objective of any-order DLMs is equivalent to that of fully bidirectional MDLMs, we
discover empirically that, in practice, any-order decoding does not apply to models trained with the
latter objective, such as LLaDA.

Table 1: Average per token log-likelihood
for sequences generated by πref and evalu-
ated under πref and the one-shot any-order
version of the same model πao.

Per token LL. DKL(πref||πao)

πref -0.128 —
πao -3.051 2.334

We first apply any-order decoding to LLaDA directly
and observe that LLaDA generates the EOS token im-
mediately when the decoding position does not attend
to any mask tokens to its right. In addition, we design
another experiment where we generate completions to
questions from the GSM8K test set using LLaDA-8B-
Instruct, and then compute the trajectory log-likelihood
(LL.) by the full trajectory decomposition (denoted as
πref) as ground-truth, and the one-shot trick (denoted as
πao). We also compute the DKL between πref and πao.

In Table 1, we see that the LL. estimate attained from the one-shot trick is an order of magnitude
different than that obtained from the ground-truth πref. Hence, it is not practical to directly apply the
one-shot any-order trick to LLaDA. We hypothesize that this is because LLaDA allows tokens to
attend to mask token positions decoded after them. This attention design, although not necessary
from a probabilistic perspective, has enabled the neural network to store important information in the
hidden states of mask tokens, thereby limiting LLaDA’s potential for RL post-training.

4 THEORETICAL ANALYSIS

4.1 D2-STEPMERGE

In this section, we introduce a bound for DN (defined in Section 3.2.1) to quantify the compute-bias
tradeoff of d2-StepMerge. Our upper bound monotonically decreases as N increases, theoretically
justifying our observation in Figure 3.
Theorem 4.1 (Approximation Error Bound). Suppose πθ has a fixed schedule where L tokens are
unmasked over T timesteps. The KL divergence DN (πθ) between the full trajectory and StepMerge
approximation is bounded by:

DN (πθ) ≤ L · log
(
T

N
+ 1

)
+ L · ϵblock (9)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

where ϵblock is a constant measuring how much the model’s token predictions can change when we
skip intermediate diffusion steps within a block (see our proof in Appendix A.2).

4.2 D2-ANYORDER

In this section, we provide a more detailed definition of the any-order causality feature of DLMs.
Assuming a Transformer architecture, we denote the token positions that query token xl

t attends to at
time step t as Al

t. Additionally, we assume that when decoding a token, a DLM policy should attend to
all previously unmasked tokens to maximize information utilization. Formally, inheriting the notation
system from Section 3.2.2, we define a DLM as reasonable if ∀1 ≤ l ≤ L,∀0 ≤ t ≤ tl,Ωl ⊆ Al

t.

Definition 4.2. A reasonable Transformer DLM policy πθ is any-order causal if when decoding a
trajectory x1:L

0:T , for all 1 ≤ l ≤ L the attention pattern satisifies:

1. Unmasked tokens’ attentions are consistent. ∀ 0 ≤ ti ̸= tj < tl, we have Al
ti = Al

tj ,
2. Tokens don’t attend to future when decoded. Al

tl
⊆ Ωl ∪ {l},

3. Unmasked tokens don’t attend to future. if xl is not within the last two decoding steps,
then ∀0 ≤ t < tl, A

l
t ⊆ Ωl ∪ Utl .

Theorem 4.3. For any Transformer networks with more than one layer, a DLM trajectory likelihood
can be computed by one model pass iff. πθ is any-order causal (proof provided in Appendix A.3).

0 1 2 3 4 5 6
FLOPs 1e19

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

diffu-GRPO (d1)
StepMerge (d2)

(a) Sudoku

0 1 2 3 4 5
FLOPs 1e19

0.2

0.3

0.4

0.5
Ac

cu
ra

cy
diffu-GRPO (d1)
StepMerge (d2)

(b) Countdown

0.0 0.2 0.4 0.6 0.8 1.0 1.2
FLOPs 1e20

0.76

0.78

0.80

0.82

0.84

Ac
cu

ra
cy

diffu-GRPO (d1)
StepMerge (d2)

(c) GSM8K

0.0 0.5 1.0 1.5 2.0
FLOPs 1e20

0.36

0.38

0.40

Ac
cu

ra
cy

diffu-GRPO (d1)
StepMerge (d2)

(d) MATH500

Figure 6: Performance-compute dynamics of d2-StepMerge on four reasoning benchmarks.

5 EXPERIMENTS

5.1 D2-STEPMERGE

Experimental Setup. To test d2-StepMerge’s effect on improving DLM’s reasoning capacity, we
follow Zhao et al. (2025) in using LLaDA-8B-Instruct (Nie et al., 2025) as the base model and apply
different RL post-training algorithms on top of it for four reasoning benchmarks, including two
mathematical reasoning benchmarks (GSM8K (Cobbe et al., 2021) and MATH500 (Lightman et al.,
2023)), and two logical reasoning benchmarks (Countdown and Sudoku). For both training and
evaluation, two tokens are generated at each time step. We use a group size of 6, and each batch
contains 16 questions. We track the compute requirements (measured in Floating-Point Operations,
i.e., FLOPs) and evaluate the test set performance of different methods for every fixed FLOP interval.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Baselines. To benchmark our proposed framework, we compare d2 against a diverse set of baselines.
Specifically, we include the original LLaDA, LLaDA 1.5 (Zhu et al., 2025), a low-variance direct
preference optimization (Rafailov et al., 2023) post-training algorithm, d1 (Zhao et al., 2025), a
hybrid method that combines supervised fine-tuning on the s1k (Muennighoff et al., 2025) long
chain-of-thought data with diffu-GRPO, as well as wd1 (Tang et al., 2025), which reformulates policy
optimization as a weighted likelihood objective to eliminate the dependence on policy ratios.

Table 2: Benchmark performance of different reasoning frame-
works. † indicates results evaluated on the released checkpoint. ‡
indicates results taken from the corresponding paper. Baselines
that include post-training are shaded. Best results are bolded.

Method Sudoku Countdown GSM8K MATH500

LLaDA† 11.8% 19.9% 75.7% 35.4%
LLaDA 1.5† 12.5% 23.4% 78.6% 36.8%
d1‡ 22.1% 42.2% 82.1% 40.2%
wd1‡ 25.2% 51.2% 82.3% 39.0%

d2 (ours) 91.9% 56.6% 85.0% 41.6%

Results. As shown in Fig-
ure 6, d2-StepMerge consis-
tently outperforms diffu-GRPO
in four reasoning benchmarks.
In Sudoku, Countdown, and
GSM8K, d2-StepMerge signif-
icantly dominates diffu-GRPO,
and in MATH500, d2-StepMerge
demonstrates a better trend.
These results indicate that d2
achieves a superior trade-off
between efficiency and perfor-
mance. Moreover, Table 2 shows
that even without supervised fine-
tuning on extra chain-of-thought data, d2 can outperform existing diffusion reasoning frameworks,
demonstrating the efficacy of our proposed likelihood evaluation strategy.

0 1 2 3 4 5 6
FLOPs 1e19

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

N=2
N=4
N=8
N=16
N=32
N=64

Figure 7: d2-StepMerge performance in Sudoku
with different N .

