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ABSTRACT

While diffusion language models (DLMs) have achieved competitive performance
in text generation, improving their reasoning ability with reinforcement learning
remains an active research area. Here, we introduce d2, a reasoning framework
tailored for masked DLMs. Central to our framework is a new policy gradient
algorithm that relies on properties of masking to accurately estimate the likelihoods
of sampling trajectories. Our estimators trade off computation for approximation
accuracy in an analytically tractable manner, and are particularly effective for
DLMs that support any-order likelihood estimation. We characterize and study
this property in popular DLMs and show that it is key for efficient diffusion-based
reasoning. Empirically, d2 significantly improves over previous diffusion reasoning
frameworks using only RL (without relying on supervised fine-tuning), and sets a
new state-of-the-art performance for DLMs on logical reasoning tasks (Countdown
and Sudoku) and math reasoning benchmarks (GSM8K and MATHS500).

1 INTRODUCTION

Diffusion language models (DLMs) (Nie et al., 2025; Ye et al., 2025; Gong et al., 2025; Song et al.,
2025) have recently emerged as a competitive alternative to autoregressive (AR) models for text
generation, featuring attractive properties such as controllability (Nisonoff et al., 2024; Schiff et al.,
2025) and fast parallel generation (Wang et al., 2025a; Khanna et al., 2025). Yet, while reinforcement
learning (RL) has become the de-facto approach for inducing reasoning in AR LLMs, post-training
of DLMs using RL remains an active research area.

Here, we introduce d2, a reasoning framework that improves over previous approaches in the setting
of masked diffusion, a popular type of discrete diffusion. Central to our framework is a new policy
gradient algorithm that relies on properties of masking for the efficient estimation of the likelihood of
sampling trajectories. We complement this algorithm with practical recipes for post-training DLMs
using RL that achieve high performance without relying on supervised fine-tuning, as well as a
theoretical analysis.

Our technical approach starts from a policy gradient formulation in which likelihoods of trajectories
serve as importance weights. We propose two estimators of these likelihoods. The first, d2-StepMerge,
evaluates trajectories only at specific steps, reducing forward passes while controlling the approxi-
mation error; we theoretically study this error via a bound that decreases with the number of steps,
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Figure 1: Benchmark performance of different RL post-training algorithms applied to LLaDA-8B-
Instruct (Nie et al., 2025). Even without supervised finetuning (SFT), d2 outperforms d1 (Zhao et al.,
2025) with SFT and wdl (Tang et al., 2025) on all four reasoning benchmarks.
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quantifying a compute-bias tradeoff. The second estimator, d2-AnyOrder, enables unbiased one-shot
trajectory likelihood estimation under an any-order causal decoding property (Hoogeboom et al.,
2021); we characterize this property and show that popular masked diffusion models such as LLaDA
(Nie et al., 2025) do not satisfy it by default, motivating architectures that do. Our analysis provides
evidence that enforcing any-order causality is key for efficient diffusion-based reasoning.

Empirically, d2 improves reasoning without supervised chain-of-thought (Wei et al., 2022) fine-tuning:
applied to LLaDA-8B-Instruct, it surpasses prior diffusion-based RL methods on logical (Countdown,
Sudoku) and mathematical (GSM8K, MATH500) benchmarks, establishing a new state of the art for
DLMs under matched FLOPs. We further demonstrate the one-shot estimator in a red-teaming setup,
where d2-AnyOrder efficiently steers an any-order causal DLM compared to DDPO (Black et al.,
2023).

In summary, our work makes the following contributions: (1) We derive a GRPO-style RL policy
gradient algorithm for DLMs that relies on trajectory likelihood estimates as importance weights.
(2) We introduce and study two estimators computing these likelihoods: d2-StepMerge, which
comes in analytical bounds on its approximation error, and d2-AnyOrder, which enables unbiased
one-pass likelihood estimates under an any-order causal property that we characterize and study.
(3) We complement our algorithm with a practical post-training recipe that achieves state-of-the-art
reasoning results among DLMs on Sudoku, Countdown, GSM8K, and MATHS500, without relying on
supervised fine-tuning.

2 BACKGROUND

2.1 MASKED DIFFUSION LANGUAGE MODELS

Diffusion language models (DLMs) are characterized by two processes. The first is a pre-defined
corruption (also know as forward) process g. This process adds noise to a ‘clean’ token x drawn
from the data distribution to produce progressively noisy latents x;, for ¢ € [0, 1], with noise levels
increasing in ¢, and terminates at the fully corrupted latent x; drawn from a simple prior. The second
process is the learned denoising (backward) process pg, which is trained to undo the corruptions
from the forward trajectory. Recent discrete diffusion models have focused on forward processes
that interpolate between signal and noise (Austin et al., 2021), and in particular they rely on a
specific corruption process known as absorbing state / masked diffusion (referred to as MDLMs
henceforth) (Sahoo et al., 2024; Shi et al., 2024; Ou et al., 2024). The marginals of this process
reflect probability mass iteratively moving away from the data and towards a special mask token
m: g(x; | x) = ayx + (1 — oy)m, where o is a noise schedule monotonically decreasing in t.
Importantly, both the forward and backward processes are assumed to apply independently along the
dimensions of the data, i.e., the tokens in a sequence.

Hoogeboom et al. (2021) and Ou et al. (2024) demonstrate that the MDLM training objective can be
transferred into an any-order autoregressive variant, thus enabling the model to generate sequences
autoregressively but not necessarily in a left-to-right dependency. Unlike vanilla MDLMs, which
conduct fully bidirectional attention, when performing any-order decoding, DLMs output their token
probability predictions only conditioned on the tokens that are decoded no later than themselves.

2.2 REINFORCEMENT LEARNING WITH VERIFIABLE REWARDS

Policy gradient methods (Williams, 1992; Sutton et al., 1999) have become a central paradigm for
improving the reasoning ability of large language models during post-training (Ouyang et al., 2022;
Ahmadian et al., 2024; Bai et al., 2022; Li et al., 2023). Starting from a pre-trained model 7,
reinforcement learning-based reasoning algorithms optimize a new policy network 7y by ascending
the gradient of the expected reward r for completions generated from my conditioned on an input
question q:

VoEyiiL oy x| [r(x"E, )], 4))

where x''% denotes a model-generated answer consisting of L tokens. A widely used approach in
this context is Group Relative Policy Optimization (GRPO) (Shao et al., 2024), which provides a
computationally efficient and low-variance estimator for policy updates. For each query q, GRPO
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samples a group of GG candidate answers {x(li)L“) , xé)L(Z) ey x(léf)<c) } from a stale policy 7o1q. Each

1Ly 1:L(j)

s{r(x ) hics <o
GRPO employs the following clipped objective to optimize AR language models:

answer is then assigned an advantage value defined as A(;) =

L
1 . . M H
—EyxtiL oryula) [Z me {plAl7 Cllp(pl, 1—¢, 1+e)Al}+BDKL (7r9(x1 L | q) || wref(xl L | q)) ], 2)
=1

L <l
where p! = T2 X" genotes the per-token importance ratio, and the same advantage value is
7To]d(x |x< 7Q)

assigned to each token in a sequence. The clipping parameter e constrains policy updates within
a trust region, and the KL regularization term penalizes divergence from the reference policy 7.
Importantly, due to the causal structure of autoregressive attention masks, the summation over L
tokens can be efficiently computed in a single model forward pass.

3 METHOD

3.1 REINFORCEMENT LEARNING OBJECTIVE FOR DLMSs

In contrast to autoregressive (AR) models, whose likelihood accurately factorizes across token
positions, the exact likelihood of diffusion language models (DLMs) is computationally intractable.
This structural difference renders it theoretically unjustified to directly apply the AR policy gradient
formula to DLMs, and makes the derivation of a policy gradient for DLMs a nontrivial problem.