Ablation: Varying N in d2-StepMerge. In Fig-
ure 7, we show the Accuracy-FLOP trade-off of
d2-StepMerge with different values of N in the
Sudoku benchmark. With a small N , the model
does not reliably converge to competitive perfor-
mance because the corresponding likelihood es-
timation is highly inaccurate. In contrast, exces-
sively large N leads to over-allocation of com-
pute to likelihood estimation, resulting in slower
convergence. Our results identify N = 16 as a
favorable balance: it achieves performance com-
parable to N = 32 and N = 64, while requiring
substantially fewer FLOPs.

5.2 D2-ANYORDER

Experimental Setup. We take Eso-LM (Sahoo et al., 2025b), a special type of DLMs whose any-
order causal property is enforced by its training algorithms, and test d2-AnyOrder on top of it. We
use a 190M parameter model trained on OpenWebText (Gokaslan et al., 2019). Following Singhal
et al. (2025), we test d2-AnyOrder’s capacity to steer the model towards toxic output, which is rare in
the model’s normal behavior and useful in the red-teaming scenario. We utilize an existing toxicity
classifier (Logacheva et al., 2022) as the reward model, and the RL algorithm should increase the
toxicity score. In both training and evaluation, we let the model generate sentences with 512 tokens
in free form. We set the group size as 16, and each group consists of a batch of 4 samples. Similarly
to Section 5.1, we set the compute budget (measured by FLOPs) constant and evaluate the model
every fixed FLOP interval. For each checkpoint, we let the model generate 512 new token sequences,
and evaluate their average toxicity score under the reward model and their generative perplexity (Gen
PPL. ↓) under GPT2-XL (Radford et al., 2019).

Baselines. In this setting, generation is in free form without prompts; the likelihood evaluation in
diffu-GRPO and wd1 cannot provide helpful information. Thus, following Su et al. (2025), we
select DDPO (Black et al., 2023), a PPO-style algorithm that also decomposes the diffusion policy
gradient along t, as our baseline. Since d2 is a GRPO-style algorithm, we remove the value network
in DDPO and use the group advantage instead. In addition, DDPO does not involve trust regions or
KL divergence with the reference model, so we also remove the corresponding parts in d2 to conduct
a fair comparison.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
FLOPs 1e17

8

6

4

2

0

To
xi

cit
y

Sc
or

e

d2 Toxicity
DDPO Toxicity
d2 Gen PPL
DDPO Gen PPL

100

110

120

130

140

Ge
n

PP
L.

Figure 8: Toxicity steering results of d2-AnyOrder.

Results. As shown in Figure 8, under the same
compute budget, d2 substantially outperforms
DDPO in toxicity score, reaching near-zero val-
ues while DDPO remains below –8. Though the
GPT2-XL generative perplexity of d2 decreases
more than that of DDPO—suggesting greater
divergence from the reference model—we re-
gard this as reasonable given the substantially
stronger steering applied to d2.

Ablation: Comparing d2-AnyOrder and d2-
StepMerge. Figure 9 compares the two d2 vari-
ants on toxicity steering. For d2-StepMerge, we
fix N = 8, as it performs well in earlier experiments. d2-AnyOrder achieves a slightly better toxicity
score trend. Besides, d2-AnyOrder shows smaller drops in Gen PPL. at comparable toxicity levels,
indicating greater stability which is largely due to its unbiased estimation. In practice, when the
DLM satisfies the any-order causality property, d2-AnyOrder is preferable; otherwise, d2-StepMerge
provides a more general solution.

6 RELATED WORK, DISCUSSION, AND CONCLUSION

0.0 0.5 1.0 1.5
FLOPs 1e17

8

6

4

2

0

To
xi

cit
y

Sc
or

e

AnyOrder Toxicity
StepMerge Toxicity
AnyOrder Gen PPL
StepMerge Gen PPL

40

60

80

100

120

140

Ge
n

PP
L.

Figure 9: Comparison of d2-AnyOrder and d2-
StepMerge on toxicity steering.

RL for DLMs. Diffusion language models (Sa-
hoo et al., 2024; 2025a; Nie et al., 2025; Ye
et al., 2025) have recently emerged as a strong
alternative to AR, motivating a line of works
on reinforcement learning for DLMs. A cen-
tral challenge is to accurately estimate token
likelihood. diffu-GRPO (Zhao et al., 2025) ap-
proximates the likelihood using logits from an
input of all mask tokens. DiffuCoder’s coupled-
GRPO (Gong et al., 2025) proposes to improve
this estimate by randomly splitting sequences
into two segments. They also incorporate the 1

t
weighting factor from MDLM’s ELBO (Sahoo
et al., 2024) into their RL objective. wd1 (Tang
et al., 2025) reformulates policy optimization as a weighted likelihood objective and inherits the
likelihood estimation method of diffu-GRPO. LLaDOU (Huang et al., 2025) decomposes the likeli-
hood along the diffusion steps, though the direct approach is computationally prohibitive. Concurrent
to our work, TraceRL (Wang et al., 2025b) proposes merging timesteps for trajectory likelihood
evaluation. While TraceRL and our d2-StepMerge share the same objective, our method further
justifies this approach by establishing bounds on the KL divergence.

Limitations and Future Work. While d2-StepMerge achieves a favorable performance–efficiency
trade-off among diffusion language models, it still requires multiple forward passes and yields a
biased estimation, making it less optimal than autoregressive approaches. In contrast, d2-AnyOrder is
restricted to DLMs trained under specific constraints, limiting its general applicability. An important
next step is to investigate how to enforce the any-order causality property on pretrained checkpoints
such as LLaDA. Moreover, although our experiments show that the d2 RL algorithm alone can
significantly enhance reasoning, it remains an open question whether large-scale post-training on
DLMs requires additional supervised finetuning, or whether an RL-only approach, akin to DeepSeek-
R1-Zero (Guo et al., 2025), can be effectively applied in this setting.

Conclusion. In this work, we introduce d2, a principled RL framework for diffusion language models,
derived directly from the policy gradient formula with a transparent mathematical foundation. To
enable trajectory likelihood computation in the RL objective, we propose two customized estimators
and provide supporting theoretical analysis. We further explore the under-examined property of
any-order causality in DLMs, demonstrating its significance for enhancing reasoning capabilities.
Empirically, d2 achieves state-of-the-art performance on reasoning benchmarks for DLMs under
matched FLOP budgets, without relying on supervised chain-of-thought finetuning.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Arash Ahmadian, Chris Cremer, Matthias Gallé, Marzieh Fadaee, Julia Kreutzer, Olivier Pietquin,
Ahmet Üstün, and Sara Hooker. Back to basics: Revisiting reinforce style optimization for learning
from human feedback in llms. arXiv preprint arXiv:2402.14740, 2024.

Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Structured
denoising diffusion models in discrete state-spaces. Advances in Neural Information Processing
Systems, 34:17981–17993, 2021.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn Drain,
Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless assistant with
reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862, 2022.

Kevin Black, Michael Janner, Yilun Du, Ilya Kostrikov, and Sergey Levine. Training diffusion models
with reinforcement learning. arXiv preprint arXiv:2305.13301, 2023.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

Aaron Gokaslan, Vanya Cohen, Ellie Pavlick, and Stefanie Tellex. Openwebtext corpus. http:
//Skylion007.github.io/OpenWebTextCorpus, 2019.

Shansan Gong, Ruixiang Zhang, Huangjie Zheng, Jiatao Gu, Navdeep Jaitly, Lingpeng Kong, and
Yizhe Zhang. Diffucoder: Understanding and improving masked diffusion models for code
generation. arXiv preprint arXiv:2506.20639, 2025.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, and et al. Deepseek-r1: Incentivizing
reasoning capability in llms through reinforcement learning. Nature, 2025. doi: 10.1038/
s41586-025-09422-z.

Emiel Hoogeboom, Alexey A Gritsenko, Jasmijn Bastings, Ben Poole, Rianne van den Berg, and
Tim Salimans. Autoregressive diffusion models. arXiv preprint arXiv:2110.02037, 2021.

Zemin Huang, Zhiyang Chen, Zijun Wang, Tiancheng Li, and Guo-Jun Qi. Reinforcing the diffusion
chain of lateral thought with diffusion language models. arXiv preprint arXiv:2505.10446, 2025.

Sham Kakade and John Langford. Approximately optimal approximate reinforcement learning. In
Proceedings of the nineteenth international conference on machine learning, pp. 267–274, 2002.

Samar Khanna, Siddhant Kharbanda, Shufan Li, Harshit Varma, Eric Wang, Sawyer Birnbaum,
Ziyang Luo, Yanis Miraoui, Akash Palrecha, Stefano Ermon, et al. Mercury: Ultra-fast language
models based on diffusion. arXiv preprint arXiv:2506.17298, 2025.

Ziniu Li, Tian Xu, Yushun Zhang, Zhihang Lin, Yang Yu, Ruoyu Sun, and Zhi-Quan Luo. Remax: A
simple, effective, and efficient reinforcement learning method for aligning large language models.
arXiv preprint arXiv:2310.10505, 2023.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2023.

Varvara Logacheva, Daryna Dementieva, Sergey Ustyantsev, Daniil Moskovskiy, David Dale,
Irina Krotova, Nikita Semenov, and Alexander Panchenko. ParaDetox: Detoxification with
parallel data. In Proceedings of the 60th Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pp. 6804–6818, Dublin, Ireland, May 2022. As-
sociation for Computational Linguistics. doi: 10.18653/v1/2022.acl-long.469. URL https:
//aclanthology.org/2022.acl-long.469.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
scaling. arXiv preprint arXiv:2501.19393, 2025.

10

http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus
https://aclanthology.org/2022.acl-long.469
https://aclanthology.org/2022.acl-long.469

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Shen Nie, Fengqi Zhu, Zebin You, Xiaolu Zhang, Jingyang Ou, Jun Hu, Jun Zhou, Yankai Lin, Ji-
Rong Wen, and Chongxuan Li. Large language diffusion models. arXiv preprint arXiv:2502.09992,
2025.

Hunter Nisonoff, Junhao Xiong, Stephan Allenspach, and Jennifer Listgarten. Unlocking guidance
for discrete state-space diffusion and flow models. arXiv preprint arXiv:2406.01572, 2024.

Jingyang Ou, Shen Nie, Kaiwen Xue, Fengqi Zhu, Jiacheng Sun, Zhenguo Li, and Chongxuan Li.
Your absorbing discrete diffusion secretly models the conditional distributions of clean data. arXiv
preprint arXiv:2406.03736, 2024.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in neural information processing systems, 35:27730–
27744, 2022.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in neural information processing systems, 36:53728–53741, 2023.

Subham Sekhar Sahoo, Marianne Arriola, Yair Schiff, Aaron Gokaslan, Edgar Marroquin, Justin T
Chiu, Alexander Rush, and Volodymyr Kuleshov. Simple and effective masked diffusion language
models. arXiv preprint arXiv:2406.07524, 2024.

Subham Sekhar Sahoo, Justin Deschenaux, Aaron Gokaslan, Guanghan Wang, Justin Chiu, and
Volodymyr Kuleshov. The diffusion duality. arXiv preprint arXiv:2506.10892, 2025a.

Subham Sekhar Sahoo, Zhihan Yang, Yash Akhauri, Johnna Liu, Deepansha Singh, Zhoujun Cheng,
Zhengzhong Liu, Eric Xing, John Thickstun, and Arash Vahdat. Esoteric language models. arXiv
preprint arXiv:2506.01928, 2025b.

Yair Schiff, Subham Sekhar Sahoo, Hao Phung, Guanghan Wang, Sam Boshar, Hugo Dalla-torre,
Bernardo P de Almeida, Alexander Rush, Thomas Pierrot, and Volodymyr Kuleshov. Simple
and controllable uniform discrete diffusion language models. In The Thirteenth International
Conference on Learning Representations, 2025. URL https://openreview.net/forum?
id=i5MrJ6g5G1.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International conference on machine learning, pp. 1889–1897. PMLR,
2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models, 2024. URL https://arxiv. org/abs/2402.03300, 2(3):5, 2024.

Jiaxin Shi, Kehang Han, Zhe Wang, Arnaud Doucet, and Michalis Titsias. Simplified and generalized
masked diffusion for discrete data. In The Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024. URL https://openreview.net/forum?id=xcqSOfHt4g.

Raghav Singhal, Zachary Horvitz, Ryan Teehan, Mengye Ren, Zhou Yu, Kathleen McKeown, and
Rajesh Ranganath. A general framework for inference-time scaling and steering of diffusion
models. arXiv preprint arXiv:2501.06848, 2025.

Yuxuan Song, Zheng Zhang, Cheng Luo, Pengyang Gao, Fan Xia, Hao Luo, Zheng Li, Yuehang
Yang, Hongli Yu, Xingwei Qu, et al. Seed diffusion: A large-scale diffusion language model with
high-speed inference. arXiv preprint arXiv:2508.02193, 2025.

11

https://openreview.net/forum?id=i5MrJ6g5G1
https://openreview.net/forum?id=i5MrJ6g5G1
https://openreview.net/forum?id=xcqSOfHt4g

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Xingyu Su, Xiner Li, Masatoshi Uehara, Sunwoo Kim, Yulai Zhao, Gabriele Scalia, Ehsan Haji-
ramezanali, Tommaso Biancalani, Degui Zhi, and Shuiwang Ji. Iterative distillation for reward-
guided fine-tuning of diffusion models in biomolecular design. arXiv preprint arXiv:2507.00445,
2025.

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient methods
for reinforcement learning with function approximation. Advances in neural information processing
systems, 12, 1999.

Xiaohang Tang, Rares Dolga, Sangwoong Yoon, and Ilija Bogunovic. wd1: Weighted policy
optimization for reasoning in diffusion language models. arXiv preprint arXiv:2507.08838, 2025.

Guanghan Wang, Yair Schiff, Subham Sekhar Sahoo, and Volodymyr Kuleshov. Remasking discrete
diffusion models with inference-time scaling. arXiv preprint arXiv:2503.00307, 2025a.

Yinjie Wang, Ling Yang, Bowen Li, Ye Tian, Ke Shen, and Mengdi Wang. Revolutionizing reinforce-
ment learning framework for diffusion large language models. arXiv preprint arXiv:2509.06949,
2025b.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8(3):229–256, 1992.