In this section, we introduce our derivation from the policy gradient formula to a modern GRPO-style
RL objective for masked DLMs. To begin, we define DLMs’ policy gradient objective with respect to

the final denoised tokens x}X:

Vaj(@) = VQEX%:LNﬂe(xé:L‘q) [’I“(X(lJ:L, q)] . (3)

Inspired by Black et al. (2023), we marginalize the likelihood over time latents. Moreover, we
introduce importance sampling (Kakade & Langford, 2002) to allow reusing of trajectories generated
by a stale policy 7,14, Which is widely adopted given the computational cost of on-policy sampling.
Based on these tricks, we state the following theorem to further simplify V.7 () (see detailed proof
in Appendix 3.1).

Theorem 3.1. Az 0 = 6,5, Vo T (0) admits the following decomposition over latent diffusion steps:

T—1 L l 1:L
1:L mo (% | X;47,Q)
Vo Exéi%Nﬂ'om(x&i%Iq) |:T(XO ) q) tz:% lz:; 1{xi+1:m, x!#m} Tod (Xi | X%erh q) . 4

Remark 3.2. In practice, sequences are sampled once from myy and reused for multiple gradient
updates. After the first gradient update, the equivalence in Theorem 3.1 is no longer valid and is just
an approximation of the true policy gradient. However, this approximation is justified as long as 0
remains close to 0,14, which is typically enforced by restricting the size of each policy update.

To stabilize training, we adapt Eq. (4) by replacing rewards with advantages (Williams, 1992; Sutton
et al., 1999), introducing a clipped trust region (Schulman et al., 2015), and adding a regularization
term penalizing divergence from a reference policy (Schulman et al., 2017). Following Zhao et al.
(2025), we remove the standard deviation denominator in the advantage computation. In addition,
similar to how GRPO averages over sequence lengths, we add a % regularization term to cancel out
the impact of different sequence lengths within a group. Overall, these operations lead to the GRPO
objective for diffusion language models.

Corollary 3.3. The GRPO objective for MDLMs is given by
T-1, L

1 . 770(Xé | X%;Lleq) l
= Egtr o (xtiL =Y 1g gl Min{ ——— T —— A"
0:T a(Xgi7 1) ; L ; { t41 , XpFm} Wold(xi | X%erpq)
l 1:L
. T Xy | X ,d . .
Chp(—( ] %1, 9) 1=, 14+ ) A"} + BDkr (mo(xg'7 | @) || et (X0 | @) |- (5)

7Told(xé | X%;LLM q)
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Figure 2: Illustration of our proposed StepMerge strategy. In d2-StepMerge, we cut the trajectory
evenly into NV time segments and evaluate the likelihood for each segment together. Newly decoded
tokens on which we compute the likelihood at the corresponding model forward pass are highlighted.

3.2 ESTIMATING THE POLICY GRADIENT FOR DLMSs

Unlike AR, DLMs do not employ a left-to-right causal attention mask. Consequently, evaluating the
summation over the T diffusion steps in Eq. (5) with a single forward pass is not trivial. For a fully
bidirectional DLM, because each step in time is a full sequence x;, we have to run a full forward pass
on L tokens at each time ¢, significantly increasing the cost for computing 7 (x;|x;+1). To address
this computational bottleneck, we introduce two novel policy gradient estimators tailored for DLMs.

Our first estimator, d2-StepMerge, partitions a trajectory into contiguous time segments and evaluates
likelihood at specific individual steps. As shown in Section 5.1, the resulting method achieves high
performance with a significantly reduced compute budget compared to a full likelihood estimate.

Our second estimator, d2-AnyOrder, enables an unbiased likelihood evaluation of a trajectory with
a single model forward pass, contingent on the model maintaining an any-order decoding property.
Our finding highlights the theoretical and practical significance of any-order causality in advancing
diffusion-based reasoning models.

In summary, d2-StepMerge is broadly applicable to MDLMs and offers computational savings with
minimal loss of fidelity, whereas d2-AnyOrder is more accurate and efficient, but requires the any-
order causality property. In Section 5.2, we provide empirical evidence illustrating the trade-off
between these two estimators.

3.2.1 ESTIMATOR 1: D2-STEPMERGE

We now present d2-StepMerge. As illustrated in Figure |, we cut the sampling trajectory of 7 tokens
evenly into IV time segments, and optimize the diffusion policy with the following objective:

N—1 7T9(Xl , ‘XIL . q)
& <n+1)f’ 1
—E, iz, 1 min{ X - A
ik ~maa (x4 q) ”ZO lz {x! (1) & ;ﬁm} Wold(x L | (,,+1> B ,Q) )

WB(X L | X(,,_,'_l) L ,(l)

clip( 1= e 1+e)A"} + 8D (mo (o7 | @) || Ter(x0i7 | @) |- (6)

7"'old(X L | x (n+l>%7Q)

Understanding the role of N. With d2-StepMerge, we reduce the number of model passes from T'
to N. A natural question to ask is what is the effect of N on the accuracy of the policy gradient? Since
the importance weight is the quotient of two trajectory likelihood evaluations, we further narrow this
down to studying the discrepancy between the complete likelihood decomposition of the trajectory
and that yielded by our StepMerge strategy. Formally, we define the KL divergence between the
complete and StepMerge decompositions by a masked DLM policy 7y as Dy:

N—-1
l : l :
Dy DKL H H 7r9(Xt I X%-&-leq)H H H ﬂ-e(xn% | x(lnljrl)#vq))'

I st n=0 . st

L L
X =m,X m X =m,X m
b1 =m,x;# (n+1) & Tnk #
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We compute D for LLaDA-8B-Instruct (Nie et al., 2025) 3.0 ’\‘ —e— Sudoku
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may thus harm the performance of RL. This is consistent N

with our experimental results shown in Section 5.1. Figure 3: Dy (mLapa) for varying N.

3.2.2 ESTIMATOR 2: D2-ANYORDER

In this section, we present d2-AnyOrder, our second policy gradient estimator that can obtain
likelihood estimation of a trajectory losslessly and with one model pass. Importantly, d2-AnyOrder
is contingent on an any-order decoding property of MDLMs. Therefore, we first briefly recap any-
order decoding, based on which we propose our one-shot likelihood evaluation. We then formally
introduce the d2-AnyOrder objective. Moreover, we examine the application scope of d2-AnyOrder
and discover that although previous works (Hoogeboom et al., 2021; Ou et al., 2024) have implied
an equivalence between fully bidirectional MDLMs and any-order MDLMs, applying any-order
decoding to the former type of models is nontrivial in practice. This observation encourages us to
provide a more detailed investigation of the any-order causality feature of MDLMs (see Section 4.2).

Step 1 Step 2 Step 3

»V

DA

e v ]

pos1 pos2 pos3

pos1 pos2 pos3 pos1 pos2 pos3

(a) Fully bidirectional MDLM decoding. (b) Any-order decoding.

Figure 4: Illustration of different DLM decoding strategies. We depict attention with query tokens
(one layer up) attending to keys/values (one layer below) via an undirected connected line. The output
at each position is depicted with a directed arrow. “pos” refers to positional encoding index. We use a
three token example where the decoding order is "for—d2—RL”. At each time step, newly added

attention relations in any-order decoding are highlighted with red line markers.
7,(d2) ,(for) 7,(RL)

Notations. Given a token trajectory x}:%, for each position
I, we use #; to denote the time step when m' is decoded as [ I I I I ?LJ

x}. We define Q; = {I' | t; > t;}. Intuitively, ; includes |
all the positions decoded before x}, because ¢ goes from T to F I I J
0 during sampling. We then denote {x}, | I € Q;} as x{. "L
Token positions decoded at time step ¢ are denoted as U; and %/

Upg _
Xo = {Xf) [l U Fz for | RL IMASKIMASKIMASK]

Any-order decoding. In the vanila MDLM decoding process ~ pos1 pos2 pos3 pos1 pos2 pos3
(Figure 4a), all tokens can attend to each other, making the Figure 5: Illustration of one-
attention pattern fully bidirectional. Extending Hoogeboom  shot trajectory likelihood evalua-
et al. (2021), we propose a different decoding strategy termed tion. Continuation of the example
any-order decoding (Figure 4b). Specifically, a mask token m’ from Figure 4.

attends to xi* U {m'} when it is decoded. After it decodes to

x), it attends to X?l UxYu (the set of tokens unmasked previously and concurrently to that token),
and this attention pattern stays unchanged for the rest of the sampling process. Note that our decoding
method allows multiple tokens to be decoded every time step (see Appendix B.1 for more details).
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One-shot trajectory likelihood evaluation. Recall that the likelihood of a trajectory x:% generated
via any-order decoding is 7r9(x(1) Ly = __01 [Licu, mo (x| x{5) . We propose that the above
likelihood can be computed in one forward pass. To efficiently implement this computation, we
construct a 2 L-length sequence x{*% @ m%+1:2L where @ denotes concatenation along the sequence
dimension and m%*+1:2L are mask tokens. The positional encodings are assigned as pos; = [ mod L
for 1 <[ < 2L, so that each token—mask pair shares the same position index. We then define the
attention mask so that as a query token, x; attends to x* Ux"#, and m%*! attends to x* U {m**'}
As 1llustrated in Figure 5, the output logits of the mask token at position L + [ reproduce exactly the
logits of x)) as if it had been decoded during sampling. We therefore denote the resultlng likelihood
estimate as 75 (x}) | x§ ® m=+12L) . More details are provided in Appendix B.3

d2-AnyOrder. We hereby introduce d2-AnyOrder. For a DLM that applies to any-order decoding,
we propose to train the policy network with the following d2-AnyOrder objective:

7T X | Xl L EB mL+1:2L q)
—E,a. : min 0° (%0 ’ ,
Xk~ (xdik|q) Z { Old (Xo | x4 L'y mE+12L q)
AO 1:L L+1:2L
Xg | XgW & m ,q . .
clip!( AO( 0 ) 1= e 14 A + 8 Dicw (o (x5 | @) | mar (x5 | @)

A0 (x| X1 L' mL+12L q)’

: : : .®
Application Scope of d2-AnyOrder. Since d2-AnyOrder relies on any-order decoding, which is
not the default sampler for many DLMs, it is necessary to explore the types of DLMs to which
d2-AnyOrder applies. Previous works (Hoogeboom et al., 2021; Sahoo et al., 2025b) have proposed
special training algorithms for any-order DLMs. Thus, d2-AnyOrder naturally applies to DLMs
trained with these algorithms. Although Hoogeboom et al. (2021); Ou et al. (2024) have shown that
the training objective of any-order DLMs is equivalent to that of fully bidirectional MDLMs, we
discover empirically that, in practice, any-order decoding does not apply to models trained with the
latter objective, such as LLaDA.

Table 1: Average per token log-likelihood ~We first apply any-order decoding to LLaDA directly
for sequences generated by s and evalu- and observe that LLaDA generates the EOS token im-
ated under ¢ and the one-shot any-order mediately when the decoding position does not attend
version of the same model 7. to any mask tokens to its right. In addition, we design
another experiment where we generate completions to
Per token LL. Dy, (7rref| 7o) questions from the GSMS8K test set using LLaDA-SB—
Instruct, and then compute the trajectory log-likelihood
Trref -0.128 — (LL.) by the full trajectory decomposition (denoted as
Tao -3.051 2.334 Tret) as ground-truth, and the one-shot trick (denoted as
Tao). We also compute the Dky, between s and myo.
In Table 1, we see that the LL. estimate attained from the one-shot trick is an order of magnitude
different than that obtained from the ground-truth 7.¢. Hence, it is not practical to directly apply the
one-shot any-order trick to LLaDA. We hypothesize that this is because LLaDA allows tokens to
attend to mask token positions decoded after them. This attention design, although not necessary
from a probabilistic perspective, has enabled the neural network to store important information in the
hidden states of mask tokens, thereby limiting LLaDA’s potential for RL post-training.

4 THEORETICAL ANALYSIS

4.1 D2-STEPMERGE

In this section, we introduce a bound for D (defined in Section 3.2.1) to quantify the compute-bias
tradeoff of d2-StepMerge. Our upper bound monotonically decreases as [V increases, theoretically
justifying our observation in Figure 3.

Theorem 4.1 (Approximation Error Bound). Suppose mg has a fixed schedule where L tokens are
unmasked over T timesteps. The KL divergence D n(my) between the full trajectory and StepMerge
approximation is bounded by:

T
Dyn(mg) < L -log (N + 1) + L - €lock 9)
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where €pjocr IS a constant measuring how much the model’s token predictions can change when we
skip intermediate diffusion steps within a block (see our proof in Appendix A.2).

4.2 D2-ANYORDER

In this section, we provide a more detailed definition of the any-order causality feature of DLMs.
Assuming a Transformer architecture, we denote the token positions that query token x! attends to at
time step ¢ as A!. Additionally, we assume that when decoding a token, a DLM policy should attend to
all previously unmasked tokens to maximize information utilization. Formally, inheriting the notation
system from Section 3.2.2, we define a DLM as reasonable it V1 < [ < L V0 <t < t;,; C Ai.

Definition 4.2. A reasonable Transformer DLM policy 7y is any-order causal if when decoding a
trajectory xp'%, for all 1 <[ < L the attention pattern satisifies:
1. Unmasked tokens’ attentions are consistent. V0 < ¢; # ¢; < t;, we have Ai = Aéj,
2. Tokens don’t attend to future when decoded. A} C O, U {i},
3. Unmasked tokens don’t attend to future. if x' is not within the last two decoding steps,
then VO < ¢ < t, Aé cQu Utl~

Theorem 4.3. For any Transformer networks with more than one layer, a DLM trajectory likelihood
can be computed by one model pass iff. Ty is any-order causal (proof provided in Appendix A.3).
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Figure 6: Performance-compute dynamics of d2-StepMerge on four reasoning benchmarks.

5 EXPERIMENTS

5.1 D2-STEPMERGE

Experimental Setup. To test d2-StepMerge’s effect on improving DLM’s reasoning capacity, we
follow Zhao et al. (2025) in using LLaDA-8B-Instruct (Nie et al., 2025) as the base model and apply
different RL post-training algorithms on top of it for four reasoning benchmarks, including two
mathematical reasoning benchmarks (GSM8K (Cobbe et al., 2021) and MATHS00 (Lightman et al.,
2023)), and two logical reasoning benchmarks (Countdown and Sudoku). For both training and
evaluation, two tokens are generated at each time step. We use a group size of 6, and each batch
contains 16 questions. We track the compute requirements (measured in Floating-Point Operations,
i.e., FLOPs) and evaluate the test set performance of different methods for every fixed FLOP interval.
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Baselines. To benchmark our proposed framework, we compare d2 against a diverse set of baselines.
Specifically, we include the original LLaDA, LLaDA 1.5 (Zhu et al., 2025), a low-variance direct
preference optimization (Rafailov et al., 2023) post-training algorithm, d1 (Zhao et al., 2025), a
hybrid method that combines supervised fine-tuning on the slk (Muennighoff et al., 2025) long
chain-of-thought data with diffu-GRPO, as well as wdl (Tang et al., 2025), which reformulates policy
optimization as a weighted likelihood objective to eliminate the dependence on policy ratios.