Jiacheng Ye, Zhihui Xie, Lin Zheng, Jiahui Gao, Zirui Wu, Xin Jiang, Zhenguo Li, and Lingpeng
Kong. Dream 7b, 2025. URL https://hkunlp.github.io/blog/2025/dream.

Siyan Zhao, Devaansh Gupta, Qinqing Zheng, and Aditya Grover. d1: Scaling reasoning in diffusion
large language models via reinforcement learning. arXiv preprint arXiv:2504.12216, 2025.

Fengqi Zhu, Rongzhen Wang, Shen Nie, Xiaolu Zhang, Chunwei Wu, Jun Hu, Jun Zhou, Jianfei
Chen, Yankai Lin, Ji-Rong Wen, et al. Llada 1.5: Variance-reduced preference optimization for
large language diffusion models. arXiv preprint arXiv:2505.19223, 2025.

12

https://hkunlp.github.io/blog/2025/dream

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

CONTENTS

1 Introduction 1

2 Background 2

2.1 Masked Diffusion Language Models . 2

2.2 Reinforcement Learning with Verifiable Rewards 2

3 Method 3

3.1 Reinforcement Learning Objective for DLMs . 3

3.2 Estimating the Policy Gradient for DLMs . 4

4 Theoretical Analysis 6

4.1 d2-StepMerge . 6

4.2 d2-AnyOrder . 7

5 Experiments 7

5.1 d2-StepMerge . 7

5.2 d2-AnyOrder . 8

6 Related Work, Discussion, and Conclusion 9

A Theoretical Results 13

A.1 Proof of Theorem 3.1 . 13

A.2 Proof of Theorem 4.1 . 14

A.3 Proof of Theorem 4.3 . 21

B d2 Implementation Details 21

B.1 Any-Order Decoding that allows parallel generation. 21

B.2 Any-Order Decoding with Prompt . 21

B.3 One-shot Trajectory Likelihood . 22

C d2 Training Algorithms 22

D LLM Usage 24

A THEORETICAL RESULTS

A.1 PROOF OF THEOREM 3.1

Proof. We begin by recalling the definition of the RL objective:

J (θ) = Ex1:L
0 ∼πθ(x1:L

0 |q)
[
r(x1:L

0 ,q)
]
. (10)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Taking the policy gradient and expanding the expectation over the trajectory distribution, we have

∇θJ (θ) = ∇θ

∑
x1:L
0

πθ(x
1:L
0 | q) r(x1:L

0 ,q)

= ∇θ

∑
x1:L
0

∑
x1:L
1:T

πθ(x
1:L
0 | x1:L

1:T ,q)πθ(x
1:L
1:T | q) r(x1:L

0 ,q)

= ∇θ

∑
x1:L
0:T

πθ(x
1:L
0:T | q) r(x1:L

0 ,q)

= ∇θ Ex1:L
0:T∼πθ(x1:L

0 |q)
[
r(x1:L

0 ,q)
]
. (11)

Introducing importance sampling with respect to the stale policy πold, we obtain

∇θJ (θ) = ∇θ Ex1:L
0:T∼πold(x1:L

0:T |q)

[
r(x1:L

0 ,q)
πθ(x

1:L
0:T | q)

πold(x1:L
0:T | q)

]
. (12)

By exploiting the Markov factorization of the backward process, the joint distribution decomposes as

πθ(x
1:L
0:T | q) = π(x1:L

T)

T−1∏
t=0

πθ(x
1:L
t | x1:L

t+1,q). (13)

Substituting this factorization, we obtain

∇θJ (θ) = Ex1:L
0:T∼πold(x1:L

0:T |q)

[
r(x1:L

0 ,q)∇θ

∏T−1
t=0 πθ(x

1:L
t | x1:L

t+1,q)∏T−1
t=0 πold(x1:L

t | x1:L
t+1,q)

]
. (14)

In MDLM, we assume independence across token positions, the expression further decomposes as

∇θJ (θ) = Ex1:L
0:T∼πold(x1:L

0:T |q)

[
r(x1:L

0 ,q)∇θ

T−1∏
t=0

L∏
l=1

πθ(x
l
t | x1:L

t+1,q)

πold(xl
t | x1:L

t+1,q)

]
. (15)

Expanding the gradient of the product yields

∇θJ (θ) = Ex1:L
0:T∼πold(x1:L

0:T |q)

[
r(x1:L

0 ,q)

T−1∑
t=0

L∑
l=1

∇θ
πθ(x

l
t | x1:L

t+1,q)

πold(xl
t | x1:L

t+1,q)

∏
t′ ̸=t
l′ ̸=l

πθ(x
l′

t′ | x1:L
t′+1,q)

πold(xl′
t′ | x1:L

t′+1,q)

]
.

(16)

When evaluated at θ = θold, the product term reduces to 1, yielding

∇θJ (θ)
∣∣∣
θ=θold

= Ex1:L
0:T∼πold(x1:L

0:T |q)

[
r(x1:L

0 ,q)∇θ

T−1∑
t=0

L∑
l=1

πθ(x
l
t | x1:L

t+1,q)

πold(xl
t | x1:L

t+1,q)

]
. (17)

Finally, since the model πθ is only invoked when a masked token m becomes unmasked, the objective
simplifies to

∇θJ (θ)
∣∣∣
θ=θold

= ∇θ Ex1:L
0:T∼πold(x1:L

0:T |q)

[
r(x1:L

0 ,q)

T−1∑
t=0

L∑
l=1

1{xl
t+1=m,xl

t ̸=m}
πθ(x

l
t | x1:L

t+1,q)

πold(xl
t | x1:L

t+1,q)

]
.

(18)

A.2 PROOF OF THEOREM 4.1

Our proof proceeds in three key steps:

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

1. Decompose the diffusion process: We factor each diffusion step into timing (which
tokens unmask) and value (what values they take) components, exploiting the conditional
independence structure.

2. Bound consecutive timesteps: For adjacent timesteps, we prove the timing component
contributes at most 2k · log 2 bits (where k tokens unmask), while the value component
vanishes under mild assumptions.

3. Extend to full trajectory: We aggregate bounds over N blocks, showing each block
contributes at most kn logB bits, yielding the final O(U log(T/N)) bound.

To keep notation concise, we define a sequence without a superscript as xt = x1:L
t = [x1

t , . . . x
L
t] and

drop the prompt q that we condition on πθ(· | ·, q).

A.2.1 TIMING AND VALUE FACTORIZATION

The reverse process, πθ(xt | xt+1), can be decomposed into two conceptual and computational steps:
a timing decision of whether to unmask a token, followed by a value assignment of what it becomes.
This allows us to factor the distribution into two simpler components.

Definition A.1 (Timing and Value Decomposition). We introduce an indicator variable Sl
t =

1[xl
t+1 = m ∧ xl

t ̸= m] for the unmasking event, and a categorical random variable V l
t = xl

t

for the token’s value. They are aggregated as St = [S1
t . . . S

L
t] and Vt = [V 1

t . . . V L
t] and factorize

the reverse process:
πθ(xt | xt+1) = τ(St | xt+1)︸ ︷︷ ︸

Timing

· νθ(Vt | Sl
t, xt+1)︸ ︷︷ ︸

Value

. (19)

The reverse processes decomposes over tokens as πθ(xt | xt+1) =
∏L

l=1 πθ(x
l
t | x1:L

t+1) which emits
a similar per-token factorization πθ(x

l
t | x1:L

t+1) = τ(Sl
t | xl

t+1) · νθ(V l
t | Sl

t, x
1:L
t+1). We now define τ

and νθ as follows.

Timing Distribution (τ): This distribution models the probability of the unmasking event Sl
t for

any unmasking schedule (e.g. greedy, ancestral, top-k, etc.).

• If a token at t+ 1 is already unmasked (xl
t+1 ̸= m), it cannot unmask again; thus, the event

Sl
t = 1 has zero probability.

• If a token is masked (xl
t+1 = m), it unmasks with probability αt determined by the

unmasking schedule.

τ(Sl
t = s | xl

t+1) =


αt if s = 1 and xl

t+1 = m

1− αt if s = 0 and xl
t+1 = m

0 if s = 1 and xl
t+1 ̸= m

1 if s = 0 and xl
t+1 ̸= m

(20)

Value Distribution (νθ): This distribution assigns a value V l
t to the token, conditional on the timing

decision Sl
t and the full sequence context xt+1.

• If the decision was to unmask (Sl
t = 1), νθ is the categorical distribution over the vocabulary

V given by the softmax output of the neural network fθ.

• If the decision was to not unmask (Sl
t = 0), the process is deterministic: the token’s state

from t+ 1 is simply preserved at time t.

νθ(V
l
t = v | Sl

t, xt+1) =

{
softmax(fθ(xt+1)l)v if Sl

t = 1

δv,xl
t+1

if Sl
t = 0

(21)

where δa,b is the Kronecker delta, enforcing the deterministic state preservation when Sl
t = 0.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A.2.2 CONSECUTIVE TIMESTEP BOUNDS

We begin by analyzing the error over two consecutive timesteps t and t + 1. This allows for the
simplest possible analysis between the full trajectory and stepmerge trajectory:

ptrue(xt, xt+1 | xt+2) = πθ(xt | xt+1)πθ(xt+1 | xt+2) (Full Trajectory) (22)
papprox(xt, xt+1 | xt+2) = πθ(xt | xt+2)πθ(xt+1 | xt+2) (StepMerge Trajectory). (23)

We seek to bound the KL divergence between them:

DKL(ptrue∥papprox) = Eptrue

[
log

ptrue(xt, xt+1 | xt+2)

papprox(xt, xt+1 | xt+2)

]
= Eptrue

[
log

πθ(xt | xt+1)

πθ(xt | xt+2)

]
(24)

Lemma A.2 (Timing and Value Decomposition of KL Divergence). The KL divergence between the
true and approximate distributions for consecutive timesteps decomposes into a sum of timing and
value components:

DKL(ptrue∥papprox) = DKL, timing +DKL, value (25)

where the components are defined as:

DKL, timing = E(St,xt+1)∼ptrue

[
L∑

l=1

log
τ(Sl

t | xt+1)

τ(Sl
t | xt+2)

]
(26)

DKL, value = E(St,Vt,xt+1)∼ptrue

[
L∑

l=1

log
νθ(V

l
t | Sl

t, xt+1)

νθ(V l
t | Sl

t, xt+2)

]
(27)

Proof. The proof begins with the simplified expression for the KL divergence from Equation 24 and
applies the timing-value factorization of Equation 19. The expectation is over the joint distribution
ptrue(xt, xt+1 | xt+2), where xt comprises the timing and value variables (St, Vt).

DKL(ptrue∥papprox) = E(xt,xt+1)∼ptrue

[
log

πθ(xt | xt+1)

πθ(xt | xt+2)

]
(28)

= E(St,Vt,xt+1)∼ptrue

[
log

∏
l τ(S

l
t | xt+1)νθ(V

l
t | Sl

t, xt+1)∏
l τ(S

l
t | xt+2)νθ(V l

t | Sl
t, xt+2)

]
(29)

= E(St,xt+1)∼ptrue

[∑
l

log
τ(Sl

t | xt+1)

τ(Sl
t | xt+2)

]

+ E(St,Vt,xt+1)∼ptrue

[∑
l

log
νθ(V

l
t | Sl

t, xt+1)

νθ(V l
t | Sl

t, xt+2)

]
(30)

Note that the timing term does not depend on the value variable Vt (and only on τ). Thus it can be
marginalized out from the expectation over ptrue.

We now seek to bound the error in timing DKL, timing and value separately DKL, value.

Definition A.3 (Conditional Mutual Information). The conditional mutual information I(A;B | C)
measures the reduction in uncertainty about random variable A from knowing B, when C is also
known. It can be defined equivalently in terms of conditional entropy or as a Kullback-Leibler (KL)
divergence:

I(A;B | C) = H(A | C)−H(A | B,C) = DKL

(
p(a, b | c)∥p(a | c)p(b | c)

)
. (31)

Assumption A.4 (Fixed Unmasking Schedule). We assume a schedule where a fixed number of k
tokens are unmasked at each timestep t.

Lemma A.5 (Timing KL Bound). Under the fixed unmasking schedule, the timing component of the
KL divergence is bounded by the entropy of the timing decisions.

DKL, timing ≤ 2k · log 2 (32)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Proof. The proof first establishes the equivalence between the timing KL divergence (Equation 26)
and conditional mutual information, and then bounds this term using entropy.

First, we show the equivalence by applying the Markov property of the true process (Equation 22) in
the numerator:

DKL, timing = Eτtrue

[
log

τ(St | xt+1)

τ(St | xt+2)

]
= Eτtrue

[
log

τ(St | xt+1, xt+2)

τ(St | xt+2)

]
. (33)

We multiply and divide by τ(xt+1 | xt+2) to get the conditional mutual information (Theorem A.3)

DKL, timing = Eτtrue

[
log

τ(St|xt+1, xt+2)

τ(St|xt+2)
· τ(xt+1|xt+2)

τ(xt+1|xt+2)

]
(34)

= Eτtrue

[
log

τ(St, xt+1|xt+2)

τ(St|xt+2)τ(xt+1|xt+2)

]
(35)

= I(St;xt+1 | xt+2). (36)

We bound the conditional mutual information term by relating it to the entropy of the timing decisions,
which can be decomposed on a per-token basis.

I(St;xt+1 | xt+2) = H(St | xt+2)−H(St | xt+1, xt+2) (by definition of mutual information)
≤ H(St | xt+2) (since entropy is non-negative)

=

L∑
l=1

H(Sl
t | xt+2) (by cond. independence of tokens)

(37)

To evaluate this sum, we partition the tokens into those that unmask in the [t, t+2) interval and those
that do not.

L∑
l=1

H(Sl
t | xt+2) =

∑
l∈Unmasked

H(Sl
t | xt+2) +

∑
l/∈Unmasked

H(Sl
t | xt+2) (by partitioning the sum)

≤
∑

l∈Unmasked

log 2 + 0 (by bounding each term)

= 2k · log 2 (by summing over the set)
(38)

The second sum vanishes as its tokens have a deterministic timing decision (Sl
t = 0), resulting in

zero entropy. The first sum is over the 2k tokens that unmask in the interval. For each token, Sl
t is a

binary random variable representing the choice of unmasking at time t or t+ 1. The entropy of such
a variable is maximized at log 2 under maximum uncertainty (a uniform distribution over the two
outcomes). Using this upper bound for each of the 2k tokens yields the final result.