Results. As shown in Fi_g— Table 2: Benchmark performance of different reasoning frame-
ure 0, dZ—StepMer'ge consis- works. f indicates results evaluated on the released checkpoint. {
tently outperforms diffu-GRPO indicates results taken from the corresponding paper. Baselines

in four reasoning benchmarks. that include post-training are shaded. Best results are bolded.
In Sudoku, Countdown, and

GSMBK, d2-StepMerge signif- —nrop 04 Sudoku Countdown GSMSK MATHS00
icantly dominates diffu-GRPO,

and in MATHS500, dZ-StepMerge LLaDAJr 11.8% 19.9% 75.7% 35.4%
demonstrates a better trend. LLaDA 1.5F 12.5% 23.4% 78.6% 36.8%
These results indicate that d2  d1f 22.1% 42.2% 82.1% 40.2%
achieves a superior trade-off  wdi# 25.2% 51.2% 82.3% 39.0%

between efficiency and perfor-

mance. Moreover, Table 2 shows d2 (ours) 91.9% 56.6% 85.0% 41.6%

that even without supervised fine-
tuning on extra chain-of-thought data, d2 can outperform existing diffusion reasoning frameworks,
demonstrating the efficacy of our proposed likelihood evaluation strategy.

Ablation: Varying /V in d2-StepMerge. In Fig-

ure 7, we show the Accuracy-FLOP trade-off of o= N=2 et teuptentas RSttt
d2-StepMerge with different values of N in the 0.8 Efg li ./.\/ ’

Sudoku benchmark. With a small N, the model & Lo nlis / : /./ .
does not reliably converge to competitive perfor- & 06 I _o_ No32 S / Qe o
mance because the corresponding likelihood es- O —e— N=64/ i
timation is highly inaccurate. In contrast, exces- 04 /"'./r:,..L..."-..-‘.,-"o..-... istee o

N L
SIS %ri30-000 0004 0

sively large IV leads to over-allocation of com- o

pute to likelihood estimation, resulting in slower

convergence. Our results identify N = 16 as a

favorable balance: it achieves performance com- 0 1 2 FL%P 4 > 1 e619

parable to N = 32 and N = 64, while requiring s

substantially fewer FLOPs. Figure 7: d2-StepMerge performance in Sudoku
with different N.

N
\

5.2 D2-ANYORDER

Experimental Setup. We take Eso-LM (Sahoo et al., 2025b), a special type of DLMs whose any-
order causal property is enforced by its training algorithms, and test d2-AnyOrder on top of it. We
use a 190M parameter model trained on OpenWebText (Gokaslan et al., 2019). Following Singhal
et al. (2025), we test d2-AnyOrder’s capacity to steer the model towards toxic output, which is rare in
the model’s normal behavior and useful in the red-teaming scenario. We utilize an existing toxicity
classifier (Logacheva et al., 2022) as the reward model, and the RL algorithm should increase the
toxicity score. In both training and evaluation, we let the model generate sentences with 512 tokens
in free form. We set the group size as 16, and each group consists of a batch of 4 samples. Similarly
to Section 5.1, we set the compute budget (measured by FLOPs) constant and evaluate the model
every fixed FLOP interval. For each checkpoint, we let the model generate 512 new token sequences,
and evaluate their average toxicity score under the reward model and their generative perplexity (Gen
PPL. |) under GPT2-XL (Radford et al., 2019).

Baselines. In this setting, generation is in free form without prompts; the likelihood evaluation in
diffu-GRPO and wdl cannot provide helpful information. Thus, following Su et al. (2025), we
select DDPO (Black et al., 2023), a PPO-style algorithm that also decomposes the diffusion policy
gradient along ¢, as our baseline. Since d2 is a GRPO-style algorithm, we remove the value network
in DDPO and use the group advantage instead. In addition, DDPO does not involve trust regions or
KL divergence with the reference model, so we also remove the corresponding parts in d2 to conduct
a fair comparison.
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Results. As shown in Figure 8, under the same
compute budget, d2 substantially outperforms

Se— d2 « Toxicity — * -140

—¢ DDPO « Toxicity /
—27|-. ‘-\\\dZ « Gen PPL .

(]

: e ; g -2 130
DDPO.m toxicity score, reaching near-zero val S o\ 'DDRO~~Gen PPL E
ues while DDPO remains below —8. Though the =~ 7 -4 N I 1208
GPT2-XL generative perplexity of d2 decreases \ : N ’ S
more than that of DDPO—suggesting greater é e / . 1100
divergence from the reference model—we re- 8- L N
gard this as reasonable given the substantially ST TN 100
stronger steering applied to d2. 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75

FLOPs lel7

Ablation: Comparing d2-AnyOrder and d2-

StepMerge. Figure 9 compares the two d2 vari- Figure 8: Toxicity steering results of d2-AnyOrder.
ants on toxicity steering. For d2-StepMerge, we

fix N = 8, as it performs well in earlier experiments. d2-AnyOrder achieves a slightly better toxicity
score trend. Besides, d2-AnyOrder shows smaller drops in Gen PPL. at comparable toxicity levels,
indicating greater stability which is largely due to its unbiased estimation. In practice, when the
DLM satisfies the any-order causality property, d2-AnyOrder is preferable; otherwise, d2-StepMerge
provides a more general solution.

6 RELATED WORK, DISCUSSION, AND CONCLUSION

RL for DLMs. Diffusion language models (Sa- o 1140
hoo et al., 2024; 2025a; Nie et al., 2025; Ye X AnyOrder « Toxicity //

—e— StepMegge * Toxicity / R
et al., 2025) have recently emerged as a strong " m- MnyOrder SGeq PPl | /)
alternative to AR, motivating a line of works == StepMérge- Gen*REL Tl L100g)
on reinforcement learning for DLMs. A cen-
tral challenge is to accurately estimate token
likelihood. diffu-GRPO (Zhao et al., 2025) ap-

|
N

Toxicity Score
5

()]

.’\\
3

Gen P

proximates the likelihood using logits from an -8 /é S h40
input of all mask tokens. DiffuCoder’s coupled- s -
GRPO (Gong et al., 2025) proposes to improve 0.0 *% L Ope S

this estimate by randomly splitting sequences

into two segments. They also incorporate the % Figure 9: Comparison of d2-AnyOrder and d2-
weighting factor from MDLM’s ELBO (Sahoo StepMerge on toxicity steering.

et al., 2024) into their RL objective. wdl (Tang

et al., 2025) reformulates policy optimization as a weighted likelihood objective and inherits the
likelihood estimation method of diffu-GRPO. LLaDOU (Huang et al., 2025) decomposes the likeli-
hood along the diffusion steps, though the direct approach is computationally prohibitive. Concurrent
to our work, TraceRL (Wang et al., 2025b) proposes merging timesteps for trajectory likelihood
evaluation. While TraceRL and our d2-StepMerge share the same objective, our method further
justifies this approach by establishing bounds on the KL divergence.