Definition A.6 (Value Prediction Sensitivity). Let ϵ be the maximum per-token, pointwise log-ratio
of value probabilities between consecutive timesteps, maximized over all possible values, tokens, and
states where an unmasking occurs.

ϵ = max
v,l,xt+1,xt+2

log
νθ(V

l
t = v | Sl

t = 1, xt+1)

νθ(V l
t = v | Sl

t = 1, xt+2)
(39)

= max
v,l,xt+1,xt+2

log
softmax(fθ(xt+1)l)v
softmax(fθ(xt+2)l)v

(40)

= max
v,l,xt+1,xt+2

(
fθ(xt+1)l,v − fθ(xt+2)l,v︸ ︷︷ ︸

Logit Difference

−Zl(xt+1, xt+2)
)

(41)

for the difference between log-softmax normalizers Zl(xt+1, xt+2) = log

(∑
j exp

(
fθ(xt+1)l,j

)
∑

j exp
(
fθ(xt+2)l,j

)).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Remark A.7 (Interpetation of Value Prediction Sensitivity). The value prediction sensitivity ϵ provides
a worst-case guarantee on the stability of the model’s value distribution νθ between consecutive
timesteps. It bounds how much νθ can change for any token value v at a position l by constraining
fluctuations in the underlying neural network’s raw logits—namely the difference between fθ(xt+1)l,v
and fθ(xt+2)l,v after normalization. A small ϵ therefore signifies that the entire logit vector for
position l remains relatively constant when the context shifts by one step (from xt+1 to xt+2). This
logit-level stability ensures that the model’s predictive distribution is not volatile, thereby validating
our StepMerge approximation, which relies on the assumption that intermediate states can be skipped
without drastically altering the final trajectory likelihood.

Lemma A.8 (Value KL Bound). Under the fixed unmasking schedule, the value component of the
KL divergence is bounded in terms of the value prediction sensitivity ϵ.

DKL, value ≤ k · ϵ (42)

Proof. We start with the definition of the value KL divergence:

DKL, value = Eptrue

[
L∑

l=1

log
νθ(V

l
t | Sl

t, xt+1)

νθ(V l
t | Sl

t, xt+2)

]
(43)

To analyze the sum inside the expectation, we partition the token indices based on the timing decision
Sl
t, which indicates whether token l is unmasked at step t. Let Ut = {l | Sl

t = 1} be the set of indices
for tokens that unmask, and Uc

t = {l | l /∈ Ut} = {l | Sl
t = 0} be the complementary set for all other

tokens. The sum can be explicitly decomposed as:

L∑
l=1

log
νθ(. . .)

νθ(. . .)
=
∑
l∈Ut

log
νθ(V

l
t | Sl

t = 1, xt+1)

νθ(V l
t | Sl

t = 1, xt+2)︸ ︷︷ ︸
Tokens unmasked at time t

+
∑
l∈Uc

t

log
νθ(V

l
t | Sl

t = 0, xt+1)

νθ(V l
t | Sl

t = 0, xt+2)︸ ︷︷ ︸
Tokens not unmasked at time t

(44)

≤
∑
l∈Ut

ϵ+
∑
l∈Uc

t

log
1

1
(45)

= k · ϵ (46)

For tokens that are unmasked at time t (l ∈ Ut), the value distribution νθ is defined by the model’s
softmax output, and the log-ratio is bounded by the value prediction sensitivity (ϵ). For any token that
is not unmasked at time t (l ∈ Uc

t), the value-setting process is a deterministic identity transformation,
where V l

t = xl
t+1 with probability 1.

Since this upper bound holds for any trajectory, the expectation over all trajectories is also bounded
by the same constant.

Lemma A.9 (Consecutive Timestep Bound). Under the fixed unmasking schedule Theorem A.4, the
total KL divergence between the true and approximate distributions for consecutive timesteps is
bounded by the sum of the timing and value bounds.

DKL(ptrue∥papprox) ≤ 2k · log 2 + k · ϵ (47)

Proof. The result follows directly by combining the bounds from the preceding lemmas.

DKL(ptrue∥papprox) = DKL, timing +DKL, value ≤ (2k · log 2) + (k · ϵ) (48)

A.2.3 ENTIRE TRAJECTORY BOUND

We extend the analysis from an L-length sequence at consecutive timesteps xt, xt+1 to the entire
trajectory x0 . . . xT with N total blocks. To do so, first consider block n with B = L/N timesteps
spanning t = [nB, nB + 1, . . . , nB + (B − 1)].

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Within this block, the true reverse process is a Markov chain over the full trajectory:

p
(n)
true(xnB , . . . , xnB+(B−1) | xnB+B) =

nB+(B−1)∏
t=nB

πθ(xt | xt+1) (Full Trajectory) (49)

The StepMerge approximation, however, assumes each state xt in the block is generated independently
conditioned only on the final state xnB+B :

p(n)approx(xnB , . . . , xnB+(B−1) | xnB+B) =

nB+(B−1)∏
t=nB

πθ(xt | xnB+B) (StepMerge Trajectory)

(50)
Lemma A.10 (Block KL Bound). Under the fixed unmasking schedule Theorem A.4, the KL diver-
gence for block n is bounded by:

D
(n)
KL (p

(n)
true∥p(n)approx) ≤

kB(B + 1)

2
log 2 +Bk · ϵblock (51)

where ϵblock is the maximum value prediction sensitivity over the timesteps in the block.

Proof. The KL divergence for block n is the expectation of the log-ratio of the true and approximate
distributions.

D
(n)
KL = E

p
(n)
true

[
log

∏nB+(B−1)
t=nB πθ(xt | xt+1)∏nB+(B−1)

t=nB πθ(xt | xnB+B)

]
(52)

= E
p
(n)
true

nB+(B−1)∑
t=nB

log
πθ(xt | xt+1)

πθ(xt | xnB+B)

 (53)

= E
p
(n)
true

nB+(B−1)∑
t=nB

log
τ(St | xt+1)

τ(St | xnB+B)


︸ ︷︷ ︸

D
(n)
KL, timing

+E
p
(n)
true

nB+(B−1)∑
t=nB

log
νθ(vt | St, xt+1)

νθ(vt | St, xnB+B)


︸ ︷︷ ︸

D
(n)
KL, value

(54)

Using the timing-value factorization Equation 19 and linearity of expectation, we decompose into
block-level timing and value components, D(n)

KL = D
(n)
KL, timing +D

(n)
KL, value, which we bound separately.

Timing Bound. The timing component is the sum of conditional mutual information terms

D
(n)
KL, timing =

nB+(B−1)∑
t=nB

E
p
(n)
true

[
log

τ(St | xt+1)

τ(St | xnB+B)

]
=

nB+(B−1)∑
t=nB

I(St;xt+1 | xnB+B) (55)

following the derivation in Theorem A.5. We can further bound the conditional mutual information
by the conditional entropy from Theorem A.3:

I(St;xt+1 | xnB+B) = H(St | xnB+B)−H(St | xt+1, xnB+B) ≤ H(St | xnB+B). (56)

Due to mutual exclusivity, each token can unmask at most once. For a token l masked at xnB+B ,
define Tl as its unmasking time (if any). The collection {Sl

t}nB+B−1
t=nB encodes which value Tl takes,

where Tl ∈ {nB, ..., nB +B − 1,∞}. Thus:
nB+B−1∑
t=nB

H(Sl
t | xnB+B) ≤ H(Tl | xl

nB+B = m) ≤ log(B + 1) (57)

Since exactly kB tokens unmask during the block:

D
(n)
KL, timing ≤

∑
l∈MnB+B

H(Tl | xl
nB+B = m) ≤ kB · log(B + 1) (58)

where MnB+B = {l : xl
nB+B = m} is the set of masked tokens at the block end.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Value Bound. The value component of the divergence is:

D
(n)
KL, value =

nB+(B−1)∑
t=nB

E
p
(n)
true

[
L∑

l=1

log
νθ(V

l
t | Sl

t, xt+1)

νθ(V l
t | Sl

t, xnB+B)

]
(59)

Following Theorem A.6, we define a block-level value prediction sensitivity ϵblock as the maximum
log-ratio within the block:

ϵblock = max
t∈[nB,(n+1)B),v,l,xt+1

log
νθ(V

l
t = v | Sl

t = 1, xt+1)

νθ(V l
t = v | Sl

t = 1, xnB+B)
(60)

At each timestep t, the inner sum over tokens l is non-zero only for the k tokens being unmasked
(Sl

t = 1) by definition of νθ (Equation 21). For each of these, the log-ratio is bounded by definition
by ϵblock. Therefore, the entire sum inside the expectation is bounded by k · ϵblock. Summing over
the B timesteps yields the total value bound:

D
(n)
KL, value ≤

nB+(B−1)∑
t=nB

k · ϵblock = Bk · ϵblock (61)

Total Bound. Combining the bounds for the timing and value components gives the final result for
the block-level KL divergence.

D
(n)
KL = D

(n)
KL, timing +D

(n)
KL, value ≤ kB · log(B + 1) +Bk · ϵblock (62)

Finally, we aggregate the per-block errors to establish a bound for the entire generation trajectory.
Since the approximation for each block is conditionally independent of the others given the state at
the end of the block, the total KL divergence is the sum of the per-block KL divergences.
Theorem A.11 (Main Bound). Let L be the total number of tokens (each unmasked exactly once),
B = T/N be the number of timesteps per block, and ϵblock be the maximum value prediction
sensitivity within a block. The KL divergence between the true sequential process (Full Trajectory)
and the block-parallel approximation (StepMerge Trajectory) is bounded by:

DKL(ptrue∥papprox) ≤ L · log(B + 1) + L · (B − 1) · ϵblock (63)

Proof. For block n, let k be the number of tokens unmasked per timestep in that block. From the
tighter timing bound using mutual exclusivity and the value bound:

D
(n)
KL ≤ kB · log(B + 1) + kB · ϵblock (64)

Summing over all N blocks:

DKL =

N−1∑
n=0

D
(n)
KL ≤

N−1∑
n=0

(kB · log(B + 1) + kB · ϵblock) (65)

=

(
N−1∑
n=0

kB

)
log(B + 1) +

(
N−1∑
n=0

kB

)
ϵblock (66)

Since each token unmasks exactly once and there are L tokens total we know
∑N−1

n=0 kB = L. This
yields:

DKL ≤ L · log(B + 1) + L · ϵblock (67)

Substituting B = T/N :

DKL ≤ L · log
(
T

N
+ 1

)
+ L · ϵblock (68)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

A.3 PROOF OF THEOREM 4.3

Proof. We first prove the necessity. If a DLM policy πθ is any-order causal, then by the one-shot
evaluation trick described in Section 3.2.2, the likelihood of an entire trajectory can be computed
with a single forward pass of the model.

We now prove the sufficiency by contradiction. Suppose a reasonable πθ is not any-order causal.
Then at least one of the three defining conditions fails. We check them one by one.

Condition 1. Assume there exist 1 ≤ l ≤ L and distinct 0 ≤ ti, tj < tl such that Al
ti ̸= Al

tj . By the

sampling process, there are mask tokens m
lti
ti and m

ltj
tj newly unmasked at ti and tj , respectively.

The reasonable DLM assumption gives l ∈ A
lti
ti and l ∈ A

ltj
tj . Hence m

lti
ti and m

ltj
tj both attend to

xl when decoded, yet xl attends to different token sets at ti and tj . Thus their likelihoods cannot be
jointly evaluated in one forward pass — a contradiction. So Condition 1 must hold.

Condition 2. Assume there exists 1 ≤ l ≤ L with Al
tl
̸⊆ Ωl ∪ {l}.

Since Ωl ⊆ Al
tl

, there is some other position l′ so that at time tl the token at l′ is still a mask ml′ .
Then ml attends to ml′ when decoded. By the reasonable DLM assumption we also have l ∈ Al′

tl′
.

So the query token ml′ knows what the clean token decoded at position l is. Then, when we do the
one model forward pass, the information of clean token l flows into the query embedding of ml′ , and
since there are more than one layers in the Transformer network, this information further flows into
the key value embeddings of ml′ , which ml attends to. This creates information leakage because ml

will be exposed to the information of its clean token in the one-model forward pass evaluation. Thus,
Condition 2 must hold.

Condition 3. Assume there exists 1 ≤ l ≤ L such that xl is not among the last two decoded tokens,
and some t < tl with Al

t ̸⊆ Ωl ∪ Ul. Then there is a position l′ with l′ /∈ Ωl ∪ Ul but l′ ∈ Al
t.

According to Condition 1, l′ ∈ Al
t is true for all 0 ≤ t < tl. Two possibilities arise:

1. l′ is the position decoded right after l. Since xl is not among the last two decoding steps,
there exist at least one token decoded after token l′ (denoted as l′′). According to the
reasonable DLM assumption, token l′ and token l′′ both have to attend to xl. However, the
token value at position l′ must be different at time tl′ and tl′′ , making it impossible to build
the attention mask for query token xl in the one forward pass setting.

2. l′ is not the position decoded right after l. There must be one mask token decoded in
between l and l′ (denoted as l′′). By the reasonable DLM assumption, ml′′ should attend
to xl when ml′′ is decoded, and xl should attend to ml′ . Thus, ml′′ indirectly depends on
ml′ at time step tl′′ , violating Condition 2.

In either subcase, one-shot evaluation fails. So Condition 3 must also hold.

In conclusion, since violating any of the conditions leads to a contradiction, the three conditions are
jointly necessary and sufficient.

B D2 IMPLEMENTATION DETAILS

B.1 ANY-ORDER DECODING THAT ALLOWS PARALLEL GENERATION.

We present Figure 10 to illustrate how our any-order decoding pattern allows parallel generation.

B.2 ANY-ORDER DECODING WITH PROMPT

In this section, we explicitly introduce the any-order decoding algorithm for sequences with a
prompt to promote understanding of our method. Here, we slightly change the notation to denote
the prompt as q1:LP , where each ql represents the prompt token at the lth position. Starting from
q1:LP ⊕mLP+1:LP+L, we specify the attention pattern of each token at all the time steps. First, we

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

MASK MASK MASK

MASK MASKlike

Step 1

pos1 pos2 pos3

MASK

pos4

!