Limitations and Future Work. While d2-StepMerge achieves a favorable performance—efficiency
trade-off among diffusion language models, it still requires multiple forward passes and yields a
biased estimation, making it less optimal than autoregressive approaches. In contrast, d2-AnyOrder is
restricted to DLMs trained under specific constraints, limiting its general applicability. An important
next step is to investigate how to enforce the any-order causality property on pretrained checkpoints
such as LLaDA. Moreover, although our experiments show that the d2 RL algorithm alone can
significantly enhance reasoning, it remains an open question whether large-scale post-training on
DLMs requires additional supervised finetuning, or whether an RL-only approach, akin to DeepSeek-
R1-Zero (Guo et al., 2025), can be effectively applied in this setting.

Conclusion. In this work, we introduce d2, a principled RL framework for diffusion language models,
derived directly from the policy gradient formula with a transparent mathematical foundation. To
enable trajectory likelihood computation in the RL objective, we propose two customized estimators
and provide supporting theoretical analysis. We further explore the under-examined property of
any-order causality in DLMs, demonstrating its significance for enhancing reasoning capabilities.
Empirically, d2 achieves state-of-the-art performance on reasoning benchmarks for DLMs under
matched FLOP budgets, without relying on supervised chain-of-thought finetuning.
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Taking the policy gradient and expanding the expectation over the trajectory distribution, we have
VoJ (0 Vezﬂe a) (", q)
— Vs Z S molxh® | xbik, ) mo(xik | @) r(x @)

1:L L 1:L
Xo 7 X1

=V Y mo(xg | Q) r(x5", q)
lL
OT

= Vo Bt kg (B[ [7(X oFa)l. (11)

Introducing importance sampling with respect to the stale policy 74, we obtain

770(X0 7 la)
VoT(0) = VoEyir o (xiL xpl q) = O 2 12
0 ( ) [% 0:T old( O:qu) [ ( 0 q.) ﬂ_Old(xO:T | q) ( )

By exploiting the Markov factorization of the backward process, the joint distribution decomposes as
To(x0 % | q) = m(x HWH Fh |Xt+17(l) (13)

Substituting this factorization, we obtain

(14)

1:L
V(}j(o) = Ex(l) %‘Nﬂ-old(xo L‘q) [T(Xé:Lv q) vﬁ Ht 0 We(Xt | Xt+1,q) ] .

Ht -0 7Told(xt L Xt+1aq)

In MDLM, we assume independence across token positions, the expression further decomposes as

T-1 L
7o (Xy | Xt+17q)
VoJ(0) =Eyrr x} L q)Vy . (15)
0:T 1a (x4 \Q) H) 11_11: Told Xt | Xt+1>q)
Expanding the gradient of the product yields
-1 L U | 1L
Uy Xt | Xt+1,CI) 7T9(Xt’ | Xt/+17q)
VoT(0) =Eyir o x} L q Vo ; _ .
oif~moia (e 19) ; ; Tola (X} | Xt+1ﬂq) 1;[ 7Told(xf:' | x%,'f;l,q)
U#l
(16)
When evaluated at 6 = 6,4, the product term reduces to 1, yielding
— mo(x; | x5, Q)
VoJ (6 ‘ = Byt b q I X1,d) | g
( ) 0= L ~omora (x5 q) ; ZZI Told Xt ‘ Xt+17q>

Finally, since the model 7y is only invoked when a masked token m becomes unmasked, the objective
simplifies to

T-1 1| 1:L
mo(xy | Xt+17q)
V@j(@)‘ = VoEs, q Lot o i :
0=0,1a Old( ‘q) ; ; { t+1 X 7m} 7Told(xfﬁ | X%+Ll7q)
(18)
O

A.2 PROOF OF THEOREM 4.1

Our proof proceeds in three key steps:

14
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1. Decompose the diffusion process: We factor each diffusion step into timing (which
tokens unmask) and value (what values they take) components, exploiting the conditional
independence structure.

2. Bound consecutive timesteps: For adjacent timesteps, we prove the timing component
contributes at most 2k - log 2 bits (where k tokens unmask), while the value component
vanishes under mild assumptions.

3. Extend to full trajectory: We aggregate bounds over N blocks, showing each block
contributes at most k,, log B bits, yielding the final O(U log(T'/N)) bound.
To keep notation concise, we define a sequence without a superscript as 7; = r1'l = [z}, ... 2F] and
drop the prompt ¢ that we condition on 7y(- | -+, q).

A.2.1 TIMING AND VALUE FACTORIZATION

The reverse process, 7y (z; | £++1), can be decomposed into two conceptual and computational steps:
a timing decision of whether to unmask a token, followed by a value assignment of what it becomes.
This allows us to factor the distribution into two simpler components.

Definition A.1 (Timing and Value Decomposition). We introduce an indicator variable S! =
1z}, ; = m Az} # m)] for the unmasking event, and a categorical random variable V| = !

for the token’s value. They are aggregated as S; = [S} ... SF] and V; = [V} ... V;X] and factorize
the reverse process:

7T9($t | $t+1) = T(St | $t+1)'1/9(vt \ 5£7$t+1)~ (19)

Timing Value

L . . .
The reverse processes decomposes over tokens as mg (¢ | z¢41) = [[;—; mo (2} | z}i5) which emits
a similar per-token factorization g (z} | 2}314) = 7(S} | 2}, 1) - vo(V{ | St 2fily). We now define 7

and vy as follows.

Timing Distribution (7): This distribution models the probability of the unmasking event S! for
any unmasking schedule (e.g. greedy, ancestral, top-k, etc.).

 Ifatoken at ¢ + 1 is already unmasked (xi 1 # m), it cannot unmask again; thus, the event
S! = 1 has zero probability.

* If a token is masked (z} 41 = m), it unmasks with probability «; determined by the
unmasking schedule.

ay ifszlandxiﬂzm
l1—a, ifs=0andz!,, =m
Sl — AN t t+1 20
T(S; =5 [ w44) 0 ifs=1landz} ; #m 20
1 ifs=0andz! ; #m

Value Distribution (y): This distribution assigns a value th to the token, conditional on the timing
decision S! and the full sequence context x;, 1.

» If the decision was to unmask (S! = 1), v is the categorical distribution over the vocabulary
V given by the softmax output of the neural network fy.

* If the decision was to not unmask (Sg = 0), the process is deterministic: the token’s state
from ¢ + 1 is simply preserved at time .

softmax(fp(zs41)1)e if Sl =1

V@(‘/tl:v‘sgyxri»l): {(5 lfS%:O (21)

1
Uy

where &, 4 is the Kronecker delta, enforcing the deterministic state preservation when S! = 0.

15
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A.2.2 CONSECUTIVE TIMESTEP BOUNDS

We begin by analyzing the error over two consecutive timesteps ¢ and ¢ + 1. This allows for the
simplest possible analysis between the full trajectory and stepmerge trajectory:

ptme(xt,xt+1 ‘ It+2) = 7T9(,It | It+1)71'9(13t+1 | It+2) (Fllll Trajectory) (22)
Papprox (Tt, Te41 | Teg2) = 7o (¢ | Tpy2)To(@e41 | Te42) (StepMerge Trajectory).  (23)

We seek to bound the KL divergence between them:

D Ty, T Tt4-2 mo(x T
Dt (Pusue[Papprox) = B, i) } =E [ mo(xt | Ze41)

Papprox (Tt Tei1 | Teg2) | 0 7o (Tt | Ty2)

} (24)

Lemma A.2 (Timing and Value Decomposition of KL Divergence). The KL divergence between the
true and approximate distributions for consecutive timesteps decomposes into a sum of timing and
value components:

DKL(pzrue”pappmx) = Dy, timing 1 DKL, value (25)
where the components are defined as:
L
(S} | Te11)
Dxu, timing = B8, w111 ~pose log ——————% (26)
timing (St,xe+1)~p, 5:21 T(Sé |-1't+2)
L 1] ql
ve(Vi | St we41)
Dk, vatwe = B3, Vi w111 ) ~pie log ——————= 27
alue (St, Vi, @e41)~p, ; ug(th | Silg,ilft-i,-Q)

Proof. The proof begins with the simplified expression for the KL divergence from Equation 24 and
applies the timing-value factorization of Equation 19. The expectation is over the joint distribution
Duue(Tt, i1 | Tet2), where z; comprises the timing and value variables (S, V).

DL (Purue | Papprox) = Bz, 214 1) ~pie M] (28)
o [ 5]

= E(S,0041)~Pine ; log m]
+E(S,, Vi 141)~pime lzlj log m] (30)

Note that the timing term does not depend on the value variable V; (and only on 7). Thus it can be
marginalized out from the expectation over Pyrye. O

We now seek to bound the error in timing Dgp, timing and value separately Dxr, value-

Definition A.3 (Conditional Mutual Information). The conditional mutual information I(A; B | C)
measures the reduction in uncertainty about random variable A from knowing B, when C'is also
known. It can be defined equivalently in terms of conditional entropy or as a Kullback-Leibler (KL)
divergence:

I(4;B | C) = H(A| C) - H(A| B,C) = Dir.(pla,b| Ollpla | p(b | ). (D)

Assumption A.4 (Fixed Unmasking Schedule). We assume a schedule where a fixed number of &
tokens are unmasked at each timestep .

Lemma A.5 (Timing KL Bound). Under the fixed unmasking schedule, the timing component of the
KL divergence is bounded by the entropy of the timing decisions.

DKL, timing S 2k - log 2 (32)
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Proof. The proof first establishes the equivalence between the timing KL divergence (Equation 26)
and conditional mutual information, and then bounds this term using entropy.

First, we show the equivalence by applying the Markov property of the true process (Equation 22) in
the numerator:

7(S¢ | xt+1)] _E [l . 7(St | $t+17$t+2):| _ (33)

D imine = E- I
KL, timing true |:Og T(St ‘ xt+2) T(St | xt+2)

We multiply and divide by 7 (41 | Z+42) to get the conditional mutual information (Theorem A.3)

DKL’ timing = IE-,—"_He |:10g T(St |xt+17 It+2) . T(xt"rl |xt+2) :| (34)
T(Stlrer2)  T(Te1|Ti42)
=E,.. [log 7(S¢, Tey1|Ti12) } (35)
T(St|ze42)T(Te41]T142)
= I(St; Ti41 | xt+2). (36)

We bound the conditional mutual information term by relating it to the entropy of the timing decisions,
which can be decomposed on a per-token basis.

I(St; 2441 | ®ryo) = H(St | xe42) — H(St | 441, %t42) (by definition of mutual information)

< H(S: | wp42) (since entropy is non-negative)
L
= Z H(S! | 2149) (by cond. independence of tokens)
=1

37

To evaluate this sum, we partition the tokens into those that unmask in the [¢, ¢t 4 2) interval and those
that do not.

L
Z H(S! | 2140) = Z H(S! | 2110) + Z H(S! | 2112) (by partitioning the sum)
=1

l€Unmasked 1¢Unmasked
< Z log2+0 (by bounding each term)
l€Unmasked
=2k -log2 (by summing over the set)
(38)

The second sum vanishes as its tokens have a deterministic timing decision (S! = 0), resulting in
zero entropy. The first sum is over the 2k tokens that unmask in the interval. For each token, S! is a
binary random variable representing the choice of unmasking at time ¢ or ¢ 4 1. The entropy of such
a variable is maximized at log 2 under maximum uncertainty (a uniform distribution over the two
outcomes). Using this upper bound for each of the 2k tokens yields the final result. O

Definition A.6 (Value Prediction Sensitivity). Let € be the maximum per-token, pointwise log-ratio
of value probabilities between consecutive timesteps, maximized over all possible values, tokens, and
states where an unmasking occurs.

vo(Vi =0 ]S} =1,2441)

e= max lo 39
VLT 41,T 42 & V@(th = ‘ Sé = 1,It+2) (39)
fit )
— max  log OMmax(o(@er)) (40)
V1, Te41, T2 SOftmaX(fg(l’t+2)l)v
= nax (fe(fftﬂ)l,v — fo(@e42)1,0 —Zi(@e41, $t+2)) 41)
Vb, Tt41,Tt4-2

Logit Difference

>, exp (.fe(thrl)le') ) )

for the difference between log-softmax normalizers Z; (zyy1, T;+2) = log (
3o, exp (f0($t+2)z,j)
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Remark A.7 (Interpetation of Value Prediction Sensitivity). The value prediction sensitivity € provides
a worst-case guarantee on the stability of the model’s value distribution vy between consecutive
timesteps. It bounds how much vy can change for any token value v at a position | by constraining
Sluctuations in the underlying neural network’s raw logits—namely the difference between fo(X¢+1)1.v
and fo(xy+2)1,0 after normalization. A small e therefore signifies that the entire logit vector for
position | remains relatively constant when the context shifts by one step (from x441 to xy42). This
logit-level stability ensures that the model’s predictive distribution is not volatile, thereby validating
our StepMerge approximation, which relies on the assumption that intermediate states can be skipped
without drastically altering the final trajectory likelihood.

Lemma A.8 (Value KL Bound). Under the fixed unmasking schedule, the value component of the
KL divergence is bounded in terms of the value prediction sensitivity e.

DKL, value S k-e (42)

Proof. We start with the definition of the value KL divergence:

vo(Vi' | S), %441)

(43)
vo (Vi | St wi42)

L
DKL, value — ]Ep[,ue E 1Og
=1

To analyze the sum inside the expectation, we partition the token indices based on the timing decision
S!, which indicates whether token [ is unmasked at step ¢. Let Uy = {I | S! = 1} be the set of indices
for tokens that unmask, and ¢ = {I | 1 ¢ Uy} = {l | S} = 0} be the complementary set for all other
tokens. The sum can be explicitly decomposed as:

L
vo(.--) vo(V) | St =1,2141) vo(V{ | S} = 0,2¢11)
log = log + log 44)
2 vo(...) 2 ve(Vi | Sf = 1,2142) 2 ve(Vi | St =0,2¢42)

=1 ’ leU, leuy
Tokens unmasked at time ¢ Tokens not unmasked at time ¢
1
< g €+ E log 1 (45)
€U, lel by
—k-¢ (46)

For tokens that are unmasked at time ¢ (I € U;), the value distribution vy is defined by the model’s
softmax output, and the log-ratio is bounded by the value prediction sensitivity (¢). For any token that
is not unmasked at time ¢ (I € U), the value-setting process is a deterministic identity transformation,
where V! = 2!, | with probability 1.

Since this upper bound holds for any trajectory, the expectation over all trajectories is also bounded
by the same constant. O

Lemma A.9 (Consecutive Timestep Bound). Under the fixed unmasking schedule Theorem A.4, the
total KL divergence between the true and approximate distributions for consecutive timesteps is
bounded by the sum of the timing and value bounds.

DKL(ptruerapprox) <2k- 1Og 24k € (47)

Proof. The result follows directly by combining the bounds from the preceding lemmas.

DKL(ptrue”papprox) = DKL, timing + DKL, value § (Qk . IOg 2) + (k : 6) (48)

A.2.3 ENTIRE TRAJECTORY BOUND

We extend the analysis from an L-length sequence at consecutive timesteps x;, x;+1 to the entire
trajectory g . . . z7 with IV total blocks. To do so, first consider block n with B = L/N timesteps
spanning t = [nB,nB+1,...,nB+ (B —1)].