MASK MASK

like

Step 2

pos1 pos2 pos3 pos4

!

like !

I d2

(a) Fully bidirectional MDLM decoding.

MASK MASK MASK

MASK MASKlike

Step 1

pos1 pos2 pos3

MASK

pos4

!

MASK MASK

like

Step 2

pos1 pos2 pos3 pos4

!

like !

I d2

(b) Any-order decoding.

Figure 10: Illustration of different DLM decoding strategies when more than one tokens are decoded
at a single time step. We depict attention with query tokens (one layer up) attending to keys/values
(one layer below) via an undirected connected line. The output at each position is depicted with a
directed arrow. “pos” refers to positional encoding index. We use a four token example where the
decoding order is ”like,!→ I, d2”. At each time step, newly added attention relations in any-order
decoding are highlighted. There are two types of new attention patterns: new masked to unmasked
attentions are highlighted using red markers, and new unmasked to unmasked patterns are highlighted
using green markers.

fix the prompt tokens’ attention pattern as ∀1 ≤ l ≤ LP , attn
l
t = {lp | 1 ≤ lp ≤ LP }. Next, for the

tokens that actually get decoded, a mask token ml attends to q1:LP ∪xΩl
0 ∪ {ml} when it is decoded.

After it is decoded as xl
0, it attends to q1:LP ∪ xΩl

0 ∪ xUtl , and this attention pattern stays unchanged
for the rest of the sampling process.

B.3 ONE-SHOT TRAJECTORY LIKELIHOOD

Following Appendix B.2, we introduce the one-shot trajectory likelihood evaluation for sequences
with a prompt. In this case, a sampled trajectory of L tokens is denoted as xLP+1:LP+L

0:T . Similarly to
Section 4.2, if it is generated using any-order decoding, its trajectory likelihood πθ(x

LP+1:LP+L
0:T |

q1:LP) =
∏T−1

t=0

∏
l∈Ut

πθ(x
l
t | x

LP+1:LP+L
t+1 ,q1:LP) can be attained with one model pass.

Concretely, we first build a LP + 2L sequence q1:LP ⊕ x1:L
0 ⊕ mL+1:2L, where ⊕ indicates

concatenation along the sequence dimension. The positional encoding indices posl are assigned as
follows:

posl =

{
l, l ≤ LP + L

l − L, LP + L < l ≤ LP + 2L
(69)

We then craft the attention mask so that as a query token, ql attends to q1:LP , xl
0 attends to q1:LP ∪

xΩl
0 ∪ {xUtl

0 }, and mL+l attends to q1:LP ∪ xΩl
0 ∪ {mL+l}. In Figure 11, we provide an example of

the attention mask pattern for both any-order decoding and the one-shot likelihood evaluation.

C D2 TRAINING ALGORITHMS

We present the pseudocode of d2-StepMerge and d2-AnyOrder in Algorithm 1 and Algorithm 2.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Sequence is decoded in 3 steps

Prompt:

Start:

Iteration 1:

Iteration 2:

Iteration 3:

Attention mask after iteration 1 Attention mask after iteration 2

Using a
attention mask, we can
compute the likelihood
of the full trajectory in

one forward pass

Initial attention mask

Figure 11: Attention masks that respect the causal order of generation. Tokens can only attend to
prompt tokens, to themselves, and to tokens that were decoded at an early iteration. Green squares
represent attention is ‘turned on’, i.e., attention bias of 0, between queries (rows) and keys (columns),
gray represents no attention, i.e., attention bias of −∞. Subscripts denote positional embedding
ids. In this example, the sequence is generated as a completion to the prompt PP with the following
trajectory: MMMMM → AMCMM → AMCME →ABCDE. (Top) Any-order causal attention
mask during generation. (Bottom) 2L× 2L attention mask that enables computation of likelihood for
entire sequence trajectory in one forward pass. The model receives a 2L sequence consisting of a
concatenation of the final L generated tokens and L mask tokens. The likelihood is computed using
the output of the second L output tokens.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

D LLM USAGE

Use of Large Language Models. LLMs were used only as an editorial tool to refine the writing
style and enhance clarity. No text, formulas, algorithms, or experimental results were generated or
suggested by LLMs; all scientific contributions are original work by the authors.

Algorithm 1 d2-StepMerge
Input: Reward model r, reference model πref, prompt distributionQ, number of completions per prompt G,
number of inner updates n, number of time segments N .
Initialize πθ ← πref
repeat

πold ← πθ

Sample prompt q ∼ Q
Sample G completion trajecotries {x(i)

0:T }
G
i=1 ∼ πold(· | q)

Compute advantage {A(i)}Gi=1 (see Section 2.2)
for j 1 to N do

stop gradient(Compute and collect {πold(x
(i)

j T
N

:(j+1) T
N

| q)}Gi=1)

stop gradient(Compute and collect {πref(x
(i)

j T
N

:(j+1) T
N

| q)}Gi=1)

end for
for gradient iterations 1 to n do

for j 1 to N do
Compute d2-StepMerge GRPO objective (Eq. (6)) with respect to {x(i)

j T
N

:(j+1) T
N

}Gi=1

Backward pass to calculate gradient
end for
Update θ with optimizer.

end for
until converged
return πθ

Algorithm 2 d2-AnyOrder
Input: Reward model r, reference model πref, prompt distributionQ, number of completions per prompt G,
number of inner updates n, number of sampling time steps T .
Initialize πθ ← πref
repeat

πold ← πθ

Sample prompt q1:LP ∼ Q
Sample G completions {xLP+l:LP+L(i)

0 }Gi=1 ∼ πold(· | q1:LP)
Compute advantage {A(i)}Gi=1 (see Section 2.2)

Build input sequence INPUT = q1:LP ⊕ x
LP+1:LP+L(i)

0 ⊕mLP+1:LP+2L(i))}Gi=1

Build attention mask, see Appendix B.3
stop gradient(compute {πAO

old (x
LP+1:LP+L(i)

0 | INPUT})
stop gradient(compute {πAO

ref (x
LP+1:LP+L(i)

0 | INPUT})
for gradient iterations 1 to n do

Compute d2-AnyOrder GRPO objective (Eq. (6))
Update θ with optimizer.

end for
until converged
return πθ

24

	Introduction
	Background
	Masked Diffusion Language Models
	Reinforcement Learning with Verifiable Rewards

	Method
	Reinforcement Learning Objective for DLMs
	Estimating the Policy Gradient for DLMs
	Estimator 1: d2-StepMerge
	Estimator 2: d2-AnyOrder

	Theoretical Analysis
	d2-StepMerge
	d2-AnyOrder

	Experiments
	d2-StepMerge
	d2-AnyOrder

	Related Work, Discussion, and Conclusion
	Theoretical Results
	Proof of Theorem 3.1
	Proof of Theorem 4.1
	Proof of Theorem 4.3

	d2 Implementation Details
	Any-Order Decoding that allows parallel generation.
	Any-Order Decoding with Prompt
	One-shot Trajectory Likelihood

	d2 Training Algorithms
	LLM Usage