18
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Within this block, the true reverse process is a Markov chain over the full trajectory:

nB+(B-1)
psﬁg(mn& s TpB4(B-1) | TnB4B) = H (¢ | ©e+1) (Full Trajectory) (49)
t=nB

The StepMerge approximation, however, assumes each state z; in the block is generated independently
conditioned only on the final state x,, g1 B:

nB+(B-1)

pgggrox(an, oy Tppr(B=1) | TuB1B) = H mo(zy | xnp+B) (StepMerge Trajectory)

t=nB
(50)
Lemma A.10 (Block KL Bound). Under the fixed unmasking schedule Theorem A.4, the KL diver-
gence for block n is bounded by:

kB(B +1)

DL (Sl Ip) o) < log 2 + Bk - €ylock 51)

where €pock IS the maximum value prediction sensitivity over the timesteps in the block.

Proof. The KL divergence for block n is the expectation of the log-ratio of the true and approximate
distributions.

D — R 1 ?fn+B§B—1) 7o (T | T41) 5
KL = Fpln 108 = aBi (B—1) (52)
L t=nB 779(:6?5 | an-‘rB)
[nB+(B—
"EETY mp(an | )
=B | D ler—— (53)
e =nB To(%t | TnptB)
[nB+(B-1) nB+(B—1)
T(St | $t+1) Ve(Ut | St,fﬂt+1)
=E log——————— | +E =
e th 7(St | #np+5) Pine t:ZnB vo(ve | St Tnp+B)
D I((Z)limin g D l((:,)va]uc
(54

Using the timing-value factorization Equation 19 and linearity of expectation, we decompose into

(n)

block-level timing and value components, D{t) = D& + Dg1 yate» Which we bound separately.

KL, timing

Timing Bound. The timing component is the sum of conditional mutual information terms

nB+(B-1) (S | ) nB+(B-1)
D(n) L = E iy |L w — I(S,: n 35
KL, timing t:ZnB ol |08 (St | TnB+B) t:ZnB (St zeer | ansen)  (39)

following the derivation in Theorem A.5. We can further bound the conditional mutual information
by the conditional entropy from Theorem A.3:

I(St;l’t+1 | ﬂUnBJrB) = H(St | anJrB) - H(St | $t+1,$nB+B) < H(St | l’nBJrB)- (56)

Due to mutual exclusivity, each token can unmask at most once. For a token [ masked at z,,54 g,
define T} as its unmasking time (if any). The collection {S,f ifnJ“BB ~! encodes which value T; takes,
where T € {nB,...,nB + B — 1,00}. Thus:

nB+B—-1

> H(S} | #npys) < H(T) | 2hpp = m) <log(B+1) (57)
t=nB

Since exactly kB tokens unmask during the block:

D& iing < . H(Ty| &l =m) < kB -log(B + 1) (58)

lEMpB+B

where M, g5 = {l : 2!, 5, 5 = m} is the set of masked tokens at the block end.
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Value Bound. The value component of the divergence is:

nB+(B—1)
DY = > E Zl g Vt | S5 241) (59)
KL, value Py Prrue I St7an+B)

Following Theorem A.6, we define a block-level value prediction sensitivity €p;ocx as the maximum
log-ratio within the block:
ve(V{ =v | S} =1,2441)

Eblock = max lo 60
block te[nB,(n+1)B),v,l,zt41 & 1/9(‘/# =0 | Sé = 17an+B) (60)

At each timestep ¢, the inner sum over tokens [ is non-zero only for the k tokens being unmasked
(S! = 1) by definition of vy (Equation 21). For each of these, the log-ratio is bounded by definition
by €piock- Therefore, the entire sum inside the expectation is bounded by k - €p;0c1. Summing over
the B timesteps yields the total value bound:

nB+(B-1)
DI((TIL‘) value < Z k- €vtock = Bk - €piock (61)
t=nB

Total Bound. Combining the bounds for the timing and value components gives the final result for
the block-level KL divergence.

KL timing + l)I((TIi)y value <kB- log(B + 1) + Bk - €block (62)

O
Finally, we aggregate the per-block errors to establish a bound for the entire generation trajectory.

Since the approximation for each block is conditionally independent of the others given the state at
the end of the block, the total KL divergence is the sum of the per-block KL divergences.

Theorem A.11 (Main Bound). Let L be the total number of tokens (each unmasked exactly once),
B = T/N be the number of timesteps per block, and €poex be the maximum value prediction
sensitivity within a block. The KL divergence between the true sequential process (Full Trajectory)
and the block-parallel approximation (StepMerge Trajectory) is bounded by:

DKL(ptrue”papprwc) S L- log(B + 1) + L. (B - 1) * €block (63)

Proof. For block n, let k& be the number of tokens unmasked per timestep in that block. From the
tighter timing bound using mutual exclusivity and the value bound:

D < kB -log(B + 1) + kB - pock (64)
Summing over all N blocks:
N-1 N-1
D= > D <37 (kB -log(B +1) + kB - pioct) (65)
n=0 n=0
N-1
(Z kB) log(B + 1) (Z /€B> €block (66)
n=0

Since each token unmasks exactly once and there are L tokens total we know Zn o ' kB = L. This
yields:

DL < L-log(B+1) + L - €pock (67)

Substituting B = T'/N::
D < L-tog (7 +1) + L+ s (68)
[
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A.3 PROOF OF THEOREM 4.3

Proof. We first prove the necessity. If a DLM policy 7y is any-order causal, then by the one-shot
evaluation trick described in Section 3.2.2, the likelihood of an entire trajectory can be computed
with a single forward pass of the model.

We now prove the sufficiency by contradiction. Suppose a reasonable Ty is not any-order causal.
Then at least one of the three defining conditions fails. We check them one by one.

Condition 1. Assume there exist 1 <! < L and distinct 0 < ¢;,¢; < ¢; such that Aii #* Aij. By the
. s, L. )
sampling process, there are mask tokens mt:‘ and mttj newly unmasked at ¢; and ¢;, respectively.

Lo L, L, L, L,
The reasonable DLM assumption gives [ € A,'" and [ € Attj’ . Hence m,’" and mttjj both attend to

x! when decoded, yet x! attends to different token sets at t; and t;. Thus their likelihoods cannot be
jointly evaluated in one forward pass — a contradiction. So Condition 1 must hold.

Condition 2. Assume there exists 1 < 1 < L with A} Z Q; U {I}.

Since §; C Aél, there is some other position I’ so that at time t; the token at [’ is still a mask m!.
Then m! attends to m' when decoded. By the reasonable DLM assumption we also have | € Al;, :

So the query token m’ knows what the clean token decoded at position [ is. Then, when we do the
one model forward pass, the information of clean token [ flows into the query embedding of m’’, and
since there are more than one layers in the Transformer network, this information further flows into
the key value embeddings of m’’, which m' attends to. This creates information leakage because m'
will be exposed to the information of its clean token in the one-model forward pass evaluation. Thus,
Condition 2 must hold.

Condition 3. Assume there exists 1 < [ < L such that x’ is not among the last two decoded tokens,
and some ¢ < t; with AL Z ©; U U;. Then there is a position I’ with I’ ¢ Q; U U, but I’ € AL
According to Condition 1,1’ € AfE is true for all 0 < ¢t < ¢;. Two possibilities arise:

1. I is the position decoded right after I. Since x' is not among the last two decoding steps,

there exist at least one token decoded after token !’ (denoted as {”'). According to the
reasonable DLM assumption, token I’ and token "’ both have to attend to x!. However, the
token value at position I’ must be different at time ¢;; and ¢;~, making it impossible to build
the attention mask for query token x' in the one forward pass setting.

2. I’ is not the position decoded right after /. There must be one mask token decoded in
between [ and I’ (denoted as I"’). By the reasonable DLM assumption, m'” should attend

to x! when m!” is decoded, and x' should attend to m' . Thus, m!" indirectly depends on

m! at time step t;+, violating Condition 2.

In either subcase, one-shot evaluation fails. So Condition 3 must also hold.

In conclusion, since violating any of the conditions leads to a contradiction, the three conditions are
jointly necessary and sufficient. O

B D2 IMPLEMENTATION DETAILS

B.1 ANY-ORDER DECODING THAT ALLOWS PARALLEL GENERATION.

We present Figure 10 to illustrate how our any-order decoding pattern allows parallel generation.

B.2 ANY-ORDER DECODING WITH PROMPT

In this section, we explicitly introduce the any-order decoding algorithm for sequences with a
prompt to promote understanding of our method. Here, we slightly change the notation to denote
the prompt as q**I'P, where each q' represents the prompt token at the I;;, position. Starting from
qtlr @ mbrtLLe+L e specify the attention pattern of each token at all the time steps. First, we
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Step 1 Step 2 Step 1 Step 2
[ﬁ@flf@%]{+ITI?Iél [ﬁ@flf@%]{+ITI?Iél
L L CL Iy L L L]

J
C L I U G U R R R i
WASK MASK | MASK MA@ @SK like | MASK | {MASKI MASK I MASKIMASK] {MASKI like IMASKI | }

pos1 pos2 pos3 pos4 pos1 pos2 pos3 posé pos1 pos2 pos3 pos4 pos1 pos2 pos3 posé

(N

(a) Fully bidirectional MDLM decoding. (b) Any-order decoding.

Figure 10: Illustration of different DLM decoding strategies when more than one tokens are decoded
at a single time step. We depict attention with query tokens (one layer up) attending to keys/values
(one layer below) via an undirected connected line. The output at each position is depicted with a
directed arrow. “pos” refers to positional encoding index. We use a four token example where the
decoding order is “like,!— I, d2”. At each time step, newly added attention relations in any-order
decoding are highlighted. There are two types of new attention patterns: new masked to unmasked
attentions are highlighted using red markers, and new unmasked to unmasked patterns are highlighted
using green markers.

fix the prompt tokens’ attention pattern as V1 < | < Lp,attnl = {IP | 1 <IP < Lp}. Next, for the
tokens that actually get decoded, a mask token m’ attends to q**7 Ux U {m'} when it is decoded.

After it is decoded as x}, it attends to g7 U xgl U xY#, and this attention pattern stays unchanged
for the rest of the sampling process.

B.3 ONE-SHOT TRAJECTORY LIKELIHOOD

Following Appendix B.2, we introduce the one-shot trajectory likelihood evaluation for sequences

with a prompt. In this case, a sampled trajectory of L tokens is denoted as X(ﬁ’}H:L P+l Similarly to

Section 4.2, if it is generated using any-order decoding, its trajectory likelihood ﬂg(X(ﬁf}+1:LP+L |
q“ry =115 [Lico, mo(x} | xpf 57 HE qlL7) can be attained with one model pass.
Concretely, we first build a Lp + 2L sequence q'L? @ x}L @ mE+12L where @ indicates
concatenation along the sequence dimension. The positional encoding indices pos; are assigned as
follows:

<L L
pos; — {” l<Lp+ (69)

I-L, Lp+L<I<Lp+2L

We then craft the attention mask so that as a query token, g attends to q**#, x} attends to /7 U

U . . .
x5 U {x, "}, and m®=* attends to q"“L* UxP U {m%*!}. In Figure 11, we provide an example of
the attention mask pattern for both any-order decoding and the one-shot likelihood evaluation.

C D2 TRAINING ALGORITHMS
We present the pseudocode of d2-StepMerge and d2-AnyOrder in Algorithm | and Algorithm 2.

22



Under review as a conference paper at ICLR 2026

Initial attention mask Attention mask after iteration 1 Attention mask after iteration 2
Py P, My My M; Mg My P, P, A3 My C; Mg My P, P, A3 My C; My E;
P, P, P,
P, P, P,
M; A, A;
M,y ] M, M,y ]
M; C; ] Cs ]
Mg M B B Mg B
M; My ] l: E; ] l:

of the full trajectory in
one forward pass M,
; | |

P, P, A; B C; Dy E; My My M; Mg My
Sequence is decoded in 3 steps P,
Prompt: PP Py
Start: PPMMMMM A
lteraton1: PPAMCMM By
lteraton22 PP AMCME s ‘
D
lteraton3: PPABCDE : — S—
E;
e |
Usinga 2L x 2L !
attention mask, we can My
compute the likelihood ;. ‘

Figure 11: Attention masks that respect the causal order of generation. Tokens can only attend to
prompt tokens, to themselves, and to tokens that were decoded at an early iteration. Green squares
represent attention is ‘turned on’, i.e., attention bias of 0, between queries (rows) and keys (columns),
gray represents no attention, i.e., attention bias of —oo. Subscripts denote positional embedding
ids. In this example, the sequence is generated as a completion to the prompt PP with the following
trajectory: MMMMM — AMCMM — AMCME —ABCDE. (Top) Any-order causal attention
mask during generation. (Botfom) 2L x 2L attention mask that enables computation of likelihood for
entire sequence trajectory in one forward pass. The model receives a 2L sequence consisting of a
concatenation of the final L generated tokens and L mask tokens. The likelihood is computed using
the output of the second L output tokens.
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D LLM USAGE

Use of Large Language Models. LLMs were used only as an editorial tool to refine the writing
style and enhance clarity. No text, formulas, algorithms, or experimental results were generated or
suggested by LLMs; all scientific contributions are original work by the authors.

Algorithm 1 d2-StepMerge

Input: Reward model r, reference model 7, prompt distribution Q, number of completions per prompt G,
number of inner updates n, number of time segments V.
Initialize g < et
repeat
Told <— 7o
Sample prompt q ~ Q
Sample G completion trajecotries {X(OZ)T}ZG:I ~ Toa(+ | q)
Compute advantage {A;)}<; (see Section 2.2
for j 1to N do

stop-gradient(Compute and collect {wom(x;i)@(, hr la) )
N Jj+ )N

stop-gradient(Compute and collect {mef(x;i)z'(v hr | QYLD
v U+t

end for
for gradient_iterations 1 to n do
for j 1to N do

Compute d2-StepMerge GRPO objective (Eq. (6)) with respect to {X;Z)l G4 T }ZG:1
Backward pass to calculate gradient " "
end for
Update 0 with optimizer.
end for
until converged
return 7y

Algorithm 2 d2-AnyOrder

Input: Reward model r, reference model 7¢, prompt distribution Q, number of completions per prompt G,
number of inner updates n, number of sampling time steps 7'.
Initialize g — et
repeat

Told <— T

Sample prompt q*£P ~ Q

Sample G completions {xOLPH‘LP-FLm 1~ Taa(- | q
Compute advantage {A;)}<, (see Section 2.2

. Lp+1:Lp+Ly; .
Build input sequence IN PUT = q*LP @ Xq prULPHLG) @ mbrtiLp+2le) )}?:1
Build attention mask, see Appendix B.3

I:LP)

Lp+1:Lp+Lg;

stop_gradient(compute {749 (x, pribptLo | INPUT})
Lp+1:Lp+Lg;

stop_gradient(compute {71}’2?()(013+ P | INPUT?Y)

for gradient_iterations 1 to n do
Compute d2-AnyOrder GRPO objective (Eq. (0))
Update 6 with optimizer.
end for
until converged
return 7o
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